msm_cvp_buf.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/pid.h>
  7. #include <linux/fdtable.h>
  8. #include <linux/rcupdate.h>
  9. #include <linux/fs.h>
  10. #include <linux/dma-buf.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/version.h>
  13. #include "msm_cvp_common.h"
  14. #include "cvp_hfi_api.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_core.h"
  17. #include "msm_cvp_dsp.h"
  18. #include "eva_shared_def.h"
  19. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  20. #define eva_buf_map dma_buf_map
  21. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  22. #else
  23. #define eva_buf_map iosys_map
  24. #define _buf_map_set_vaddr iosys_map_set_vaddr
  25. #endif
  26. #define CLEAR_USE_BITMAP(idx, inst) \
  27. do { \
  28. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  29. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  30. hash32_ptr(inst->session), smem->bitmap_index, \
  31. inst->dma_cache.usage_bitmap); \
  32. } while (0)
  33. #define SET_USE_BITMAP(idx, inst) \
  34. do { \
  35. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  36. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  37. hash32_ptr(inst->session), idx, \
  38. inst->dma_cache.usage_bitmap); \
  39. } while (0)
  40. struct cvp_oob_pool wncc_buf_pool;
  41. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  42. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  43. struct eva_kmd_oob_wncc *wncc_oob,
  44. struct eva_kmd_wncc_metadata** wncc_metadata);
  45. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  46. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  47. struct msm_cvp_smem *smem)
  48. {
  49. int i;
  50. char name[PKT_NAME_LEN] = "Unknown";
  51. if (!(tag & msm_cvp_debug))
  52. return 0;
  53. if (!inst || !smem) {
  54. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  55. inst, smem);
  56. return -EINVAL;
  57. }
  58. if (smem->dma_buf) {
  59. i = get_pkt_index_from_type(smem->pkt_type);
  60. if (i > 0)
  61. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  62. if (!atomic_read(&smem->refcount))
  63. dprintk(tag,
  64. " UNUSED mapping %s: 0x%llx size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d",
  65. str, smem->dma_buf,
  66. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  67. else
  68. dprintk(tag,
  69. "%s: %x : 0x%llx size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d",
  70. str, hash32_ptr(inst->session), smem->dma_buf,
  71. smem->size, smem->flags, smem->device_addr,
  72. smem->bitmap_index, atomic_read(&smem->refcount),
  73. name, smem->buf_idx, smem->fd);
  74. }
  75. return 0;
  76. }
  77. static void print_internal_buffer(u32 tag, const char *str,
  78. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  79. {
  80. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  81. return;
  82. if (cbuf->smem->dma_buf) {
  83. dprintk(tag,
  84. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x",
  85. str, hash32_ptr(inst->session), cbuf->fd,
  86. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  87. cbuf->size, cbuf->smem->device_addr);
  88. } else {
  89. dprintk(tag,
  90. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  91. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  92. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  93. }
  94. }
  95. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  96. struct cvp_internal_buf *cbuf)
  97. {
  98. if (!inst || !cbuf) {
  99. dprintk(CVP_ERR,
  100. "%s Invalid params inst %pK, cbuf %pK\n",
  101. str, inst, cbuf);
  102. return;
  103. }
  104. print_smem(tag, str, inst, cbuf->smem);
  105. }
  106. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  107. struct msm_cvp_smem *smem, bool logging)
  108. {
  109. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  110. return;
  111. if (!logging || !snapshot)
  112. return;
  113. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  114. struct smem_data *s;
  115. s = &snapshot->smem_log[snapshot->smem_index];
  116. snapshot->smem_index++;
  117. s->size = smem->size;
  118. s->flags = smem->flags;
  119. s->device_addr = smem->device_addr;
  120. s->bitmap_index = smem->bitmap_index;
  121. s->refcount = atomic_read(&smem->refcount);
  122. s->pkt_type = smem->pkt_type;
  123. s->buf_idx = smem->buf_idx;
  124. }
  125. }
  126. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  127. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  128. bool logging)
  129. {
  130. struct cvp_buf_data *buf = NULL;
  131. u32 index;
  132. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  133. if (!logging)
  134. return;
  135. if (snapshot) {
  136. if (prop == SMEM_CDSP && snapshot->dsp_index < MAX_ENTRIES) {
  137. index = snapshot->dsp_index;
  138. buf = &snapshot->dsp_buf_log[index];
  139. snapshot->dsp_index++;
  140. } else if (prop == SMEM_PERSIST &&
  141. snapshot->persist_index < MAX_ENTRIES) {
  142. index = snapshot->persist_index;
  143. buf = &snapshot->persist_buf_log[index];
  144. snapshot->persist_index++;
  145. }
  146. if (buf) {
  147. buf->device_addr = cbuf->smem->device_addr;
  148. buf->size = cbuf->size;
  149. }
  150. }
  151. }
  152. void print_client_buffer(u32 tag, const char *str,
  153. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  154. {
  155. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  156. return;
  157. dprintk(tag,
  158. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  159. " reserved[0] %u\n",
  160. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  161. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  162. cbuf->reserved[0]);
  163. }
  164. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  165. struct eva_kmd_buffer *buf)
  166. {
  167. struct cvp_hal_session *session;
  168. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  169. bool found = false;
  170. if (!inst || !inst->core || !buf) {
  171. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  172. return false;
  173. }
  174. if (buf->fd < 0) {
  175. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  176. return false;
  177. }
  178. if (buf->offset) {
  179. dprintk(CVP_ERR,
  180. "%s: offset is deprecated, set to 0.\n",
  181. __func__);
  182. return false;
  183. }
  184. session = (struct cvp_hal_session *)inst->session;
  185. mutex_lock(&inst->cvpdspbufs.lock);
  186. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  187. if (cbuf->fd == buf->fd) {
  188. if (cbuf->size != buf->size) {
  189. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  190. __func__);
  191. mutex_unlock(&inst->cvpdspbufs.lock);
  192. return false;
  193. }
  194. found = true;
  195. break;
  196. }
  197. }
  198. mutex_unlock(&inst->cvpdspbufs.lock);
  199. if (found) {
  200. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  201. return false;
  202. }
  203. return true;
  204. }
  205. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  206. fmode_t mask, unsigned int refs)
  207. {
  208. struct files_struct *files = task->files;
  209. struct file *file;
  210. if (!files)
  211. return NULL;
  212. rcu_read_lock();
  213. loop:
  214. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  215. file = fcheck_files(files, fd);
  216. #else
  217. file = files_lookup_fd_rcu(files, fd);
  218. #endif
  219. if (file) {
  220. /* File object ref couldn't be taken.
  221. * dup2() atomicity guarantee is the reason
  222. * we loop to catch the new file (or NULL pointer)
  223. */
  224. if (file->f_mode & mask)
  225. file = NULL;
  226. else if (!get_file_rcu(file))
  227. goto loop;
  228. }
  229. rcu_read_unlock();
  230. return file;
  231. }
  232. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  233. struct task_struct *task)
  234. {
  235. if (file->f_op != gfa_cv.dmabuf_f_op) {
  236. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  237. return ERR_PTR(-EINVAL);
  238. }
  239. return file->private_data;
  240. }
  241. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  242. {
  243. int rc = 0;
  244. struct cvp_internal_buf *cbuf = NULL;
  245. struct msm_cvp_smem *smem = NULL;
  246. struct dma_buf *dma_buf = NULL;
  247. struct file *file;
  248. if (!__is_buf_valid(inst, buf))
  249. return -EINVAL;
  250. if (!inst->task)
  251. return -EINVAL;
  252. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  253. if (file == NULL) {
  254. dprintk(CVP_WARN, "%s fail to get file from fd %d %s\n", __func__, buf->fd, inst->proc_name);
  255. return -EINVAL;
  256. }
  257. dma_buf = cvp_dma_buf_get(
  258. file,
  259. buf->fd,
  260. inst->task);
  261. if (dma_buf == ERR_PTR(-EINVAL)) {
  262. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  263. rc = -EINVAL;
  264. goto exit;
  265. }
  266. if (dma_buf->size < buf->size) {
  267. dprintk(CVP_ERR, "%s DSP client buffer too large %d > %d\n",
  268. __func__, buf->size, dma_buf->size);
  269. rc = -EINVAL;
  270. goto exit;
  271. }
  272. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  273. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  274. if (!cbuf) {
  275. rc = -ENOMEM;
  276. goto exit;
  277. }
  278. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  279. if (!smem) {
  280. rc = -ENOMEM;
  281. goto exit;
  282. }
  283. smem->dma_buf = dma_buf;
  284. smem->bitmap_index = MAX_DMABUF_NUMS;
  285. smem->pkt_type = 0;
  286. smem->buf_idx = 0;
  287. smem->fd = buf->fd;
  288. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  289. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  290. if (rc) {
  291. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  292. goto exit;
  293. }
  294. atomic_inc(&smem->refcount);
  295. cbuf->smem = smem;
  296. cbuf->fd = buf->fd;
  297. cbuf->size = buf->size;
  298. cbuf->offset = buf->offset;
  299. cbuf->ownership = CLIENT;
  300. cbuf->index = buf->index;
  301. buf->reserved[0] = (uint32_t)smem->device_addr;
  302. mutex_lock(&inst->cvpdspbufs.lock);
  303. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  304. mutex_unlock(&inst->cvpdspbufs.lock);
  305. return rc;
  306. exit:
  307. fput(file);
  308. if (smem) {
  309. if (smem->device_addr)
  310. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  311. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  312. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  313. }
  314. if (cbuf)
  315. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  316. return rc;
  317. }
  318. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  319. {
  320. int rc = 0;
  321. bool found;
  322. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  323. struct cvp_hal_session *session;
  324. if (!inst || !inst->core || !buf) {
  325. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  326. return -EINVAL;
  327. }
  328. session = (struct cvp_hal_session *)inst->session;
  329. if (!session) {
  330. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  331. return -EINVAL;
  332. }
  333. mutex_lock(&inst->cvpdspbufs.lock);
  334. found = false;
  335. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  336. if (cbuf->fd == buf->fd) {
  337. found = true;
  338. break;
  339. }
  340. }
  341. if (!found) {
  342. mutex_unlock(&inst->cvpdspbufs.lock);
  343. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  344. return -EINVAL;
  345. }
  346. if (cbuf->smem->device_addr) {
  347. u64 idx = inst->unused_dsp_bufs.ktid;
  348. inst->unused_dsp_bufs.smem[idx] = *(cbuf->smem);
  349. inst->unused_dsp_bufs.nr++;
  350. inst->unused_dsp_bufs.nr =
  351. (inst->unused_dsp_bufs.nr > MAX_FRAME_BUFFER_NUMS)?
  352. MAX_FRAME_BUFFER_NUMS : inst->unused_dsp_bufs.nr;
  353. inst->unused_dsp_bufs.ktid = ++idx % MAX_FRAME_BUFFER_NUMS;
  354. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  355. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  356. atomic_dec(&cbuf->smem->refcount);
  357. }
  358. list_del(&cbuf->list);
  359. mutex_unlock(&inst->cvpdspbufs.lock);
  360. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  361. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  362. return rc;
  363. }
  364. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  365. struct eva_kmd_buffer *buf)
  366. {
  367. int rc = 0, i;
  368. bool found = false;
  369. struct cvp_internal_buf* cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  370. struct msm_cvp_smem* smem = NULL;
  371. struct dma_buf* dma_buf = NULL;
  372. if (!inst || !inst->core || !buf) {
  373. dprintk(CVP_ERR, "%s: invalid params", __func__);
  374. return -EINVAL;
  375. }
  376. if (!inst->session) {
  377. dprintk(CVP_ERR, "%s: invalid session", __func__);
  378. return -EINVAL;
  379. }
  380. if (buf->index) {
  381. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  382. __func__, buf->fd);
  383. return -EINVAL;
  384. }
  385. if (buf->fd < 0) {
  386. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  387. return -EINVAL;
  388. }
  389. if (buf->offset) {
  390. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  391. __func__);
  392. return -EINVAL;
  393. }
  394. mutex_lock(&inst->cvpwnccbufs.lock);
  395. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  396. if (cbuf->fd == buf->fd) {
  397. if (cbuf->size != buf->size) {
  398. dprintk(CVP_ERR, "%s: buf size mismatch",
  399. __func__);
  400. mutex_unlock(&inst->cvpwnccbufs.lock);
  401. return -EINVAL;
  402. }
  403. found = true;
  404. break;
  405. }
  406. }
  407. mutex_unlock(&inst->cvpwnccbufs.lock);
  408. if (found) {
  409. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  410. return -EINVAL;
  411. }
  412. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  413. if (!dma_buf) {
  414. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  415. return -EINVAL;
  416. }
  417. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  418. if (!cbuf) {
  419. msm_cvp_smem_put_dma_buf(dma_buf);
  420. return -ENOMEM;
  421. }
  422. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  423. if (!smem) {
  424. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  425. msm_cvp_smem_put_dma_buf(dma_buf);
  426. return -ENOMEM;
  427. }
  428. smem->dma_buf = dma_buf;
  429. smem->bitmap_index = MAX_DMABUF_NUMS;
  430. smem->pkt_type = 0;
  431. smem->buf_idx = 0;
  432. smem->fd = buf->fd;
  433. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  434. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  435. if (rc) {
  436. dprintk(CVP_ERR, "%s: map failed", __func__);
  437. print_client_buffer(CVP_ERR, __func__, inst, buf);
  438. goto exit;
  439. }
  440. cbuf->smem = smem;
  441. cbuf->fd = buf->fd;
  442. cbuf->size = buf->size;
  443. cbuf->offset = buf->offset;
  444. cbuf->ownership = CLIENT;
  445. cbuf->index = buf->index;
  446. /* Added for PreSil/RUMI testing */
  447. #ifdef USE_PRESIL
  448. dprintk(CVP_DBG,
  449. "wncc buffer is %x for cam_presil_send_buffer"
  450. " with MAP_ADDR_OFFSET %x",
  451. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  452. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  453. (u32)cbuf->offset, (u32)cbuf->size,
  454. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  455. #endif
  456. mutex_lock(&inst->cvpwnccbufs.lock);
  457. if (inst->cvpwnccbufs_table == NULL) {
  458. inst->cvpwnccbufs_table =
  459. (struct msm_cvp_wncc_buffer*) kzalloc(
  460. sizeof(struct msm_cvp_wncc_buffer) *
  461. EVA_KMD_WNCC_MAX_SRC_BUFS,
  462. GFP_KERNEL);
  463. if (!inst->cvpwnccbufs_table) {
  464. mutex_unlock(&inst->cvpwnccbufs.lock);
  465. goto exit;
  466. }
  467. }
  468. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  469. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  470. {
  471. if (inst->cvpwnccbufs_table[i].iova == 0)
  472. {
  473. inst->cvpwnccbufs_num++;
  474. inst->cvpwnccbufs_table[i].fd = buf->fd;
  475. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  476. inst->cvpwnccbufs_table[i].size = smem->size;
  477. /* buf reserved[0] used to store wncc src buf id */
  478. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  479. /* cbuf ktid used to store wncc src buf id */
  480. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  481. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  482. __func__, inst->cvpwnccbufs_table[i].iova);
  483. break;
  484. }
  485. }
  486. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  487. dprintk(CVP_ERR,
  488. "%s: wncc buf table full - max (%u) already registered",
  489. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  490. /* _wncc_print_cvpwnccbufs_table(inst); */
  491. mutex_unlock(&inst->cvpwnccbufs.lock);
  492. rc = -EDQUOT;
  493. goto exit;
  494. }
  495. mutex_unlock(&inst->cvpwnccbufs.lock);
  496. return rc;
  497. exit:
  498. if (smem->device_addr)
  499. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  500. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  501. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  502. cbuf = NULL;
  503. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  504. smem = NULL;
  505. return rc;
  506. }
  507. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  508. struct eva_kmd_buffer *buf)
  509. {
  510. int rc = 0;
  511. bool found;
  512. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  513. uint32_t buf_id, buf_idx;
  514. if (!inst || !inst->core || !buf) {
  515. dprintk(CVP_ERR, "%s: invalid params", __func__);
  516. return -EINVAL;
  517. }
  518. if (!inst->session) {
  519. dprintk(CVP_ERR, "%s: invalid session", __func__);
  520. return -EINVAL;
  521. }
  522. if (buf->index) {
  523. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  524. __func__, buf->fd);
  525. return -EINVAL;
  526. }
  527. buf_id = buf->reserved[0];
  528. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  529. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  530. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  531. __func__, buf->reserved[0]);
  532. return -EINVAL;
  533. }
  534. mutex_lock(&inst->cvpwnccbufs.lock);
  535. if (inst->cvpwnccbufs_num == 0) {
  536. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  537. mutex_unlock(&inst->cvpwnccbufs.lock);
  538. return -EINVAL;
  539. }
  540. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  541. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  542. dprintk(CVP_ERR, "%s: buffer id %d not found",
  543. __func__, buf_id);
  544. mutex_unlock(&inst->cvpwnccbufs.lock);
  545. return -EINVAL;
  546. }
  547. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  548. found = false;
  549. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  550. if (cbuf->fd == buf->fd) {
  551. found = true;
  552. break;
  553. }
  554. }
  555. if (!found) {
  556. dprintk(CVP_ERR, "%s: buffer id %d not found",
  557. __func__, buf_id);
  558. print_client_buffer(CVP_ERR, __func__, inst, buf);
  559. _wncc_print_cvpwnccbufs_table(inst);
  560. mutex_unlock(&inst->cvpwnccbufs.lock);
  561. return -EINVAL;
  562. }
  563. if (cbuf->smem->device_addr) {
  564. u64 idx = inst->unused_wncc_bufs.ktid;
  565. inst->unused_wncc_bufs.smem[idx] = *(cbuf->smem);
  566. inst->unused_wncc_bufs.nr++;
  567. inst->unused_wncc_bufs.nr =
  568. (inst->unused_wncc_bufs.nr > NUM_WNCC_BUFS)?
  569. NUM_WNCC_BUFS : inst->unused_wncc_bufs.nr;
  570. inst->unused_wncc_bufs.ktid = ++idx % NUM_WNCC_BUFS;
  571. }
  572. mutex_unlock(&inst->cvpwnccbufs.lock);
  573. if (cbuf->smem->device_addr) {
  574. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  575. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  576. }
  577. mutex_lock(&inst->cvpwnccbufs.lock);
  578. list_del(&cbuf->list);
  579. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  580. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  581. inst->cvpwnccbufs_table[buf_idx].size = 0;
  582. inst->cvpwnccbufs_num--;
  583. if (inst->cvpwnccbufs_num == 0) {
  584. kfree(inst->cvpwnccbufs_table);
  585. inst->cvpwnccbufs_table = NULL;
  586. }
  587. mutex_unlock(&inst->cvpwnccbufs.lock);
  588. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  589. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  590. return rc;
  591. }
  592. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  593. {
  594. u32 i, j;
  595. if (!wncc_oob) {
  596. dprintk(CVP_ERR, "%s: invalid params", __func__);
  597. return;
  598. }
  599. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  600. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  601. for (i = 0; i < wncc_oob->num_layers; i++) {
  602. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  603. __func__, i, wncc_oob->layers[i].num_addrs);
  604. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  605. dprintk(CVP_DBG,
  606. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  607. __func__, i, j,
  608. wncc_oob->layers[i].addrs[j].buffer_id,
  609. wncc_oob->layers[i].addrs[j].offset);
  610. }
  611. }
  612. }
  613. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  614. {
  615. u32 i, entries = 0;
  616. if (!inst) {
  617. dprintk(CVP_ERR, "%s: invalid params", __func__);
  618. return;
  619. }
  620. if (inst->cvpwnccbufs_num == 0) {
  621. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  622. __func__);
  623. return;
  624. }
  625. if (!inst->cvpwnccbufs_table) {
  626. dprintk(CVP_ERR, "%s: invalid params", __func__);
  627. return;
  628. }
  629. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  630. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  631. entries < inst->cvpwnccbufs_num; i++) {
  632. if (inst->cvpwnccbufs_table[i].iova != 0) {
  633. dprintk(CVP_DBG,
  634. "%s: buf_idx=%04d --> "
  635. "fd=%03d, iova=0x%08x, size=%d",
  636. __func__, i,
  637. inst->cvpwnccbufs_table[i].fd,
  638. inst->cvpwnccbufs_table[i].iova,
  639. inst->cvpwnccbufs_table[i].size);
  640. entries++;
  641. }
  642. }
  643. }
  644. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  645. struct eva_kmd_wncc_metadata** wncc_metadata)
  646. {
  647. u32 i, j, iova;
  648. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  649. !wncc_metadata) {
  650. dprintk(CVP_ERR, "%s: invalid params", __func__);
  651. return;
  652. }
  653. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  654. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  655. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  656. for (i = 0; i < num_layers; i++) {
  657. for (j = 0; j < num_addrs; j++) {
  658. iova = (wncc_metadata[i][j].iova_msb << 22) |
  659. wncc_metadata[i][j].iova_lsb;
  660. dprintk(CVP_DBG,
  661. "%s: wncc_metadata[%u][%u]: "
  662. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  663. __func__, i, j,
  664. wncc_metadata[i][j].loc_x_dec,
  665. wncc_metadata[i][j].loc_x_frac,
  666. wncc_metadata[i][j].loc_y_dec,
  667. wncc_metadata[i][j].loc_y_frac,
  668. iova,
  669. wncc_metadata[i][j].scale_idx,
  670. wncc_metadata[i][j].aff_coeff_3,
  671. wncc_metadata[i][j].aff_coeff_2,
  672. wncc_metadata[i][j].aff_coeff_1,
  673. wncc_metadata[i][j].aff_coeff_0);
  674. }
  675. }
  676. }
  677. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  678. struct eva_kmd_oob_wncc* wncc_oob)
  679. {
  680. int rc = 0;
  681. u32 oob_type = 0;
  682. struct eva_kmd_oob_buf* oob_buf_u;
  683. struct eva_kmd_oob_wncc* wncc_oob_u;
  684. struct eva_kmd_oob_wncc* wncc_oob_k;
  685. unsigned int i;
  686. u32 num_addrs;
  687. if (!in_pkt || !wncc_oob) {
  688. dprintk(CVP_ERR, "%s: invalid params", __func__);
  689. return -EINVAL;
  690. }
  691. oob_buf_u = in_pkt->oob_buf;
  692. if (!access_ok(oob_buf_u, sizeof(*oob_buf_u))) {
  693. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  694. return -EINVAL;
  695. }
  696. if (!access_ok(&oob_buf_u->oob_type, sizeof(oob_buf_u->oob_type))) {
  697. dprintk(CVP_ERR,
  698. "%s: bad OOB buf pointer, oob_type inaccessible",
  699. __func__);
  700. return -EINVAL;
  701. }
  702. rc = get_user(oob_type, &oob_buf_u->oob_type);
  703. if (rc)
  704. return rc;
  705. if (oob_type != EVA_KMD_OOB_WNCC) {
  706. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  707. __func__, oob_type);
  708. return -EINVAL;
  709. }
  710. wncc_oob_u = &oob_buf_u->wncc;
  711. wncc_oob_k = wncc_oob;
  712. if (!access_ok(&wncc_oob_u->metadata_bufs_offset,
  713. sizeof(wncc_oob_u->metadata_bufs_offset))) {
  714. dprintk(CVP_ERR,
  715. "%s: bad OOB buf pointer, wncc.metadata_bufs_offset inaccessible",
  716. __func__);
  717. return -EINVAL;
  718. }
  719. rc = get_user(wncc_oob_k->metadata_bufs_offset,
  720. &wncc_oob_u->metadata_bufs_offset);
  721. if (rc)
  722. return rc;
  723. if (wncc_oob_k->metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  724. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  725. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  726. __func__);
  727. return -EINVAL;
  728. }
  729. if (!access_ok(&wncc_oob_u->num_layers,
  730. sizeof(wncc_oob_u->num_layers))) {
  731. dprintk(CVP_ERR,
  732. "%s: bad OOB buf pointer, wncc.num_layers inaccessible",
  733. __func__);
  734. return -EINVAL;
  735. }
  736. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  737. if (rc)
  738. return rc;
  739. if (wncc_oob_k->num_layers < 1 ||
  740. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  741. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  742. return -EINVAL;
  743. }
  744. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  745. if (!access_ok(&wncc_oob_u->layers[i].num_addrs,
  746. sizeof(wncc_oob_u->layers[i].num_addrs))) {
  747. dprintk(CVP_ERR,
  748. "%s: bad OOB buf pointer, wncc.layers[%u].num_addrs inaccessible",
  749. __func__, i);
  750. return -EINVAL;
  751. }
  752. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  753. &wncc_oob_u->layers[i].num_addrs);
  754. if (rc)
  755. break;
  756. num_addrs = wncc_oob_k->layers[i].num_addrs;
  757. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  758. dprintk(CVP_ERR,
  759. "%s: invalid wncc num addrs for layer %u",
  760. __func__, i);
  761. rc = -EINVAL;
  762. break;
  763. }
  764. if (!access_ok(wncc_oob_u->layers[i].addrs,
  765. num_addrs * sizeof(struct eva_kmd_wncc_addr)) ||
  766. !access_ok(&wncc_oob_u->layers[i].addrs[num_addrs - 1],
  767. sizeof(struct eva_kmd_wncc_addr))) {
  768. dprintk(CVP_ERR,
  769. "%s: bad OOB buf pointer, wncc.layers[%u].addrs inaccessible",
  770. __func__, i);
  771. return -EINVAL;
  772. }
  773. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  774. wncc_oob_u->layers[i].addrs,
  775. num_addrs * sizeof(struct eva_kmd_wncc_addr));
  776. if (rc)
  777. break;
  778. }
  779. if (false)
  780. _wncc_print_oob(wncc_oob);
  781. return rc;
  782. }
  783. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  784. struct eva_kmd_oob_wncc *wncc_oob,
  785. struct eva_kmd_wncc_metadata** wncc_metadata)
  786. {
  787. int rc = 0, i;
  788. struct cvp_buf_type* wncc_metadata_bufs;
  789. struct dma_buf* dmabuf;
  790. struct eva_buf_map map;
  791. __u32 num_layers, metadata_bufs_offset;
  792. _buf_map_set_vaddr(&map, (void *)0xdeadbeaf);
  793. if (!in_pkt || !wncc_metadata || !wncc_oob) {
  794. dprintk(CVP_ERR, "%s: invalid params", __func__);
  795. return -EINVAL;
  796. }
  797. num_layers = wncc_oob->num_layers;
  798. metadata_bufs_offset = wncc_oob->metadata_bufs_offset;
  799. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  800. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  801. return -EINVAL;
  802. }
  803. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  804. - num_layers * sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  805. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  806. __func__);
  807. return -EINVAL;
  808. }
  809. wncc_metadata_bufs = (struct cvp_buf_type*)
  810. &in_pkt->pkt_data[metadata_bufs_offset];
  811. for (i = 0; i < num_layers; i++) {
  812. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  813. if (IS_ERR(dmabuf)) {
  814. rc = PTR_ERR(dmabuf);
  815. dprintk(CVP_ERR,
  816. "%s: dma_buf_get() failed for "
  817. "wncc_metadata_bufs[%d], rc %d",
  818. __func__, i, rc);
  819. break;
  820. }
  821. if (dmabuf->size < wncc_oob->layers[i].num_addrs *
  822. sizeof(struct eva_kmd_wncc_metadata)) {
  823. dprintk(CVP_ERR,
  824. "%s: wncc_metadata_bufs[%d] size insufficient for num addrs in oob",
  825. __func__, i);
  826. dma_buf_put(dmabuf);
  827. rc = -EINVAL;
  828. break;
  829. }
  830. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  831. if (rc) {
  832. dprintk(CVP_ERR,
  833. "%s: dma_buf_begin_cpu_access() failed "
  834. "for wncc_metadata_bufs[%d], rc %d",
  835. __func__, i, rc);
  836. dma_buf_put(dmabuf);
  837. break;
  838. }
  839. rc = dma_buf_vmap(dmabuf, &map);
  840. if (rc) {
  841. dprintk(CVP_ERR,
  842. "%s: dma_buf_vmap() failed for "
  843. "wncc_metadata_bufs[%d]",
  844. __func__, i);
  845. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  846. dma_buf_put(dmabuf);
  847. break;
  848. }
  849. dprintk(CVP_DBG,
  850. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  851. __func__, i, map.is_iomem);
  852. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  853. dma_buf_put(dmabuf);
  854. }
  855. if (rc)
  856. _wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata);
  857. return rc;
  858. }
  859. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  860. struct eva_kmd_oob_wncc *wncc_oob,
  861. struct eva_kmd_wncc_metadata** wncc_metadata)
  862. {
  863. int rc = 0, i;
  864. struct cvp_buf_type* wncc_metadata_bufs;
  865. struct dma_buf* dmabuf;
  866. struct eva_buf_map map;
  867. __u32 num_layers, metadata_bufs_offset;
  868. if (!in_pkt || !wncc_metadata || !wncc_oob) {
  869. dprintk(CVP_ERR, "%s: invalid params", __func__);
  870. return -EINVAL;
  871. }
  872. num_layers = wncc_oob->num_layers;
  873. metadata_bufs_offset = wncc_oob->metadata_bufs_offset;
  874. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  875. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  876. return -EINVAL;
  877. }
  878. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  879. - num_layers * sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  880. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  881. __func__);
  882. return -EINVAL;
  883. }
  884. wncc_metadata_bufs = (struct cvp_buf_type*)
  885. &in_pkt->pkt_data[metadata_bufs_offset];
  886. for (i = 0; i < num_layers; i++) {
  887. if (!wncc_metadata[i]) {
  888. continue;
  889. }
  890. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  891. if (IS_ERR(dmabuf)) {
  892. rc = -PTR_ERR(dmabuf);
  893. dprintk(CVP_ERR,
  894. "%s: dma_buf_get() failed for "
  895. "wncc_metadata_bufs[%d], rc %d",
  896. __func__, i, rc);
  897. break;
  898. }
  899. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  900. dma_buf_vunmap(dmabuf, &map);
  901. wncc_metadata[i] = NULL;
  902. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  903. dma_buf_put(dmabuf);
  904. if (rc) {
  905. dprintk(CVP_ERR,
  906. "%s: dma_buf_end_cpu_access() failed "
  907. "for wncc_metadata_bufs[%d], rc %d",
  908. __func__, i, rc);
  909. break;
  910. }
  911. }
  912. return rc;
  913. }
  914. static int init_wncc_bufs(void)
  915. {
  916. int i;
  917. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  918. wncc_buf_pool.bufs[i] = (struct eva_kmd_oob_wncc*)kzalloc(
  919. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  920. if (!wncc_buf_pool.bufs[i]) {
  921. i--;
  922. goto exit_fail;
  923. }
  924. }
  925. wncc_buf_pool.used_bitmap = 0;
  926. wncc_buf_pool.allocated = true;
  927. return 0;
  928. exit_fail:
  929. while (i >= 0) {
  930. kfree(wncc_buf_pool.bufs[i]);
  931. i--;
  932. }
  933. return -ENOMEM;
  934. }
  935. static int alloc_wncc_buf(struct wncc_oob_buf *wob)
  936. {
  937. int rc, i;
  938. mutex_lock(&wncc_buf_pool.lock);
  939. if (!wncc_buf_pool.allocated) {
  940. rc = init_wncc_bufs();
  941. if (rc) {
  942. mutex_unlock(&wncc_buf_pool.lock);
  943. return rc;
  944. }
  945. }
  946. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  947. if (!(wncc_buf_pool.used_bitmap & BIT(i))) {
  948. wncc_buf_pool.used_bitmap |= BIT(i);
  949. wob->bitmap_idx = i;
  950. wob->buf = wncc_buf_pool.bufs[i];
  951. mutex_unlock(&wncc_buf_pool.lock);
  952. return 0;
  953. }
  954. }
  955. mutex_unlock(&wncc_buf_pool.lock);
  956. wob->bitmap_idx = 0xff;
  957. wob->buf = (struct eva_kmd_oob_wncc*)kzalloc(
  958. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  959. if (!wob->buf)
  960. rc = -ENOMEM;
  961. else
  962. rc = 0;
  963. return rc;
  964. }
  965. static void free_wncc_buf(struct wncc_oob_buf *wob)
  966. {
  967. if (!wob)
  968. return;
  969. if (wob->bitmap_idx == 0xff) {
  970. kfree(wob->buf);
  971. return;
  972. }
  973. if (wob->bitmap_idx < NUM_WNCC_BUFS) {
  974. mutex_lock(&wncc_buf_pool.lock);
  975. wncc_buf_pool.used_bitmap &= ~BIT(wob->bitmap_idx);
  976. memset(wob->buf, 0, sizeof(struct eva_kmd_oob_wncc));
  977. wob->buf = NULL;
  978. mutex_unlock(&wncc_buf_pool.lock);
  979. }
  980. }
  981. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  982. struct eva_kmd_hfi_packet* in_pkt)
  983. {
  984. int rc = 0;
  985. struct eva_kmd_oob_wncc* wncc_oob;
  986. struct wncc_oob_buf wob;
  987. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  988. unsigned int i, j;
  989. bool empty = false;
  990. u32 buf_id, buf_idx, buf_offset, iova;
  991. if (!inst || !inst->core || !in_pkt) {
  992. dprintk(CVP_ERR, "%s: invalid params", __func__);
  993. return -EINVAL;
  994. }
  995. rc = alloc_wncc_buf(&wob);
  996. if (rc)
  997. return -ENOMEM;
  998. wncc_oob = wob.buf;
  999. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  1000. if (rc) {
  1001. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  1002. goto exit;
  1003. }
  1004. memset(wncc_metadata, 0,
  1005. sizeof(*wncc_metadata) * EVA_KMD_WNCC_MAX_LAYERS);
  1006. rc = _wncc_map_metadata_bufs(in_pkt, wncc_oob, wncc_metadata);
  1007. if (rc) {
  1008. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  1009. __func__);
  1010. goto exit;
  1011. }
  1012. mutex_lock(&inst->cvpwnccbufs.lock);
  1013. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  1014. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  1015. empty = true;
  1016. rc = -EINVAL;
  1017. }
  1018. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  1019. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  1020. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  1021. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  1022. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  1023. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  1024. dprintk(CVP_ERR,
  1025. "%s: invalid wncc buf id %u "
  1026. "in layer #%u address #%u",
  1027. __func__, buf_id, i, j);
  1028. rc = -EINVAL;
  1029. break;
  1030. }
  1031. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  1032. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  1033. dprintk(CVP_ERR,
  1034. "%s: unmapped wncc buf id %u "
  1035. "in layer #%u address #%u",
  1036. __func__, buf_id, i, j);
  1037. /* _wncc_print_cvpwnccbufs_table(inst); */
  1038. rc = -EINVAL;
  1039. break;
  1040. }
  1041. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  1042. if (buf_offset >=
  1043. inst->cvpwnccbufs_table[buf_idx].size) {
  1044. /* NOTE: This buffer offset validation is
  1045. * not comprehensive since wncc src image
  1046. * resolution information is not known to
  1047. * KMD. UMD is responsible for comprehensive
  1048. * validation.
  1049. */
  1050. dprintk(CVP_ERR,
  1051. "%s: invalid wncc buf offset %u "
  1052. "in layer #%u address #%u",
  1053. __func__, buf_offset, i, j);
  1054. rc = -EINVAL;
  1055. break;
  1056. }
  1057. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  1058. buf_offset;
  1059. wncc_metadata[i][j].iova_lsb = iova;
  1060. wncc_metadata[i][j].iova_msb = iova >> 22;
  1061. }
  1062. }
  1063. mutex_unlock(&inst->cvpwnccbufs.lock);
  1064. if (false)
  1065. _wncc_print_metadata_buf(wncc_oob->num_layers,
  1066. wncc_oob->layers[0].num_addrs, wncc_metadata);
  1067. if (_wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata)) {
  1068. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  1069. __func__);
  1070. }
  1071. exit:
  1072. free_wncc_buf(&wob);
  1073. return rc;
  1074. }
  1075. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  1076. struct eva_kmd_hfi_packet* in_pkt)
  1077. {
  1078. int rc = 0;
  1079. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  1080. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  1081. if (!inst || !inst->core || !in_pkt) {
  1082. dprintk(CVP_ERR, "%s: invalid params", __func__);
  1083. return -EINVAL;
  1084. }
  1085. switch (cmd_hdr->packet_type) {
  1086. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  1087. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  1088. break;
  1089. default:
  1090. break;
  1091. }
  1092. return rc;
  1093. }
  1094. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  1095. u32 offset, u32 size)
  1096. {
  1097. enum smem_cache_ops cache_op;
  1098. if (msm_cvp_cacheop_disabled)
  1099. return;
  1100. if (!smem) {
  1101. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1102. return;
  1103. }
  1104. switch (type) {
  1105. case EVA_KMD_BUFTYPE_INPUT:
  1106. cache_op = SMEM_CACHE_CLEAN;
  1107. break;
  1108. case EVA_KMD_BUFTYPE_OUTPUT:
  1109. cache_op = SMEM_CACHE_INVALIDATE;
  1110. break;
  1111. default:
  1112. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  1113. }
  1114. dprintk(CVP_MEM,
  1115. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  1116. __func__, smem->dma_buf, cache_op, offset, size);
  1117. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  1118. }
  1119. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  1120. struct dma_buf *dma_buf,
  1121. u32 pkt_type)
  1122. {
  1123. struct msm_cvp_smem *smem;
  1124. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1125. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1126. int i;
  1127. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  1128. return NULL;
  1129. mutex_lock(&inst->dma_cache.lock);
  1130. for (i = 0; i < inst->dma_cache.nr; i++)
  1131. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  1132. SET_USE_BITMAP(i, inst);
  1133. smem = inst->dma_cache.entries[i];
  1134. smem->bitmap_index = i;
  1135. smem->pkt_type = pkt_type;
  1136. atomic_inc(&smem->refcount);
  1137. /*
  1138. * If we find it, it means we already increased
  1139. * refcount before, so we put it to avoid double
  1140. * incremental.
  1141. */
  1142. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1143. mutex_unlock(&inst->dma_cache.lock);
  1144. print_smem(CVP_MEM, "found in cache", inst, smem);
  1145. return smem;
  1146. }
  1147. mutex_unlock(&inst->dma_cache.lock);
  1148. /* earch persist list */
  1149. mutex_lock(&inst->persistbufs.lock);
  1150. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  1151. smem = buf->smem;
  1152. if (smem && smem->dma_buf == dma_buf) {
  1153. atomic_inc(&smem->refcount);
  1154. mutex_unlock(&inst->persistbufs.lock);
  1155. print_smem(CVP_MEM, "found in persist", inst, smem);
  1156. return smem;
  1157. }
  1158. }
  1159. mutex_unlock(&inst->persistbufs.lock);
  1160. /* Search frame list */
  1161. mutex_lock(&inst->frames.lock);
  1162. list_for_each_entry(frame, &inst->frames.list, list) {
  1163. for (i = 0; i < frame->nr; i++) {
  1164. smem = frame->bufs[i].smem;
  1165. if (smem && smem->dma_buf == dma_buf) {
  1166. atomic_inc(&smem->refcount);
  1167. mutex_unlock(&inst->frames.lock);
  1168. print_smem(CVP_MEM, "found in frame",
  1169. inst, smem);
  1170. return smem;
  1171. }
  1172. }
  1173. }
  1174. mutex_unlock(&inst->frames.lock);
  1175. return NULL;
  1176. }
  1177. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1178. struct msm_cvp_smem *smem)
  1179. {
  1180. unsigned int i;
  1181. struct msm_cvp_smem *smem2;
  1182. mutex_lock(&inst->dma_cache.lock);
  1183. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1184. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1185. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1186. smem->bitmap_index = inst->dma_cache.nr;
  1187. inst->dma_cache.nr++;
  1188. i = smem->bitmap_index;
  1189. } else {
  1190. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1191. MAX_DMABUF_NUMS);
  1192. if (i < MAX_DMABUF_NUMS) {
  1193. smem2 = inst->dma_cache.entries[i];
  1194. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1195. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1196. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1197. inst->dma_cache.entries[i] = smem;
  1198. smem->bitmap_index = i;
  1199. SET_USE_BITMAP(i, inst);
  1200. } else {
  1201. dprintk(CVP_WARN,
  1202. "%s: reached limit, fallback to buf mapping list\n"
  1203. , __func__);
  1204. atomic_inc(&smem->refcount);
  1205. mutex_unlock(&inst->dma_cache.lock);
  1206. return -ENOMEM;
  1207. }
  1208. }
  1209. atomic_inc(&smem->refcount);
  1210. mutex_unlock(&inst->dma_cache.lock);
  1211. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1212. return 0;
  1213. }
  1214. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1215. struct cvp_buf_type *buf,
  1216. bool is_persist,
  1217. u32 pkt_type)
  1218. {
  1219. int rc = 0, found = 1;
  1220. struct msm_cvp_smem *smem = NULL;
  1221. struct dma_buf *dma_buf = NULL;
  1222. if (buf->fd < 0) {
  1223. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1224. return NULL;
  1225. }
  1226. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1227. if (!dma_buf) {
  1228. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1229. return NULL;
  1230. }
  1231. if (is_persist) {
  1232. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1233. if (!smem)
  1234. return NULL;
  1235. smem->dma_buf = dma_buf;
  1236. smem->bitmap_index = MAX_DMABUF_NUMS;
  1237. smem->pkt_type = pkt_type;
  1238. smem->flags |= SMEM_PERSIST;
  1239. smem->fd = buf->fd;
  1240. atomic_inc(&smem->refcount);
  1241. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1242. if (rc)
  1243. goto exit;
  1244. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1245. dprintk(CVP_ERR,
  1246. "%s: invalid offset %d or size %d persist\n",
  1247. __func__, buf->offset, buf->size);
  1248. goto exit2;
  1249. }
  1250. return smem;
  1251. }
  1252. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1253. if (!smem) {
  1254. found = 0;
  1255. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1256. if (!smem)
  1257. return NULL;
  1258. smem->dma_buf = dma_buf;
  1259. smem->bitmap_index = MAX_DMABUF_NUMS;
  1260. smem->pkt_type = pkt_type;
  1261. smem->fd = buf->fd;
  1262. if (is_params_pkt(pkt_type))
  1263. smem->flags |= SMEM_PERSIST;
  1264. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1265. if (rc)
  1266. goto exit;
  1267. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1268. dprintk(CVP_ERR,
  1269. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1270. __func__, buf->offset, buf->size, buf->fd,
  1271. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1272. goto exit2;
  1273. }
  1274. rc = msm_cvp_session_add_smem(inst, smem);
  1275. if (rc && rc != -ENOMEM)
  1276. goto exit2;
  1277. return smem;
  1278. }
  1279. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1280. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1281. __func__, buf->offset, buf->size);
  1282. if (found) {
  1283. mutex_lock(&inst->dma_cache.lock);
  1284. atomic_dec(&smem->refcount);
  1285. mutex_unlock(&inst->dma_cache.lock);
  1286. return NULL;
  1287. }
  1288. goto exit2;
  1289. }
  1290. return smem;
  1291. exit2:
  1292. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1293. exit:
  1294. msm_cvp_smem_put_dma_buf(dma_buf);
  1295. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1296. smem = NULL;
  1297. return smem;
  1298. }
  1299. static int msm_cvp_unmap_user_persist_buf(struct msm_cvp_inst *inst,
  1300. struct cvp_buf_type *buf,
  1301. u32 pkt_type, u32 buf_idx, u32 *iova)
  1302. {
  1303. struct msm_cvp_smem *smem = NULL;
  1304. struct list_head *ptr;
  1305. struct list_head *next;
  1306. struct cvp_internal_buf *pbuf;
  1307. struct dma_buf *dma_buf;
  1308. if (!inst) {
  1309. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1310. return -EINVAL;
  1311. }
  1312. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1313. if (!dma_buf)
  1314. return -EINVAL;
  1315. mutex_lock(&inst->persistbufs.lock);
  1316. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1317. if (!ptr) {
  1318. mutex_unlock(&inst->persistbufs.lock);
  1319. return -EINVAL;
  1320. }
  1321. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1322. if (dma_buf == pbuf->smem->dma_buf && (pbuf->smem->flags & SMEM_PERSIST)) {
  1323. *iova = pbuf->smem->device_addr;
  1324. dprintk(CVP_MEM,
  1325. "Unmap persist fd %d, dma_buf %#llx iova %#x\n",
  1326. pbuf->fd, pbuf->smem->dma_buf, *iova);
  1327. list_del(&pbuf->list);
  1328. if (*iova) {
  1329. msm_cvp_unmap_smem(inst, pbuf->smem, "unmap user persist");
  1330. msm_cvp_smem_put_dma_buf(pbuf->smem->dma_buf);
  1331. pbuf->smem->device_addr = 0;
  1332. }
  1333. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1334. pbuf->smem = NULL;
  1335. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1336. mutex_unlock(&inst->persistbufs.lock);
  1337. dma_buf_put(dma_buf);
  1338. return 0;
  1339. }
  1340. }
  1341. mutex_unlock(&inst->persistbufs.lock);
  1342. dma_buf_put(dma_buf);
  1343. return -EINVAL;
  1344. }
  1345. static int msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1346. struct cvp_buf_type *buf,
  1347. u32 pkt_type, u32 buf_idx, u32 *iova)
  1348. {
  1349. struct msm_cvp_smem *smem = NULL;
  1350. struct list_head *ptr;
  1351. struct list_head *next;
  1352. struct cvp_internal_buf *pbuf;
  1353. struct dma_buf *dma_buf;
  1354. int ret;
  1355. if (!inst) {
  1356. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1357. return -EINVAL;
  1358. }
  1359. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1360. if (!dma_buf)
  1361. return -EINVAL;
  1362. mutex_lock(&inst->persistbufs.lock);
  1363. if (!inst->persistbufs.list.next) {
  1364. mutex_unlock(&inst->persistbufs.lock);
  1365. return -EINVAL;
  1366. }
  1367. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1368. if (!ptr)
  1369. return -EINVAL;
  1370. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1371. if (dma_buf == pbuf->smem->dma_buf) {
  1372. pbuf->size =
  1373. (pbuf->size >= buf->size) ?
  1374. pbuf->size : buf->size;
  1375. *iova = pbuf->smem->device_addr + buf->offset;
  1376. mutex_unlock(&inst->persistbufs.lock);
  1377. atomic_inc(&pbuf->smem->refcount);
  1378. dma_buf_put(dma_buf);
  1379. dprintk(CVP_MEM,
  1380. "map persist Reuse fd %d, dma_buf %#llx\n",
  1381. pbuf->fd, pbuf->smem->dma_buf);
  1382. return 0;
  1383. }
  1384. }
  1385. mutex_unlock(&inst->persistbufs.lock);
  1386. dma_buf_put(dma_buf);
  1387. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1388. if (!pbuf) {
  1389. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1390. __func__);
  1391. return -ENOMEM;
  1392. }
  1393. if (is_params_pkt(pkt_type))
  1394. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1395. else
  1396. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1397. if (!smem) {
  1398. ret = -ENOMEM;
  1399. goto exit;
  1400. }
  1401. smem->pkt_type = pkt_type;
  1402. smem->buf_idx = buf_idx;
  1403. smem->fd = buf->fd;
  1404. pbuf->smem = smem;
  1405. pbuf->fd = buf->fd;
  1406. pbuf->size = buf->size;
  1407. pbuf->offset = buf->offset;
  1408. pbuf->ownership = CLIENT;
  1409. mutex_lock(&inst->persistbufs.lock);
  1410. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1411. mutex_unlock(&inst->persistbufs.lock);
  1412. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1413. *iova = smem->device_addr + buf->offset;
  1414. return 0;
  1415. exit:
  1416. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1417. return ret;
  1418. }
  1419. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1420. struct cvp_buf_type *buf,
  1421. struct msm_cvp_frame *frame,
  1422. u32 pkt_type, u32 buf_idx)
  1423. {
  1424. u32 iova = 0;
  1425. struct msm_cvp_smem *smem = NULL;
  1426. u32 nr;
  1427. u32 type;
  1428. if (!inst || !frame) {
  1429. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1430. return 0;
  1431. }
  1432. nr = frame->nr;
  1433. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1434. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1435. return 0;
  1436. }
  1437. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1438. if (!smem)
  1439. return 0;
  1440. smem->buf_idx = buf_idx;
  1441. frame->bufs[nr].fd = buf->fd;
  1442. frame->bufs[nr].smem = smem;
  1443. frame->bufs[nr].size = buf->size;
  1444. frame->bufs[nr].offset = buf->offset;
  1445. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1446. frame->nr++;
  1447. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1448. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1449. iova = smem->device_addr + buf->offset;
  1450. return iova;
  1451. }
  1452. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1453. struct msm_cvp_frame *frame)
  1454. {
  1455. u32 i;
  1456. u32 type;
  1457. struct msm_cvp_smem *smem = NULL;
  1458. struct cvp_internal_buf *buf;
  1459. type = EVA_KMD_BUFTYPE_OUTPUT;
  1460. for (i = 0; i < frame->nr; ++i) {
  1461. buf = &frame->bufs[i];
  1462. smem = buf->smem;
  1463. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1464. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1465. /* smem not in dmamap cache */
  1466. if (atomic_dec_and_test(&smem->refcount)) {
  1467. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1468. dma_heap_buffer_free(smem->dma_buf);
  1469. smem->buf_idx |= 0xdead0000;
  1470. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1471. buf->smem = NULL;
  1472. }
  1473. } else {
  1474. mutex_lock(&inst->dma_cache.lock);
  1475. if (atomic_dec_and_test(&smem->refcount)) {
  1476. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1477. print_smem(CVP_MEM, "Map dereference",
  1478. inst, smem);
  1479. smem->buf_idx |= 0x10000000;
  1480. }
  1481. mutex_unlock(&inst->dma_cache.lock);
  1482. }
  1483. }
  1484. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1485. }
  1486. static void backup_frame_buffers(struct msm_cvp_inst *inst,
  1487. struct msm_cvp_frame *frame)
  1488. {
  1489. /* Save frame buffers before unmap them */
  1490. int i = frame->nr;
  1491. if (i == 0 || i > MAX_FRAME_BUFFER_NUMS)
  1492. return;
  1493. inst->last_frame.ktid = frame->ktid;
  1494. inst->last_frame.nr = frame->nr;
  1495. do {
  1496. i--;
  1497. if (frame->bufs[i].smem->bitmap_index < MAX_DMABUF_NUMS) {
  1498. /*
  1499. * Frame buffer info can be found in dma_cache table,
  1500. * Skip saving
  1501. */
  1502. inst->last_frame.nr = 0;
  1503. return;
  1504. }
  1505. inst->last_frame.smem[i] = *(frame->bufs[i].smem);
  1506. } while (i);
  1507. }
  1508. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1509. {
  1510. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1511. bool found;
  1512. if (!inst) {
  1513. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1514. return;
  1515. }
  1516. ktid &= (FENCE_BIT - 1);
  1517. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1518. __func__, hash32_ptr(inst->session), ktid);
  1519. found = false;
  1520. mutex_lock(&inst->frames.lock);
  1521. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1522. if (frame->ktid == ktid) {
  1523. found = true;
  1524. list_del(&frame->list);
  1525. dprintk(CVP_CMD, "%s: "
  1526. "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n",
  1527. __func__, frame->pkt_type,
  1528. hash32_ptr(inst->session),
  1529. frame->ktid);
  1530. /* Save the previous frame mappings for debug */
  1531. backup_frame_buffers(inst, frame);
  1532. msm_cvp_unmap_frame_buf(inst, frame);
  1533. break;
  1534. }
  1535. }
  1536. mutex_unlock(&inst->frames.lock);
  1537. if (!found)
  1538. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1539. }
  1540. /*
  1541. * Unmap persistent buffer before sending RELEASE_PERSIST_BUFFERS to FW
  1542. * This packet is sent after SESSION_STOP. The assumption is FW/HW will
  1543. * NOT access any of the 3 persist buffer.
  1544. */
  1545. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  1546. struct eva_kmd_hfi_packet *in_pkt,
  1547. unsigned int offset, unsigned int buf_num)
  1548. {
  1549. struct cvp_buf_type *buf;
  1550. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1551. int i, ret;
  1552. u32 iova;
  1553. if (!offset || !buf_num)
  1554. return 0;
  1555. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1556. for (i = 0; i < buf_num; i++) {
  1557. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1558. offset += sizeof(*buf) >> 2;
  1559. if (buf->fd < 0 || !buf->size)
  1560. continue;
  1561. ret = msm_cvp_unmap_user_persist_buf(inst, buf,
  1562. cmd_hdr->packet_type, i, &iova);
  1563. if (ret) {
  1564. dprintk(CVP_ERR,
  1565. "%s: buf %d unmap failed.\n",
  1566. __func__, i);
  1567. return ret;
  1568. }
  1569. buf->fd = iova;
  1570. }
  1571. return 0;
  1572. }
  1573. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1574. struct eva_kmd_hfi_packet *in_pkt,
  1575. unsigned int offset, unsigned int buf_num)
  1576. {
  1577. struct cvp_buf_type *buf;
  1578. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1579. int i, ret;
  1580. u32 iova;
  1581. if (!offset || !buf_num)
  1582. return 0;
  1583. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1584. for (i = 0; i < buf_num; i++) {
  1585. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1586. offset += sizeof(*buf) >> 2;
  1587. if (buf->fd < 0 || !buf->size)
  1588. continue;
  1589. ret = msm_cvp_map_user_persist_buf(inst, buf,
  1590. cmd_hdr->packet_type, i, &iova);
  1591. if (ret) {
  1592. dprintk(CVP_ERR,
  1593. "%s: buf %d map failed.\n",
  1594. __func__, i);
  1595. return ret;
  1596. }
  1597. buf->fd = iova;
  1598. }
  1599. return 0;
  1600. }
  1601. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1602. struct eva_kmd_hfi_packet *in_pkt,
  1603. unsigned int offset, unsigned int buf_num)
  1604. {
  1605. struct cvp_buf_type *buf;
  1606. int i;
  1607. u32 iova;
  1608. u64 ktid;
  1609. struct msm_cvp_frame *frame;
  1610. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1611. struct msm_cvp_inst *instance = (struct msm_cvp_inst *)0xdeadbeef;
  1612. struct msm_cvp_core *core = NULL;
  1613. core = cvp_driver->cvp_core;
  1614. if (!core)
  1615. return -EINVAL;
  1616. if (!offset || !buf_num)
  1617. return 0;
  1618. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1619. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1620. ktid &= (FENCE_BIT - 1);
  1621. cmd_hdr->client_data.kdata = ktid;
  1622. dprintk(CVP_CMD, "%s: "
  1623. "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n",
  1624. __func__, cmd_hdr->packet_type,
  1625. cmd_hdr->session_id,
  1626. cmd_hdr->client_data.transaction_id,
  1627. cmd_hdr->client_data.kdata & (FENCE_BIT - 1));
  1628. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1629. if (!frame)
  1630. return -ENOMEM;
  1631. frame->ktid = ktid;
  1632. frame->nr = 0;
  1633. frame->pkt_type = cmd_hdr->packet_type;
  1634. for (i = 0; i < buf_num; i++) {
  1635. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1636. offset += sizeof(*buf) >> 2;
  1637. if (buf->fd < 0 || !buf->size) {
  1638. buf->fd = 0;
  1639. buf->size = 0;
  1640. continue;
  1641. }
  1642. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1643. if (!iova) {
  1644. dprintk(CVP_ERR,
  1645. "%s: buf %d register failed.\n",
  1646. __func__, i);
  1647. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1648. mutex_lock(&core->lock);
  1649. list_for_each_entry(instance, &core->instances, list) {
  1650. msm_cvp_print_inst_bufs(instance, false);
  1651. }
  1652. mutex_unlock(&core->lock);
  1653. msm_cvp_unmap_frame_buf(inst, frame);
  1654. return -EINVAL;
  1655. }
  1656. buf->fd = iova;
  1657. }
  1658. mutex_lock(&inst->frames.lock);
  1659. list_add_tail(&frame->list, &inst->frames.list);
  1660. mutex_unlock(&inst->frames.lock);
  1661. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1662. return 0;
  1663. }
  1664. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1665. {
  1666. int rc = 0, i;
  1667. struct cvp_internal_buf *cbuf, *dummy;
  1668. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1669. struct msm_cvp_smem *smem;
  1670. struct cvp_hal_session *session;
  1671. struct eva_kmd_buffer buf;
  1672. struct list_head *ptr = (struct list_head *)0xdead;
  1673. struct list_head *next = (struct list_head *)0xdead;
  1674. session = (struct cvp_hal_session *)inst->session;
  1675. mutex_lock(&inst->frames.lock);
  1676. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1677. list_del(&frame->list);
  1678. msm_cvp_unmap_frame_buf(inst, frame);
  1679. }
  1680. mutex_unlock(&inst->frames.lock);
  1681. mutex_lock(&inst->persistbufs.lock);
  1682. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1683. if (!ptr)
  1684. return -EINVAL;
  1685. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1686. smem = cbuf->smem;
  1687. if (!smem) {
  1688. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1689. mutex_unlock(&inst->persistbufs.lock);
  1690. return -EINVAL;
  1691. }
  1692. if (cbuf->ownership != DRIVER) {
  1693. dprintk(CVP_MEM,
  1694. "%s: %x : fd %d %pK size %d",
  1695. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1696. smem->dma_buf, cbuf->size);
  1697. list_del(&cbuf->list);
  1698. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1699. /*
  1700. * don't care refcount, has to remove mapping
  1701. * this is user persistent buffer
  1702. */
  1703. if (smem->device_addr) {
  1704. msm_cvp_unmap_smem(inst, smem,
  1705. "unmap persist");
  1706. msm_cvp_smem_put_dma_buf(
  1707. cbuf->smem->dma_buf);
  1708. smem->device_addr = 0;
  1709. }
  1710. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1711. cbuf->smem = NULL;
  1712. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1713. } else {
  1714. /*
  1715. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1716. * Leave dma_cache cleanup to unmap
  1717. */
  1718. cbuf->smem = NULL;
  1719. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1720. }
  1721. }
  1722. }
  1723. mutex_unlock(&inst->persistbufs.lock);
  1724. mutex_lock(&inst->dma_cache.lock);
  1725. for (i = 0; i < inst->dma_cache.nr; i++) {
  1726. smem = inst->dma_cache.entries[i];
  1727. if (atomic_read(&smem->refcount) == 0) {
  1728. print_smem(CVP_MEM, "free", inst, smem);
  1729. } else if (!(smem->flags & SMEM_PERSIST)) {
  1730. print_smem(CVP_WARN, "in use", inst, smem);
  1731. }
  1732. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1733. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1734. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1735. inst->dma_cache.entries[i] = NULL;
  1736. }
  1737. mutex_unlock(&inst->dma_cache.lock);
  1738. cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  1739. mutex_lock(&inst->cvpdspbufs.lock);
  1740. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1741. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1742. if (cbuf->ownership == CLIENT) {
  1743. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1744. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1745. } else if (cbuf->ownership == DSP) {
  1746. rc = cvp_dsp_fastrpc_unmap(inst->dsp_handle, cbuf);
  1747. if (rc)
  1748. dprintk(CVP_ERR,
  1749. "%s: failed to unmap buf from DSP\n",
  1750. __func__);
  1751. rc = cvp_release_dsp_buffers(inst, cbuf);
  1752. if (rc)
  1753. dprintk(CVP_ERR,
  1754. "%s Fail to free buffer 0x%x\n",
  1755. __func__, rc);
  1756. }
  1757. list_del(&cbuf->list);
  1758. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1759. }
  1760. mutex_unlock(&inst->cvpdspbufs.lock);
  1761. mutex_lock(&inst->cvpwnccbufs.lock);
  1762. if (inst->cvpwnccbufs_num != 0)
  1763. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1764. __func__, inst->cvpwnccbufs_num);
  1765. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1766. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1767. buf.fd = cbuf->fd;
  1768. buf.reserved[0] = cbuf->ktid;
  1769. mutex_unlock(&inst->cvpwnccbufs.lock);
  1770. msm_cvp_unmap_buf_wncc(inst, &buf);
  1771. mutex_lock(&inst->cvpwnccbufs.lock);
  1772. }
  1773. mutex_unlock(&inst->cvpwnccbufs.lock);
  1774. return rc;
  1775. }
  1776. void msm_cvp_populate_dsp_buf_info(struct cvp_internal_buf *buf,
  1777. struct cvp_hal_session *session,
  1778. u32 session_id,
  1779. struct msm_cvp_core *core)
  1780. {
  1781. struct cvp_hfi_ops *dev_ops = (struct cvp_hfi_ops *) core->dev_ops;
  1782. struct iris_hfi_device *cvp_device = (struct iris_hfi_device *) dev_ops->hfi_device_data;
  1783. struct cvp_iface_q_info dsp_debugQ_info = cvp_device->dsp_iface_queues[DEBUG_Q];
  1784. struct cvp_dsp_trace_buf *trace_buf;
  1785. struct cvp_dsp_trace *dsp_debug_trace;
  1786. dsp_debug_trace = (struct cvp_dsp_trace *) dsp_debugQ_info.q_array.align_virtual_addr;
  1787. if (!dsp_debug_trace) {
  1788. dprintk(CVP_ERR, "dsp trace is NULL\n");
  1789. return;
  1790. }
  1791. for (int session_idx = 0; session_idx < EVA_TRACE_MAX_SESSION_NUM; session_idx++) {
  1792. if (dsp_debug_trace->sessions[session_idx].session_id == session_id) {
  1793. u32 buf_cnt = dsp_debug_trace->sessions[session_idx].buf_cnt;
  1794. for (int buf_idx = 0; buf_idx < buf_cnt; buf_idx++) {
  1795. trace_buf = &dsp_debug_trace->sessions[session_idx].buf[buf_idx];
  1796. if (buf->smem->device_addr == trace_buf->iova) {
  1797. buf->smem->buf_idx = trace_buf->buf_idx;
  1798. buf->smem->pkt_type = trace_buf->pkt_type;
  1799. buf->smem->fd = trace_buf->fd;
  1800. return;
  1801. }
  1802. }
  1803. }
  1804. }
  1805. }
  1806. #define MAX_NUM_FRAMES_DUMP 4
  1807. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1808. {
  1809. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1810. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1811. struct msm_cvp_core *core;
  1812. struct inst_snapshot *snap = NULL;
  1813. int i = 0, c = 0;
  1814. // DSP trace related variables
  1815. struct cvp_hal_session *session;
  1816. u32 session_id;
  1817. session = (struct cvp_hal_session *)inst->session;
  1818. session_id = hash32_ptr(session);
  1819. core = cvp_driver->cvp_core;
  1820. if (log && core->log.snapshot_index < 16) {
  1821. snap = &core->log.snapshot[core->log.snapshot_index];
  1822. snap->session = inst->session;
  1823. core->log.snapshot_index++;
  1824. }
  1825. if (!inst) {
  1826. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1827. __func__, inst);
  1828. return;
  1829. }
  1830. dprintk(CVP_ERR,
  1831. "---Buffer details for inst: %pK %s of type: %d---\n",
  1832. inst, inst->proc_name, inst->session_type);
  1833. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1834. mutex_lock(&inst->dma_cache.lock);
  1835. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1836. for (i = 0; i < inst->dma_cache.nr; i++)
  1837. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1838. mutex_unlock(&inst->dma_cache.lock);
  1839. i = 0;
  1840. dprintk(CVP_ERR, "frame buffer list\n");
  1841. mutex_lock(&inst->frames.lock);
  1842. list_for_each_entry(frame, &inst->frames.list, list) {
  1843. i++;
  1844. if (i <= MAX_NUM_FRAMES_DUMP) {
  1845. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n",
  1846. i, frame->ktid);
  1847. for (c = 0; c < frame->nr; c++)
  1848. _log_smem(snap, inst, frame->bufs[c].smem,
  1849. log);
  1850. }
  1851. }
  1852. if (i > MAX_NUM_FRAMES_DUMP)
  1853. dprintk(CVP_ERR, "Skipped %d frames' buffers\n",
  1854. (i - MAX_NUM_FRAMES_DUMP));
  1855. mutex_unlock(&inst->frames.lock);
  1856. mutex_lock(&inst->cvpdspbufs.lock);
  1857. dprintk(CVP_ERR, "dsp buffer list:\n");
  1858. list_for_each_entry(buf, &inst->cvpdspbufs.list, list) {
  1859. // Populate DSP buffer info from debug queue to kernel instance
  1860. msm_cvp_populate_dsp_buf_info(buf, session, session_id, core);
  1861. // Log print buffer info
  1862. _log_buf(snap, SMEM_CDSP, inst, buf, log);
  1863. }
  1864. mutex_unlock(&inst->cvpdspbufs.lock);
  1865. mutex_lock(&inst->cvpwnccbufs.lock);
  1866. dprintk(CVP_ERR, "wncc buffer list:\n");
  1867. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1868. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1869. mutex_unlock(&inst->cvpwnccbufs.lock);
  1870. mutex_lock(&inst->persistbufs.lock);
  1871. dprintk(CVP_ERR, "persist buffer list:\n");
  1872. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1873. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1874. mutex_unlock(&inst->persistbufs.lock);
  1875. dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid);
  1876. for (i = 0; i < inst->last_frame.nr; i++)
  1877. _log_smem(snap, inst, &inst->last_frame.smem[i], log);
  1878. dprintk(CVP_ERR, "unmapped wncc bufs\n");
  1879. for (i = 0; i < inst->unused_wncc_bufs.nr; i++)
  1880. _log_smem(snap, inst, &inst->unused_wncc_bufs.smem[i], log);
  1881. dprintk(CVP_ERR, "unmapped dsp bufs\n");
  1882. for (i = 0; i < inst->unused_dsp_bufs.nr; i++)
  1883. _log_smem(snap, inst, &inst->unused_dsp_bufs.smem[i], log);
  1884. }
  1885. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1886. u32 buffer_size)
  1887. {
  1888. struct cvp_internal_buf *buf;
  1889. struct msm_cvp_list *buf_list;
  1890. u32 smem_flags = SMEM_UNCACHED;
  1891. int rc = 0;
  1892. if (!inst) {
  1893. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1894. return NULL;
  1895. }
  1896. buf_list = &inst->persistbufs;
  1897. if (!buffer_size)
  1898. return NULL;
  1899. /* If PERSIST buffer requires secure mapping, uncomment
  1900. * below flags setting
  1901. * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1902. */
  1903. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1904. if (!buf) {
  1905. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1906. goto fail_kzalloc;
  1907. }
  1908. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1909. if (!buf->smem) {
  1910. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1911. goto err_no_smem;
  1912. }
  1913. buf->smem->flags = smem_flags;
  1914. rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */
  1915. &(inst->core->resources), buf->smem);
  1916. if (rc) {
  1917. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1918. goto err_no_mem;
  1919. }
  1920. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1921. atomic_inc(&buf->smem->refcount);
  1922. buf->size = buf->smem->size;
  1923. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1924. buf->ownership = DRIVER;
  1925. mutex_lock(&buf_list->lock);
  1926. list_add_tail(&buf->list, &buf_list->list);
  1927. mutex_unlock(&buf_list->lock);
  1928. return buf;
  1929. err_no_mem:
  1930. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1931. err_no_smem:
  1932. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1933. fail_kzalloc:
  1934. return NULL;
  1935. }
  1936. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1937. {
  1938. struct msm_cvp_smem *smem;
  1939. struct list_head *ptr = (struct list_head *)0xdead;
  1940. struct list_head *next = (struct list_head *)0xdead;
  1941. struct cvp_internal_buf *buf;
  1942. int rc = 0;
  1943. struct msm_cvp_core *core;
  1944. struct cvp_hfi_ops *ops_tbl;
  1945. if (!inst) {
  1946. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1947. return -EINVAL;
  1948. }
  1949. core = inst->core;
  1950. if (!core) {
  1951. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1952. return -EINVAL;
  1953. }
  1954. ops_tbl = core->dev_ops;
  1955. if (!ops_tbl) {
  1956. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", ops_tbl);
  1957. return -EINVAL;
  1958. }
  1959. dprintk(CVP_MEM, "release persist buffer!\n");
  1960. mutex_lock(&inst->persistbufs.lock);
  1961. /* Workaround for FW: release buffer means release all */
  1962. if (inst->state > MSM_CVP_CORE_INIT_DONE && inst->state <= MSM_CVP_CLOSE_DONE) {
  1963. rc = call_hfi_op(ops_tbl, session_release_buffers,
  1964. (void *)inst->session);
  1965. if (!rc) {
  1966. mutex_unlock(&inst->persistbufs.lock);
  1967. rc = wait_for_sess_signal_receipt(inst,
  1968. HAL_SESSION_RELEASE_BUFFER_DONE);
  1969. if (rc)
  1970. dprintk(CVP_WARN,
  1971. "%s: wait release_arp signal failed, rc %d\n",
  1972. __func__, rc);
  1973. mutex_lock(&inst->persistbufs.lock);
  1974. } else {
  1975. dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n");
  1976. }
  1977. }
  1978. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1979. if (!ptr)
  1980. return -EINVAL;
  1981. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1982. smem = buf->smem;
  1983. if (!smem) {
  1984. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1985. mutex_unlock(&inst->persistbufs.lock);
  1986. return -EINVAL;
  1987. }
  1988. if (buf->ownership == DRIVER) {
  1989. dprintk(CVP_MEM,
  1990. "%s: %x : fd %d %pK size %d",
  1991. "free arp", hash32_ptr(inst->session), buf->fd,
  1992. smem->dma_buf, buf->size);
  1993. list_del(&buf->list);
  1994. atomic_dec(&smem->refcount);
  1995. msm_cvp_smem_free(smem);
  1996. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1997. buf->smem = NULL;
  1998. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1999. }
  2000. }
  2001. mutex_unlock(&inst->persistbufs.lock);
  2002. return rc;
  2003. }
  2004. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  2005. struct cvp_internal_buf *buf,
  2006. u32 buffer_size,
  2007. u32 secure_type)
  2008. {
  2009. u32 smem_flags = SMEM_UNCACHED;
  2010. int rc = 0;
  2011. if (!inst) {
  2012. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  2013. return -EINVAL;
  2014. }
  2015. if (!buf)
  2016. return -EINVAL;
  2017. if (!buffer_size)
  2018. return -EINVAL;
  2019. switch (secure_type) {
  2020. case 0:
  2021. break;
  2022. case 1:
  2023. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  2024. break;
  2025. case 2:
  2026. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  2027. break;
  2028. default:
  2029. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  2030. __func__, secure_type);
  2031. return -EINVAL;
  2032. }
  2033. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  2034. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  2035. if (!buf->smem) {
  2036. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  2037. goto fail_kzalloc_smem_cache;
  2038. }
  2039. buf->smem->flags = smem_flags;
  2040. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  2041. &(inst->core->resources), buf->smem);
  2042. if (rc) {
  2043. dprintk(CVP_ERR, "Failed to allocate DSP buf\n");
  2044. goto err_no_mem;
  2045. }
  2046. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  2047. atomic_inc(&buf->smem->refcount);
  2048. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  2049. buf->size = buf->smem->size;
  2050. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  2051. buf->ownership = DSP;
  2052. return rc;
  2053. err_no_mem:
  2054. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  2055. fail_kzalloc_smem_cache:
  2056. return rc;
  2057. }
  2058. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  2059. struct cvp_internal_buf *buf)
  2060. {
  2061. struct msm_cvp_smem *smem;
  2062. int rc = 0;
  2063. if (!inst) {
  2064. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  2065. return -EINVAL;
  2066. }
  2067. if (!buf) {
  2068. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  2069. return -EINVAL;
  2070. }
  2071. smem = buf->smem;
  2072. if (!smem) {
  2073. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  2074. return -EINVAL;
  2075. }
  2076. if (buf->ownership == DSP) {
  2077. dprintk(CVP_MEM,
  2078. "%s: %x : fd %x %s size %d",
  2079. __func__, hash32_ptr(inst->session), buf->fd,
  2080. smem->dma_buf->name, buf->size);
  2081. atomic_dec(&smem->refcount);
  2082. msm_cvp_smem_free(smem);
  2083. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  2084. } else {
  2085. dprintk(CVP_ERR,
  2086. "%s: wrong owner %d %x : fd %x %s size %d",
  2087. __func__, buf->ownership, hash32_ptr(inst->session),
  2088. buf->fd, smem->dma_buf->name, buf->size);
  2089. }
  2090. return rc;
  2091. }
  2092. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  2093. struct eva_kmd_buffer *buf)
  2094. {
  2095. struct cvp_hfi_ops *ops_tbl;
  2096. struct cvp_hal_session *session;
  2097. struct msm_cvp_inst *s;
  2098. int rc = 0;
  2099. if (!inst || !inst->core || !buf) {
  2100. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2101. return -EINVAL;
  2102. }
  2103. s = cvp_get_inst_validate(inst->core, inst);
  2104. if (!s)
  2105. return -ECONNRESET;
  2106. session = (struct cvp_hal_session *)inst->session;
  2107. if (!session) {
  2108. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  2109. rc = -EINVAL;
  2110. goto exit;
  2111. }
  2112. ops_tbl = inst->core->dev_ops;
  2113. print_client_buffer(CVP_HFI, "register", inst, buf);
  2114. if (buf->index)
  2115. rc = msm_cvp_map_buf_dsp(inst, buf);
  2116. else
  2117. rc = msm_cvp_map_buf_wncc(inst, buf);
  2118. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  2119. buf->fd, buf->reserved[0]);
  2120. exit:
  2121. cvp_put_inst(s);
  2122. return rc;
  2123. }
  2124. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  2125. struct eva_kmd_buffer *buf)
  2126. {
  2127. struct msm_cvp_inst *s;
  2128. int rc = 0;
  2129. if (!inst || !inst->core || !buf) {
  2130. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2131. return -EINVAL;
  2132. }
  2133. s = cvp_get_inst_validate(inst->core, inst);
  2134. if (!s)
  2135. return -ECONNRESET;
  2136. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  2137. if (buf->index)
  2138. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  2139. else
  2140. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  2141. cvp_put_inst(s);
  2142. return rc;
  2143. }