qdf_mem.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930
  1. /*
  2. * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. /**
  20. * DOC: qdf_mem
  21. * This file provides OS dependent memory management APIs
  22. */
  23. #include "qdf_debugfs.h"
  24. #include "qdf_mem.h"
  25. #include "qdf_nbuf.h"
  26. #include "qdf_lock.h"
  27. #include "qdf_mc_timer.h"
  28. #include "qdf_module.h"
  29. #include <qdf_trace.h>
  30. #include "qdf_str.h"
  31. #include "qdf_talloc.h"
  32. #include <linux/debugfs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/string.h>
  35. #include <qdf_list.h>
  36. #ifdef CNSS_MEM_PRE_ALLOC
  37. #ifdef CONFIG_CNSS_OUT_OF_TREE
  38. #include "cnss_prealloc.h"
  39. #else
  40. #include <net/cnss_prealloc.h>
  41. #endif
  42. #endif
  43. #if defined(MEMORY_DEBUG) || defined(NBUF_MEMORY_DEBUG)
  44. static bool mem_debug_disabled;
  45. qdf_declare_param(mem_debug_disabled, bool);
  46. #endif
  47. #ifdef MEMORY_DEBUG
  48. static bool is_initial_mem_debug_disabled;
  49. #endif
  50. /* Preprocessor Definitions and Constants */
  51. #define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
  52. #define QDF_MEM_WARN_THRESHOLD 300 /* ms */
  53. #define QDF_DEBUG_STRING_SIZE 512
  54. /**
  55. * struct __qdf_mem_stat - qdf memory statistics
  56. * @kmalloc: total kmalloc allocations
  57. * @dma: total dma allocations
  58. * @skb: total skb allocations
  59. * @skb_total: total skb allocations in host driver
  60. * @dp_tx_skb: total Tx skb allocations in datapath
  61. * @dp_rx_skb: total Rx skb allocations in datapath
  62. * @skb_mem_max: high watermark for skb allocations
  63. * @dp_tx_skb_mem_max: high watermark for Tx DP skb allocations
  64. * @dp_rx_skb_mem_max: high watermark for Rx DP skb allocations
  65. * @dp_tx_skb_count: DP Tx buffer count
  66. * @dp_tx_skb_count_max: High watermark for DP Tx buffer count
  67. * @dp_rx_skb_count: DP Rx buffer count
  68. * @dp_rx_skb_count_max: High watermark for DP Rx buffer count
  69. * @tx_descs_outstanding: Current pending Tx descs count
  70. * @tx_descs_max: High watermark for pending Tx descs count
  71. */
  72. static struct __qdf_mem_stat {
  73. qdf_atomic_t kmalloc;
  74. qdf_atomic_t dma;
  75. qdf_atomic_t skb;
  76. qdf_atomic_t skb_total;
  77. qdf_atomic_t dp_tx_skb;
  78. qdf_atomic_t dp_rx_skb;
  79. int32_t skb_mem_max;
  80. int32_t dp_tx_skb_mem_max;
  81. int32_t dp_rx_skb_mem_max;
  82. qdf_atomic_t dp_tx_skb_count;
  83. int32_t dp_tx_skb_count_max;
  84. qdf_atomic_t dp_rx_skb_count;
  85. int32_t dp_rx_skb_count_max;
  86. qdf_atomic_t tx_descs_outstanding;
  87. int32_t tx_descs_max;
  88. } qdf_mem_stat;
  89. #ifdef MEMORY_DEBUG
  90. #include "qdf_debug_domain.h"
  91. enum list_type {
  92. LIST_TYPE_MEM = 0,
  93. LIST_TYPE_DMA = 1,
  94. LIST_TYPE_NBUF = 2,
  95. LIST_TYPE_MAX,
  96. };
  97. /**
  98. * struct major_alloc_priv - private data registered to debugfs entry
  99. * created to list the list major allocations
  100. * @type: type of the list to be parsed
  101. * @threshold: configured by user by overwriting the respective debugfs
  102. * sys entry. This is to list the functions which requested
  103. * memory/dma allocations more than threshold number of times.
  104. */
  105. struct major_alloc_priv {
  106. enum list_type type;
  107. uint32_t threshold;
  108. };
  109. static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
  110. static qdf_spinlock_t qdf_mem_list_lock;
  111. static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
  112. static qdf_spinlock_t qdf_mem_dma_list_lock;
  113. static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
  114. {
  115. return &qdf_mem_domains[domain];
  116. }
  117. static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
  118. {
  119. return &qdf_mem_dma_domains[domain];
  120. }
  121. /**
  122. * struct qdf_mem_header - memory object to dubug
  123. * @node: node to the list
  124. * @domain: the active memory domain at time of allocation
  125. * @freed: flag set during free, used to detect double frees
  126. * Use uint8_t so we can detect corruption
  127. * @func: name of the function the allocation was made from
  128. * @line: line number of the file the allocation was made from
  129. * @size: size of the allocation in bytes
  130. * @caller: Caller of the function for which memory is allocated
  131. * @header: a known value, used to detect out-of-bounds access
  132. * @time: timestamp at which allocation was made
  133. */
  134. struct qdf_mem_header {
  135. qdf_list_node_t node;
  136. enum qdf_debug_domain domain;
  137. uint8_t freed;
  138. char func[QDF_MEM_FUNC_NAME_SIZE];
  139. uint32_t line;
  140. uint32_t size;
  141. void *caller;
  142. uint64_t header;
  143. uint64_t time;
  144. };
  145. /* align the qdf_mem_header to 8 bytes */
  146. #define QDF_DMA_MEM_HEADER_ALIGN 8
  147. static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
  148. static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
  149. static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
  150. {
  151. return (struct qdf_mem_header *)ptr - 1;
  152. }
  153. /* make sure the header pointer is 8bytes aligned */
  154. static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
  155. qdf_size_t size)
  156. {
  157. return (struct qdf_mem_header *)
  158. qdf_roundup((size_t)((uint8_t *)ptr + size),
  159. QDF_DMA_MEM_HEADER_ALIGN);
  160. }
  161. static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
  162. {
  163. return (uint64_t *)((void *)(header + 1) + header->size);
  164. }
  165. static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
  166. {
  167. return (void *)(header + 1);
  168. }
  169. /* number of bytes needed for the qdf memory debug information */
  170. #define QDF_MEM_DEBUG_SIZE \
  171. (sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
  172. /* number of bytes needed for the qdf dma memory debug information */
  173. #define QDF_DMA_MEM_DEBUG_SIZE \
  174. (sizeof(struct qdf_mem_header) + QDF_DMA_MEM_HEADER_ALIGN)
  175. static void qdf_mem_trailer_init(struct qdf_mem_header *header)
  176. {
  177. QDF_BUG(header);
  178. if (!header)
  179. return;
  180. *qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
  181. }
  182. static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
  183. const char *func, uint32_t line, void *caller)
  184. {
  185. QDF_BUG(header);
  186. if (!header)
  187. return;
  188. header->domain = qdf_debug_domain_get();
  189. header->freed = false;
  190. qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
  191. header->line = line;
  192. header->size = size;
  193. header->caller = caller;
  194. header->header = WLAN_MEM_HEADER;
  195. header->time = qdf_get_log_timestamp();
  196. }
  197. enum qdf_mem_validation_bitmap {
  198. QDF_MEM_BAD_HEADER = 1 << 0,
  199. QDF_MEM_BAD_TRAILER = 1 << 1,
  200. QDF_MEM_BAD_SIZE = 1 << 2,
  201. QDF_MEM_DOUBLE_FREE = 1 << 3,
  202. QDF_MEM_BAD_FREED = 1 << 4,
  203. QDF_MEM_BAD_NODE = 1 << 5,
  204. QDF_MEM_BAD_DOMAIN = 1 << 6,
  205. QDF_MEM_WRONG_DOMAIN = 1 << 7,
  206. };
  207. static enum qdf_mem_validation_bitmap
  208. qdf_mem_trailer_validate(struct qdf_mem_header *header)
  209. {
  210. enum qdf_mem_validation_bitmap error_bitmap = 0;
  211. if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
  212. error_bitmap |= QDF_MEM_BAD_TRAILER;
  213. return error_bitmap;
  214. }
  215. static enum qdf_mem_validation_bitmap
  216. qdf_mem_header_validate(struct qdf_mem_header *header,
  217. enum qdf_debug_domain domain)
  218. {
  219. enum qdf_mem_validation_bitmap error_bitmap = 0;
  220. if (header->header != WLAN_MEM_HEADER)
  221. error_bitmap |= QDF_MEM_BAD_HEADER;
  222. if (header->size > QDF_MEM_MAX_MALLOC)
  223. error_bitmap |= QDF_MEM_BAD_SIZE;
  224. if (header->freed == true)
  225. error_bitmap |= QDF_MEM_DOUBLE_FREE;
  226. else if (header->freed)
  227. error_bitmap |= QDF_MEM_BAD_FREED;
  228. if (!qdf_list_node_in_any_list(&header->node))
  229. error_bitmap |= QDF_MEM_BAD_NODE;
  230. if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
  231. header->domain >= QDF_DEBUG_DOMAIN_COUNT)
  232. error_bitmap |= QDF_MEM_BAD_DOMAIN;
  233. else if (header->domain != domain)
  234. error_bitmap |= QDF_MEM_WRONG_DOMAIN;
  235. return error_bitmap;
  236. }
  237. static void
  238. qdf_mem_header_assert_valid(struct qdf_mem_header *header,
  239. enum qdf_debug_domain current_domain,
  240. enum qdf_mem_validation_bitmap error_bitmap,
  241. const char *func,
  242. uint32_t line)
  243. {
  244. if (!error_bitmap)
  245. return;
  246. if (error_bitmap & QDF_MEM_BAD_HEADER)
  247. qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
  248. header->header, WLAN_MEM_HEADER);
  249. if (error_bitmap & QDF_MEM_BAD_SIZE)
  250. qdf_err("Corrupted memory size %u (expected < %d)",
  251. header->size, QDF_MEM_MAX_MALLOC);
  252. if (error_bitmap & QDF_MEM_BAD_TRAILER)
  253. qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
  254. *qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
  255. if (error_bitmap & QDF_MEM_DOUBLE_FREE)
  256. qdf_err("Memory has previously been freed");
  257. if (error_bitmap & QDF_MEM_BAD_FREED)
  258. qdf_err("Corrupted memory freed flag 0x%x", header->freed);
  259. if (error_bitmap & QDF_MEM_BAD_NODE)
  260. qdf_err("Corrupted memory header node or double free");
  261. if (error_bitmap & QDF_MEM_BAD_DOMAIN)
  262. qdf_err("Corrupted memory domain 0x%x", header->domain);
  263. if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
  264. qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
  265. qdf_debug_domain_name(header->domain), header->domain,
  266. qdf_debug_domain_name(current_domain), current_domain);
  267. QDF_MEMDEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
  268. }
  269. /**
  270. * struct __qdf_mem_info - memory statistics
  271. * @func: the function which allocated memory
  272. * @line: the line at which allocation happened
  273. * @size: the size of allocation
  274. * @caller: Address of the caller function
  275. * @count: how many allocations of same type
  276. * @time: timestamp at which allocation happened
  277. */
  278. struct __qdf_mem_info {
  279. char func[QDF_MEM_FUNC_NAME_SIZE];
  280. uint32_t line;
  281. uint32_t size;
  282. void *caller;
  283. uint32_t count;
  284. uint64_t time;
  285. };
  286. /*
  287. * The table depth defines the de-duplication proximity scope.
  288. * A deeper table takes more time, so choose any optimum value.
  289. */
  290. #define QDF_MEM_STAT_TABLE_SIZE 8
  291. /**
  292. * qdf_mem_debug_print_header() - memory debug header print logic
  293. * @print: the print adapter function
  294. * @print_priv: the private data to be consumed by @print
  295. * @threshold: the threshold value set by user to list top allocations
  296. *
  297. * Return: None
  298. */
  299. static void qdf_mem_debug_print_header(qdf_abstract_print print,
  300. void *print_priv,
  301. uint32_t threshold)
  302. {
  303. if (threshold)
  304. print(print_priv, "APIs requested allocations >= %u no of time",
  305. threshold);
  306. print(print_priv,
  307. "--------------------------------------------------------------");
  308. print(print_priv,
  309. " count size total filename caller timestamp");
  310. print(print_priv,
  311. "--------------------------------------------------------------");
  312. }
  313. /**
  314. * qdf_mem_meta_table_insert() - insert memory metadata into the given table
  315. * @table: the memory metadata table to insert into
  316. * @meta: the memory metadata to insert
  317. *
  318. * Return: true if the table is full after inserting, false otherwise
  319. */
  320. static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
  321. struct qdf_mem_header *meta)
  322. {
  323. int i;
  324. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  325. if (!table[i].count) {
  326. qdf_str_lcopy(table[i].func, meta->func,
  327. QDF_MEM_FUNC_NAME_SIZE);
  328. table[i].line = meta->line;
  329. table[i].size = meta->size;
  330. table[i].count = 1;
  331. table[i].caller = meta->caller;
  332. table[i].time = meta->time;
  333. break;
  334. }
  335. if (qdf_str_eq(table[i].func, meta->func) &&
  336. table[i].line == meta->line &&
  337. table[i].size == meta->size &&
  338. table[i].caller == meta->caller) {
  339. table[i].count++;
  340. break;
  341. }
  342. }
  343. /* return true if the table is now full */
  344. return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
  345. }
  346. /**
  347. * qdf_mem_domain_print() - output agnostic memory domain print logic
  348. * @domain: the memory domain to print
  349. * @print: the print adapter function
  350. * @print_priv: the private data to be consumed by @print
  351. * @threshold: the threshold value set by uset to list top allocations
  352. * @mem_print: pointer to function which prints the memory allocation data
  353. *
  354. * Return: None
  355. */
  356. static void qdf_mem_domain_print(qdf_list_t *domain,
  357. qdf_abstract_print print,
  358. void *print_priv,
  359. uint32_t threshold,
  360. void (*mem_print)(struct __qdf_mem_info *,
  361. qdf_abstract_print,
  362. void *, uint32_t))
  363. {
  364. QDF_STATUS status;
  365. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  366. qdf_list_node_t *node;
  367. qdf_mem_zero(table, sizeof(table));
  368. qdf_mem_debug_print_header(print, print_priv, threshold);
  369. /* hold lock while inserting to avoid use-after free of the metadata */
  370. qdf_spin_lock(&qdf_mem_list_lock);
  371. status = qdf_list_peek_front(domain, &node);
  372. while (QDF_IS_STATUS_SUCCESS(status)) {
  373. struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
  374. bool is_full = qdf_mem_meta_table_insert(table, meta);
  375. qdf_spin_unlock(&qdf_mem_list_lock);
  376. if (is_full) {
  377. (*mem_print)(table, print, print_priv, threshold);
  378. qdf_mem_zero(table, sizeof(table));
  379. }
  380. qdf_spin_lock(&qdf_mem_list_lock);
  381. status = qdf_list_peek_next(domain, node, &node);
  382. }
  383. qdf_spin_unlock(&qdf_mem_list_lock);
  384. (*mem_print)(table, print, print_priv, threshold);
  385. }
  386. /**
  387. * qdf_mem_meta_table_print() - memory metadata table print logic
  388. * @table: the memory metadata table to print
  389. * @print: the print adapter function
  390. * @print_priv: the private data to be consumed by @print
  391. * @threshold: the threshold value set by user to list top allocations
  392. *
  393. * Return: None
  394. */
  395. static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
  396. qdf_abstract_print print,
  397. void *print_priv,
  398. uint32_t threshold)
  399. {
  400. int i;
  401. char debug_str[QDF_DEBUG_STRING_SIZE];
  402. size_t len = 0;
  403. char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
  404. len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
  405. "%s", debug_prefix);
  406. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  407. if (!table[i].count)
  408. break;
  409. print(print_priv,
  410. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  411. table[i].count,
  412. table[i].size,
  413. table[i].count * table[i].size,
  414. table[i].func,
  415. table[i].line, table[i].caller,
  416. table[i].time);
  417. len += qdf_scnprintf(debug_str + len,
  418. sizeof(debug_str) - len,
  419. " @ %s:%u %pS",
  420. table[i].func,
  421. table[i].line,
  422. table[i].caller);
  423. }
  424. print(print_priv, "%s", debug_str);
  425. }
  426. static int qdf_err_printer(void *priv, const char *fmt, ...)
  427. {
  428. va_list args;
  429. va_start(args, fmt);
  430. QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
  431. va_end(args);
  432. return 0;
  433. }
  434. #endif /* MEMORY_DEBUG */
  435. bool prealloc_disabled = 1;
  436. qdf_declare_param(prealloc_disabled, bool);
  437. qdf_export_symbol(prealloc_disabled);
  438. int qdf_mem_malloc_flags(void)
  439. {
  440. if (in_interrupt() || !preemptible() || rcu_preempt_depth())
  441. return GFP_ATOMIC;
  442. return GFP_KERNEL;
  443. }
  444. qdf_export_symbol(qdf_mem_malloc_flags);
  445. bool qdf_prealloc_disabled_config_get(void)
  446. {
  447. return prealloc_disabled;
  448. }
  449. qdf_export_symbol(qdf_prealloc_disabled_config_get);
  450. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  451. QDF_STATUS qdf_prealloc_disabled_config_set(const char *str_value)
  452. {
  453. QDF_STATUS status;
  454. status = qdf_bool_parse(str_value, &prealloc_disabled);
  455. return status;
  456. }
  457. #endif
  458. #if defined WLAN_DEBUGFS
  459. /* Debugfs root directory for qdf_mem */
  460. static struct dentry *qdf_mem_debugfs_root;
  461. #ifdef MEMORY_DEBUG
  462. static int seq_printf_printer(void *priv, const char *fmt, ...)
  463. {
  464. struct seq_file *file = priv;
  465. va_list args;
  466. va_start(args, fmt);
  467. seq_vprintf(file, fmt, args);
  468. seq_puts(file, "\n");
  469. va_end(args);
  470. return 0;
  471. }
  472. /**
  473. * qdf_print_major_alloc() - memory metadata table print logic
  474. * @table: the memory metadata table to print
  475. * @print: the print adapter function
  476. * @print_priv: the private data to be consumed by @print
  477. * @threshold: the threshold value set by uset to list top allocations
  478. *
  479. * Return: None
  480. */
  481. static void qdf_print_major_alloc(struct __qdf_mem_info *table,
  482. qdf_abstract_print print,
  483. void *print_priv,
  484. uint32_t threshold)
  485. {
  486. int i;
  487. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  488. if (!table[i].count)
  489. break;
  490. if (table[i].count >= threshold)
  491. print(print_priv,
  492. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  493. table[i].count,
  494. table[i].size,
  495. table[i].count * table[i].size,
  496. table[i].func,
  497. table[i].line, table[i].caller,
  498. table[i].time);
  499. }
  500. }
  501. /**
  502. * qdf_mem_seq_start() - sequential callback to start
  503. * @seq: seq_file handle
  504. * @pos: The start position of the sequence
  505. *
  506. * Return: iterator pointer, or NULL if iteration is complete
  507. */
  508. static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
  509. {
  510. enum qdf_debug_domain domain = *pos;
  511. if (!qdf_debug_domain_valid(domain))
  512. return NULL;
  513. /* just use the current position as our iterator */
  514. return pos;
  515. }
  516. /**
  517. * qdf_mem_seq_next() - next sequential callback
  518. * @seq: seq_file handle
  519. * @v: the current iterator
  520. * @pos: the current position
  521. *
  522. * Get the next node and release previous node.
  523. *
  524. * Return: iterator pointer, or NULL if iteration is complete
  525. */
  526. static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  527. {
  528. ++*pos;
  529. return qdf_mem_seq_start(seq, pos);
  530. }
  531. /**
  532. * qdf_mem_seq_stop() - stop sequential callback
  533. * @seq: seq_file handle
  534. * @v: current iterator
  535. *
  536. * Return: None
  537. */
  538. static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
  539. /**
  540. * qdf_mem_seq_show() - print sequential callback
  541. * @seq: seq_file handle
  542. * @v: current iterator
  543. *
  544. * Return: 0 - success
  545. */
  546. static int qdf_mem_seq_show(struct seq_file *seq, void *v)
  547. {
  548. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  549. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  550. qdf_debug_domain_name(domain_id), domain_id);
  551. qdf_mem_domain_print(qdf_mem_list_get(domain_id),
  552. seq_printf_printer,
  553. seq,
  554. 0,
  555. qdf_mem_meta_table_print);
  556. return 0;
  557. }
  558. /* sequential file operation table */
  559. static const struct seq_operations qdf_mem_seq_ops = {
  560. .start = qdf_mem_seq_start,
  561. .next = qdf_mem_seq_next,
  562. .stop = qdf_mem_seq_stop,
  563. .show = qdf_mem_seq_show,
  564. };
  565. static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
  566. {
  567. return seq_open(file, &qdf_mem_seq_ops);
  568. }
  569. /**
  570. * qdf_major_alloc_show() - print sequential callback
  571. * @seq: seq_file handle
  572. * @v: current iterator
  573. *
  574. * Return: 0 - success
  575. */
  576. static int qdf_major_alloc_show(struct seq_file *seq, void *v)
  577. {
  578. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  579. struct major_alloc_priv *priv;
  580. qdf_list_t *list;
  581. priv = (struct major_alloc_priv *)seq->private;
  582. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  583. qdf_debug_domain_name(domain_id), domain_id);
  584. switch (priv->type) {
  585. case LIST_TYPE_MEM:
  586. list = qdf_mem_list_get(domain_id);
  587. break;
  588. case LIST_TYPE_DMA:
  589. list = qdf_mem_dma_list(domain_id);
  590. break;
  591. default:
  592. list = NULL;
  593. break;
  594. }
  595. if (list)
  596. qdf_mem_domain_print(list,
  597. seq_printf_printer,
  598. seq,
  599. priv->threshold,
  600. qdf_print_major_alloc);
  601. return 0;
  602. }
  603. /* sequential file operation table created to track major allocs */
  604. static const struct seq_operations qdf_major_allocs_seq_ops = {
  605. .start = qdf_mem_seq_start,
  606. .next = qdf_mem_seq_next,
  607. .stop = qdf_mem_seq_stop,
  608. .show = qdf_major_alloc_show,
  609. };
  610. static int qdf_major_allocs_open(struct inode *inode, struct file *file)
  611. {
  612. void *private = inode->i_private;
  613. struct seq_file *seq;
  614. int rc;
  615. rc = seq_open(file, &qdf_major_allocs_seq_ops);
  616. if (rc == 0) {
  617. seq = file->private_data;
  618. seq->private = private;
  619. }
  620. return rc;
  621. }
  622. static ssize_t qdf_major_alloc_set_threshold(struct file *file,
  623. const char __user *user_buf,
  624. size_t count,
  625. loff_t *pos)
  626. {
  627. char buf[32];
  628. ssize_t buf_size;
  629. uint32_t threshold;
  630. struct seq_file *seq = file->private_data;
  631. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  632. buf_size = min(count, (sizeof(buf) - 1));
  633. if (buf_size <= 0)
  634. return 0;
  635. if (copy_from_user(buf, user_buf, buf_size))
  636. return -EFAULT;
  637. buf[buf_size] = '\0';
  638. if (!kstrtou32(buf, 10, &threshold))
  639. priv->threshold = threshold;
  640. return buf_size;
  641. }
  642. /**
  643. * qdf_print_major_nbuf_allocs() - output agnostic nbuf print logic
  644. * @threshold: the threshold value set by uset to list top allocations
  645. * @print: the print adapter function
  646. * @print_priv: the private data to be consumed by @print
  647. * @mem_print: pointer to function which prints the memory allocation data
  648. *
  649. * Return: None
  650. */
  651. static void
  652. qdf_print_major_nbuf_allocs(uint32_t threshold,
  653. qdf_abstract_print print,
  654. void *print_priv,
  655. void (*mem_print)(struct __qdf_mem_info *,
  656. qdf_abstract_print,
  657. void *, uint32_t))
  658. {
  659. uint32_t nbuf_iter;
  660. unsigned long irq_flag = 0;
  661. QDF_NBUF_TRACK *p_node;
  662. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  663. struct qdf_mem_header meta;
  664. bool is_full;
  665. qdf_mem_zero(table, sizeof(table));
  666. qdf_mem_debug_print_header(print, print_priv, threshold);
  667. if (is_initial_mem_debug_disabled)
  668. return;
  669. qdf_rl_info("major nbuf print with threshold %u", threshold);
  670. for (nbuf_iter = 0; nbuf_iter < QDF_NET_BUF_TRACK_MAX_SIZE;
  671. nbuf_iter++) {
  672. qdf_nbuf_acquire_track_lock(nbuf_iter, irq_flag);
  673. p_node = qdf_nbuf_get_track_tbl(nbuf_iter);
  674. while (p_node) {
  675. meta.line = p_node->line_num;
  676. meta.size = p_node->size;
  677. meta.caller = NULL;
  678. meta.time = p_node->time;
  679. qdf_str_lcopy(meta.func, p_node->func_name,
  680. QDF_MEM_FUNC_NAME_SIZE);
  681. is_full = qdf_mem_meta_table_insert(table, &meta);
  682. if (is_full) {
  683. (*mem_print)(table, print,
  684. print_priv, threshold);
  685. qdf_mem_zero(table, sizeof(table));
  686. }
  687. p_node = p_node->p_next;
  688. }
  689. qdf_nbuf_release_track_lock(nbuf_iter, irq_flag);
  690. }
  691. (*mem_print)(table, print, print_priv, threshold);
  692. qdf_rl_info("major nbuf print end");
  693. }
  694. /**
  695. * qdf_major_nbuf_alloc_show() - print sequential callback
  696. * @seq: seq_file handle
  697. * @v: current iterator
  698. *
  699. * Return: 0 - success
  700. */
  701. static int qdf_major_nbuf_alloc_show(struct seq_file *seq, void *v)
  702. {
  703. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  704. if (!priv) {
  705. qdf_err("priv is null");
  706. return -EINVAL;
  707. }
  708. qdf_print_major_nbuf_allocs(priv->threshold,
  709. seq_printf_printer,
  710. seq,
  711. qdf_print_major_alloc);
  712. return 0;
  713. }
  714. /**
  715. * qdf_nbuf_seq_start() - sequential callback to start
  716. * @seq: seq_file handle
  717. * @pos: The start position of the sequence
  718. *
  719. * Return: iterator pointer, or NULL if iteration is complete
  720. */
  721. static void *qdf_nbuf_seq_start(struct seq_file *seq, loff_t *pos)
  722. {
  723. enum qdf_debug_domain domain = *pos;
  724. if (domain > QDF_DEBUG_NBUF_DOMAIN)
  725. return NULL;
  726. return pos;
  727. }
  728. /**
  729. * qdf_nbuf_seq_next() - next sequential callback
  730. * @seq: seq_file handle
  731. * @v: the current iterator
  732. * @pos: the current position
  733. *
  734. * Get the next node and release previous node.
  735. *
  736. * Return: iterator pointer, or NULL if iteration is complete
  737. */
  738. static void *qdf_nbuf_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  739. {
  740. ++*pos;
  741. return qdf_nbuf_seq_start(seq, pos);
  742. }
  743. /**
  744. * qdf_nbuf_seq_stop() - stop sequential callback
  745. * @seq: seq_file handle
  746. * @v: current iterator
  747. *
  748. * Return: None
  749. */
  750. static void qdf_nbuf_seq_stop(struct seq_file *seq, void *v) { }
  751. /* sequential file operation table created to track major skb allocs */
  752. static const struct seq_operations qdf_major_nbuf_allocs_seq_ops = {
  753. .start = qdf_nbuf_seq_start,
  754. .next = qdf_nbuf_seq_next,
  755. .stop = qdf_nbuf_seq_stop,
  756. .show = qdf_major_nbuf_alloc_show,
  757. };
  758. static int qdf_major_nbuf_allocs_open(struct inode *inode, struct file *file)
  759. {
  760. void *private = inode->i_private;
  761. struct seq_file *seq;
  762. int rc;
  763. rc = seq_open(file, &qdf_major_nbuf_allocs_seq_ops);
  764. if (rc == 0) {
  765. seq = file->private_data;
  766. seq->private = private;
  767. }
  768. return rc;
  769. }
  770. static ssize_t qdf_major_nbuf_alloc_set_threshold(struct file *file,
  771. const char __user *user_buf,
  772. size_t count,
  773. loff_t *pos)
  774. {
  775. char buf[32];
  776. ssize_t buf_size;
  777. uint32_t threshold;
  778. struct seq_file *seq = file->private_data;
  779. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  780. buf_size = min(count, (sizeof(buf) - 1));
  781. if (buf_size <= 0)
  782. return 0;
  783. if (copy_from_user(buf, user_buf, buf_size))
  784. return -EFAULT;
  785. buf[buf_size] = '\0';
  786. if (!kstrtou32(buf, 10, &threshold))
  787. priv->threshold = threshold;
  788. return buf_size;
  789. }
  790. /* file operation table for listing major allocs */
  791. static const struct file_operations fops_qdf_major_allocs = {
  792. .owner = THIS_MODULE,
  793. .open = qdf_major_allocs_open,
  794. .read = seq_read,
  795. .llseek = seq_lseek,
  796. .release = seq_release,
  797. .write = qdf_major_alloc_set_threshold,
  798. };
  799. /* debugfs file operation table */
  800. static const struct file_operations fops_qdf_mem_debugfs = {
  801. .owner = THIS_MODULE,
  802. .open = qdf_mem_debugfs_open,
  803. .read = seq_read,
  804. .llseek = seq_lseek,
  805. .release = seq_release,
  806. };
  807. /* file operation table for listing major allocs */
  808. static const struct file_operations fops_qdf_nbuf_major_allocs = {
  809. .owner = THIS_MODULE,
  810. .open = qdf_major_nbuf_allocs_open,
  811. .read = seq_read,
  812. .llseek = seq_lseek,
  813. .release = seq_release,
  814. .write = qdf_major_nbuf_alloc_set_threshold,
  815. };
  816. static struct major_alloc_priv mem_priv = {
  817. /* List type set to mem */
  818. LIST_TYPE_MEM,
  819. /* initial threshold to list APIs which allocates mem >= 50 times */
  820. 50
  821. };
  822. static struct major_alloc_priv dma_priv = {
  823. /* List type set to DMA */
  824. LIST_TYPE_DMA,
  825. /* initial threshold to list APIs which allocates dma >= 50 times */
  826. 50
  827. };
  828. static struct major_alloc_priv nbuf_priv = {
  829. /* List type set to NBUF */
  830. LIST_TYPE_NBUF,
  831. /* initial threshold to list APIs which allocates nbuf >= 50 times */
  832. 50
  833. };
  834. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  835. {
  836. if (is_initial_mem_debug_disabled)
  837. return QDF_STATUS_SUCCESS;
  838. if (!qdf_mem_debugfs_root)
  839. return QDF_STATUS_E_FAILURE;
  840. debugfs_create_file("list",
  841. S_IRUSR,
  842. qdf_mem_debugfs_root,
  843. NULL,
  844. &fops_qdf_mem_debugfs);
  845. debugfs_create_file("major_mem_allocs",
  846. 0600,
  847. qdf_mem_debugfs_root,
  848. &mem_priv,
  849. &fops_qdf_major_allocs);
  850. debugfs_create_file("major_dma_allocs",
  851. 0600,
  852. qdf_mem_debugfs_root,
  853. &dma_priv,
  854. &fops_qdf_major_allocs);
  855. debugfs_create_file("major_nbuf_allocs",
  856. 0600,
  857. qdf_mem_debugfs_root,
  858. &nbuf_priv,
  859. &fops_qdf_nbuf_major_allocs);
  860. return QDF_STATUS_SUCCESS;
  861. }
  862. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  863. {
  864. return QDF_STATUS_SUCCESS;
  865. }
  866. #else /* MEMORY_DEBUG */
  867. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  868. {
  869. return QDF_STATUS_E_NOSUPPORT;
  870. }
  871. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  872. {
  873. return QDF_STATUS_E_NOSUPPORT;
  874. }
  875. #endif /* MEMORY_DEBUG */
  876. static void qdf_mem_debugfs_exit(void)
  877. {
  878. debugfs_remove_recursive(qdf_mem_debugfs_root);
  879. qdf_mem_debugfs_root = NULL;
  880. }
  881. static QDF_STATUS qdf_mem_debugfs_init(void)
  882. {
  883. struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
  884. if (!qdf_debugfs_root)
  885. return QDF_STATUS_E_FAILURE;
  886. qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
  887. if (!qdf_mem_debugfs_root)
  888. return QDF_STATUS_E_FAILURE;
  889. debugfs_create_atomic_t("kmalloc",
  890. S_IRUSR,
  891. qdf_mem_debugfs_root,
  892. &qdf_mem_stat.kmalloc);
  893. debugfs_create_atomic_t("dma",
  894. S_IRUSR,
  895. qdf_mem_debugfs_root,
  896. &qdf_mem_stat.dma);
  897. debugfs_create_atomic_t("skb",
  898. S_IRUSR,
  899. qdf_mem_debugfs_root,
  900. &qdf_mem_stat.skb);
  901. return QDF_STATUS_SUCCESS;
  902. }
  903. #else /* WLAN_DEBUGFS */
  904. static QDF_STATUS qdf_mem_debugfs_init(void)
  905. {
  906. return QDF_STATUS_E_NOSUPPORT;
  907. }
  908. static void qdf_mem_debugfs_exit(void) {}
  909. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  910. {
  911. return QDF_STATUS_E_NOSUPPORT;
  912. }
  913. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  914. {
  915. return QDF_STATUS_E_NOSUPPORT;
  916. }
  917. #endif /* WLAN_DEBUGFS */
  918. void qdf_mem_kmalloc_inc(qdf_size_t size)
  919. {
  920. qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
  921. }
  922. static void qdf_mem_dma_inc(qdf_size_t size)
  923. {
  924. qdf_atomic_add(size, &qdf_mem_stat.dma);
  925. }
  926. #ifdef CONFIG_WLAN_SYSFS_MEM_STATS
  927. void qdf_mem_skb_inc(qdf_size_t size)
  928. {
  929. qdf_atomic_add(size, &qdf_mem_stat.skb);
  930. }
  931. void qdf_mem_skb_dec(qdf_size_t size)
  932. {
  933. qdf_atomic_sub(size, &qdf_mem_stat.skb);
  934. }
  935. void qdf_mem_skb_total_inc(qdf_size_t size)
  936. {
  937. int32_t skb_mem_max = 0;
  938. qdf_atomic_add(size, &qdf_mem_stat.skb_total);
  939. skb_mem_max = qdf_atomic_read(&qdf_mem_stat.skb_total);
  940. if (qdf_mem_stat.skb_mem_max < skb_mem_max)
  941. qdf_mem_stat.skb_mem_max = skb_mem_max;
  942. }
  943. void qdf_mem_skb_total_dec(qdf_size_t size)
  944. {
  945. qdf_atomic_sub(size, &qdf_mem_stat.skb_total);
  946. }
  947. void qdf_mem_dp_tx_skb_inc(qdf_size_t size)
  948. {
  949. int32_t curr_dp_tx_skb_mem_max = 0;
  950. qdf_atomic_add(size, &qdf_mem_stat.dp_tx_skb);
  951. curr_dp_tx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  952. if (qdf_mem_stat.dp_tx_skb_mem_max < curr_dp_tx_skb_mem_max)
  953. qdf_mem_stat.dp_tx_skb_mem_max = curr_dp_tx_skb_mem_max;
  954. }
  955. void qdf_mem_dp_tx_skb_dec(qdf_size_t size)
  956. {
  957. qdf_atomic_sub(size, &qdf_mem_stat.dp_tx_skb);
  958. }
  959. void qdf_mem_dp_rx_skb_inc(qdf_size_t size)
  960. {
  961. int32_t curr_dp_rx_skb_mem_max = 0;
  962. qdf_atomic_add(size, &qdf_mem_stat.dp_rx_skb);
  963. curr_dp_rx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  964. if (qdf_mem_stat.dp_rx_skb_mem_max < curr_dp_rx_skb_mem_max)
  965. qdf_mem_stat.dp_rx_skb_mem_max = curr_dp_rx_skb_mem_max;
  966. }
  967. void qdf_mem_dp_rx_skb_dec(qdf_size_t size)
  968. {
  969. qdf_atomic_sub(size, &qdf_mem_stat.dp_rx_skb);
  970. }
  971. void qdf_mem_dp_tx_skb_cnt_inc(void)
  972. {
  973. int32_t curr_dp_tx_skb_count_max = 0;
  974. qdf_atomic_add(1, &qdf_mem_stat.dp_tx_skb_count);
  975. curr_dp_tx_skb_count_max =
  976. qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  977. if (qdf_mem_stat.dp_tx_skb_count_max < curr_dp_tx_skb_count_max)
  978. qdf_mem_stat.dp_tx_skb_count_max = curr_dp_tx_skb_count_max;
  979. }
  980. void qdf_mem_dp_tx_skb_cnt_dec(void)
  981. {
  982. qdf_atomic_sub(1, &qdf_mem_stat.dp_tx_skb_count);
  983. }
  984. void qdf_mem_dp_rx_skb_cnt_inc(void)
  985. {
  986. int32_t curr_dp_rx_skb_count_max = 0;
  987. qdf_atomic_add(1, &qdf_mem_stat.dp_rx_skb_count);
  988. curr_dp_rx_skb_count_max =
  989. qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  990. if (qdf_mem_stat.dp_rx_skb_count_max < curr_dp_rx_skb_count_max)
  991. qdf_mem_stat.dp_rx_skb_count_max = curr_dp_rx_skb_count_max;
  992. }
  993. void qdf_mem_dp_rx_skb_cnt_dec(void)
  994. {
  995. qdf_atomic_sub(1, &qdf_mem_stat.dp_rx_skb_count);
  996. }
  997. #endif
  998. void qdf_mem_kmalloc_dec(qdf_size_t size)
  999. {
  1000. qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
  1001. }
  1002. static inline void qdf_mem_dma_dec(qdf_size_t size)
  1003. {
  1004. qdf_atomic_sub(size, &qdf_mem_stat.dma);
  1005. }
  1006. int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
  1007. int elem_cnt, size_t elem_size, u_int32_t flags)
  1008. {
  1009. __qdf_mempool_ctxt_t *new_pool = NULL;
  1010. u_int32_t align = L1_CACHE_BYTES;
  1011. unsigned long aligned_pool_mem;
  1012. int pool_id;
  1013. int i;
  1014. if (prealloc_disabled) {
  1015. /* TBD: We can maintain a list of pools in qdf_device_t
  1016. * to help debugging
  1017. * when pre-allocation is not enabled
  1018. */
  1019. new_pool = (__qdf_mempool_ctxt_t *)
  1020. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1021. if (!new_pool)
  1022. return QDF_STATUS_E_NOMEM;
  1023. memset(new_pool, 0, sizeof(*new_pool));
  1024. /* TBD: define flags for zeroing buffers etc */
  1025. new_pool->flags = flags;
  1026. new_pool->elem_size = elem_size;
  1027. new_pool->max_elem = elem_cnt;
  1028. *pool_addr = new_pool;
  1029. return 0;
  1030. }
  1031. for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
  1032. if (!osdev->mem_pool[pool_id])
  1033. break;
  1034. }
  1035. if (pool_id == MAX_MEM_POOLS)
  1036. return -ENOMEM;
  1037. new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
  1038. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1039. if (!new_pool)
  1040. return -ENOMEM;
  1041. memset(new_pool, 0, sizeof(*new_pool));
  1042. /* TBD: define flags for zeroing buffers etc */
  1043. new_pool->flags = flags;
  1044. new_pool->pool_id = pool_id;
  1045. /* Round up the element size to cacheline */
  1046. new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
  1047. new_pool->mem_size = elem_cnt * new_pool->elem_size +
  1048. ((align)?(align - 1):0);
  1049. new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
  1050. if (!new_pool->pool_mem) {
  1051. /* TBD: Check if we need get_free_pages above */
  1052. kfree(new_pool);
  1053. osdev->mem_pool[pool_id] = NULL;
  1054. return -ENOMEM;
  1055. }
  1056. spin_lock_init(&new_pool->lock);
  1057. /* Initialize free list */
  1058. aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
  1059. ((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
  1060. STAILQ_INIT(&new_pool->free_list);
  1061. for (i = 0; i < elem_cnt; i++)
  1062. STAILQ_INSERT_TAIL(&(new_pool->free_list),
  1063. (mempool_elem_t *)(aligned_pool_mem +
  1064. (new_pool->elem_size * i)), mempool_entry);
  1065. new_pool->free_cnt = elem_cnt;
  1066. *pool_addr = new_pool;
  1067. return 0;
  1068. }
  1069. qdf_export_symbol(__qdf_mempool_init);
  1070. void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
  1071. {
  1072. int pool_id = 0;
  1073. if (!pool)
  1074. return;
  1075. if (prealloc_disabled) {
  1076. kfree(pool);
  1077. return;
  1078. }
  1079. pool_id = pool->pool_id;
  1080. /* TBD: Check if free count matches elem_cnt if debug is enabled */
  1081. kfree(pool->pool_mem);
  1082. kfree(pool);
  1083. osdev->mem_pool[pool_id] = NULL;
  1084. }
  1085. qdf_export_symbol(__qdf_mempool_destroy);
  1086. void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
  1087. {
  1088. void *buf = NULL;
  1089. if (!pool)
  1090. return NULL;
  1091. if (prealloc_disabled)
  1092. return qdf_mem_malloc(pool->elem_size);
  1093. spin_lock_bh(&pool->lock);
  1094. buf = STAILQ_FIRST(&pool->free_list);
  1095. if (buf) {
  1096. STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
  1097. pool->free_cnt--;
  1098. }
  1099. /* TBD: Update free count if debug is enabled */
  1100. spin_unlock_bh(&pool->lock);
  1101. return buf;
  1102. }
  1103. qdf_export_symbol(__qdf_mempool_alloc);
  1104. void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
  1105. {
  1106. if (!pool)
  1107. return;
  1108. if (prealloc_disabled)
  1109. return qdf_mem_free(buf);
  1110. spin_lock_bh(&pool->lock);
  1111. pool->free_cnt++;
  1112. STAILQ_INSERT_TAIL
  1113. (&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
  1114. spin_unlock_bh(&pool->lock);
  1115. }
  1116. qdf_export_symbol(__qdf_mempool_free);
  1117. #ifdef CNSS_MEM_PRE_ALLOC
  1118. static bool qdf_might_be_prealloc(void *ptr)
  1119. {
  1120. if (ksize(ptr) > WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1121. return true;
  1122. else
  1123. return false;
  1124. }
  1125. /**
  1126. * qdf_mem_prealloc_get() - conditionally pre-allocate memory
  1127. * @size: the number of bytes to allocate
  1128. *
  1129. * If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
  1130. * a chunk of pre-allocated memory. If size if less than or equal to
  1131. * WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
  1132. *
  1133. * Return: NULL on failure, non-NULL on success
  1134. */
  1135. static void *qdf_mem_prealloc_get(size_t size)
  1136. {
  1137. void *ptr;
  1138. if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1139. return NULL;
  1140. ptr = wcnss_prealloc_get(size);
  1141. if (!ptr)
  1142. return NULL;
  1143. memset(ptr, 0, size);
  1144. return ptr;
  1145. }
  1146. static inline bool qdf_mem_prealloc_put(void *ptr)
  1147. {
  1148. return wcnss_prealloc_put(ptr);
  1149. }
  1150. #else
  1151. static bool qdf_might_be_prealloc(void *ptr)
  1152. {
  1153. return false;
  1154. }
  1155. static inline void *qdf_mem_prealloc_get(size_t size)
  1156. {
  1157. return NULL;
  1158. }
  1159. static inline bool qdf_mem_prealloc_put(void *ptr)
  1160. {
  1161. return false;
  1162. }
  1163. #endif /* CNSS_MEM_PRE_ALLOC */
  1164. /* External Function implementation */
  1165. #ifdef MEMORY_DEBUG
  1166. #ifdef DISABLE_MEM_DBG_LOAD_CONFIG
  1167. bool qdf_mem_debug_config_get(void)
  1168. {
  1169. /* Return false if DISABLE_LOAD_MEM_DBG_CONFIG flag is enabled */
  1170. return false;
  1171. }
  1172. #else
  1173. bool qdf_mem_debug_config_get(void)
  1174. {
  1175. return mem_debug_disabled;
  1176. }
  1177. #endif /* DISABLE_MEM_DBG_LOAD_CONFIG */
  1178. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1179. QDF_STATUS qdf_mem_debug_disabled_config_set(const char *str_value)
  1180. {
  1181. QDF_STATUS status;
  1182. status = qdf_bool_parse(str_value, &mem_debug_disabled);
  1183. return status;
  1184. }
  1185. #endif
  1186. /**
  1187. * qdf_mem_debug_init() - initialize qdf memory debug functionality
  1188. *
  1189. * Return: none
  1190. */
  1191. static void qdf_mem_debug_init(void)
  1192. {
  1193. int i;
  1194. is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
  1195. if (is_initial_mem_debug_disabled)
  1196. return;
  1197. /* Initializing the list with maximum size of 60000 */
  1198. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1199. qdf_list_create(&qdf_mem_domains[i], 60000);
  1200. qdf_spinlock_create(&qdf_mem_list_lock);
  1201. /* dma */
  1202. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1203. qdf_list_create(&qdf_mem_dma_domains[i], 0);
  1204. qdf_spinlock_create(&qdf_mem_dma_list_lock);
  1205. }
  1206. static uint32_t
  1207. qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
  1208. qdf_list_t *mem_list)
  1209. {
  1210. if (is_initial_mem_debug_disabled)
  1211. return 0;
  1212. if (qdf_list_empty(mem_list))
  1213. return 0;
  1214. qdf_err("Memory leaks detected in %s domain!",
  1215. qdf_debug_domain_name(domain));
  1216. qdf_mem_domain_print(mem_list,
  1217. qdf_err_printer,
  1218. NULL,
  1219. 0,
  1220. qdf_mem_meta_table_print);
  1221. return mem_list->count;
  1222. }
  1223. static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
  1224. {
  1225. uint32_t leak_count = 0;
  1226. int i;
  1227. if (is_initial_mem_debug_disabled)
  1228. return;
  1229. /* detect and print leaks */
  1230. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1231. leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
  1232. if (leak_count)
  1233. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1234. leak_count);
  1235. }
  1236. /**
  1237. * qdf_mem_debug_exit() - exit qdf memory debug functionality
  1238. *
  1239. * Return: none
  1240. */
  1241. static void qdf_mem_debug_exit(void)
  1242. {
  1243. int i;
  1244. if (is_initial_mem_debug_disabled)
  1245. return;
  1246. /* mem */
  1247. qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
  1248. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1249. qdf_list_destroy(qdf_mem_list_get(i));
  1250. qdf_spinlock_destroy(&qdf_mem_list_lock);
  1251. /* dma */
  1252. qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
  1253. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1254. qdf_list_destroy(&qdf_mem_dma_domains[i]);
  1255. qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
  1256. }
  1257. void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
  1258. void *caller, uint32_t flag)
  1259. {
  1260. QDF_STATUS status;
  1261. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1262. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1263. struct qdf_mem_header *header;
  1264. void *ptr;
  1265. unsigned long start, duration;
  1266. if (is_initial_mem_debug_disabled)
  1267. return __qdf_mem_malloc(size, func, line);
  1268. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1269. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  1270. return NULL;
  1271. }
  1272. ptr = qdf_mem_prealloc_get(size);
  1273. if (ptr)
  1274. return ptr;
  1275. if (!flag)
  1276. flag = qdf_mem_malloc_flags();
  1277. start = qdf_mc_timer_get_system_time();
  1278. header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
  1279. duration = qdf_mc_timer_get_system_time() - start;
  1280. if (duration > QDF_MEM_WARN_THRESHOLD)
  1281. qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
  1282. duration, size, func, line);
  1283. if (!header) {
  1284. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  1285. return NULL;
  1286. }
  1287. qdf_mem_header_init(header, size, func, line, caller);
  1288. qdf_mem_trailer_init(header);
  1289. ptr = qdf_mem_get_ptr(header);
  1290. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1291. status = qdf_list_insert_front(mem_list, &header->node);
  1292. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1293. if (QDF_IS_STATUS_ERROR(status))
  1294. qdf_err("Failed to insert memory header; status %d", status);
  1295. qdf_mem_kmalloc_inc(ksize(header));
  1296. return ptr;
  1297. }
  1298. qdf_export_symbol(qdf_mem_malloc_debug);
  1299. void *qdf_mem_malloc_atomic_debug(size_t size, const char *func,
  1300. uint32_t line, void *caller)
  1301. {
  1302. QDF_STATUS status;
  1303. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1304. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1305. struct qdf_mem_header *header;
  1306. void *ptr;
  1307. unsigned long start, duration;
  1308. if (is_initial_mem_debug_disabled)
  1309. return qdf_mem_malloc_atomic_debug_fl(size, func, line);
  1310. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1311. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  1312. return NULL;
  1313. }
  1314. ptr = qdf_mem_prealloc_get(size);
  1315. if (ptr)
  1316. return ptr;
  1317. start = qdf_mc_timer_get_system_time();
  1318. header = kzalloc(size + QDF_MEM_DEBUG_SIZE, GFP_ATOMIC);
  1319. duration = qdf_mc_timer_get_system_time() - start;
  1320. if (duration > QDF_MEM_WARN_THRESHOLD)
  1321. qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
  1322. duration, size, func, line);
  1323. if (!header) {
  1324. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  1325. return NULL;
  1326. }
  1327. qdf_mem_header_init(header, size, func, line, caller);
  1328. qdf_mem_trailer_init(header);
  1329. ptr = qdf_mem_get_ptr(header);
  1330. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1331. status = qdf_list_insert_front(mem_list, &header->node);
  1332. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1333. if (QDF_IS_STATUS_ERROR(status))
  1334. qdf_err("Failed to insert memory header; status %d", status);
  1335. qdf_mem_kmalloc_inc(ksize(header));
  1336. return ptr;
  1337. }
  1338. qdf_export_symbol(qdf_mem_malloc_atomic_debug);
  1339. void *qdf_mem_malloc_atomic_debug_fl(size_t size, const char *func,
  1340. uint32_t line)
  1341. {
  1342. void *ptr;
  1343. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1344. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1345. line);
  1346. return NULL;
  1347. }
  1348. ptr = qdf_mem_prealloc_get(size);
  1349. if (ptr)
  1350. return ptr;
  1351. ptr = kzalloc(size, GFP_ATOMIC);
  1352. if (!ptr) {
  1353. qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
  1354. size, func, line);
  1355. return NULL;
  1356. }
  1357. qdf_mem_kmalloc_inc(ksize(ptr));
  1358. return ptr;
  1359. }
  1360. qdf_export_symbol(qdf_mem_malloc_atomic_debug_fl);
  1361. void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
  1362. {
  1363. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1364. struct qdf_mem_header *header;
  1365. enum qdf_mem_validation_bitmap error_bitmap;
  1366. if (is_initial_mem_debug_disabled) {
  1367. __qdf_mem_free(ptr);
  1368. return;
  1369. }
  1370. /* freeing a null pointer is valid */
  1371. if (qdf_unlikely(!ptr))
  1372. return;
  1373. if (qdf_mem_prealloc_put(ptr))
  1374. return;
  1375. if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
  1376. QDF_MEMDEBUG_PANIC("Failed to free invalid memory location %pK",
  1377. ptr);
  1378. qdf_talloc_assert_no_children_fl(ptr, func, line);
  1379. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1380. header = qdf_mem_get_header(ptr);
  1381. error_bitmap = qdf_mem_header_validate(header, current_domain);
  1382. error_bitmap |= qdf_mem_trailer_validate(header);
  1383. if (!error_bitmap) {
  1384. header->freed = true;
  1385. qdf_list_remove_node(qdf_mem_list_get(header->domain),
  1386. &header->node);
  1387. }
  1388. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1389. qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
  1390. func, line);
  1391. qdf_mem_kmalloc_dec(ksize(header));
  1392. kfree(header);
  1393. }
  1394. qdf_export_symbol(qdf_mem_free_debug);
  1395. void qdf_mem_check_for_leaks(void)
  1396. {
  1397. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1398. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1399. qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
  1400. uint32_t leaks_count = 0;
  1401. if (is_initial_mem_debug_disabled)
  1402. return;
  1403. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
  1404. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
  1405. if (leaks_count)
  1406. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1407. leaks_count);
  1408. }
  1409. void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev,
  1410. struct qdf_mem_multi_page_t *pages,
  1411. size_t element_size, uint32_t element_num,
  1412. qdf_dma_context_t memctxt, bool cacheable,
  1413. const char *func, uint32_t line,
  1414. void *caller)
  1415. {
  1416. uint16_t page_idx;
  1417. struct qdf_mem_dma_page_t *dma_pages;
  1418. void **cacheable_pages = NULL;
  1419. uint16_t i;
  1420. if (!pages->page_size)
  1421. pages->page_size = qdf_page_size;
  1422. pages->num_element_per_page = pages->page_size / element_size;
  1423. if (!pages->num_element_per_page) {
  1424. qdf_print("Invalid page %d or element size %d",
  1425. (int)pages->page_size, (int)element_size);
  1426. goto out_fail;
  1427. }
  1428. pages->num_pages = element_num / pages->num_element_per_page;
  1429. if (element_num % pages->num_element_per_page)
  1430. pages->num_pages++;
  1431. if (cacheable) {
  1432. /* Pages information storage */
  1433. pages->cacheable_pages = qdf_mem_malloc_debug(
  1434. pages->num_pages * sizeof(pages->cacheable_pages),
  1435. func, line, caller, 0);
  1436. if (!pages->cacheable_pages)
  1437. goto out_fail;
  1438. cacheable_pages = pages->cacheable_pages;
  1439. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1440. cacheable_pages[page_idx] = qdf_mem_malloc_debug(
  1441. pages->page_size, func, line, caller, 0);
  1442. if (!cacheable_pages[page_idx])
  1443. goto page_alloc_fail;
  1444. }
  1445. pages->dma_pages = NULL;
  1446. } else {
  1447. pages->dma_pages = qdf_mem_malloc_debug(
  1448. pages->num_pages * sizeof(struct qdf_mem_dma_page_t),
  1449. func, line, caller, 0);
  1450. if (!pages->dma_pages)
  1451. goto out_fail;
  1452. dma_pages = pages->dma_pages;
  1453. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1454. dma_pages->page_v_addr_start =
  1455. qdf_mem_alloc_consistent_debug(
  1456. osdev, osdev->dev, pages->page_size,
  1457. &dma_pages->page_p_addr,
  1458. func, line, caller);
  1459. if (!dma_pages->page_v_addr_start) {
  1460. qdf_print("dmaable page alloc fail pi %d",
  1461. page_idx);
  1462. goto page_alloc_fail;
  1463. }
  1464. dma_pages->page_v_addr_end =
  1465. dma_pages->page_v_addr_start + pages->page_size;
  1466. dma_pages++;
  1467. }
  1468. pages->cacheable_pages = NULL;
  1469. }
  1470. return;
  1471. page_alloc_fail:
  1472. if (cacheable) {
  1473. for (i = 0; i < page_idx; i++)
  1474. qdf_mem_free_debug(pages->cacheable_pages[i],
  1475. func, line);
  1476. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1477. } else {
  1478. dma_pages = pages->dma_pages;
  1479. for (i = 0; i < page_idx; i++) {
  1480. qdf_mem_free_consistent_debug(
  1481. osdev, osdev->dev,
  1482. pages->page_size, dma_pages->page_v_addr_start,
  1483. dma_pages->page_p_addr, memctxt, func, line);
  1484. dma_pages++;
  1485. }
  1486. qdf_mem_free_debug(pages->dma_pages, func, line);
  1487. }
  1488. out_fail:
  1489. pages->cacheable_pages = NULL;
  1490. pages->dma_pages = NULL;
  1491. pages->num_pages = 0;
  1492. }
  1493. qdf_export_symbol(qdf_mem_multi_pages_alloc_debug);
  1494. void qdf_mem_multi_pages_free_debug(qdf_device_t osdev,
  1495. struct qdf_mem_multi_page_t *pages,
  1496. qdf_dma_context_t memctxt, bool cacheable,
  1497. const char *func, uint32_t line)
  1498. {
  1499. unsigned int page_idx;
  1500. struct qdf_mem_dma_page_t *dma_pages;
  1501. if (!pages->page_size)
  1502. pages->page_size = qdf_page_size;
  1503. if (cacheable) {
  1504. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1505. qdf_mem_free_debug(pages->cacheable_pages[page_idx],
  1506. func, line);
  1507. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1508. } else {
  1509. dma_pages = pages->dma_pages;
  1510. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1511. qdf_mem_free_consistent_debug(
  1512. osdev, osdev->dev, pages->page_size,
  1513. dma_pages->page_v_addr_start,
  1514. dma_pages->page_p_addr, memctxt, func, line);
  1515. dma_pages++;
  1516. }
  1517. qdf_mem_free_debug(pages->dma_pages, func, line);
  1518. }
  1519. pages->cacheable_pages = NULL;
  1520. pages->dma_pages = NULL;
  1521. pages->num_pages = 0;
  1522. }
  1523. qdf_export_symbol(qdf_mem_multi_pages_free_debug);
  1524. #else
  1525. static void qdf_mem_debug_init(void) {}
  1526. static void qdf_mem_debug_exit(void) {}
  1527. void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
  1528. {
  1529. void *ptr;
  1530. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1531. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1532. line);
  1533. return NULL;
  1534. }
  1535. ptr = qdf_mem_prealloc_get(size);
  1536. if (ptr)
  1537. return ptr;
  1538. ptr = kzalloc(size, GFP_ATOMIC);
  1539. if (!ptr) {
  1540. qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
  1541. size, func, line);
  1542. return NULL;
  1543. }
  1544. qdf_mem_kmalloc_inc(ksize(ptr));
  1545. return ptr;
  1546. }
  1547. qdf_export_symbol(qdf_mem_malloc_atomic_fl);
  1548. void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
  1549. struct qdf_mem_multi_page_t *pages,
  1550. size_t element_size, uint32_t element_num,
  1551. qdf_dma_context_t memctxt, bool cacheable)
  1552. {
  1553. uint16_t page_idx;
  1554. struct qdf_mem_dma_page_t *dma_pages;
  1555. void **cacheable_pages = NULL;
  1556. uint16_t i;
  1557. if (!pages->page_size)
  1558. pages->page_size = qdf_page_size;
  1559. pages->num_element_per_page = pages->page_size / element_size;
  1560. if (!pages->num_element_per_page) {
  1561. qdf_print("Invalid page %d or element size %d",
  1562. (int)pages->page_size, (int)element_size);
  1563. goto out_fail;
  1564. }
  1565. pages->num_pages = element_num / pages->num_element_per_page;
  1566. if (element_num % pages->num_element_per_page)
  1567. pages->num_pages++;
  1568. if (cacheable) {
  1569. /* Pages information storage */
  1570. pages->cacheable_pages = qdf_mem_malloc(
  1571. pages->num_pages * sizeof(pages->cacheable_pages));
  1572. if (!pages->cacheable_pages)
  1573. goto out_fail;
  1574. cacheable_pages = pages->cacheable_pages;
  1575. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1576. cacheable_pages[page_idx] =
  1577. qdf_mem_malloc(pages->page_size);
  1578. if (!cacheable_pages[page_idx])
  1579. goto page_alloc_fail;
  1580. }
  1581. pages->dma_pages = NULL;
  1582. } else {
  1583. pages->dma_pages = qdf_mem_malloc(
  1584. pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
  1585. if (!pages->dma_pages)
  1586. goto out_fail;
  1587. dma_pages = pages->dma_pages;
  1588. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1589. dma_pages->page_v_addr_start =
  1590. qdf_mem_alloc_consistent(osdev, osdev->dev,
  1591. pages->page_size,
  1592. &dma_pages->page_p_addr);
  1593. if (!dma_pages->page_v_addr_start) {
  1594. qdf_print("dmaable page alloc fail pi %d",
  1595. page_idx);
  1596. goto page_alloc_fail;
  1597. }
  1598. dma_pages->page_v_addr_end =
  1599. dma_pages->page_v_addr_start + pages->page_size;
  1600. dma_pages++;
  1601. }
  1602. pages->cacheable_pages = NULL;
  1603. }
  1604. return;
  1605. page_alloc_fail:
  1606. if (cacheable) {
  1607. for (i = 0; i < page_idx; i++)
  1608. qdf_mem_free(pages->cacheable_pages[i]);
  1609. qdf_mem_free(pages->cacheable_pages);
  1610. } else {
  1611. dma_pages = pages->dma_pages;
  1612. for (i = 0; i < page_idx; i++) {
  1613. qdf_mem_free_consistent(
  1614. osdev, osdev->dev, pages->page_size,
  1615. dma_pages->page_v_addr_start,
  1616. dma_pages->page_p_addr, memctxt);
  1617. dma_pages++;
  1618. }
  1619. qdf_mem_free(pages->dma_pages);
  1620. }
  1621. out_fail:
  1622. pages->cacheable_pages = NULL;
  1623. pages->dma_pages = NULL;
  1624. pages->num_pages = 0;
  1625. return;
  1626. }
  1627. qdf_export_symbol(qdf_mem_multi_pages_alloc);
  1628. void qdf_mem_multi_pages_free(qdf_device_t osdev,
  1629. struct qdf_mem_multi_page_t *pages,
  1630. qdf_dma_context_t memctxt, bool cacheable)
  1631. {
  1632. unsigned int page_idx;
  1633. struct qdf_mem_dma_page_t *dma_pages;
  1634. if (!pages->page_size)
  1635. pages->page_size = qdf_page_size;
  1636. if (cacheable) {
  1637. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1638. qdf_mem_free(pages->cacheable_pages[page_idx]);
  1639. qdf_mem_free(pages->cacheable_pages);
  1640. } else {
  1641. dma_pages = pages->dma_pages;
  1642. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1643. qdf_mem_free_consistent(
  1644. osdev, osdev->dev, pages->page_size,
  1645. dma_pages->page_v_addr_start,
  1646. dma_pages->page_p_addr, memctxt);
  1647. dma_pages++;
  1648. }
  1649. qdf_mem_free(pages->dma_pages);
  1650. }
  1651. pages->cacheable_pages = NULL;
  1652. pages->dma_pages = NULL;
  1653. pages->num_pages = 0;
  1654. return;
  1655. }
  1656. qdf_export_symbol(qdf_mem_multi_pages_free);
  1657. #endif
  1658. void qdf_mem_multi_pages_zero(struct qdf_mem_multi_page_t *pages,
  1659. bool cacheable)
  1660. {
  1661. unsigned int page_idx;
  1662. struct qdf_mem_dma_page_t *dma_pages;
  1663. if (!pages->page_size)
  1664. pages->page_size = qdf_page_size;
  1665. if (cacheable) {
  1666. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1667. qdf_mem_zero(pages->cacheable_pages[page_idx],
  1668. pages->page_size);
  1669. } else {
  1670. dma_pages = pages->dma_pages;
  1671. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1672. qdf_mem_zero(dma_pages->page_v_addr_start,
  1673. pages->page_size);
  1674. dma_pages++;
  1675. }
  1676. }
  1677. }
  1678. qdf_export_symbol(qdf_mem_multi_pages_zero);
  1679. void __qdf_mem_free(void *ptr)
  1680. {
  1681. if (!ptr)
  1682. return;
  1683. if (qdf_might_be_prealloc(ptr)) {
  1684. if (qdf_mem_prealloc_put(ptr))
  1685. return;
  1686. }
  1687. qdf_mem_kmalloc_dec(ksize(ptr));
  1688. kfree(ptr);
  1689. }
  1690. qdf_export_symbol(__qdf_mem_free);
  1691. void *__qdf_mem_malloc(size_t size, const char *func, uint32_t line)
  1692. {
  1693. void *ptr;
  1694. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1695. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1696. line);
  1697. return NULL;
  1698. }
  1699. ptr = qdf_mem_prealloc_get(size);
  1700. if (ptr)
  1701. return ptr;
  1702. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1703. if (!ptr)
  1704. return NULL;
  1705. qdf_mem_kmalloc_inc(ksize(ptr));
  1706. return ptr;
  1707. }
  1708. qdf_export_symbol(__qdf_mem_malloc);
  1709. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1710. void __qdf_untracked_mem_free(void *ptr)
  1711. {
  1712. if (!ptr)
  1713. return;
  1714. kfree(ptr);
  1715. }
  1716. void *__qdf_untracked_mem_malloc(size_t size, const char *func, uint32_t line)
  1717. {
  1718. void *ptr;
  1719. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1720. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1721. line);
  1722. return NULL;
  1723. }
  1724. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1725. if (!ptr)
  1726. return NULL;
  1727. return ptr;
  1728. }
  1729. #endif
  1730. void *qdf_aligned_malloc_fl(uint32_t *size,
  1731. void **vaddr_unaligned,
  1732. qdf_dma_addr_t *paddr_unaligned,
  1733. qdf_dma_addr_t *paddr_aligned,
  1734. uint32_t align,
  1735. const char *func, uint32_t line)
  1736. {
  1737. void *vaddr_aligned;
  1738. uint32_t align_alloc_size;
  1739. *vaddr_unaligned = qdf_mem_malloc_fl((qdf_size_t)*size, func,
  1740. line);
  1741. if (!*vaddr_unaligned) {
  1742. qdf_warn("Failed to alloc %uB @ %s:%d", *size, func, line);
  1743. return NULL;
  1744. }
  1745. *paddr_unaligned = qdf_mem_virt_to_phys(*vaddr_unaligned);
  1746. /* Re-allocate additional bytes to align base address only if
  1747. * above allocation returns unaligned address. Reason for
  1748. * trying exact size allocation above is, OS tries to allocate
  1749. * blocks of size power-of-2 pages and then free extra pages.
  1750. * e.g., of a ring size of 1MB, the allocation below will
  1751. * request 1MB plus 7 bytes for alignment, which will cause a
  1752. * 2MB block allocation,and that is failing sometimes due to
  1753. * memory fragmentation.
  1754. */
  1755. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  1756. align_alloc_size = *size + align - 1;
  1757. qdf_mem_free(*vaddr_unaligned);
  1758. *vaddr_unaligned = qdf_mem_malloc_fl(
  1759. (qdf_size_t)align_alloc_size, func, line);
  1760. if (!*vaddr_unaligned) {
  1761. qdf_warn("Failed to alloc %uB @ %s:%d",
  1762. align_alloc_size, func, line);
  1763. return NULL;
  1764. }
  1765. *paddr_unaligned = qdf_mem_virt_to_phys(
  1766. *vaddr_unaligned);
  1767. *size = align_alloc_size;
  1768. }
  1769. *paddr_aligned = (qdf_dma_addr_t)qdf_align
  1770. ((unsigned long)(*paddr_unaligned), align);
  1771. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  1772. ((unsigned long)(*paddr_aligned) -
  1773. (unsigned long)(*paddr_unaligned)));
  1774. return vaddr_aligned;
  1775. }
  1776. qdf_export_symbol(qdf_aligned_malloc_fl);
  1777. #if defined(DP_UMAC_HW_RESET_SUPPORT) || defined(WLAN_SUPPORT_PPEDS)
  1778. int qdf_tx_desc_pool_free_bufs(void *ctxt, struct qdf_mem_multi_page_t *pages,
  1779. uint32_t elem_size, uint32_t elem_count,
  1780. uint8_t cacheable, qdf_mem_release_cb cb,
  1781. void *elem_list)
  1782. {
  1783. uint16_t i, i_int;
  1784. void *page_info;
  1785. void *elem;
  1786. uint32_t num_elem = 0;
  1787. for (i = 0; i < pages->num_pages; i++) {
  1788. if (cacheable)
  1789. page_info = pages->cacheable_pages[i];
  1790. else
  1791. page_info = pages->dma_pages[i].page_v_addr_start;
  1792. if (!page_info)
  1793. return -ENOMEM;
  1794. elem = page_info;
  1795. for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
  1796. cb(ctxt, elem, elem_list);
  1797. elem = ((char *)elem + elem_size);
  1798. num_elem++;
  1799. /* Number of desc pool elements reached */
  1800. if (num_elem == (elem_count - 1))
  1801. break;
  1802. }
  1803. }
  1804. return 0;
  1805. }
  1806. qdf_export_symbol(qdf_tx_desc_pool_free_bufs);
  1807. #endif
  1808. int qdf_mem_multi_page_link(qdf_device_t osdev,
  1809. struct qdf_mem_multi_page_t *pages,
  1810. uint32_t elem_size, uint32_t elem_count,
  1811. uint8_t cacheable)
  1812. {
  1813. uint16_t i, i_int;
  1814. void *page_info;
  1815. void **c_elem = NULL;
  1816. uint32_t num_link = 0;
  1817. for (i = 0; i < pages->num_pages; i++) {
  1818. if (cacheable)
  1819. page_info = pages->cacheable_pages[i];
  1820. else
  1821. page_info = pages->dma_pages[i].page_v_addr_start;
  1822. if (!page_info)
  1823. return -ENOMEM;
  1824. c_elem = (void **)page_info;
  1825. for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
  1826. if (i_int == (pages->num_element_per_page - 1)) {
  1827. if ((i + 1) == pages->num_pages)
  1828. break;
  1829. if (cacheable)
  1830. *c_elem = pages->
  1831. cacheable_pages[i + 1];
  1832. else
  1833. *c_elem = pages->
  1834. dma_pages[i + 1].
  1835. page_v_addr_start;
  1836. num_link++;
  1837. break;
  1838. } else {
  1839. *c_elem =
  1840. (void *)(((char *)c_elem) + elem_size);
  1841. }
  1842. num_link++;
  1843. c_elem = (void **)*c_elem;
  1844. /* Last link established exit */
  1845. if (num_link == (elem_count - 1))
  1846. break;
  1847. }
  1848. }
  1849. if (c_elem)
  1850. *c_elem = NULL;
  1851. return 0;
  1852. }
  1853. qdf_export_symbol(qdf_mem_multi_page_link);
  1854. void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1855. {
  1856. /* special case where dst_addr or src_addr can be NULL */
  1857. if (!num_bytes)
  1858. return;
  1859. QDF_BUG(dst_addr);
  1860. QDF_BUG(src_addr);
  1861. if (!dst_addr || !src_addr)
  1862. return;
  1863. memcpy(dst_addr, src_addr, num_bytes);
  1864. }
  1865. qdf_export_symbol(qdf_mem_copy);
  1866. qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
  1867. {
  1868. qdf_shared_mem_t *shared_mem;
  1869. qdf_dma_addr_t dma_addr, paddr;
  1870. int ret;
  1871. shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
  1872. if (!shared_mem)
  1873. return NULL;
  1874. shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
  1875. size, qdf_mem_get_dma_addr_ptr(osdev,
  1876. &shared_mem->mem_info));
  1877. if (!shared_mem->vaddr) {
  1878. qdf_err("Unable to allocate DMA memory for shared resource");
  1879. qdf_mem_free(shared_mem);
  1880. return NULL;
  1881. }
  1882. qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
  1883. size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
  1884. qdf_mem_zero(shared_mem->vaddr, size);
  1885. dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
  1886. paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
  1887. qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
  1888. ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
  1889. shared_mem->vaddr, dma_addr, size);
  1890. if (ret) {
  1891. qdf_err("Unable to get DMA sgtable");
  1892. qdf_mem_free_consistent(osdev, osdev->dev,
  1893. shared_mem->mem_info.size,
  1894. shared_mem->vaddr,
  1895. dma_addr,
  1896. qdf_get_dma_mem_context(shared_mem,
  1897. memctx));
  1898. qdf_mem_free(shared_mem);
  1899. return NULL;
  1900. }
  1901. qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
  1902. return shared_mem;
  1903. }
  1904. qdf_export_symbol(qdf_mem_shared_mem_alloc);
  1905. void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1906. {
  1907. if (0 == num_bytes) {
  1908. /* special case where dst_addr or src_addr can be NULL */
  1909. return;
  1910. }
  1911. if ((!dst_addr) || (!src_addr)) {
  1912. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  1913. "%s called with NULL parameter, source:%pK destination:%pK",
  1914. __func__, src_addr, dst_addr);
  1915. QDF_ASSERT(0);
  1916. return;
  1917. }
  1918. memcpy_toio(dst_addr, src_addr, num_bytes);
  1919. }
  1920. qdf_export_symbol(qdf_mem_copy_toio);
  1921. void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
  1922. {
  1923. if (!ptr) {
  1924. qdf_print("%s called with NULL parameter ptr", __func__);
  1925. return;
  1926. }
  1927. memset_io(ptr, value, num_bytes);
  1928. }
  1929. qdf_export_symbol(qdf_mem_set_io);
  1930. void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
  1931. {
  1932. QDF_BUG(ptr);
  1933. if (!ptr)
  1934. return;
  1935. memset(ptr, value, num_bytes);
  1936. }
  1937. qdf_export_symbol(qdf_mem_set);
  1938. void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  1939. {
  1940. /* special case where dst_addr or src_addr can be NULL */
  1941. if (!num_bytes)
  1942. return;
  1943. QDF_BUG(dst_addr);
  1944. QDF_BUG(src_addr);
  1945. if (!dst_addr || !src_addr)
  1946. return;
  1947. memmove(dst_addr, src_addr, num_bytes);
  1948. }
  1949. qdf_export_symbol(qdf_mem_move);
  1950. int qdf_mem_cmp(const void *left, const void *right, size_t size)
  1951. {
  1952. QDF_BUG(left);
  1953. QDF_BUG(right);
  1954. return memcmp(left, right, size);
  1955. }
  1956. qdf_export_symbol(qdf_mem_cmp);
  1957. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  1958. /**
  1959. * qdf_mem_dma_alloc() - allocates memory for dma
  1960. * @osdev: OS device handle
  1961. * @dev: Pointer to device handle
  1962. * @size: Size to be allocated
  1963. * @phy_addr: Physical address
  1964. *
  1965. * Return: pointer of allocated memory or null if memory alloc fails
  1966. */
  1967. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  1968. qdf_size_t size,
  1969. qdf_dma_addr_t *phy_addr)
  1970. {
  1971. void *vaddr;
  1972. vaddr = qdf_mem_malloc(size);
  1973. *phy_addr = ((uintptr_t) vaddr);
  1974. /* using this type conversion to suppress "cast from pointer to integer
  1975. * of different size" warning on some platforms
  1976. */
  1977. BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
  1978. return vaddr;
  1979. }
  1980. #elif defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) && \
  1981. !defined(QCA_WIFI_QCN9000)
  1982. #define QCA8074_RAM_BASE 0x50000000
  1983. #define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
  1984. void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
  1985. qdf_dma_addr_t *phy_addr)
  1986. {
  1987. void *vaddr = NULL;
  1988. int i;
  1989. *phy_addr = 0;
  1990. for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
  1991. vaddr = dma_alloc_coherent(dev, size, phy_addr,
  1992. qdf_mem_malloc_flags());
  1993. if (!vaddr) {
  1994. qdf_err("%s failed , size: %zu!", __func__, size);
  1995. return NULL;
  1996. }
  1997. if (*phy_addr >= QCA8074_RAM_BASE)
  1998. return vaddr;
  1999. dma_free_coherent(dev, size, vaddr, *phy_addr);
  2000. }
  2001. return NULL;
  2002. }
  2003. #else
  2004. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2005. qdf_size_t size, qdf_dma_addr_t *paddr)
  2006. {
  2007. return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
  2008. }
  2009. #endif
  2010. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  2011. static inline void
  2012. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2013. {
  2014. qdf_mem_free(vaddr);
  2015. }
  2016. #else
  2017. static inline void
  2018. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2019. {
  2020. dma_free_coherent(dev, size, vaddr, paddr);
  2021. }
  2022. #endif
  2023. #ifdef MEMORY_DEBUG
  2024. void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
  2025. qdf_size_t size, qdf_dma_addr_t *paddr,
  2026. const char *func, uint32_t line,
  2027. void *caller)
  2028. {
  2029. QDF_STATUS status;
  2030. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  2031. qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
  2032. struct qdf_mem_header *header;
  2033. void *vaddr;
  2034. if (is_initial_mem_debug_disabled)
  2035. return __qdf_mem_alloc_consistent(osdev, dev,
  2036. size, paddr,
  2037. func, line);
  2038. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2039. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  2040. return NULL;
  2041. }
  2042. vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
  2043. paddr);
  2044. if (!vaddr) {
  2045. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  2046. return NULL;
  2047. }
  2048. header = qdf_mem_dma_get_header(vaddr, size);
  2049. /* For DMA buffers we only add trailers, this function will init
  2050. * the header structure at the tail
  2051. * Prefix the header into DMA buffer causes SMMU faults, so
  2052. * do not prefix header into the DMA buffers
  2053. */
  2054. qdf_mem_header_init(header, size, func, line, caller);
  2055. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2056. status = qdf_list_insert_front(mem_list, &header->node);
  2057. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2058. if (QDF_IS_STATUS_ERROR(status))
  2059. qdf_err("Failed to insert memory header; status %d", status);
  2060. qdf_mem_dma_inc(size);
  2061. return vaddr;
  2062. }
  2063. qdf_export_symbol(qdf_mem_alloc_consistent_debug);
  2064. void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
  2065. qdf_size_t size, void *vaddr,
  2066. qdf_dma_addr_t paddr,
  2067. qdf_dma_context_t memctx,
  2068. const char *func, uint32_t line)
  2069. {
  2070. enum qdf_debug_domain domain = qdf_debug_domain_get();
  2071. struct qdf_mem_header *header;
  2072. enum qdf_mem_validation_bitmap error_bitmap;
  2073. if (is_initial_mem_debug_disabled) {
  2074. __qdf_mem_free_consistent(
  2075. osdev, dev,
  2076. size, vaddr,
  2077. paddr, memctx);
  2078. return;
  2079. }
  2080. /* freeing a null pointer is valid */
  2081. if (qdf_unlikely(!vaddr))
  2082. return;
  2083. qdf_talloc_assert_no_children_fl(vaddr, func, line);
  2084. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2085. /* For DMA buffers we only add trailers, this function will retrieve
  2086. * the header structure at the tail
  2087. * Prefix the header into DMA buffer causes SMMU faults, so
  2088. * do not prefix header into the DMA buffers
  2089. */
  2090. header = qdf_mem_dma_get_header(vaddr, size);
  2091. error_bitmap = qdf_mem_header_validate(header, domain);
  2092. if (!error_bitmap) {
  2093. header->freed = true;
  2094. qdf_list_remove_node(qdf_mem_dma_list(header->domain),
  2095. &header->node);
  2096. }
  2097. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2098. qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
  2099. qdf_mem_dma_dec(header->size);
  2100. qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
  2101. }
  2102. qdf_export_symbol(qdf_mem_free_consistent_debug);
  2103. #endif /* MEMORY_DEBUG */
  2104. void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
  2105. qdf_size_t size, void *vaddr,
  2106. qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
  2107. {
  2108. qdf_mem_dma_dec(size);
  2109. qdf_mem_dma_free(dev, size, vaddr, paddr);
  2110. }
  2111. qdf_export_symbol(__qdf_mem_free_consistent);
  2112. void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
  2113. qdf_size_t size, qdf_dma_addr_t *paddr,
  2114. const char *func, uint32_t line)
  2115. {
  2116. void *vaddr;
  2117. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2118. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d",
  2119. size, func, line);
  2120. return NULL;
  2121. }
  2122. vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
  2123. if (vaddr)
  2124. qdf_mem_dma_inc(size);
  2125. return vaddr;
  2126. }
  2127. qdf_export_symbol(__qdf_mem_alloc_consistent);
  2128. void *qdf_aligned_mem_alloc_consistent_fl(
  2129. qdf_device_t osdev, uint32_t *size,
  2130. void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
  2131. qdf_dma_addr_t *paddr_aligned, uint32_t align,
  2132. const char *func, uint32_t line)
  2133. {
  2134. void *vaddr_aligned;
  2135. uint32_t align_alloc_size;
  2136. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2137. osdev, osdev->dev, (qdf_size_t)*size, paddr_unaligned);
  2138. if (!*vaddr_unaligned) {
  2139. qdf_warn("Failed to alloc %uB @ %s:%d",
  2140. *size, func, line);
  2141. return NULL;
  2142. }
  2143. /* Re-allocate additional bytes to align base address only if
  2144. * above allocation returns unaligned address. Reason for
  2145. * trying exact size allocation above is, OS tries to allocate
  2146. * blocks of size power-of-2 pages and then free extra pages.
  2147. * e.g., of a ring size of 1MB, the allocation below will
  2148. * request 1MB plus 7 bytes for alignment, which will cause a
  2149. * 2MB block allocation,and that is failing sometimes due to
  2150. * memory fragmentation.
  2151. */
  2152. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  2153. align_alloc_size = *size + align - 1;
  2154. qdf_mem_free_consistent(osdev, osdev->dev, *size,
  2155. *vaddr_unaligned,
  2156. *paddr_unaligned, 0);
  2157. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2158. osdev, osdev->dev, align_alloc_size,
  2159. paddr_unaligned);
  2160. if (!*vaddr_unaligned) {
  2161. qdf_warn("Failed to alloc %uB @ %s:%d",
  2162. align_alloc_size, func, line);
  2163. return NULL;
  2164. }
  2165. *size = align_alloc_size;
  2166. }
  2167. *paddr_aligned = (qdf_dma_addr_t)qdf_align(
  2168. (unsigned long)(*paddr_unaligned), align);
  2169. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  2170. ((unsigned long)(*paddr_aligned) -
  2171. (unsigned long)(*paddr_unaligned)));
  2172. return vaddr_aligned;
  2173. }
  2174. qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
  2175. void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
  2176. qdf_dma_addr_t bus_addr,
  2177. qdf_size_t size,
  2178. enum dma_data_direction direction)
  2179. {
  2180. dma_sync_single_for_device(osdev->dev, bus_addr, size, direction);
  2181. }
  2182. qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
  2183. void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
  2184. qdf_dma_addr_t bus_addr,
  2185. qdf_size_t size,
  2186. enum dma_data_direction direction)
  2187. {
  2188. dma_sync_single_for_cpu(osdev->dev, bus_addr, size, direction);
  2189. }
  2190. qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
  2191. void qdf_mem_init(void)
  2192. {
  2193. qdf_mem_debug_init();
  2194. qdf_net_buf_debug_init();
  2195. qdf_frag_debug_init();
  2196. qdf_mem_debugfs_init();
  2197. qdf_mem_debug_debugfs_init();
  2198. }
  2199. qdf_export_symbol(qdf_mem_init);
  2200. void qdf_mem_exit(void)
  2201. {
  2202. qdf_mem_debug_debugfs_exit();
  2203. qdf_mem_debugfs_exit();
  2204. qdf_frag_debug_exit();
  2205. qdf_net_buf_debug_exit();
  2206. qdf_mem_debug_exit();
  2207. }
  2208. qdf_export_symbol(qdf_mem_exit);
  2209. void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
  2210. {
  2211. if ((!dst_addr) || (!src_addr)) {
  2212. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  2213. "%s called with NULL parameter, source:%pK destination:%pK",
  2214. __func__, src_addr, dst_addr);
  2215. QDF_ASSERT(0);
  2216. return;
  2217. }
  2218. ether_addr_copy(dst_addr, src_addr);
  2219. }
  2220. qdf_export_symbol(qdf_ether_addr_copy);
  2221. int32_t qdf_dma_mem_stats_read(void)
  2222. {
  2223. return qdf_atomic_read(&qdf_mem_stat.dma);
  2224. }
  2225. qdf_export_symbol(qdf_dma_mem_stats_read);
  2226. int32_t qdf_heap_mem_stats_read(void)
  2227. {
  2228. return qdf_atomic_read(&qdf_mem_stat.kmalloc);
  2229. }
  2230. qdf_export_symbol(qdf_heap_mem_stats_read);
  2231. int32_t qdf_skb_mem_stats_read(void)
  2232. {
  2233. return qdf_atomic_read(&qdf_mem_stat.skb);
  2234. }
  2235. qdf_export_symbol(qdf_skb_mem_stats_read);
  2236. int32_t qdf_skb_total_mem_stats_read(void)
  2237. {
  2238. return qdf_atomic_read(&qdf_mem_stat.skb_total);
  2239. }
  2240. qdf_export_symbol(qdf_skb_total_mem_stats_read);
  2241. int32_t qdf_skb_max_mem_stats_read(void)
  2242. {
  2243. return qdf_mem_stat.skb_mem_max;
  2244. }
  2245. qdf_export_symbol(qdf_skb_max_mem_stats_read);
  2246. int32_t qdf_dp_tx_skb_mem_stats_read(void)
  2247. {
  2248. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  2249. }
  2250. qdf_export_symbol(qdf_dp_tx_skb_mem_stats_read);
  2251. int32_t qdf_dp_rx_skb_mem_stats_read(void)
  2252. {
  2253. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  2254. }
  2255. qdf_export_symbol(qdf_dp_rx_skb_mem_stats_read);
  2256. int32_t qdf_mem_dp_tx_skb_cnt_read(void)
  2257. {
  2258. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  2259. }
  2260. qdf_export_symbol(qdf_mem_dp_tx_skb_cnt_read);
  2261. int32_t qdf_mem_dp_tx_skb_max_cnt_read(void)
  2262. {
  2263. return qdf_mem_stat.dp_tx_skb_count_max;
  2264. }
  2265. qdf_export_symbol(qdf_mem_dp_tx_skb_max_cnt_read);
  2266. int32_t qdf_mem_dp_rx_skb_cnt_read(void)
  2267. {
  2268. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  2269. }
  2270. qdf_export_symbol(qdf_mem_dp_rx_skb_cnt_read);
  2271. int32_t qdf_mem_dp_rx_skb_max_cnt_read(void)
  2272. {
  2273. return qdf_mem_stat.dp_rx_skb_count_max;
  2274. }
  2275. qdf_export_symbol(qdf_mem_dp_rx_skb_max_cnt_read);
  2276. int32_t qdf_dp_tx_skb_max_mem_stats_read(void)
  2277. {
  2278. return qdf_mem_stat.dp_tx_skb_mem_max;
  2279. }
  2280. qdf_export_symbol(qdf_dp_tx_skb_max_mem_stats_read);
  2281. int32_t qdf_dp_rx_skb_max_mem_stats_read(void)
  2282. {
  2283. return qdf_mem_stat.dp_rx_skb_mem_max;
  2284. }
  2285. qdf_export_symbol(qdf_dp_rx_skb_max_mem_stats_read);
  2286. int32_t qdf_mem_tx_desc_cnt_read(void)
  2287. {
  2288. return qdf_atomic_read(&qdf_mem_stat.tx_descs_outstanding);
  2289. }
  2290. qdf_export_symbol(qdf_mem_tx_desc_cnt_read);
  2291. int32_t qdf_mem_tx_desc_max_read(void)
  2292. {
  2293. return qdf_mem_stat.tx_descs_max;
  2294. }
  2295. qdf_export_symbol(qdf_mem_tx_desc_max_read);
  2296. void qdf_mem_tx_desc_cnt_update(qdf_atomic_t pending_tx_descs,
  2297. int32_t tx_descs_max)
  2298. {
  2299. qdf_mem_stat.tx_descs_outstanding = pending_tx_descs;
  2300. qdf_mem_stat.tx_descs_max = tx_descs_max;
  2301. }
  2302. qdf_export_symbol(qdf_mem_tx_desc_cnt_update);
  2303. void qdf_mem_stats_init(void)
  2304. {
  2305. qdf_mem_stat.skb_mem_max = 0;
  2306. qdf_mem_stat.dp_tx_skb_mem_max = 0;
  2307. qdf_mem_stat.dp_rx_skb_mem_max = 0;
  2308. qdf_mem_stat.dp_tx_skb_count_max = 0;
  2309. qdf_mem_stat.dp_rx_skb_count_max = 0;
  2310. qdf_mem_stat.tx_descs_max = 0;
  2311. }
  2312. qdf_export_symbol(qdf_mem_stats_init);
  2313. void *__qdf_mem_valloc(size_t size, const char *func, uint32_t line)
  2314. {
  2315. void *ptr;
  2316. if (!size) {
  2317. qdf_err("Valloc called with 0 bytes @ %s:%d", func, line);
  2318. return NULL;
  2319. }
  2320. ptr = vzalloc(size);
  2321. return ptr;
  2322. }
  2323. qdf_export_symbol(__qdf_mem_valloc);
  2324. void __qdf_mem_vfree(void *ptr)
  2325. {
  2326. if (qdf_unlikely(!ptr))
  2327. return;
  2328. vfree(ptr);
  2329. }
  2330. qdf_export_symbol(__qdf_mem_vfree);
  2331. #if IS_ENABLED(CONFIG_ARM_SMMU) && defined(ENABLE_SMMU_S1_TRANSLATION)
  2332. int
  2333. qdf_iommu_domain_get_attr(qdf_iommu_domain_t *domain,
  2334. enum qdf_iommu_attr attr, void *data)
  2335. {
  2336. return __qdf_iommu_domain_get_attr(domain, attr, data);
  2337. }
  2338. qdf_export_symbol(qdf_iommu_domain_get_attr);
  2339. #endif
  2340. #ifdef ENHANCED_OS_ABSTRACTION
  2341. void qdf_update_mem_map_table(qdf_device_t osdev,
  2342. qdf_mem_info_t *mem_info,
  2343. qdf_dma_addr_t dma_addr,
  2344. uint32_t mem_size)
  2345. {
  2346. if (!mem_info) {
  2347. qdf_nofl_err("%s: NULL mem_info", __func__);
  2348. return;
  2349. }
  2350. __qdf_update_mem_map_table(osdev, mem_info, dma_addr, mem_size);
  2351. }
  2352. qdf_export_symbol(qdf_update_mem_map_table);
  2353. qdf_dma_addr_t qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev,
  2354. qdf_dma_addr_t dma_addr)
  2355. {
  2356. return __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
  2357. }
  2358. qdf_export_symbol(qdf_mem_paddr_from_dmaaddr);
  2359. #endif
  2360. #ifdef QCA_KMEM_CACHE_SUPPORT
  2361. qdf_kmem_cache_t
  2362. __qdf_kmem_cache_create(const char *cache_name,
  2363. qdf_size_t size)
  2364. {
  2365. struct kmem_cache *cache;
  2366. cache = kmem_cache_create(cache_name, size,
  2367. 0, 0, NULL);
  2368. if (!cache)
  2369. return NULL;
  2370. return cache;
  2371. }
  2372. qdf_export_symbol(__qdf_kmem_cache_create);
  2373. void
  2374. __qdf_kmem_cache_destroy(qdf_kmem_cache_t cache)
  2375. {
  2376. kmem_cache_destroy(cache);
  2377. }
  2378. qdf_export_symbol(__qdf_kmem_cache_destroy);
  2379. void*
  2380. __qdf_kmem_cache_alloc(qdf_kmem_cache_t cache)
  2381. {
  2382. int flags = GFP_KERNEL;
  2383. if (in_interrupt() || irqs_disabled() || in_atomic())
  2384. flags = GFP_ATOMIC;
  2385. return kmem_cache_alloc(cache, flags);
  2386. }
  2387. qdf_export_symbol(__qdf_kmem_cache_alloc);
  2388. void
  2389. __qdf_kmem_cache_free(qdf_kmem_cache_t cache, void *node)
  2390. {
  2391. kmem_cache_free(cache, node);
  2392. }
  2393. qdf_export_symbol(__qdf_kmem_cache_free);
  2394. #else
  2395. qdf_kmem_cache_t
  2396. __qdf_kmem_cache_create(const char *cache_name,
  2397. qdf_size_t size)
  2398. {
  2399. return NULL;
  2400. }
  2401. void
  2402. __qdf_kmem_cache_destroy(qdf_kmem_cache_t cache)
  2403. {
  2404. }
  2405. void *
  2406. __qdf_kmem_cache_alloc(qdf_kmem_cache_t cache)
  2407. {
  2408. return NULL;
  2409. }
  2410. void
  2411. __qdf_kmem_cache_free(qdf_kmem_cache_t cache, void *node)
  2412. {
  2413. }
  2414. #endif