dp_rx_defrag.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_api.h"
  22. #include "qdf_trace.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_rx_defrag.h"
  25. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  26. #include "dp_rx_defrag.h"
  27. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  28. "AES-CCM",
  29. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  30. IEEE80211_WEP_MICLEN,
  31. 0,
  32. };
  33. const struct dp_rx_defrag_cipher dp_f_tkip = {
  34. "TKIP",
  35. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  36. IEEE80211_WEP_CRCLEN,
  37. IEEE80211_WEP_MICLEN,
  38. };
  39. const struct dp_rx_defrag_cipher dp_f_wep = {
  40. "WEP",
  41. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  42. IEEE80211_WEP_CRCLEN,
  43. 0,
  44. };
  45. /*
  46. * dp_rx_defrag_frames_free(): Free fragment chain
  47. * @frames: Fragment chain
  48. *
  49. * Iterates through the fragment chain and frees them
  50. * Returns: None
  51. */
  52. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  53. {
  54. qdf_nbuf_t next, frag = frames;
  55. while (frag) {
  56. next = qdf_nbuf_next(frag);
  57. qdf_nbuf_free(frag);
  58. frag = next;
  59. }
  60. }
  61. /*
  62. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  63. * @peer: Pointer to the peer data structure
  64. * @tid: Transmit ID (TID)
  65. *
  66. * Saves MPDU descriptor info and MSDU link pointer from REO
  67. * ring descriptor. The cache is created per peer, per TID
  68. *
  69. * Returns: None
  70. */
  71. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  72. {
  73. if (peer->rx_tid[tid].dst_ring_desc)
  74. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  75. peer->rx_tid[tid].dst_ring_desc = NULL;
  76. }
  77. /*
  78. * dp_rx_reorder_flush_frag(): Flush the frag list
  79. * @peer: Pointer to the peer data structure
  80. * @tid: Transmit ID (TID)
  81. *
  82. * Flush the per-TID frag list
  83. *
  84. * Returns: None
  85. */
  86. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  87. unsigned int tid)
  88. {
  89. struct dp_soc *soc;
  90. struct dp_srng *dp_rxdma_srng;
  91. struct rx_desc_pool *rx_desc_pool;
  92. struct dp_pdev *pdev;
  93. union dp_rx_desc_list_elem_t *head = NULL;
  94. union dp_rx_desc_list_elem_t *tail = NULL;
  95. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  96. FL("Flushing TID %d"), tid);
  97. if (!peer) {
  98. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  99. "%s: NULL peer\n", __func__);
  100. return;
  101. }
  102. pdev = peer->vdev->pdev;
  103. soc = pdev->soc;
  104. if (peer->rx_tid[tid].dst_ring_desc) {
  105. if (dp_rx_link_desc_return(soc,
  106. peer->rx_tid[tid].dst_ring_desc,
  107. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  108. QDF_STATUS_SUCCESS)
  109. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  110. "%s: Failed to return link desc\n",
  111. __func__);
  112. }
  113. if (peer->rx_tid[tid].head_frag_desc) {
  114. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  115. rx_desc_pool = &soc->rx_desc_buf[0];
  116. dp_rx_add_to_free_desc_list(&head, &tail,
  117. peer->rx_tid[tid].head_frag_desc);
  118. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  119. 1, &head, &tail);
  120. }
  121. dp_rx_defrag_cleanup(peer, tid);
  122. }
  123. /*
  124. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  125. * @soc: DP SOC
  126. *
  127. * Flush fragments of all waitlisted TID's
  128. *
  129. * Returns: None
  130. */
  131. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  132. {
  133. struct dp_rx_tid *rx_reorder;
  134. struct dp_rx_tid *tmp;
  135. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  136. TAILQ_HEAD(, dp_rx_tid) temp_list;
  137. TAILQ_INIT(&temp_list);
  138. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  139. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  140. defrag_waitlist_elem, tmp) {
  141. unsigned int tid;
  142. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  143. FL("Current time %u"), now_ms);
  144. if (rx_reorder->defrag_timeout_ms > now_ms)
  145. break;
  146. tid = rx_reorder->tid;
  147. if (tid >= DP_MAX_TIDS) {
  148. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  149. "%s: TID out of bounds: %d", __func__, tid);
  150. qdf_assert(0);
  151. continue;
  152. }
  153. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  154. defrag_waitlist_elem);
  155. /* Move to temp list and clean-up later */
  156. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  157. defrag_waitlist_elem);
  158. }
  159. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  160. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  161. defrag_waitlist_elem, tmp) {
  162. struct dp_peer *peer;
  163. /* get address of current peer */
  164. peer =
  165. container_of(rx_reorder, struct dp_peer,
  166. rx_tid[rx_reorder->tid]);
  167. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  168. }
  169. }
  170. /*
  171. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  172. * @peer: Pointer to the peer data structure
  173. * @tid: Transmit ID (TID)
  174. *
  175. * Appends per-tid fragments to global fragment wait list
  176. *
  177. * Returns: None
  178. */
  179. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  180. {
  181. struct dp_soc *psoc = peer->vdev->pdev->soc;
  182. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  183. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  184. FL("Adding TID %u to waitlist for peer %pK"),
  185. tid, peer);
  186. /* TODO: use LIST macros instead of TAIL macros */
  187. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  188. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  189. defrag_waitlist_elem);
  190. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  191. }
  192. /*
  193. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  194. * @peer: Pointer to the peer data structure
  195. * @tid: Transmit ID (TID)
  196. *
  197. * Remove fragments from waitlist
  198. *
  199. * Returns: None
  200. */
  201. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  202. {
  203. struct dp_pdev *pdev = peer->vdev->pdev;
  204. struct dp_soc *soc = pdev->soc;
  205. struct dp_rx_tid *rx_reorder;
  206. if (tid > DP_MAX_TIDS) {
  207. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  208. "TID out of bounds: %d", tid);
  209. qdf_assert(0);
  210. return;
  211. }
  212. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  213. FL("Remove TID %u from waitlist for peer %pK"),
  214. tid, peer);
  215. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  216. TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
  217. defrag_waitlist_elem) {
  218. struct dp_peer *peer_on_waitlist;
  219. /* get address of current peer */
  220. peer_on_waitlist =
  221. container_of(rx_reorder, struct dp_peer,
  222. rx_tid[rx_reorder->tid]);
  223. /* Ensure it is TID for same peer */
  224. if (peer_on_waitlist == peer && rx_reorder->tid == tid)
  225. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  226. rx_reorder, defrag_waitlist_elem);
  227. }
  228. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  229. }
  230. /*
  231. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  232. * @peer: Pointer to the peer data structure
  233. * @tid: Transmit ID (TID)
  234. * @head_addr: Pointer to head list
  235. * @tail_addr: Pointer to tail list
  236. * @frag: Incoming fragment
  237. * @all_frag_present: Flag to indicate whether all fragments are received
  238. *
  239. * Build a per-tid, per-sequence fragment list.
  240. *
  241. * Returns: Success, if inserted
  242. */
  243. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  244. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  245. uint8_t *all_frag_present)
  246. {
  247. qdf_nbuf_t next;
  248. qdf_nbuf_t prev = NULL;
  249. qdf_nbuf_t cur;
  250. uint16_t head_fragno, cur_fragno, next_fragno;
  251. uint8_t last_morefrag = 1, count = 0;
  252. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  253. uint8_t *rx_desc_info;
  254. qdf_assert(frag);
  255. qdf_assert(head_addr);
  256. qdf_assert(tail_addr);
  257. *all_frag_present = 0;
  258. rx_desc_info = qdf_nbuf_data(frag);
  259. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  260. /* If this is the first fragment */
  261. if (!(*head_addr)) {
  262. *head_addr = *tail_addr = frag;
  263. qdf_nbuf_set_next(*tail_addr, NULL);
  264. rx_tid->curr_frag_num = cur_fragno;
  265. goto insert_done;
  266. }
  267. /* In sequence fragment */
  268. if (cur_fragno > rx_tid->curr_frag_num) {
  269. qdf_nbuf_set_next(*tail_addr, frag);
  270. *tail_addr = frag;
  271. qdf_nbuf_set_next(*tail_addr, NULL);
  272. rx_tid->curr_frag_num = cur_fragno;
  273. } else {
  274. /* Out of sequence fragment */
  275. cur = *head_addr;
  276. rx_desc_info = qdf_nbuf_data(cur);
  277. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  278. if (cur_fragno == head_fragno) {
  279. qdf_nbuf_free(frag);
  280. goto insert_fail;
  281. } else if (head_fragno > cur_fragno) {
  282. qdf_nbuf_set_next(frag, cur);
  283. cur = frag;
  284. *head_addr = frag; /* head pointer to be updated */
  285. } else {
  286. while ((cur_fragno > head_fragno) && cur != NULL) {
  287. prev = cur;
  288. cur = qdf_nbuf_next(cur);
  289. rx_desc_info = qdf_nbuf_data(cur);
  290. head_fragno =
  291. dp_rx_frag_get_mpdu_frag_number(
  292. rx_desc_info);
  293. }
  294. if (cur_fragno == head_fragno) {
  295. qdf_nbuf_free(frag);
  296. goto insert_fail;
  297. }
  298. qdf_nbuf_set_next(prev, frag);
  299. qdf_nbuf_set_next(frag, cur);
  300. }
  301. }
  302. next = qdf_nbuf_next(*head_addr);
  303. rx_desc_info = qdf_nbuf_data(*tail_addr);
  304. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  305. /* TODO: optimize the loop */
  306. if (!last_morefrag) {
  307. /* Check if all fragments are present */
  308. do {
  309. rx_desc_info = qdf_nbuf_data(next);
  310. next_fragno =
  311. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  312. count++;
  313. if (next_fragno != count)
  314. break;
  315. next = qdf_nbuf_next(next);
  316. } while (next);
  317. if (!next) {
  318. *all_frag_present = 1;
  319. return QDF_STATUS_SUCCESS;
  320. }
  321. }
  322. insert_done:
  323. return QDF_STATUS_SUCCESS;
  324. insert_fail:
  325. return QDF_STATUS_E_FAILURE;
  326. }
  327. /*
  328. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  329. * @msdu: Pointer to the fragment
  330. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  331. *
  332. * decap tkip encrypted fragment
  333. *
  334. * Returns: QDF_STATUS
  335. */
  336. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  337. {
  338. uint8_t *ivp, *orig_hdr;
  339. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  340. /* start of 802.11 header info */
  341. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  342. /* TKIP header is located post 802.11 header */
  343. ivp = orig_hdr + hdrlen;
  344. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  345. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  346. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  347. return QDF_STATUS_E_DEFRAG_ERROR;
  348. }
  349. qdf_mem_move(orig_hdr + dp_f_tkip.ic_header, orig_hdr, hdrlen);
  350. qdf_nbuf_pull_head(msdu, dp_f_tkip.ic_header);
  351. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  352. return QDF_STATUS_SUCCESS;
  353. }
  354. /*
  355. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  356. * @nbuf: Pointer to the fragment buffer
  357. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  358. *
  359. * Remove MIC information from CCMP fragment
  360. *
  361. * Returns: QDF_STATUS
  362. */
  363. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  364. {
  365. uint8_t *ivp, *orig_hdr;
  366. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  367. /* start of the 802.11 header */
  368. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  369. /* CCMP header is located after 802.11 header */
  370. ivp = orig_hdr + hdrlen;
  371. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  372. return QDF_STATUS_E_DEFRAG_ERROR;
  373. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  374. return QDF_STATUS_SUCCESS;
  375. }
  376. /*
  377. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  378. * @nbuf: Pointer to the fragment
  379. * @hdrlen: length of the header information
  380. *
  381. * decap CCMP encrypted fragment
  382. *
  383. * Returns: QDF_STATUS
  384. */
  385. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  386. {
  387. uint8_t *ivp, *origHdr;
  388. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  389. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  390. ivp = origHdr + hdrlen;
  391. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  392. return QDF_STATUS_E_DEFRAG_ERROR;
  393. /* Let's pull the header later */
  394. return QDF_STATUS_SUCCESS;
  395. }
  396. /*
  397. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  398. * @msdu: Pointer to the fragment
  399. * @hdrlen: length of the header information
  400. *
  401. * decap WEP encrypted fragment
  402. *
  403. * Returns: QDF_STATUS
  404. */
  405. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  406. {
  407. uint8_t *origHdr;
  408. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  409. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  410. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  411. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  412. return QDF_STATUS_SUCCESS;
  413. }
  414. /*
  415. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  416. * @nbuf: Pointer to the fragment
  417. *
  418. * Calculate the header size of the received fragment
  419. *
  420. * Returns: header size (uint16_t)
  421. */
  422. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  423. {
  424. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  425. uint16_t size = sizeof(struct ieee80211_frame);
  426. uint16_t fc = 0;
  427. uint32_t to_ds, fr_ds;
  428. uint8_t frm_ctrl_valid;
  429. uint16_t frm_ctrl_field;
  430. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  431. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  432. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  433. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  434. if (to_ds && fr_ds)
  435. size += IEEE80211_ADDR_LEN;
  436. if (frm_ctrl_valid) {
  437. fc = frm_ctrl_field;
  438. /* use 1-st byte for validation */
  439. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  440. size += sizeof(uint16_t);
  441. /* use 2-nd byte for validation */
  442. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  443. size += sizeof(struct ieee80211_htc);
  444. }
  445. }
  446. return size;
  447. }
  448. /*
  449. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  450. * @wh0: Pointer to the wireless header of the fragment
  451. * @hdr: Array to hold the pseudo header
  452. *
  453. * Calculate a pseudo MIC header
  454. *
  455. * Returns: None
  456. */
  457. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  458. uint8_t hdr[])
  459. {
  460. const struct ieee80211_frame_addr4 *wh =
  461. (const struct ieee80211_frame_addr4 *)wh0;
  462. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  463. case IEEE80211_FC1_DIR_NODS:
  464. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  465. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  466. wh->i_addr2);
  467. break;
  468. case IEEE80211_FC1_DIR_TODS:
  469. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  470. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  471. wh->i_addr2);
  472. break;
  473. case IEEE80211_FC1_DIR_FROMDS:
  474. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  475. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  476. wh->i_addr3);
  477. break;
  478. case IEEE80211_FC1_DIR_DSTODS:
  479. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  480. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  481. wh->i_addr4);
  482. break;
  483. }
  484. /*
  485. * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  486. * it could also be set for deauth, disassoc, action, etc. for
  487. * a mgt type frame. It comes into picture for MFP.
  488. */
  489. if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
  490. const struct ieee80211_qosframe *qwh =
  491. (const struct ieee80211_qosframe *)wh;
  492. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  493. } else {
  494. hdr[12] = 0;
  495. }
  496. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  497. }
  498. /*
  499. * dp_rx_defrag_mic(): Calculate MIC header
  500. * @key: Pointer to the key
  501. * @wbuf: fragment buffer
  502. * @off: Offset
  503. * @data_len: Data length
  504. * @mic: Array to hold MIC
  505. *
  506. * Calculate a pseudo MIC header
  507. *
  508. * Returns: QDF_STATUS
  509. */
  510. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  511. uint16_t off, uint16_t data_len, uint8_t mic[])
  512. {
  513. uint8_t hdr[16] = { 0, };
  514. uint32_t l, r;
  515. const uint8_t *data;
  516. uint32_t space;
  517. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  518. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  519. + rx_desc_len), hdr);
  520. l = dp_rx_get_le32(key);
  521. r = dp_rx_get_le32(key + 4);
  522. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  523. l ^= dp_rx_get_le32(hdr);
  524. dp_rx_michael_block(l, r);
  525. l ^= dp_rx_get_le32(&hdr[4]);
  526. dp_rx_michael_block(l, r);
  527. l ^= dp_rx_get_le32(&hdr[8]);
  528. dp_rx_michael_block(l, r);
  529. l ^= dp_rx_get_le32(&hdr[12]);
  530. dp_rx_michael_block(l, r);
  531. /* first buffer has special handling */
  532. data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len + off;
  533. space = qdf_nbuf_len(wbuf) - rx_desc_len - off;
  534. for (;; ) {
  535. if (space > data_len)
  536. space = data_len;
  537. /* collect 32-bit blocks from current buffer */
  538. while (space >= sizeof(uint32_t)) {
  539. l ^= dp_rx_get_le32(data);
  540. dp_rx_michael_block(l, r);
  541. data += sizeof(uint32_t);
  542. space -= sizeof(uint32_t);
  543. data_len -= sizeof(uint32_t);
  544. }
  545. if (data_len < sizeof(uint32_t))
  546. break;
  547. wbuf = qdf_nbuf_next(wbuf);
  548. if (wbuf == NULL)
  549. return QDF_STATUS_E_DEFRAG_ERROR;
  550. if (space != 0) {
  551. const uint8_t *data_next;
  552. /*
  553. * Block straddles buffers, split references.
  554. */
  555. data_next =
  556. (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
  557. if ((qdf_nbuf_len(wbuf) - rx_desc_len) <
  558. sizeof(uint32_t) - space) {
  559. return QDF_STATUS_E_DEFRAG_ERROR;
  560. }
  561. switch (space) {
  562. case 1:
  563. l ^= dp_rx_get_le32_split(data[0],
  564. data_next[0], data_next[1],
  565. data_next[2]);
  566. data = data_next + 3;
  567. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  568. - 3;
  569. break;
  570. case 2:
  571. l ^= dp_rx_get_le32_split(data[0], data[1],
  572. data_next[0], data_next[1]);
  573. data = data_next + 2;
  574. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  575. - 2;
  576. break;
  577. case 3:
  578. l ^= dp_rx_get_le32_split(data[0], data[1],
  579. data[2], data_next[0]);
  580. data = data_next + 1;
  581. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  582. - 1;
  583. break;
  584. }
  585. dp_rx_michael_block(l, r);
  586. data_len -= sizeof(uint32_t);
  587. } else {
  588. /*
  589. * Setup for next buffer.
  590. */
  591. data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
  592. space = qdf_nbuf_len(wbuf) - rx_desc_len;
  593. }
  594. }
  595. /* Last block and padding (0x5a, 4..7 x 0) */
  596. switch (data_len) {
  597. case 0:
  598. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  599. break;
  600. case 1:
  601. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  602. break;
  603. case 2:
  604. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  605. break;
  606. case 3:
  607. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  608. break;
  609. }
  610. dp_rx_michael_block(l, r);
  611. dp_rx_michael_block(l, r);
  612. dp_rx_put_le32(mic, l);
  613. dp_rx_put_le32(mic + 4, r);
  614. return QDF_STATUS_SUCCESS;
  615. }
  616. /*
  617. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  618. * @key: Pointer to the key
  619. * @msdu: fragment buffer
  620. * @hdrlen: Length of the header information
  621. *
  622. * Remove MIC information from the TKIP frame
  623. *
  624. * Returns: QDF_STATUS
  625. */
  626. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  627. qdf_nbuf_t msdu, uint16_t hdrlen)
  628. {
  629. QDF_STATUS status;
  630. uint32_t pktlen;
  631. uint8_t mic[IEEE80211_WEP_MICLEN];
  632. uint8_t mic0[IEEE80211_WEP_MICLEN];
  633. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  634. pktlen = qdf_nbuf_len(msdu) - rx_desc_len;
  635. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  636. pktlen - (hdrlen + dp_f_tkip.ic_miclen), mic);
  637. if (QDF_IS_STATUS_ERROR(status))
  638. return status;
  639. qdf_nbuf_copy_bits(msdu, pktlen - dp_f_tkip.ic_miclen + rx_desc_len,
  640. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  641. if (!qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  642. return QDF_STATUS_E_DEFRAG_ERROR;
  643. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_miclen);
  644. return QDF_STATUS_SUCCESS;
  645. }
  646. /*
  647. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  648. * @nbuf: buffer pointer
  649. * @hdrsize: size of the header to be pulled
  650. *
  651. * Pull the RXTLV & the 802.11 headers
  652. *
  653. * Returns: None
  654. */
  655. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  656. {
  657. qdf_nbuf_pull_head(nbuf,
  658. RX_PKT_TLVS_LEN + hdrsize);
  659. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  660. "%s: final pktlen %d .11len %d\n",
  661. __func__,
  662. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  663. }
  664. /*
  665. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  666. * @peer: Pointer to the peer
  667. * @head: Pointer to list of fragments
  668. * @hdrsize: Size of the header to be pulled
  669. *
  670. * Construct a nbuf fraglist
  671. *
  672. * Returns: None
  673. */
  674. static void
  675. dp_rx_construct_fraglist(struct dp_peer *peer,
  676. qdf_nbuf_t head, uint16_t hdrsize)
  677. {
  678. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  679. qdf_nbuf_t rx_nbuf = msdu;
  680. uint32_t len = 0;
  681. while (msdu) {
  682. dp_rx_frag_pull_hdr(msdu, hdrsize);
  683. len += qdf_nbuf_len(msdu);
  684. msdu = qdf_nbuf_next(msdu);
  685. }
  686. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  687. qdf_nbuf_set_next(head, NULL);
  688. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  689. "%s: head len %d ext len %d data len %d \n",
  690. __func__,
  691. (uint32_t)qdf_nbuf_len(head),
  692. (uint32_t)qdf_nbuf_len(rx_nbuf),
  693. (uint32_t)(head->data_len));
  694. }
  695. /**
  696. * dp_rx_defrag_err() - rx err handler
  697. * @pdev: handle to pdev object
  698. * @vdev_id: vdev id
  699. * @peer_mac_addr: peer mac address
  700. * @tid: TID
  701. * @tsf32: TSF
  702. * @err_type: error type
  703. * @rx_frame: rx frame
  704. * @pn: PN Number
  705. * @key_id: key id
  706. *
  707. * This function handles rx error and send MIC error notification
  708. *
  709. * Return: None
  710. */
  711. static void dp_rx_defrag_err(uint8_t vdev_id, uint8_t *peer_mac_addr,
  712. int tid, uint32_t tsf32, uint32_t err_type, qdf_nbuf_t rx_frame,
  713. uint64_t *pn, uint8_t key_id)
  714. {
  715. /* TODO: Who needs to know about the TKIP MIC error */
  716. }
  717. /*
  718. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  719. * @nbuf: Pointer to the fragment buffer
  720. * @hdrsize: Size of headers
  721. *
  722. * Transcap the fragment from 802.11 to 802.3
  723. *
  724. * Returns: None
  725. */
  726. static void
  727. dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
  728. {
  729. struct llc_snap_hdr_t *llchdr;
  730. struct ethernet_hdr_t *eth_hdr;
  731. uint8_t ether_type[2];
  732. uint16_t fc = 0;
  733. union dp_align_mac_addr mac_addr;
  734. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  735. if (rx_desc_info == NULL) {
  736. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  737. "%s: Memory alloc failed ! \n", __func__);
  738. QDF_ASSERT(0);
  739. return;
  740. }
  741. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  742. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  743. RX_PKT_TLVS_LEN + hdrsize);
  744. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  745. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  746. sizeof(struct llc_snap_hdr_t) -
  747. sizeof(struct ethernet_hdr_t)));
  748. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  749. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  750. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  751. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  752. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  753. "%s: frame control type: 0x%x", __func__, fc);
  754. case IEEE80211_FC1_DIR_NODS:
  755. hal_rx_mpdu_get_addr1(rx_desc_info,
  756. &mac_addr.raw[0]);
  757. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  758. IEEE80211_ADDR_LEN);
  759. hal_rx_mpdu_get_addr2(rx_desc_info,
  760. &mac_addr.raw[0]);
  761. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  762. IEEE80211_ADDR_LEN);
  763. break;
  764. case IEEE80211_FC1_DIR_TODS:
  765. hal_rx_mpdu_get_addr3(rx_desc_info,
  766. &mac_addr.raw[0]);
  767. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  768. IEEE80211_ADDR_LEN);
  769. hal_rx_mpdu_get_addr2(rx_desc_info,
  770. &mac_addr.raw[0]);
  771. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  772. IEEE80211_ADDR_LEN);
  773. break;
  774. case IEEE80211_FC1_DIR_FROMDS:
  775. hal_rx_mpdu_get_addr1(rx_desc_info,
  776. &mac_addr.raw[0]);
  777. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  778. IEEE80211_ADDR_LEN);
  779. hal_rx_mpdu_get_addr3(rx_desc_info,
  780. &mac_addr.raw[0]);
  781. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  782. IEEE80211_ADDR_LEN);
  783. break;
  784. case IEEE80211_FC1_DIR_DSTODS:
  785. hal_rx_mpdu_get_addr3(rx_desc_info,
  786. &mac_addr.raw[0]);
  787. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  788. IEEE80211_ADDR_LEN);
  789. hal_rx_mpdu_get_addr4(rx_desc_info,
  790. &mac_addr.raw[0]);
  791. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  792. IEEE80211_ADDR_LEN);
  793. break;
  794. default:
  795. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  796. "%s: Unknown frame control type: 0x%x", __func__, fc);
  797. }
  798. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  799. sizeof(ether_type));
  800. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  801. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  802. qdf_mem_free(rx_desc_info);
  803. }
  804. /*
  805. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  806. * @peer: Pointer to the peer
  807. * @tid: Transmit Identifier
  808. * @head: Buffer to be reinjected back
  809. *
  810. * Reinject the fragment chain back into REO
  811. *
  812. * Returns: QDF_STATUS
  813. */
  814. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  815. unsigned tid, qdf_nbuf_t head)
  816. {
  817. struct dp_pdev *pdev = peer->vdev->pdev;
  818. struct dp_soc *soc = pdev->soc;
  819. struct hal_buf_info buf_info;
  820. void *link_desc_va;
  821. void *msdu0, *msdu_desc_info;
  822. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  823. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  824. qdf_dma_addr_t paddr;
  825. uint32_t nbuf_len, seq_no, dst_ind;
  826. uint32_t *mpdu_wrd;
  827. uint32_t ret, cookie;
  828. void *dst_ring_desc =
  829. peer->rx_tid[tid].dst_ring_desc;
  830. void *hal_srng = soc->reo_reinject_ring.hal_srng;
  831. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  832. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  833. qdf_assert(link_desc_va);
  834. msdu0 = (uint8_t *)link_desc_va +
  835. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  836. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  837. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  838. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  839. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  840. /* msdu reconfig */
  841. msdu_desc_info = (uint8_t *)msdu0 +
  842. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  843. dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
  844. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  845. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  846. FIRST_MSDU_IN_MPDU_FLAG, 1);
  847. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  848. LAST_MSDU_IN_MPDU_FLAG, 1);
  849. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  850. MSDU_CONTINUATION, 0x0);
  851. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  852. REO_DESTINATION_INDICATION, dst_ind);
  853. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  854. MSDU_LENGTH, nbuf_len);
  855. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  856. SA_IS_VALID, 1);
  857. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  858. DA_IS_VALID, 1);
  859. /* change RX TLV's */
  860. hal_rx_msdu_start_msdu_len_set(
  861. qdf_nbuf_data(head), nbuf_len);
  862. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  863. /* map the nbuf before reinject it into HW */
  864. ret = qdf_nbuf_map_single(soc->osdev, head,
  865. QDF_DMA_BIDIRECTIONAL);
  866. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  867. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  868. "%s: nbuf map failed !\n", __func__);
  869. qdf_nbuf_free(head);
  870. return QDF_STATUS_E_FAILURE;
  871. }
  872. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  873. ret = check_x86_paddr(soc, &head, &paddr, pdev);
  874. if (ret == QDF_STATUS_E_FAILURE) {
  875. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  876. "%s: x86 check failed !\n", __func__);
  877. return QDF_STATUS_E_FAILURE;
  878. }
  879. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
  880. /* Lets fill entrance ring now !!! */
  881. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  882. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  883. "HAL RING Access For REO entrance SRNG Failed: %pK",
  884. hal_srng);
  885. return QDF_STATUS_E_FAILURE;
  886. }
  887. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  888. qdf_assert(ent_ring_desc);
  889. paddr = (uint64_t)buf_info.paddr;
  890. /* buf addr */
  891. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  892. buf_info.sw_cookie,
  893. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  894. /* mpdu desc info */
  895. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  896. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  897. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  898. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  899. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  900. sizeof(struct rx_mpdu_desc_info));
  901. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  902. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  903. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  904. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  905. MSDU_COUNT, 0x1);
  906. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  907. MPDU_SEQUENCE_NUMBER, seq_no);
  908. /* unset frag bit */
  909. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  910. FRAGMENT_FLAG, 0x0);
  911. /* set sa/da valid bits */
  912. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  913. SA_IS_VALID, 0x1);
  914. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  915. DA_IS_VALID, 0x1);
  916. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  917. RAW_MPDU, 0x0);
  918. /* qdesc addr */
  919. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  920. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  921. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  922. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  923. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  924. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  925. REO_DESTINATION_INDICATION, dst_ind);
  926. hal_srng_access_end(soc->hal_soc, hal_srng);
  927. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  928. "%s: reinjection done !\n", __func__);
  929. return QDF_STATUS_SUCCESS;
  930. }
  931. /*
  932. * dp_rx_defrag(): Defragment the fragment chain
  933. * @peer: Pointer to the peer
  934. * @tid: Transmit Identifier
  935. * @frag_list_head: Pointer to head list
  936. * @frag_list_tail: Pointer to tail list
  937. *
  938. * Defragment the fragment chain
  939. *
  940. * Returns: QDF_STATUS
  941. */
  942. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  943. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  944. {
  945. qdf_nbuf_t tmp_next, prev;
  946. qdf_nbuf_t cur = frag_list_head, msdu;
  947. uint32_t index, tkip_demic = 0;
  948. uint16_t hdr_space;
  949. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  950. struct dp_vdev *vdev = peer->vdev;
  951. hdr_space = dp_rx_defrag_hdrsize(cur);
  952. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  953. dp_sec_mcast : dp_sec_ucast;
  954. /* Remove FCS from all fragments */
  955. while (cur) {
  956. tmp_next = qdf_nbuf_next(cur);
  957. qdf_nbuf_set_next(cur, NULL);
  958. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  959. prev = cur;
  960. qdf_nbuf_set_next(cur, tmp_next);
  961. cur = tmp_next;
  962. }
  963. cur = frag_list_head;
  964. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  965. "%s: Security type: %d\n", __func__,
  966. peer->security[index].sec_type);
  967. /* Temporary fix to drop TKIP encrypted packets */
  968. if (peer->security[index].sec_type ==
  969. htt_sec_type_tkip) {
  970. return QDF_STATUS_E_DEFRAG_ERROR;
  971. }
  972. switch (peer->security[index].sec_type) {
  973. case htt_sec_type_tkip:
  974. tkip_demic = 1;
  975. case htt_sec_type_tkip_nomic:
  976. while (cur) {
  977. tmp_next = qdf_nbuf_next(cur);
  978. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  979. /* TKIP decap failed, discard frags */
  980. dp_rx_defrag_frames_free(frag_list_head);
  981. QDF_TRACE(QDF_MODULE_ID_TXRX,
  982. QDF_TRACE_LEVEL_ERROR,
  983. "dp_rx_defrag: TKIP decap failed");
  984. return QDF_STATUS_E_DEFRAG_ERROR;
  985. }
  986. cur = tmp_next;
  987. }
  988. break;
  989. case htt_sec_type_aes_ccmp:
  990. while (cur) {
  991. tmp_next = qdf_nbuf_next(cur);
  992. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  993. /* CCMP demic failed, discard frags */
  994. dp_rx_defrag_frames_free(frag_list_head);
  995. QDF_TRACE(QDF_MODULE_ID_TXRX,
  996. QDF_TRACE_LEVEL_ERROR,
  997. "dp_rx_defrag: CCMP demic failed");
  998. return QDF_STATUS_E_DEFRAG_ERROR;
  999. }
  1000. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1001. /* CCMP decap failed, discard frags */
  1002. dp_rx_defrag_frames_free(frag_list_head);
  1003. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1004. QDF_TRACE_LEVEL_ERROR,
  1005. "dp_rx_defrag: CCMP decap failed");
  1006. return QDF_STATUS_E_DEFRAG_ERROR;
  1007. }
  1008. cur = tmp_next;
  1009. }
  1010. /* If success, increment header to be stripped later */
  1011. hdr_space += dp_f_ccmp.ic_header;
  1012. break;
  1013. case htt_sec_type_wep40:
  1014. case htt_sec_type_wep104:
  1015. case htt_sec_type_wep128:
  1016. while (cur) {
  1017. tmp_next = qdf_nbuf_next(cur);
  1018. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1019. /* WEP decap failed, discard frags */
  1020. dp_rx_defrag_frames_free(frag_list_head);
  1021. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1022. QDF_TRACE_LEVEL_ERROR,
  1023. "dp_rx_defrag: WEP decap failed");
  1024. return QDF_STATUS_E_DEFRAG_ERROR;
  1025. }
  1026. cur = tmp_next;
  1027. }
  1028. /* If success, increment header to be stripped later */
  1029. hdr_space += dp_f_wep.ic_header;
  1030. break;
  1031. default:
  1032. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1033. QDF_TRACE_LEVEL_ERROR,
  1034. "dp_rx_defrag: Did not match any security type");
  1035. break;
  1036. }
  1037. if (tkip_demic) {
  1038. msdu = frag_list_tail; /* Only last fragment has the MIC */
  1039. qdf_mem_copy(key,
  1040. peer->security[index].michael_key,
  1041. sizeof(peer->security[index].michael_key));
  1042. if (dp_rx_defrag_tkip_demic(key, msdu, hdr_space)) {
  1043. qdf_nbuf_free(msdu);
  1044. dp_rx_defrag_err(vdev->vdev_id, peer->mac_addr.raw,
  1045. tid, 0, QDF_STATUS_E_DEFRAG_ERROR, msdu,
  1046. NULL, 0);
  1047. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1048. "dp_rx_defrag: TKIP demic failed");
  1049. return QDF_STATUS_E_DEFRAG_ERROR;
  1050. }
  1051. }
  1052. /* Convert the header to 802.3 header */
  1053. dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
  1054. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1055. return QDF_STATUS_SUCCESS;
  1056. }
  1057. /*
  1058. * dp_rx_defrag_cleanup(): Clean up activities
  1059. * @peer: Pointer to the peer
  1060. * @tid: Transmit Identifier
  1061. *
  1062. * Returns: None
  1063. */
  1064. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1065. {
  1066. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1067. peer->rx_tid[tid].array;
  1068. /* Free up nbufs */
  1069. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1070. /* Free up saved ring descriptors */
  1071. dp_rx_clear_saved_desc_info(peer, tid);
  1072. rx_reorder_array_elem->head = NULL;
  1073. rx_reorder_array_elem->tail = NULL;
  1074. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1075. peer->rx_tid[tid].curr_frag_num = 0;
  1076. peer->rx_tid[tid].curr_seq_num = 0;
  1077. peer->rx_tid[tid].head_frag_desc = NULL;
  1078. }
  1079. /*
  1080. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1081. * @ring_desc: Pointer to the dst ring descriptor
  1082. * @peer: Pointer to the peer
  1083. * @tid: Transmit Identifier
  1084. *
  1085. * Returns: None
  1086. */
  1087. static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
  1088. struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
  1089. {
  1090. void *dst_ring_desc = qdf_mem_malloc(
  1091. sizeof(struct reo_destination_ring));
  1092. if (dst_ring_desc == NULL) {
  1093. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1094. "%s: Memory alloc failed !\n", __func__);
  1095. QDF_ASSERT(0);
  1096. return QDF_STATUS_E_NOMEM;
  1097. }
  1098. qdf_mem_copy(dst_ring_desc, ring_desc,
  1099. sizeof(struct reo_destination_ring));
  1100. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1101. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1102. return QDF_STATUS_SUCCESS;
  1103. }
  1104. /*
  1105. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1106. * @soc: Pointer to the SOC data structure
  1107. * @ring_desc: Pointer to the ring descriptor
  1108. * @mpdu_desc_info: MPDU descriptor info
  1109. * @tid: Traffic Identifier
  1110. * @rx_desc: Pointer to rx descriptor
  1111. * @rx_bfs: Number of bfs consumed
  1112. *
  1113. * Returns: QDF_STATUS
  1114. */
  1115. static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1116. void *ring_desc,
  1117. union dp_rx_desc_list_elem_t **head,
  1118. union dp_rx_desc_list_elem_t **tail,
  1119. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1120. unsigned tid, struct dp_rx_desc *rx_desc,
  1121. uint32_t *rx_bfs)
  1122. {
  1123. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1124. struct dp_pdev *pdev;
  1125. struct dp_peer *peer;
  1126. uint16_t peer_id;
  1127. uint8_t fragno, more_frag, all_frag_present = 0;
  1128. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1129. QDF_STATUS status;
  1130. struct dp_rx_tid *rx_tid;
  1131. uint8_t mpdu_sequence_control_valid;
  1132. uint8_t mpdu_frame_control_valid;
  1133. qdf_nbuf_t frag = rx_desc->nbuf;
  1134. /* Check if the packet is from a valid peer */
  1135. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1136. mpdu_desc_info->peer_meta_data);
  1137. peer = dp_peer_find_by_id(soc, peer_id);
  1138. if (!peer) {
  1139. /* We should not receive anything from unknown peer
  1140. * however, that might happen while we are in the monitor mode.
  1141. * We don't need to handle that here
  1142. */
  1143. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1144. "Unknown peer, dropping the fragment");
  1145. qdf_nbuf_free(frag);
  1146. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1147. *rx_bfs = 1;
  1148. return QDF_STATUS_E_DEFRAG_ERROR;
  1149. }
  1150. pdev = peer->vdev->pdev;
  1151. rx_tid = &peer->rx_tid[tid];
  1152. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1153. mpdu_sequence_control_valid =
  1154. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1155. /* Invalid MPDU sequence control field, MPDU is of no use */
  1156. if (!mpdu_sequence_control_valid) {
  1157. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1158. "Invalid MPDU seq control field, dropping MPDU");
  1159. qdf_nbuf_free(frag);
  1160. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1161. *rx_bfs = 1;
  1162. qdf_assert(0);
  1163. goto end;
  1164. }
  1165. mpdu_frame_control_valid =
  1166. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1167. /* Invalid frame control field */
  1168. if (!mpdu_frame_control_valid) {
  1169. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1170. "Invalid frame control field, dropping MPDU");
  1171. qdf_nbuf_free(frag);
  1172. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1173. *rx_bfs = 1;
  1174. qdf_assert(0);
  1175. goto end;
  1176. }
  1177. /* Current mpdu sequence */
  1178. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1179. /* HW does not populate the fragment number as of now
  1180. * need to get from the 802.11 header
  1181. */
  1182. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1183. /*
  1184. * !more_frag: no more fragments to be delivered
  1185. * !frag_no: packet is not fragmented
  1186. * !rx_reorder_array_elem->head: no saved fragments so far
  1187. */
  1188. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1189. /* We should not get into this situation here.
  1190. * It means an unfragmented packet with fragment flag
  1191. * is delivered over the REO exception ring.
  1192. * Typically it follows normal rx path.
  1193. */
  1194. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1195. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1196. qdf_nbuf_free(frag);
  1197. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1198. *rx_bfs = 1;
  1199. qdf_assert(0);
  1200. goto end;
  1201. }
  1202. /* Check if the fragment is for the same sequence or a different one */
  1203. if (rx_reorder_array_elem->head) {
  1204. if (rxseq != rx_tid->curr_seq_num) {
  1205. /* Drop stored fragments if out of sequence
  1206. * fragment is received
  1207. */
  1208. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1209. rx_reorder_array_elem->head = NULL;
  1210. rx_reorder_array_elem->tail = NULL;
  1211. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1212. "%s mismatch, dropping earlier sequence ",
  1213. (rxseq == rx_tid->curr_seq_num)
  1214. ? "address"
  1215. : "seq number");
  1216. /*
  1217. * The sequence number for this fragment becomes the
  1218. * new sequence number to be processed
  1219. */
  1220. rx_tid->curr_seq_num = rxseq;
  1221. }
  1222. } else {
  1223. /* Start of a new sequence */
  1224. dp_rx_defrag_cleanup(peer, tid);
  1225. rx_tid->curr_seq_num = rxseq;
  1226. }
  1227. /*
  1228. * If the earlier sequence was dropped, this will be the fresh start.
  1229. * Else, continue with next fragment in a given sequence
  1230. */
  1231. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1232. &rx_reorder_array_elem->tail, frag,
  1233. &all_frag_present);
  1234. /*
  1235. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1236. * packet sequence has more than 6 MSDUs for some reason, we will
  1237. * have to use the next MSDU link descriptor and chain them together
  1238. * before reinjection
  1239. */
  1240. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1241. (rx_reorder_array_elem->head == frag)) {
  1242. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1243. rx_desc, peer, tid);
  1244. if (status != QDF_STATUS_SUCCESS) {
  1245. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1246. "%s: Unable to store ring desc !\n", __func__);
  1247. goto end;
  1248. }
  1249. } else {
  1250. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1251. *rx_bfs = 1;
  1252. /* Return the non-head link desc */
  1253. if (dp_rx_link_desc_return(soc, ring_desc,
  1254. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1255. QDF_STATUS_SUCCESS)
  1256. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1257. "%s: Failed to return link desc\n",
  1258. __func__);
  1259. }
  1260. if (pdev->soc->rx.flags.defrag_timeout_check)
  1261. dp_rx_defrag_waitlist_remove(peer, tid);
  1262. /* Yet to receive more fragments for this sequence number */
  1263. if (!all_frag_present) {
  1264. uint32_t now_ms =
  1265. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1266. peer->rx_tid[tid].defrag_timeout_ms =
  1267. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1268. dp_rx_defrag_waitlist_add(peer, tid);
  1269. return QDF_STATUS_SUCCESS;
  1270. }
  1271. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1272. "All fragments received for sequence: %d", rxseq);
  1273. /* Process the fragments */
  1274. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1275. rx_reorder_array_elem->tail);
  1276. if (QDF_IS_STATUS_ERROR(status)) {
  1277. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1278. "Fragment processing failed");
  1279. dp_rx_add_to_free_desc_list(head, tail,
  1280. peer->rx_tid[tid].head_frag_desc);
  1281. *rx_bfs = 1;
  1282. if (dp_rx_link_desc_return(soc,
  1283. peer->rx_tid[tid].dst_ring_desc,
  1284. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1285. QDF_STATUS_SUCCESS)
  1286. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1287. "%s: Failed to return link desc\n",
  1288. __func__);
  1289. dp_rx_defrag_cleanup(peer, tid);
  1290. goto end;
  1291. }
  1292. /* Re-inject the fragments back to REO for further processing */
  1293. status = dp_rx_defrag_reo_reinject(peer, tid,
  1294. rx_reorder_array_elem->head);
  1295. if (QDF_IS_STATUS_SUCCESS(status)) {
  1296. rx_reorder_array_elem->head = NULL;
  1297. rx_reorder_array_elem->tail = NULL;
  1298. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1299. "Fragmented sequence successfully reinjected");
  1300. }
  1301. else
  1302. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1303. "Fragmented sequence reinjection failed");
  1304. dp_rx_defrag_cleanup(peer, tid);
  1305. return QDF_STATUS_SUCCESS;
  1306. end:
  1307. return QDF_STATUS_E_DEFRAG_ERROR;
  1308. }
  1309. /**
  1310. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1311. *
  1312. * @soc: core txrx main context
  1313. * @ring_desc: opaque pointer to the REO error ring descriptor
  1314. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1315. * @head: head of the local descriptor free-list
  1316. * @tail: tail of the local descriptor free-list
  1317. * @quota: No. of units (packets) that can be serviced in one shot.
  1318. *
  1319. * This function implements RX 802.11 fragmentation handling
  1320. * The handling is mostly same as legacy fragmentation handling.
  1321. * If required, this function can re-inject the frames back to
  1322. * REO ring (with proper setting to by-pass fragmentation check
  1323. * but use duplicate detection / re-ordering and routing these frames
  1324. * to a different core.
  1325. *
  1326. * Return: uint32_t: No. of elements processed
  1327. */
  1328. uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
  1329. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1330. union dp_rx_desc_list_elem_t **head,
  1331. union dp_rx_desc_list_elem_t **tail,
  1332. uint32_t quota)
  1333. {
  1334. uint32_t rx_bufs_used = 0;
  1335. void *link_desc_va;
  1336. struct hal_buf_info buf_info;
  1337. struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
  1338. qdf_nbuf_t msdu = NULL;
  1339. uint32_t tid, msdu_len;
  1340. int idx, rx_bfs = 0;
  1341. QDF_STATUS status;
  1342. qdf_assert(soc);
  1343. qdf_assert(mpdu_desc_info);
  1344. /* Fragment from a valid peer */
  1345. hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
  1346. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1347. qdf_assert(link_desc_va);
  1348. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1349. "Number of MSDUs to process, num_msdus: %d",
  1350. mpdu_desc_info->msdu_count);
  1351. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1352. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1353. "Not sufficient MSDUs to process");
  1354. return rx_bufs_used;
  1355. }
  1356. /* Get msdu_list for the given MPDU */
  1357. hal_rx_msdu_list_get(link_desc_va, &msdu_list,
  1358. &mpdu_desc_info->msdu_count);
  1359. /* Process all MSDUs in the current MPDU */
  1360. for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
  1361. struct dp_rx_desc *rx_desc =
  1362. dp_rx_cookie_2_va_rxdma_buf(soc,
  1363. msdu_list.sw_cookie[idx]);
  1364. qdf_assert(rx_desc);
  1365. msdu = rx_desc->nbuf;
  1366. qdf_nbuf_unmap_single(soc->osdev, msdu,
  1367. QDF_DMA_BIDIRECTIONAL);
  1368. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1369. msdu_len = hal_rx_msdu_start_msdu_len_get(
  1370. rx_desc->rx_buf_start);
  1371. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1372. tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
  1373. /* Process fragment-by-fragment */
  1374. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1375. head, tail, mpdu_desc_info,
  1376. tid, rx_desc, &rx_bfs);
  1377. if (rx_bfs)
  1378. rx_bufs_used++;
  1379. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1380. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1381. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1382. mpdu_desc_info->mpdu_seq,
  1383. mpdu_desc_info->msdu_count,
  1384. mpdu_desc_info->mpdu_flags);
  1385. /* No point in processing rest of the fragments */
  1386. break;
  1387. }
  1388. }
  1389. return rx_bufs_used;
  1390. }