wlan_utility.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /**
  18. * DOC: This file contains definition for mandatory legacy API
  19. */
  20. #include "qdf_str.h"
  21. #include "wlan_utility.h"
  22. #include <wlan_cmn.h>
  23. #include "wlan_osif_priv.h"
  24. #include <net/cfg80211.h>
  25. #include <qdf_module.h>
  26. #include <wlan_vdev_mlme_api.h>
  27. #include "cfg_ucfg_api.h"
  28. #include <wlan_serialization_api.h>
  29. /* CRC polynomial 0xedb88320 */
  30. static unsigned long const wlan_shortssid_table[] = {
  31. 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
  32. 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
  33. 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
  34. 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
  35. 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
  36. 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
  37. 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
  38. 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
  39. 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
  40. 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
  41. 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
  42. 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
  43. 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
  44. 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
  45. 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
  46. 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
  47. 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
  48. 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
  49. 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
  50. 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
  51. 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
  52. 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
  53. 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
  54. 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
  55. 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
  56. 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
  57. 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
  58. 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
  59. 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
  60. 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
  61. 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
  62. 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
  63. 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
  64. 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
  65. 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
  66. 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
  67. 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
  68. 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
  69. 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
  70. 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
  71. 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
  72. 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
  73. 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
  74. };
  75. uint32_t wlan_construct_shortssid(uint8_t *ssid, uint8_t ssid_len)
  76. {
  77. uint32_t shortssid = 0xffffffff;
  78. uint8_t i;
  79. if (!ssid || ssid_len > WLAN_SSID_MAX_LEN)
  80. return shortssid;
  81. for (i = 0; i < ssid_len; i++)
  82. shortssid = wlan_shortssid_table[(shortssid ^ ssid[i]) & 0xff] ^
  83. (shortssid >> 8);
  84. return (shortssid ^ 0xffffffff);
  85. }
  86. uint32_t wlan_chan_to_freq(uint8_t chan)
  87. {
  88. if (chan == 0 )
  89. return 0;
  90. if (chan < WLAN_24_GHZ_CHANNEL_14)
  91. return WLAN_24_GHZ_BASE_FREQ + chan * WLAN_CHAN_SPACING_5MHZ;
  92. else if (chan == WLAN_24_GHZ_CHANNEL_14)
  93. return WLAN_CHAN_14_FREQ;
  94. else if (chan < WLAN_24_GHZ_CHANNEL_27)
  95. /* ch 15 - ch 26 */
  96. return WLAN_CHAN_15_FREQ +
  97. (chan - WLAN_24_GHZ_CHANNEL_15) * WLAN_CHAN_SPACING_20MHZ;
  98. else if (chan == WLAN_5_GHZ_CHANNEL_170)
  99. return WLAN_CHAN_170_FREQ;
  100. else
  101. return WLAN_5_GHZ_BASE_FREQ + chan * WLAN_CHAN_SPACING_5MHZ;
  102. }
  103. uint8_t wlan_freq_to_chan(uint32_t freq)
  104. {
  105. uint8_t chan;
  106. if (freq == 0)
  107. return 0;
  108. if (freq > WLAN_24_GHZ_BASE_FREQ && freq < WLAN_CHAN_14_FREQ)
  109. chan = ((freq - WLAN_24_GHZ_BASE_FREQ) /
  110. WLAN_CHAN_SPACING_5MHZ);
  111. else if (freq == WLAN_CHAN_14_FREQ)
  112. chan = WLAN_24_GHZ_CHANNEL_14;
  113. else if ((freq > WLAN_24_GHZ_BASE_FREQ) &&
  114. (freq < WLAN_5_GHZ_BASE_FREQ))
  115. chan = (((freq - WLAN_CHAN_15_FREQ) /
  116. WLAN_CHAN_SPACING_20MHZ) +
  117. WLAN_24_GHZ_CHANNEL_15);
  118. else
  119. chan = (freq - WLAN_5_GHZ_BASE_FREQ) /
  120. WLAN_CHAN_SPACING_5MHZ;
  121. return chan;
  122. }
  123. void
  124. wlan_get_320_center_freq(qdf_freq_t freq,
  125. qdf_freq_t *center_freq1,
  126. qdf_freq_t *center_freq2)
  127. {
  128. *center_freq1 = 0;
  129. *center_freq2 = 0;
  130. if ((freq >= 5500) && (freq <= 5800)) {
  131. *center_freq1 = 5650;
  132. } else if ((freq >= 5955) && (freq <= 6095)) {
  133. *center_freq1 = 6105;
  134. } else if ((freq >= 6115) && (freq <= 6255)) {
  135. *center_freq1 = 6105;
  136. *center_freq2 = 6265;
  137. } else if ((freq >= 6275) && (freq <= 6415)) {
  138. *center_freq1 = 6265;
  139. *center_freq2 = 6425;
  140. } else if ((freq >= 6435) && (freq <= 6575)) {
  141. *center_freq1 = 6425;
  142. *center_freq2 = 6585;
  143. } else if ((freq >= 6595) && (freq <= 6735)) {
  144. *center_freq1 = 6585;
  145. *center_freq2 = 6745;
  146. } else if ((freq >= 6755) && (freq <= 6895)) {
  147. *center_freq1 = 6745;
  148. *center_freq2 = 6905;
  149. } else if ((freq >= 6915) && (freq <= 7055)) {
  150. *center_freq1 = 6905;
  151. }
  152. }
  153. bool wlan_is_ie_valid(const uint8_t *ie, size_t ie_len)
  154. {
  155. uint8_t elen;
  156. while (ie_len) {
  157. if (ie_len < 2)
  158. return false;
  159. elen = ie[1];
  160. ie_len -= 2;
  161. ie += 2;
  162. if (elen > ie_len)
  163. return false;
  164. ie_len -= elen;
  165. ie += elen;
  166. }
  167. return true;
  168. }
  169. static const uint8_t *wlan_get_ie_ptr_from_eid_n_oui(uint8_t eid,
  170. const uint8_t *oui,
  171. uint8_t oui_size,
  172. const uint8_t *ie,
  173. uint16_t ie_len)
  174. {
  175. int32_t left = ie_len;
  176. const uint8_t *ptr = ie;
  177. uint8_t elem_id, elem_len;
  178. while (left >= 2) {
  179. elem_id = ptr[0];
  180. elem_len = ptr[1];
  181. left -= 2;
  182. if (elem_len > left)
  183. return NULL;
  184. if (eid == elem_id) {
  185. /* if oui is not provide eid match is enough */
  186. if (!oui)
  187. return ptr;
  188. /*
  189. * if oui is provided and oui_size is more than left
  190. * bytes, then we cannot have match
  191. */
  192. if (oui_size > left)
  193. return NULL;
  194. if (qdf_mem_cmp(&ptr[2], oui, oui_size) == 0)
  195. return ptr;
  196. }
  197. left -= elem_len;
  198. ptr += (elem_len + 2);
  199. }
  200. return NULL;
  201. }
  202. const uint8_t *wlan_get_ie_ptr_from_eid(uint8_t eid,
  203. const uint8_t *ie,
  204. int ie_len)
  205. {
  206. return wlan_get_ie_ptr_from_eid_n_oui(eid, NULL, 0, ie, ie_len);
  207. }
  208. const uint8_t *wlan_get_vendor_ie_ptr_from_oui(const uint8_t *oui,
  209. uint8_t oui_size,
  210. const uint8_t *ie,
  211. uint16_t ie_len)
  212. {
  213. return wlan_get_ie_ptr_from_eid_n_oui(WLAN_MAC_EID_VENDOR,
  214. oui, oui_size, ie, ie_len);
  215. }
  216. const uint8_t *wlan_get_ext_ie_ptr_from_ext_id(const uint8_t *oui,
  217. uint8_t oui_size,
  218. const uint8_t *ie,
  219. uint16_t ie_len)
  220. {
  221. return wlan_get_ie_ptr_from_eid_n_oui(WLAN_MAC_EID_EXT,
  222. oui, oui_size, ie, ie_len);
  223. }
  224. static inline
  225. QDF_STATUS wlan_get_elemunit_info(bool is_subelem,
  226. uint8_t subelemfragid,
  227. uint8_t *elemunit_fragid,
  228. qdf_size_t *elemunit_hdrlen,
  229. qdf_size_t *elemunit_maxpayloadlen,
  230. int *elemunit_id_pos,
  231. int *elemunit_len_pos,
  232. int *elemunit_idext_pos)
  233. {
  234. /* Helper function to populate information about the given element unit.
  235. * Here, an 'element unit' refers to either an 802.11 element or a
  236. * 802.11 subelement.
  237. *
  238. * Populating this information in a central helper here allows for
  239. * better control over handling of future variances, and also for common
  240. * code for handling different types of element units.
  241. */
  242. if (is_subelem) {
  243. /* Populate the subelement header length */
  244. if (elemunit_hdrlen)
  245. *elemunit_hdrlen = sizeof(struct subelem_header);
  246. /* Populate the subelement's max payload length */
  247. if (elemunit_maxpayloadlen)
  248. *elemunit_maxpayloadlen = WLAN_MAX_SUBELEM_LEN;
  249. /* Populate the index position for the subelement ID */
  250. if (elemunit_id_pos)
  251. *elemunit_id_pos = qdf_offsetof(struct subelem_header,
  252. subelem_id);
  253. /* Populate the index position for the subelement length */
  254. if (elemunit_len_pos)
  255. *elemunit_len_pos = qdf_offsetof(struct subelem_header,
  256. subelem_len);
  257. /* Mark that there is (currently) no valid value for subelement
  258. * ID extension.
  259. */
  260. if (elemunit_idext_pos)
  261. *elemunit_idext_pos = -1;
  262. /* Populate the subelement fragment ID (which can vary by
  263. * protocol area). This could also have been directly populated
  264. * by the caller, but we populate it here for uniformity and
  265. * future control of variability.
  266. */
  267. if (elemunit_fragid)
  268. *elemunit_fragid = subelemfragid;
  269. } else {
  270. /* Populate the element header length */
  271. if (elemunit_hdrlen)
  272. *elemunit_hdrlen = sizeof(struct ie_header);
  273. /* Populate the element's max payload length */
  274. if (elemunit_maxpayloadlen)
  275. *elemunit_maxpayloadlen = WLAN_MAX_IE_LEN;
  276. /* Populate the index position for the element ID */
  277. if (elemunit_id_pos)
  278. *elemunit_id_pos = qdf_offsetof(struct ie_header,
  279. ie_id);
  280. /* Populate the index position for the element length */
  281. if (elemunit_len_pos)
  282. *elemunit_len_pos = qdf_offsetof(struct ie_header,
  283. ie_len);
  284. /* Populate the index position for the element ID extension
  285. */
  286. if (elemunit_idext_pos)
  287. *elemunit_idext_pos =
  288. qdf_offsetof(struct extn_ie_header, ie_extn_id);
  289. /* Populate the element fragment ID. */
  290. if (elemunit_fragid)
  291. *elemunit_fragid = WLAN_ELEMID_FRAGMENT;
  292. }
  293. return QDF_STATUS_SUCCESS;
  294. }
  295. static QDF_STATUS
  296. wlan_get_elemsubelem_fragseq_creationparams(bool is_subelem,
  297. uint8_t id,
  298. qdf_size_t payloadlen,
  299. bool *is_frag_required,
  300. qdf_size_t *expected_fragseqlen,
  301. qdf_size_t *prepayload_leadbytes,
  302. uint32_t *num_maxsizefrags,
  303. qdf_size_t *smallerfrag_size,
  304. qdf_size_t *extrahdrbytes)
  305. {
  306. /* elemunit, i.e. 'element unit' here refers to either an 802.11 element
  307. * or a 802.11 subelement.
  308. */
  309. qdf_size_t elemunit_hdrlen;
  310. qdf_size_t elemunit_maxpayloadlen;
  311. qdf_size_t tmp_expected_fragseqlen;
  312. qdf_size_t tmp_prepayload_leadbytes;
  313. uint32_t tmp_num_maxsizefrags;
  314. qdf_size_t tmp_smallerfrag_size;
  315. qdf_size_t tmp_extrahdrbytes;
  316. QDF_STATUS ret;
  317. /* Helper function to determine element or subelement fragment sequence
  318. * creation parameters. Currently, this helper determines the following
  319. * parameters (it is mandatory for the caller to provide the pointer
  320. * for the first parameter, those for the remaining are optional):
  321. *
  322. * - Whether fragmentation is required
  323. * If fragmentation is required then the following are determined, else
  324. * they should be ignored by the caller:
  325. * - Expected fragment sequence length (inclusive of payload and all
  326. * headers)
  327. * - The lead bytes that occur before the payload (i.e. the lead
  328. * element/subelement's header, and if applicable, the element's
  329. * element ID extension)
  330. * - The number of max sized fragments (inclusive of the lead element)
  331. * - The size of the smaller sized fragment at the end (non-zero if such
  332. * a fragment would be present, zero if it would be absent)
  333. * - The number of extra header bytes that would be introduced (not
  334. * inclusive of the header of the lead fragment).
  335. */
  336. if (!is_frag_required) {
  337. qdf_nofl_err("Pointer to indication of whether fragmentation is required or not is NULL");
  338. return QDF_STATUS_E_NULL_VALUE;
  339. }
  340. ret = wlan_get_elemunit_info(is_subelem,
  341. 0,
  342. NULL,
  343. &elemunit_hdrlen,
  344. &elemunit_maxpayloadlen,
  345. NULL,
  346. NULL,
  347. NULL);
  348. if (QDF_IS_STATUS_ERROR(ret)) {
  349. qdf_rl_nofl_err("Get elem unit info: Error %d",
  350. ret);
  351. return QDF_STATUS_E_FAILURE;
  352. }
  353. if (!is_subelem && (id == WLAN_ELEMID_EXTN_ELEM)) {
  354. if (payloadlen <= (elemunit_maxpayloadlen - 1)) {
  355. *is_frag_required = false;
  356. return QDF_STATUS_SUCCESS;
  357. }
  358. } else {
  359. if (payloadlen <= elemunit_maxpayloadlen) {
  360. *is_frag_required = false;
  361. return QDF_STATUS_SUCCESS;
  362. }
  363. }
  364. *is_frag_required = true;
  365. if (!expected_fragseqlen &&
  366. !prepayload_leadbytes && !num_maxsizefrags &&
  367. !smallerfrag_size && !extrahdrbytes)
  368. return QDF_STATUS_SUCCESS;
  369. tmp_expected_fragseqlen = 0;
  370. tmp_prepayload_leadbytes = 0;
  371. tmp_num_maxsizefrags = 0;
  372. tmp_smallerfrag_size = 0;
  373. tmp_extrahdrbytes = 0;
  374. /* As per the standard, the information to be fragmented is divided into
  375. * M + N portions, where the following define each variable:
  376. *
  377. * I)For an element without an Element ID Extension field, or for a
  378. * subelement:
  379. * L is the size of the information in octets (this does not include the
  380. * element/subelement header)
  381. * M is L/255 floored
  382. * N is equal to 1 if L mod 255 > 0 and equal to 0 otherwise.
  383. * The size of each of the M fragments is 255 octets
  384. * If N is 1, then the size of this single fragment is L mod 255 octets
  385. *
  386. * II) For an element with an Element ID Extension field:
  387. * L is the size of the information in octets (this does not include the
  388. * element header and the element ID extension field)
  389. * M is (L + 1)/255 floored
  390. * N is equal to 1 if (L - 254) mod 255 > 0 and equal to 0 otherwise.
  391. * The size of each of the M fragments is 255 octets
  392. * If N is 1, then the size of this single fragment is (L - 254) mod 255
  393. * octets.
  394. *
  395. * For both I and II above, the mapping of code variables is as follows:
  396. * payloadlen = L
  397. * tmp_num_maxsizefrags = M
  398. * tmp_smallerfrag_size = Size of N if N is 1, else 0
  399. * Additionally, elemunit_maxpayloadlen is used to denote the value
  400. * 255 for future extensibility if and when required.
  401. */
  402. if (!is_subelem && (id == WLAN_ELEMID_EXTN_ELEM)) {
  403. tmp_num_maxsizefrags = (payloadlen + 1) /
  404. elemunit_maxpayloadlen;
  405. tmp_smallerfrag_size =
  406. (payloadlen - (elemunit_maxpayloadlen - 1)) %
  407. elemunit_maxpayloadlen;
  408. } else {
  409. tmp_num_maxsizefrags = payloadlen / elemunit_maxpayloadlen;
  410. tmp_smallerfrag_size = payloadlen %
  411. elemunit_maxpayloadlen;
  412. }
  413. /* Determine the number of extra bytes introduced due to the headers of
  414. * non-leading fragments.
  415. */
  416. tmp_extrahdrbytes = (tmp_num_maxsizefrags - 1) * elemunit_hdrlen;
  417. if (tmp_smallerfrag_size)
  418. tmp_extrahdrbytes += elemunit_hdrlen;
  419. if (!is_subelem && (id == WLAN_ELEMID_EXTN_ELEM))
  420. tmp_prepayload_leadbytes = elemunit_hdrlen + 1;
  421. else
  422. tmp_prepayload_leadbytes = elemunit_hdrlen;
  423. tmp_expected_fragseqlen = tmp_prepayload_leadbytes +
  424. payloadlen + tmp_extrahdrbytes;
  425. if (expected_fragseqlen)
  426. *expected_fragseqlen = tmp_expected_fragseqlen;
  427. if (prepayload_leadbytes)
  428. *prepayload_leadbytes = tmp_prepayload_leadbytes;
  429. if (num_maxsizefrags)
  430. *num_maxsizefrags = tmp_num_maxsizefrags;
  431. if (smallerfrag_size)
  432. *smallerfrag_size = tmp_smallerfrag_size;
  433. if (extrahdrbytes)
  434. *extrahdrbytes = tmp_extrahdrbytes;
  435. return QDF_STATUS_SUCCESS;
  436. }
  437. static QDF_STATUS
  438. wlan_create_elemsubelem_fragseq(bool inline_frag,
  439. bool is_subelem,
  440. uint8_t id,
  441. uint8_t idext,
  442. uint8_t subelemfragid,
  443. uint8_t *payloadbuff,
  444. qdf_size_t payloadbuff_maxsize,
  445. qdf_size_t payloadlen,
  446. uint8_t *fragbuff,
  447. qdf_size_t fragbuff_maxsize,
  448. qdf_size_t *fragseqlen)
  449. {
  450. /* elemunit, i.e. 'element unit' here refers to either an 802.11 element
  451. * or a 802.11 subelement.
  452. */
  453. uint8_t elemunit_fragid;
  454. qdf_size_t elemunit_hdrlen;
  455. qdf_size_t elemunit_maxpayloadlen;
  456. int elemunit_id_pos;
  457. int elemunit_len_pos;
  458. int elemunit_idext_pos;
  459. uint8_t *curr_elemunit_ptr;
  460. /* Whether fragmentation is required */
  461. bool is_frag_required;
  462. /*Fragment sequence length (inclusive of payload and all headers) */
  463. qdf_size_t expected_fragseqlen;
  464. /* Number of fragments with the maximum size */
  465. uint32_t num_maxsizefrags;
  466. /* Size of the last fragment which is smaller than the maximum (if
  467. * present). If such a fragment is not present, this size will be zero.
  468. */
  469. qdf_size_t smallerfrag_size;
  470. /* The number of extra header bytes that would be introduced (not
  471. * inclusive of the header of the lead fragment).
  472. */
  473. qdf_size_t extrahdrbytes;
  474. /* The number of extra header bytes remaining to be introduced */
  475. qdf_size_t extrahdrbytes_remaining;
  476. /* The lead bytes that occur before the payload */
  477. qdf_size_t prepayload_leadbytes;
  478. /* used for inline copy, the extra bytes needed in the payload buffer
  479. * due to difference in destination and source.
  480. * Note that the caller should ensure there is enough bytes beyond
  481. * valid data until payloadbuff_maxsize*/
  482. qdf_size_t payloadbuff_shiftsize;
  483. /* Miscellaneous variables */
  484. uint8_t *src;
  485. uint8_t *dst;
  486. uint16_t i;
  487. qdf_size_t bytes_to_transfer;
  488. QDF_STATUS ret;
  489. /* Helper function to create an element or subelement fragment sequence.
  490. * Refer to the documentation of the public APIs which call this helper,
  491. * for more information. These APIs are mainly wrappers over this
  492. * helper.
  493. */
  494. ret = wlan_get_elemunit_info(is_subelem,
  495. subelemfragid,
  496. &elemunit_fragid,
  497. &elemunit_hdrlen,
  498. &elemunit_maxpayloadlen,
  499. &elemunit_id_pos,
  500. &elemunit_len_pos,
  501. &elemunit_idext_pos);
  502. if (QDF_IS_STATUS_ERROR(ret)) {
  503. qdf_rl_nofl_err("Get elem unit info: Error %d",
  504. ret);
  505. return QDF_STATUS_E_FAILURE;
  506. }
  507. ret = wlan_get_elemsubelem_fragseq_creationparams(is_subelem,
  508. id,
  509. payloadlen,
  510. &is_frag_required,
  511. &expected_fragseqlen,
  512. &prepayload_leadbytes,
  513. &num_maxsizefrags,
  514. &smallerfrag_size,
  515. &extrahdrbytes);
  516. if (QDF_IS_STATUS_ERROR(ret))
  517. return ret;
  518. if (!is_frag_required) {
  519. /* We treat this as an error since the caller is expected to
  520. * have first determined requirements related to fragmentation,
  521. * including whether fragmentation is required or not.
  522. */
  523. if (!is_subelem && (id == WLAN_ELEMID_EXTN_ELEM))
  524. qdf_nofl_err("Fragmentation inapplicable for elem with elem ID ext and post elem ID ext payload len %zu",
  525. payloadlen);
  526. else
  527. qdf_nofl_err("Fragmentation inapplicable for subelem/elem without elem ID ext and with payload len %zu",
  528. payloadlen);
  529. return QDF_STATUS_E_INVAL;
  530. }
  531. if (!payloadbuff) {
  532. qdf_nofl_err("Payload buff is NULL");
  533. return QDF_STATUS_E_NULL_VALUE;
  534. }
  535. if (payloadbuff_maxsize == 0) {
  536. qdf_nofl_err("Payload buff max size is 0");
  537. return QDF_STATUS_E_INVAL;
  538. }
  539. if (payloadbuff_maxsize < payloadlen) {
  540. qdf_nofl_err("Payload buff max size %zu < payload len %zu",
  541. payloadbuff_maxsize,
  542. payloadlen);
  543. return QDF_STATUS_E_INVAL;
  544. }
  545. if (inline_frag) {
  546. if (payloadbuff_maxsize < expected_fragseqlen) {
  547. qdf_nofl_err("Inline frag buff max size %zu < frag sequence expected len %zu",
  548. payloadbuff_maxsize,
  549. expected_fragseqlen);
  550. return QDF_STATUS_E_INVAL;
  551. }
  552. } else {
  553. if (!fragbuff) {
  554. qdf_nofl_err("Frag sequence buff is NULL");
  555. return QDF_STATUS_E_NULL_VALUE;
  556. }
  557. if (fragbuff_maxsize == 0) {
  558. qdf_nofl_err("Frag sequence buff max size is 0");
  559. return QDF_STATUS_E_INVAL;
  560. }
  561. if (fragbuff_maxsize < expected_fragseqlen) {
  562. qdf_nofl_err("Frag sequence buff max size %zu < frag sequence expected len %zu",
  563. fragbuff_maxsize,
  564. expected_fragseqlen);
  565. return QDF_STATUS_E_INVAL;
  566. }
  567. }
  568. if (!fragseqlen) {
  569. qdf_nofl_err("Pointer to location of frag sequence len is NULL");
  570. return QDF_STATUS_E_NULL_VALUE;
  571. }
  572. /* Preferably, ensure that error checks (if any) for future changes are
  573. * executed before this point. We wouldn't want to touch the destination
  574. * buffer unless we are sure we can successfully execute (especially for
  575. * the inline mode).
  576. */
  577. /* We rely on wlan_get_elemsubelem_fragseq_creationparams() to give us
  578. * sane values for extrahdrbytes and other parameters.
  579. */
  580. extrahdrbytes_remaining = extrahdrbytes;
  581. /* We need to accommodate elemunit_hdrlen bytes for each non-leading
  582. * fragment by moving the non-leading fragment to a higher location.
  583. * Shift bytes and form fragment elements/subelements starting with the
  584. * last fragment and going backwards from there.
  585. */
  586. /* First move/copy the smaller sized fragment if present */
  587. if (smallerfrag_size) {
  588. /* The source for the copy/move is just after the end of all the
  589. * max sized fragments (including the lead fragment). The
  590. * element unit header is present for the lead fragment alone.
  591. */
  592. src = payloadbuff + elemunit_hdrlen +
  593. (num_maxsizefrags * elemunit_maxpayloadlen);
  594. /* The destination for the copy/move is computed to reflect a
  595. * shift by extrahdrbytes_remaining to accommodate the headers
  596. * for the smaller fragment and all the non-lead max sized
  597. * fragments.
  598. */
  599. if (inline_frag)
  600. dst = src + extrahdrbytes_remaining;
  601. else
  602. dst = fragbuff + elemunit_hdrlen +
  603. (num_maxsizefrags * elemunit_maxpayloadlen) +
  604. extrahdrbytes_remaining;
  605. bytes_to_transfer = smallerfrag_size;
  606. /* Account for increased size due to shift in data */
  607. if (inline_frag && (dst > src))
  608. payloadbuff_shiftsize = (dst - src);
  609. else
  610. payloadbuff_shiftsize = 0;
  611. /* In the case of inline fragmentation, if the payload buffer
  612. * has additional contents beyond the payload, include those
  613. * contents in the move/copy.
  614. */
  615. if (inline_frag &&
  616. (payloadbuff_maxsize > (prepayload_leadbytes + payloadlen)))
  617. bytes_to_transfer += (payloadbuff_maxsize -
  618. prepayload_leadbytes -
  619. payloadlen -
  620. payloadbuff_shiftsize);
  621. if (inline_frag)
  622. qdf_mem_move(dst, src, bytes_to_transfer);
  623. else
  624. qdf_mem_copy(dst, src, bytes_to_transfer);
  625. /* Copy/move of payload done. Set fragment ID and length in
  626. * element unit header.
  627. */
  628. curr_elemunit_ptr = dst - elemunit_hdrlen;
  629. curr_elemunit_ptr[elemunit_id_pos] = elemunit_fragid;
  630. curr_elemunit_ptr[elemunit_len_pos] = smallerfrag_size;
  631. extrahdrbytes_remaining -= elemunit_hdrlen;
  632. }
  633. /* Next, move/copy the non-lead max-sized fragments, if present.
  634. * Fragments at higher memory locations are processed first.
  635. */
  636. for (i = num_maxsizefrags; i > 1; i--) {
  637. /* Process the 'i'th max-sized fragment. The lead max-sized
  638. * fragment has i=1 and is not processed in this 'for' loop.
  639. * Also note that 'previous .* fragments' in comments for this
  640. * 'for' loop refers to fragments in lower memory locations as
  641. * compared to the current, i.e. 'i'th max-sized fragment.
  642. */
  643. /* The source for the copy/move is just after the end of all the
  644. * previous max-sized fragments (including the lead fragment).
  645. * The element unit header is present for the lead fragment
  646. * alone.
  647. */
  648. src = payloadbuff + elemunit_hdrlen +
  649. ((i - 1) * elemunit_maxpayloadlen);
  650. /* The destination for the copy/move is computed to reflect a
  651. * shift by extrahdrbytes_remaining to accommodate the headers
  652. * for the current non-lead max-sized fragment and all the
  653. * previous max-sized non-lead fragments.
  654. */
  655. if (inline_frag)
  656. dst = src + extrahdrbytes_remaining;
  657. else
  658. dst = fragbuff + elemunit_hdrlen +
  659. ((i - 1) * elemunit_maxpayloadlen) +
  660. extrahdrbytes_remaining;
  661. bytes_to_transfer = elemunit_maxpayloadlen;
  662. /* Account for increased size due to shift in data */
  663. if (inline_frag && (dst > src))
  664. payloadbuff_shiftsize = (dst - src);
  665. else
  666. payloadbuff_shiftsize = 0;
  667. /* In the case of inline fragmentation, if this is the last
  668. * non-lead max-sized fragment (i.e. at the highest memory
  669. * location), if the payload buffer has additional contents
  670. * beyond the payload, and these additional contents have not
  671. * already been taken care of by the presence (and processing)
  672. * of a smaller fragment, include the additional contents in the
  673. * move/copy.
  674. */
  675. if (inline_frag &&
  676. (i == num_maxsizefrags) &&
  677. (payloadbuff_maxsize > (prepayload_leadbytes +
  678. payloadlen)) &&
  679. !smallerfrag_size)
  680. bytes_to_transfer += (payloadbuff_maxsize -
  681. prepayload_leadbytes -
  682. payloadlen -
  683. payloadbuff_shiftsize);
  684. if (inline_frag)
  685. qdf_mem_move(dst, src, bytes_to_transfer);
  686. else
  687. qdf_mem_copy(dst, src, bytes_to_transfer);
  688. /* Copy/move of payload done. Set fragment ID and length in
  689. * element unit header.
  690. */
  691. curr_elemunit_ptr = dst - elemunit_hdrlen;
  692. curr_elemunit_ptr[elemunit_id_pos] = elemunit_fragid;
  693. curr_elemunit_ptr[elemunit_len_pos] = elemunit_maxpayloadlen;
  694. extrahdrbytes_remaining -= elemunit_hdrlen;
  695. }
  696. /* Update the element unit pointer for the lead max-sized fragment.
  697. *
  698. * Copy the payload of the lead max-sized fragment if inline
  699. * fragmentation is not being used.
  700. */
  701. if (inline_frag) {
  702. curr_elemunit_ptr = payloadbuff;
  703. } else {
  704. qdf_mem_copy(fragbuff + elemunit_hdrlen,
  705. payloadbuff + elemunit_hdrlen,
  706. elemunit_maxpayloadlen);
  707. curr_elemunit_ptr = fragbuff;
  708. }
  709. /* Set IDs and length in the header for the leading fragment */
  710. curr_elemunit_ptr[elemunit_id_pos] = id;
  711. curr_elemunit_ptr[elemunit_len_pos] = elemunit_maxpayloadlen;
  712. if (!is_subelem && (id == WLAN_ELEMID_EXTN_ELEM))
  713. curr_elemunit_ptr[elemunit_idext_pos] = idext;
  714. *fragseqlen = expected_fragseqlen;
  715. return QDF_STATUS_SUCCESS;
  716. }
  717. static inline QDF_STATUS
  718. wlan_get_elemsubelem_successorfrag(bool is_subelem,
  719. uint8_t subelemfragid,
  720. uint8_t *curr_elemunit_ptr,
  721. uint8_t *buff,
  722. qdf_size_t buff_maxsize,
  723. uint8_t **successorfrag,
  724. qdf_size_t *successorfrag_totallen,
  725. qdf_size_t *successorfrag_payloadlen)
  726. {
  727. /* elemunit, i.e. 'element unit' here refers to either an 802.11 element
  728. * or a 802.11 subelement.
  729. */
  730. uint8_t elemunit_fragid;
  731. qdf_size_t elemunit_hdrlen;
  732. qdf_size_t elemunit_maxpayloadlen;
  733. int elemunit_id_pos;
  734. int elemunit_len_pos;
  735. qdf_size_t curr_elemunit_totallen;
  736. uint8_t *next_elemunit_ptr;
  737. qdf_size_t next_elemunit_totallen;
  738. QDF_STATUS ret;
  739. /* This helper checks if the very next element unit after the current
  740. * one is a valid fragment element unit and that there is sufficient
  741. * space in the buffer for this next element, and if so, it returns a
  742. * pointer to this fragment element unit as well as the total length of
  743. * this fragment element unit and the length of the payload of this
  744. * fragment element unit.
  745. */
  746. ret = wlan_get_elemunit_info(is_subelem,
  747. subelemfragid,
  748. &elemunit_fragid,
  749. &elemunit_hdrlen,
  750. &elemunit_maxpayloadlen,
  751. &elemunit_id_pos,
  752. &elemunit_len_pos,
  753. NULL);
  754. if (QDF_IS_STATUS_ERROR(ret)) {
  755. qdf_rl_nofl_err("Get elem unit info: Error %d",
  756. ret);
  757. return QDF_STATUS_E_FAILURE;
  758. }
  759. if (!curr_elemunit_ptr) {
  760. qdf_nofl_err("Ptr to curr elem unit is NULL");
  761. return QDF_STATUS_E_NULL_VALUE;
  762. }
  763. if (!buff) {
  764. qdf_nofl_err("Elem unit buff is NULL");
  765. return QDF_STATUS_E_NULL_VALUE;
  766. }
  767. if (buff_maxsize == 0) {
  768. qdf_nofl_err("Max size of elem unit buff is 0");
  769. return QDF_STATUS_E_INVAL;
  770. }
  771. if (!successorfrag) {
  772. qdf_nofl_err("Double ptr to successor frag is NULL");
  773. return QDF_STATUS_E_NULL_VALUE;
  774. }
  775. if (!successorfrag_totallen) {
  776. qdf_nofl_err("Ptr to successor frag total len is NULL");
  777. return QDF_STATUS_E_NULL_VALUE;
  778. }
  779. if (!successorfrag_payloadlen) {
  780. qdf_nofl_err("Ptr to successor frag payload len is NULL");
  781. return QDF_STATUS_E_NULL_VALUE;
  782. }
  783. if ((buff + buff_maxsize) < (curr_elemunit_ptr + elemunit_hdrlen)) {
  784. qdf_rl_nofl_err("(Space %zu after curr elem unit offset %zu in elem unit buff) < (header size of elem unit %zu)",
  785. buff_maxsize - (curr_elemunit_ptr - buff),
  786. curr_elemunit_ptr - buff,
  787. elemunit_hdrlen);
  788. return QDF_STATUS_E_PROTO;
  789. }
  790. curr_elemunit_totallen =
  791. elemunit_hdrlen + curr_elemunit_ptr[elemunit_len_pos];
  792. if ((buff + buff_maxsize) <
  793. (curr_elemunit_ptr + curr_elemunit_totallen)) {
  794. qdf_rl_nofl_err("(Space %zu after curr elem unit offset %zu in elem unit buff) < (indicated total len of elem unit %zu)",
  795. buff_maxsize - (curr_elemunit_ptr - buff),
  796. curr_elemunit_ptr - buff,
  797. curr_elemunit_totallen);
  798. return QDF_STATUS_E_PROTO;
  799. }
  800. if ((buff + buff_maxsize) ==
  801. (curr_elemunit_ptr + curr_elemunit_totallen)) {
  802. /* We have reached the end of the buffer. There is no successor
  803. * fragment.
  804. */
  805. *successorfrag = NULL;
  806. return QDF_STATUS_SUCCESS;
  807. }
  808. next_elemunit_ptr = curr_elemunit_ptr + curr_elemunit_totallen;
  809. if ((buff + buff_maxsize) < (next_elemunit_ptr + elemunit_hdrlen)) {
  810. qdf_rl_nofl_err("(Space %zu after next elem unit offset %zu in elem unit buff) < (header size of elem unit %zu)",
  811. buff_maxsize - (next_elemunit_ptr - buff),
  812. next_elemunit_ptr - buff,
  813. elemunit_hdrlen);
  814. return QDF_STATUS_E_PROTO;
  815. }
  816. next_elemunit_totallen =
  817. elemunit_hdrlen + next_elemunit_ptr[elemunit_len_pos];
  818. if ((buff + buff_maxsize) <
  819. (next_elemunit_ptr + next_elemunit_totallen)) {
  820. qdf_rl_nofl_err("(Space %zu after next elem unit offset %zu in elem unit buff) < (indicated total len of elem unit %zu)",
  821. buff_maxsize - (next_elemunit_ptr - buff),
  822. next_elemunit_ptr - buff,
  823. next_elemunit_totallen);
  824. return QDF_STATUS_E_PROTO;
  825. }
  826. if (next_elemunit_ptr[elemunit_id_pos] != elemunit_fragid) {
  827. *successorfrag = NULL;
  828. return QDF_STATUS_SUCCESS;
  829. }
  830. /* We should not be seeing a successor fragment if the length of the
  831. * current element unit is lesser than the max.
  832. */
  833. if (curr_elemunit_ptr[elemunit_len_pos] != elemunit_maxpayloadlen) {
  834. qdf_rl_nofl_err("Potential successor frag found though (len %u of payload of curr elem unit) != (max payload len %zu)",
  835. curr_elemunit_ptr[elemunit_len_pos],
  836. elemunit_maxpayloadlen);
  837. return QDF_STATUS_E_PROTO;
  838. }
  839. if (next_elemunit_ptr[elemunit_len_pos] == 0) {
  840. qdf_rl_nofl_err("Potential successor frag len is 0");
  841. return QDF_STATUS_E_PROTO;
  842. }
  843. *successorfrag = next_elemunit_ptr;
  844. *successorfrag_totallen = next_elemunit_totallen;
  845. *successorfrag_payloadlen = next_elemunit_ptr[elemunit_len_pos];
  846. return QDF_STATUS_SUCCESS;
  847. }
  848. static QDF_STATUS
  849. wlan_get_elemsubelem_fragseq_info(bool is_subelem,
  850. uint8_t subelemfragid,
  851. uint8_t *buff,
  852. qdf_size_t buff_maxsize,
  853. bool *is_fragseq,
  854. qdf_size_t *fragseq_totallen,
  855. qdf_size_t *fragseq_payloadlen)
  856. {
  857. /* elemunit, i.e. 'element unit' here refers to either an 802.11 element
  858. * or a 802.11 subelement.
  859. */
  860. qdf_size_t elemunit_hdrlen;
  861. int elemunit_id_pos;
  862. int elemunit_len_pos;
  863. uint8_t *curr_elemunit_ptr;
  864. qdf_size_t curr_elemunit_totallen;
  865. qdf_size_t fragseq_currtotallen;
  866. qdf_size_t fragseq_currpayloadlen;
  867. uint8_t *successorfrag;
  868. qdf_size_t successorfrag_totallen;
  869. qdf_size_t successorfrag_payloadlen;
  870. QDF_STATUS ret;
  871. /* Helper function to get element or subelement fragment sequence
  872. * information. Refer to the documentation of the public APIs which
  873. * call this helper, for more information. These APIs are mainly
  874. * wrappers over this helper.
  875. *
  876. * If this helper reports that an element fragment sequence is present,
  877. * it also serves to check for the sanity of various lengths and
  878. * protocol requirements related to the fragment sequence (either by
  879. * itself or though other helpers).
  880. */
  881. ret = wlan_get_elemunit_info(is_subelem,
  882. 0,
  883. NULL,
  884. &elemunit_hdrlen,
  885. NULL,
  886. &elemunit_id_pos,
  887. &elemunit_len_pos,
  888. NULL);
  889. if (QDF_IS_STATUS_ERROR(ret)) {
  890. qdf_rl_nofl_err("Get elem unit info: Error %d",
  891. ret);
  892. return QDF_STATUS_E_FAILURE;
  893. }
  894. if (!buff) {
  895. qdf_nofl_err("Elem unit buff is NULL");
  896. return QDF_STATUS_E_NULL_VALUE;
  897. }
  898. if (buff_maxsize == 0) {
  899. qdf_nofl_err("Max size of elem unit buff is 0");
  900. return QDF_STATUS_E_INVAL;
  901. }
  902. if (!is_fragseq) {
  903. qdf_nofl_err("Ptr to status of frag seq presence is NULL");
  904. return QDF_STATUS_E_NULL_VALUE;
  905. }
  906. if (!fragseq_totallen) {
  907. qdf_nofl_err("Ptr to total len of frag seq is NULL");
  908. return QDF_STATUS_E_NULL_VALUE;
  909. }
  910. if (!fragseq_payloadlen) {
  911. qdf_nofl_err("Ptr to payload len of frag seq is NULL");
  912. return QDF_STATUS_E_NULL_VALUE;
  913. }
  914. curr_elemunit_ptr = buff;
  915. fragseq_currtotallen = 0;
  916. fragseq_currpayloadlen = 0;
  917. if ((buff + buff_maxsize) < (curr_elemunit_ptr + elemunit_hdrlen)) {
  918. qdf_rl_nofl_err("(Space %zu after curr elem unit offset %zu in elem unit buff) < (header size of elem unit %zu)",
  919. buff_maxsize - (curr_elemunit_ptr - buff),
  920. curr_elemunit_ptr - buff,
  921. elemunit_hdrlen);
  922. return QDF_STATUS_E_PROTO;
  923. }
  924. curr_elemunit_totallen =
  925. elemunit_hdrlen + curr_elemunit_ptr[elemunit_len_pos];
  926. if ((buff + buff_maxsize) <
  927. (curr_elemunit_ptr + curr_elemunit_totallen)) {
  928. qdf_rl_nofl_err("(Space %zu after curr elem unit offset %zu in elem unit buff) < (indicated total len of elem unit %zu)",
  929. buff_maxsize - (curr_elemunit_ptr - buff),
  930. curr_elemunit_ptr - buff,
  931. curr_elemunit_totallen);
  932. return QDF_STATUS_E_PROTO;
  933. }
  934. successorfrag = NULL;
  935. ret = wlan_get_elemsubelem_successorfrag(is_subelem,
  936. subelemfragid,
  937. curr_elemunit_ptr,
  938. buff,
  939. buff_maxsize,
  940. &successorfrag,
  941. &successorfrag_totallen,
  942. &successorfrag_payloadlen);
  943. if (QDF_IS_STATUS_ERROR(ret))
  944. return ret;
  945. if (!successorfrag) {
  946. *is_fragseq = false;
  947. *fragseq_totallen = 0;
  948. *fragseq_payloadlen = 0;
  949. return QDF_STATUS_SUCCESS;
  950. }
  951. fragseq_currtotallen += curr_elemunit_totallen;
  952. if (!is_subelem &&
  953. (curr_elemunit_ptr[elemunit_id_pos] == WLAN_ELEMID_EXTN_ELEM)) {
  954. fragseq_currpayloadlen +=
  955. (curr_elemunit_ptr[elemunit_len_pos] - 1);
  956. } else {
  957. fragseq_currpayloadlen +=
  958. curr_elemunit_ptr[elemunit_len_pos];
  959. }
  960. while (successorfrag) {
  961. /* wlan_get_elemsubelem_successorfrag() has already validated
  962. * the length values for the successor fragment.
  963. */
  964. fragseq_currtotallen += successorfrag_totallen;
  965. fragseq_currpayloadlen += successorfrag_payloadlen;
  966. curr_elemunit_ptr = successorfrag;
  967. successorfrag = NULL;
  968. ret = wlan_get_elemsubelem_successorfrag(is_subelem,
  969. subelemfragid,
  970. curr_elemunit_ptr,
  971. buff,
  972. buff_maxsize,
  973. &successorfrag,
  974. &successorfrag_totallen,
  975. &successorfrag_payloadlen);
  976. if (QDF_IS_STATUS_ERROR(ret))
  977. return ret;
  978. }
  979. *is_fragseq = true;
  980. *fragseq_totallen = fragseq_currtotallen;
  981. *fragseq_payloadlen = fragseq_currpayloadlen;
  982. return QDF_STATUS_SUCCESS;
  983. }
  984. static QDF_STATUS wlan_defrag_elemsubelem_fragseq(bool inline_defrag,
  985. bool is_subelem,
  986. uint8_t subelemfragid,
  987. uint8_t *fragbuff,
  988. qdf_size_t fragbuff_maxsize,
  989. uint8_t *defragbuff,
  990. qdf_size_t defragbuff_maxsize,
  991. qdf_size_t *defragpayload_len)
  992. {
  993. /* elemunit, i.e. 'element unit' here refers to either an 802.11 element
  994. * or a 802.11 subelement.
  995. */
  996. uint8_t elemunit_fragid;
  997. qdf_size_t elemunit_hdrlen;
  998. int elemunit_id_pos;
  999. int elemunit_len_pos;
  1000. int elemunit_idext_pos;
  1001. bool is_fragseq;
  1002. qdf_size_t fragseq_totallen;
  1003. qdf_size_t fragseq_payloadlen;
  1004. uint8_t *curr_elemunit_ptr;
  1005. qdf_size_t curr_elemunit_payloadlen;
  1006. qdf_size_t curr_elemunit_totallen;
  1007. uint8_t *src;
  1008. uint8_t *dst;
  1009. /* Current length of the defragmented payload */
  1010. qdf_size_t defragpayload_currlen;
  1011. /* Remaining length available in the source buffer containing the
  1012. * fragment sequence, after element units processed so far.
  1013. */
  1014. qdf_size_t fragbuff_remlen;
  1015. QDF_STATUS ret;
  1016. /* Helper function to de-fragment element or subelement fragment
  1017. * sequence. Refer to the documentation of the public APIs which call
  1018. * this helper, for more information. Those APIs are mainly wrappers
  1019. * over this helper.
  1020. */
  1021. ret = wlan_get_elemunit_info(is_subelem,
  1022. subelemfragid,
  1023. &elemunit_fragid,
  1024. &elemunit_hdrlen,
  1025. NULL,
  1026. &elemunit_id_pos,
  1027. &elemunit_len_pos,
  1028. &elemunit_idext_pos);
  1029. if (QDF_IS_STATUS_ERROR(ret)) {
  1030. qdf_rl_nofl_err("Get elem unit info: Error %d",
  1031. ret);
  1032. return QDF_STATUS_E_FAILURE;
  1033. }
  1034. if (!fragbuff) {
  1035. qdf_nofl_err("Src buff for frag seq is NULL");
  1036. return QDF_STATUS_E_NULL_VALUE;
  1037. }
  1038. if (fragbuff_maxsize == 0) {
  1039. qdf_nofl_err("Size of src buff for frag seq is 0");
  1040. return QDF_STATUS_E_INVAL;
  1041. }
  1042. if (!inline_defrag) {
  1043. if (!defragbuff) {
  1044. qdf_nofl_err("Dest buff for defragged payload is NULL");
  1045. return QDF_STATUS_E_NULL_VALUE;
  1046. }
  1047. if (defragbuff_maxsize == 0) {
  1048. qdf_nofl_err("Size of dest buff for defragged payload is 0");
  1049. return QDF_STATUS_E_INVAL;
  1050. }
  1051. }
  1052. if (!defragpayload_len) {
  1053. qdf_nofl_err("Ptr to len of defragged payload is NULL");
  1054. return QDF_STATUS_E_NULL_VALUE;
  1055. }
  1056. ret = wlan_get_elemsubelem_fragseq_info(is_subelem,
  1057. subelemfragid,
  1058. fragbuff,
  1059. fragbuff_maxsize,
  1060. &is_fragseq,
  1061. &fragseq_totallen,
  1062. &fragseq_payloadlen);
  1063. if (QDF_IS_STATUS_ERROR(ret))
  1064. return ret;
  1065. if (!is_fragseq) {
  1066. /* We treat this as an error since the caller is supposed to
  1067. * check this.
  1068. */
  1069. qdf_rl_nofl_err("Frag seq not found at start of src buff for frag seq");
  1070. return QDF_STATUS_E_INVAL;
  1071. }
  1072. /* fragseq_totallen is known to be smaller than or equal to
  1073. * fragbuff_maxsize since wlan_get_elemsubelem_fragseq_info() is bound
  1074. * by fragbuff_maxsize in the search for a fragment sequence and it's
  1075. * total length.
  1076. */
  1077. if (!inline_defrag && (defragbuff_maxsize < fragseq_payloadlen)) {
  1078. qdf_rl_nofl_err("(Size of dest buff for defragged payload %zu) < (size of frag seq payload %zu)",
  1079. defragbuff_maxsize, fragseq_payloadlen);
  1080. return QDF_STATUS_E_INVAL;
  1081. }
  1082. defragpayload_currlen = 0;
  1083. fragbuff_remlen = fragbuff_maxsize;
  1084. /* We have already validated through wlan_get_elemsubelem_fragseq_info()
  1085. * that the elements we are about to access below are within the bounds
  1086. * of fragbuff.
  1087. */
  1088. curr_elemunit_ptr = fragbuff;
  1089. if (!is_subelem &&
  1090. (curr_elemunit_ptr[elemunit_id_pos] == WLAN_ELEMID_EXTN_ELEM)) {
  1091. curr_elemunit_payloadlen =
  1092. curr_elemunit_ptr[elemunit_len_pos] - 1;
  1093. src = curr_elemunit_ptr + elemunit_hdrlen + 1;
  1094. } else {
  1095. curr_elemunit_payloadlen = curr_elemunit_ptr[elemunit_len_pos];
  1096. src = curr_elemunit_ptr + elemunit_hdrlen;
  1097. }
  1098. curr_elemunit_totallen =
  1099. elemunit_hdrlen + curr_elemunit_ptr[elemunit_len_pos];
  1100. if (inline_defrag) {
  1101. /* There is no need to move any bytes in the lead element. Set
  1102. * dst=src so that the next update for dst can happen in a
  1103. * manner uniform with the non-inlined defrag case.
  1104. */
  1105. dst = src;
  1106. } else {
  1107. dst = defragbuff;
  1108. qdf_mem_copy(dst, src, curr_elemunit_payloadlen);
  1109. }
  1110. defragpayload_currlen += curr_elemunit_payloadlen;
  1111. fragbuff_remlen -= curr_elemunit_totallen;
  1112. dst += curr_elemunit_payloadlen;
  1113. curr_elemunit_ptr += curr_elemunit_totallen;
  1114. /* We have already validated through wlan_get_elemsubelem_fragseq_info()
  1115. * that at least one non-lead fragment element is present as required in
  1116. * the standard.
  1117. */
  1118. while (curr_elemunit_ptr[elemunit_id_pos] == elemunit_fragid) {
  1119. curr_elemunit_payloadlen = curr_elemunit_ptr[elemunit_len_pos];
  1120. curr_elemunit_totallen =
  1121. elemunit_hdrlen + curr_elemunit_ptr[elemunit_len_pos];
  1122. src = curr_elemunit_ptr + elemunit_hdrlen;
  1123. if (inline_defrag)
  1124. qdf_mem_move(dst, src, curr_elemunit_payloadlen);
  1125. else
  1126. qdf_mem_copy(dst, src, curr_elemunit_payloadlen);
  1127. defragpayload_currlen += curr_elemunit_payloadlen;
  1128. fragbuff_remlen -= curr_elemunit_totallen;
  1129. if (fragbuff_remlen == 0)
  1130. break;
  1131. dst += curr_elemunit_payloadlen;
  1132. curr_elemunit_ptr += curr_elemunit_totallen;
  1133. }
  1134. if (inline_defrag && (fragbuff_remlen != 0)) {
  1135. /* Move the residual content after the fragments, in the source
  1136. * buffer.
  1137. */
  1138. src = curr_elemunit_ptr;
  1139. qdf_mem_move(dst, src, fragbuff_remlen);
  1140. }
  1141. *defragpayload_len = defragpayload_currlen;
  1142. return QDF_STATUS_SUCCESS;
  1143. }
  1144. QDF_STATUS
  1145. wlan_get_elem_fragseq_requirements(uint8_t elemid,
  1146. qdf_size_t payloadlen,
  1147. bool *is_frag_required,
  1148. qdf_size_t *required_fragbuff_size)
  1149. {
  1150. return wlan_get_elemsubelem_fragseq_creationparams(false,
  1151. elemid,
  1152. payloadlen,
  1153. is_frag_required,
  1154. required_fragbuff_size,
  1155. NULL,
  1156. NULL,
  1157. NULL,
  1158. NULL);
  1159. }
  1160. QDF_STATUS wlan_create_elem_fragseq(bool inline_frag,
  1161. uint8_t elemid,
  1162. uint8_t elemidext,
  1163. uint8_t *payloadbuff,
  1164. qdf_size_t payloadbuff_maxsize,
  1165. qdf_size_t payloadlen,
  1166. uint8_t *fragbuff,
  1167. qdf_size_t fragbuff_maxsize,
  1168. qdf_size_t *fragseqlen)
  1169. {
  1170. return wlan_create_elemsubelem_fragseq(inline_frag,
  1171. false,
  1172. elemid,
  1173. elemidext,
  1174. 0,
  1175. payloadbuff,
  1176. payloadbuff_maxsize,
  1177. payloadlen,
  1178. fragbuff,
  1179. fragbuff_maxsize,
  1180. fragseqlen);
  1181. }
  1182. QDF_STATUS
  1183. wlan_get_subelem_fragseq_requirements(uint8_t subelemid,
  1184. qdf_size_t payloadlen,
  1185. bool *is_frag_required,
  1186. qdf_size_t *required_fragbuff_size)
  1187. {
  1188. return wlan_get_elemsubelem_fragseq_creationparams(true,
  1189. subelemid,
  1190. payloadlen,
  1191. is_frag_required,
  1192. required_fragbuff_size,
  1193. NULL,
  1194. NULL,
  1195. NULL,
  1196. NULL);
  1197. }
  1198. QDF_STATUS wlan_create_subelem_fragseq(bool inline_frag,
  1199. uint8_t subelemid,
  1200. uint8_t subelemfragid,
  1201. uint8_t *payloadbuff,
  1202. qdf_size_t payloadbuff_maxsize,
  1203. qdf_size_t payloadlen,
  1204. uint8_t *fragbuff,
  1205. qdf_size_t fragbuff_maxsize,
  1206. qdf_size_t *fragseqlen)
  1207. {
  1208. return wlan_create_elemsubelem_fragseq(inline_frag,
  1209. true,
  1210. subelemid,
  1211. 0,
  1212. subelemfragid,
  1213. payloadbuff,
  1214. payloadbuff_maxsize,
  1215. payloadlen,
  1216. fragbuff,
  1217. fragbuff_maxsize,
  1218. fragseqlen);
  1219. }
  1220. QDF_STATUS wlan_get_elem_fragseq_info(uint8_t *elembuff,
  1221. qdf_size_t elembuff_maxsize,
  1222. bool *is_fragseq,
  1223. qdf_size_t *fragseq_totallen,
  1224. qdf_size_t *fragseq_payloadlen)
  1225. {
  1226. return wlan_get_elemsubelem_fragseq_info(false,
  1227. 0,
  1228. elembuff,
  1229. elembuff_maxsize,
  1230. is_fragseq,
  1231. fragseq_totallen,
  1232. fragseq_payloadlen);
  1233. }
  1234. QDF_STATUS wlan_defrag_elem_fragseq(bool inline_defrag,
  1235. uint8_t *fragbuff,
  1236. qdf_size_t fragbuff_maxsize,
  1237. uint8_t *defragbuff,
  1238. qdf_size_t defragbuff_maxsize,
  1239. qdf_size_t *defragpayload_len)
  1240. {
  1241. return wlan_defrag_elemsubelem_fragseq(inline_defrag,
  1242. false,
  1243. 0,
  1244. fragbuff,
  1245. fragbuff_maxsize,
  1246. defragbuff,
  1247. defragbuff_maxsize,
  1248. defragpayload_len);
  1249. }
  1250. QDF_STATUS wlan_get_subelem_fragseq_info(uint8_t subelemfragid,
  1251. uint8_t *subelembuff,
  1252. qdf_size_t subelembuff_maxsize,
  1253. bool *is_fragseq,
  1254. qdf_size_t *fragseq_totallen,
  1255. qdf_size_t *fragseq_payloadlen)
  1256. {
  1257. return wlan_get_elemsubelem_fragseq_info(true,
  1258. subelemfragid,
  1259. subelembuff,
  1260. subelembuff_maxsize,
  1261. is_fragseq,
  1262. fragseq_totallen,
  1263. fragseq_payloadlen);
  1264. }
  1265. QDF_STATUS wlan_defrag_subelem_fragseq(bool inline_defrag,
  1266. uint8_t subelemfragid,
  1267. uint8_t *fragbuff,
  1268. qdf_size_t fragbuff_maxsize,
  1269. uint8_t *defragbuff,
  1270. qdf_size_t defragbuff_maxsize,
  1271. qdf_size_t *defragpayload_len)
  1272. {
  1273. return wlan_defrag_elemsubelem_fragseq(inline_defrag,
  1274. true,
  1275. subelemfragid,
  1276. fragbuff,
  1277. fragbuff_maxsize,
  1278. defragbuff,
  1279. defragbuff_maxsize,
  1280. defragpayload_len);
  1281. }
  1282. bool wlan_is_emulation_platform(uint32_t phy_version)
  1283. {
  1284. if ((phy_version == 0xABC0) || (phy_version == 0xABC1) ||
  1285. (phy_version == 0xABC2) || (phy_version == 0xABC3) ||
  1286. (phy_version == 0xFFFF) || (phy_version == 0xABCD))
  1287. return true;
  1288. return false;
  1289. }
  1290. uint32_t wlan_get_pdev_id_from_vdev_id(struct wlan_objmgr_psoc *psoc,
  1291. uint8_t vdev_id,
  1292. wlan_objmgr_ref_dbgid dbg_id)
  1293. {
  1294. struct wlan_objmgr_vdev *vdev;
  1295. struct wlan_objmgr_pdev *pdev = NULL;
  1296. uint32_t pdev_id = WLAN_INVALID_PDEV_ID;
  1297. vdev = wlan_objmgr_get_vdev_by_id_from_psoc(psoc,
  1298. vdev_id, dbg_id);
  1299. if (vdev) {
  1300. pdev = wlan_vdev_get_pdev(vdev);
  1301. if (pdev)
  1302. pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
  1303. wlan_objmgr_vdev_release_ref(vdev, dbg_id);
  1304. }
  1305. return pdev_id;
  1306. }
  1307. qdf_export_symbol(wlan_get_pdev_id_from_vdev_id);
  1308. static void wlan_vdev_active(struct wlan_objmgr_pdev *pdev, void *object,
  1309. void *arg)
  1310. {
  1311. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)object;
  1312. uint8_t *flag = (uint8_t *)arg;
  1313. wlan_vdev_obj_lock(vdev);
  1314. if (wlan_vdev_mlme_is_active(vdev) == QDF_STATUS_SUCCESS)
  1315. *flag = 1;
  1316. wlan_vdev_obj_unlock(vdev);
  1317. }
  1318. QDF_STATUS wlan_vdev_is_up(struct wlan_objmgr_vdev *vdev)
  1319. {
  1320. return wlan_vdev_allow_connect_n_tx(vdev);
  1321. }
  1322. qdf_export_symbol(wlan_vdev_is_up);
  1323. QDF_STATUS wlan_util_is_vdev_active(struct wlan_objmgr_pdev *pdev,
  1324. wlan_objmgr_ref_dbgid dbg_id)
  1325. {
  1326. uint8_t flag = 0;
  1327. if (!pdev)
  1328. return QDF_STATUS_E_INVAL;
  1329. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP, wlan_vdev_active,
  1330. &flag, 0, dbg_id);
  1331. if (flag == 1)
  1332. return QDF_STATUS_SUCCESS;
  1333. return QDF_STATUS_E_INVAL;
  1334. }
  1335. qdf_export_symbol(wlan_util_is_vdev_active);
  1336. void wlan_util_change_map_index(unsigned long *map, uint8_t id, uint8_t set)
  1337. {
  1338. if (set)
  1339. qdf_set_bit(id, map);
  1340. else
  1341. qdf_clear_bit(id, map);
  1342. }
  1343. bool wlan_util_map_index_is_set(unsigned long *map, uint8_t id)
  1344. {
  1345. return qdf_test_bit(id, map);
  1346. }
  1347. bool wlan_util_map_is_any_index_set(unsigned long *map, unsigned long nbytes)
  1348. {
  1349. return !qdf_bitmap_empty(map, QDF_CHAR_BIT * nbytes);
  1350. }
  1351. static void wlan_vdev_chan_change_pending(struct wlan_objmgr_pdev *pdev,
  1352. void *object, void *arg)
  1353. {
  1354. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)object;
  1355. unsigned long *vdev_id_map = (unsigned long *)arg;
  1356. uint8_t id = 0;
  1357. struct wlan_objmgr_psoc *psoc;
  1358. psoc = wlan_pdev_get_psoc(pdev);
  1359. if (!psoc)
  1360. return;
  1361. wlan_vdev_obj_lock(vdev);
  1362. if (wlan_vdev_chan_config_valid(vdev) == QDF_STATUS_SUCCESS) {
  1363. id = wlan_vdev_get_id(vdev);
  1364. /* Invalid vdev id */
  1365. if (id >= wlan_psoc_get_max_vdev_count(psoc)) {
  1366. wlan_vdev_obj_unlock(vdev);
  1367. return;
  1368. }
  1369. wlan_util_change_map_index(vdev_id_map, id, 1);
  1370. }
  1371. wlan_vdev_obj_unlock(vdev);
  1372. }
  1373. QDF_STATUS wlan_pdev_chan_change_pending_vdevs(struct wlan_objmgr_pdev *pdev,
  1374. unsigned long *vdev_id_map,
  1375. wlan_objmgr_ref_dbgid dbg_id)
  1376. {
  1377. if (!pdev)
  1378. return QDF_STATUS_E_INVAL;
  1379. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
  1380. wlan_vdev_chan_change_pending,
  1381. vdev_id_map, 0, dbg_id);
  1382. return QDF_STATUS_SUCCESS;
  1383. }
  1384. static void wlan_vdev_down_pending(struct wlan_objmgr_pdev *pdev,
  1385. void *object, void *arg)
  1386. {
  1387. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)object;
  1388. unsigned long *vdev_id_map = (unsigned long *)arg;
  1389. uint8_t id = 0;
  1390. struct wlan_objmgr_psoc *psoc;
  1391. enum wlan_serialization_cmd_type cmd_type;
  1392. psoc = wlan_pdev_get_psoc(pdev);
  1393. if (!psoc)
  1394. return;
  1395. cmd_type = wlan_serialization_get_vdev_active_cmd_type(vdev);
  1396. wlan_vdev_obj_lock(vdev);
  1397. if ((wlan_vdev_mlme_is_init_state(vdev) != QDF_STATUS_SUCCESS) ||
  1398. (cmd_type == WLAN_SER_CMD_VDEV_START_BSS)) {
  1399. id = wlan_vdev_get_id(vdev);
  1400. /* Invalid vdev id */
  1401. if (id >= wlan_psoc_get_max_vdev_count(psoc)) {
  1402. wlan_vdev_obj_unlock(vdev);
  1403. return;
  1404. }
  1405. wlan_util_change_map_index(vdev_id_map, id, 1);
  1406. }
  1407. wlan_vdev_obj_unlock(vdev);
  1408. }
  1409. static void wlan_vdev_ap_down_pending(struct wlan_objmgr_pdev *pdev,
  1410. void *object, void *arg)
  1411. {
  1412. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)object;
  1413. unsigned long *vdev_id_map = (unsigned long *)arg;
  1414. uint8_t id = 0;
  1415. struct wlan_objmgr_psoc *psoc;
  1416. enum wlan_serialization_cmd_type cmd_type;
  1417. psoc = wlan_pdev_get_psoc(pdev);
  1418. if (!psoc)
  1419. return;
  1420. if (wlan_vdev_mlme_get_opmode(vdev) != QDF_SAP_MODE)
  1421. return;
  1422. cmd_type = wlan_serialization_get_vdev_active_cmd_type(vdev);
  1423. wlan_vdev_obj_lock(vdev);
  1424. if ((wlan_vdev_mlme_is_init_state(vdev) != QDF_STATUS_SUCCESS) ||
  1425. (cmd_type == WLAN_SER_CMD_VDEV_START_BSS)) {
  1426. id = wlan_vdev_get_id(vdev);
  1427. /* Invalid vdev id */
  1428. if (id >= wlan_psoc_get_max_vdev_count(psoc)) {
  1429. wlan_vdev_obj_unlock(vdev);
  1430. return;
  1431. }
  1432. wlan_util_change_map_index(vdev_id_map, id, 1);
  1433. }
  1434. wlan_vdev_obj_unlock(vdev);
  1435. }
  1436. QDF_STATUS wlan_pdev_chan_change_pending_vdevs_down(
  1437. struct wlan_objmgr_pdev *pdev,
  1438. unsigned long *vdev_id_map,
  1439. wlan_objmgr_ref_dbgid dbg_id)
  1440. {
  1441. if (!pdev)
  1442. return QDF_STATUS_E_INVAL;
  1443. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
  1444. wlan_vdev_down_pending,
  1445. vdev_id_map, 0, dbg_id);
  1446. return QDF_STATUS_SUCCESS;
  1447. }
  1448. QDF_STATUS wlan_pdev_chan_change_pending_ap_vdevs_down(
  1449. struct wlan_objmgr_pdev *pdev,
  1450. unsigned long *vdev_id_map,
  1451. wlan_objmgr_ref_dbgid dbg_id)
  1452. {
  1453. if (!pdev)
  1454. return QDF_STATUS_E_INVAL;
  1455. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
  1456. wlan_vdev_ap_down_pending,
  1457. vdev_id_map, 0, dbg_id);
  1458. return QDF_STATUS_SUCCESS;
  1459. }
  1460. #ifdef WLAN_FEATURE_11BE
  1461. static inline bool
  1462. wlan_chan_puncture_eq(struct wlan_channel *chan1, struct wlan_channel *chan2)
  1463. {
  1464. if (chan1->puncture_bitmap == chan2->puncture_bitmap)
  1465. return true;
  1466. return false;
  1467. }
  1468. #else
  1469. static inline bool
  1470. wlan_chan_puncture_eq(struct wlan_channel *chan1, struct wlan_channel *chan2)
  1471. {
  1472. return true;
  1473. }
  1474. #endif /* WLAN_FEATURE_11BE */
  1475. QDF_STATUS wlan_chan_eq(struct wlan_channel *chan1, struct wlan_channel *chan2)
  1476. {
  1477. if ((chan1->ch_ieee == chan2->ch_ieee) &&
  1478. (chan1->ch_freq_seg2 == chan2->ch_freq_seg2) &&
  1479. wlan_chan_puncture_eq(chan1, chan2))
  1480. return QDF_STATUS_SUCCESS;
  1481. return QDF_STATUS_E_FAILURE;
  1482. }
  1483. void wlan_chan_copy(struct wlan_channel *tgt, struct wlan_channel *src)
  1484. {
  1485. qdf_mem_copy(tgt, src, sizeof(struct wlan_channel));
  1486. }
  1487. struct wlan_channel *wlan_vdev_get_active_channel(struct wlan_objmgr_vdev *vdev)
  1488. {
  1489. struct wlan_channel *comp_vdev_chan = NULL;
  1490. if (wlan_vdev_chan_config_valid(vdev) == QDF_STATUS_SUCCESS) {
  1491. /* compare with BSS channel, when vdev is active, since desired
  1492. * channel gets update, if channel is triggered in another path
  1493. */
  1494. if (wlan_vdev_mlme_is_active(vdev) == QDF_STATUS_SUCCESS)
  1495. comp_vdev_chan = wlan_vdev_mlme_get_bss_chan(vdev);
  1496. else
  1497. comp_vdev_chan = wlan_vdev_mlme_get_des_chan(vdev);
  1498. }
  1499. return comp_vdev_chan;
  1500. }
  1501. /**
  1502. * struct wlan_check_bssid_context - bssid check context
  1503. * @bssid: bssid to be checked
  1504. * @connected: connected by vdev or not
  1505. * @vdev_id: vdev id of connected vdev
  1506. */
  1507. struct wlan_check_bssid_context {
  1508. struct qdf_mac_addr bssid;
  1509. bool connected;
  1510. uint8_t vdev_id;
  1511. };
  1512. /**
  1513. * wlan_get_connected_vdev_handler() - check vdev connected on bssid
  1514. * @psoc: psoc object
  1515. * @obj: vdev object
  1516. * @args: handler context
  1517. *
  1518. * This function will check whether vdev is connected on bssid or not and
  1519. * update the result to handler context accordingly.
  1520. *
  1521. * Return: void
  1522. */
  1523. static void wlan_get_connected_vdev_handler(struct wlan_objmgr_psoc *psoc,
  1524. void *obj, void *args)
  1525. {
  1526. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)obj;
  1527. struct wlan_check_bssid_context *context =
  1528. (struct wlan_check_bssid_context *)args;
  1529. struct qdf_mac_addr bss_peer_mac;
  1530. enum QDF_OPMODE op_mode;
  1531. if (context->connected)
  1532. return;
  1533. op_mode = wlan_vdev_mlme_get_opmode(vdev);
  1534. if (op_mode != QDF_STA_MODE && op_mode != QDF_P2P_CLIENT_MODE)
  1535. return;
  1536. if (wlan_vdev_is_up(vdev) != QDF_STATUS_SUCCESS)
  1537. return;
  1538. if (wlan_vdev_get_bss_peer_mac(vdev, &bss_peer_mac) !=
  1539. QDF_STATUS_SUCCESS)
  1540. return;
  1541. if (qdf_is_macaddr_equal(&bss_peer_mac, &context->bssid)) {
  1542. context->connected = true;
  1543. context->vdev_id = wlan_vdev_get_id(vdev);
  1544. }
  1545. }
  1546. bool wlan_get_connected_vdev_from_psoc_by_bssid(struct wlan_objmgr_psoc *psoc,
  1547. uint8_t *bssid,
  1548. uint8_t *vdev_id)
  1549. {
  1550. struct wlan_check_bssid_context context;
  1551. qdf_mem_zero(&context, sizeof(struct wlan_check_bssid_context));
  1552. qdf_mem_copy(context.bssid.bytes, bssid, QDF_MAC_ADDR_SIZE);
  1553. wlan_objmgr_iterate_obj_list(psoc, WLAN_VDEV_OP,
  1554. wlan_get_connected_vdev_handler,
  1555. &context, true, WLAN_OSIF_SCAN_ID);
  1556. if (context.connected)
  1557. *vdev_id = context.vdev_id;
  1558. return context.connected;
  1559. }
  1560. qdf_export_symbol(wlan_get_connected_vdev_from_psoc_by_bssid);
  1561. bool wlan_get_connected_vdev_by_bssid(struct wlan_objmgr_pdev *pdev,
  1562. uint8_t *bssid, uint8_t *vdev_id)
  1563. {
  1564. return wlan_get_connected_vdev_from_psoc_by_bssid(
  1565. wlan_pdev_get_psoc(pdev), bssid, vdev_id);
  1566. }
  1567. qdf_export_symbol(wlan_get_connected_vdev_by_bssid);
  1568. #ifdef WLAN_FEATURE_11BE_MLO
  1569. /**
  1570. * struct wlan_check_mld_addr_context - mld mac addr check context
  1571. * @mld_addr: mld_addrto be checked
  1572. * @connected: connected by vdev or not
  1573. * @vdev_id: vdev id of connected vdev
  1574. */
  1575. struct wlan_check_mld_addr_context {
  1576. struct qdf_mac_addr mld_addr;
  1577. bool connected;
  1578. uint8_t vdev_id;
  1579. };
  1580. /**
  1581. * wlan_get_connected_mlo_dev_ctx_handler() - check vdev connected on mld mac
  1582. * @psoc: psoc object
  1583. * @obj: vdev object
  1584. * @args: handler context
  1585. *
  1586. * This function will check whether vdev is connected on mld mac or not and
  1587. * update the result to handler context accordingly.
  1588. *
  1589. * Return: void
  1590. */
  1591. static void wlan_get_connected_mlo_dev_ctx_handler(
  1592. struct wlan_objmgr_psoc *psoc,
  1593. void *obj, void *args)
  1594. {
  1595. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)obj;
  1596. struct wlan_check_mld_addr_context *context =
  1597. (struct wlan_check_mld_addr_context *)args;
  1598. struct qdf_mac_addr bss_peer_mld_mac;
  1599. enum QDF_OPMODE op_mode;
  1600. if (context->connected)
  1601. return;
  1602. op_mode = wlan_vdev_mlme_get_opmode(vdev);
  1603. if (op_mode != QDF_STA_MODE && op_mode != QDF_P2P_CLIENT_MODE)
  1604. return;
  1605. if (wlan_vdev_is_up(vdev) != QDF_STATUS_SUCCESS)
  1606. return;
  1607. if (QDF_IS_STATUS_ERROR(wlan_vdev_get_bss_peer_mld_mac(
  1608. vdev, &bss_peer_mld_mac)))
  1609. return;
  1610. if (qdf_is_macaddr_equal(&bss_peer_mld_mac, &context->mld_addr)) {
  1611. context->connected = true;
  1612. context->vdev_id = wlan_vdev_get_id(vdev);
  1613. }
  1614. }
  1615. bool wlan_get_connected_vdev_by_mld_addr(struct wlan_objmgr_psoc *psoc,
  1616. uint8_t *mld_mac, uint8_t *vdev_id)
  1617. {
  1618. struct wlan_check_mld_addr_context context;
  1619. qdf_mem_zero(&context, sizeof(struct wlan_check_mld_addr_context));
  1620. qdf_copy_macaddr(&context.mld_addr, (struct qdf_mac_addr *)mld_mac);
  1621. wlan_objmgr_iterate_obj_list(psoc, WLAN_VDEV_OP,
  1622. wlan_get_connected_mlo_dev_ctx_handler,
  1623. &context, true, WLAN_MLME_OBJMGR_ID);
  1624. if (context.connected)
  1625. *vdev_id = context.vdev_id;
  1626. return context.connected;
  1627. }
  1628. #endif
  1629. static void wlan_pdev_chan_match(struct wlan_objmgr_pdev *pdev, void *object,
  1630. void *arg)
  1631. {
  1632. struct wlan_objmgr_vdev *comp_vdev = (struct wlan_objmgr_vdev *)object;
  1633. struct wlan_vdev_ch_check_filter *ch_filter = arg;
  1634. struct wlan_channel vdev_chan, *chan;
  1635. struct wlan_channel *iter_vdev_chan;
  1636. if (ch_filter->flag)
  1637. return;
  1638. if (comp_vdev == ch_filter->vdev)
  1639. return;
  1640. wlan_vdev_obj_lock(comp_vdev);
  1641. chan = wlan_vdev_get_active_channel(comp_vdev);
  1642. if (!chan) {
  1643. wlan_vdev_obj_unlock(comp_vdev);
  1644. return;
  1645. }
  1646. wlan_chan_copy(&vdev_chan, chan);
  1647. wlan_vdev_obj_unlock(comp_vdev);
  1648. wlan_vdev_obj_lock(ch_filter->vdev);
  1649. iter_vdev_chan = wlan_vdev_mlme_get_des_chan(ch_filter->vdev);
  1650. if (wlan_chan_eq(&vdev_chan, iter_vdev_chan)
  1651. != QDF_STATUS_SUCCESS) {
  1652. ch_filter->flag = 1;
  1653. qdf_debug("==> iter vdev id: %d: ieee %d, mode %d",
  1654. wlan_vdev_get_id(comp_vdev),
  1655. vdev_chan.ch_ieee,
  1656. vdev_chan.ch_phymode);
  1657. qdf_debug("fl %016llx, fl-ext %08x, s1 %d, s2 %d ",
  1658. vdev_chan.ch_flags, vdev_chan.ch_flagext,
  1659. vdev_chan.ch_freq_seg1,
  1660. vdev_chan.ch_freq_seg2);
  1661. qdf_debug("==> base vdev id: %d: ieee %d mode %d",
  1662. wlan_vdev_get_id(ch_filter->vdev),
  1663. iter_vdev_chan->ch_ieee,
  1664. iter_vdev_chan->ch_phymode);
  1665. qdf_debug("fl %016llx, fl-ext %08x s1 %d, s2 %d",
  1666. iter_vdev_chan->ch_flags,
  1667. iter_vdev_chan->ch_flagext,
  1668. iter_vdev_chan->ch_freq_seg1,
  1669. iter_vdev_chan->ch_freq_seg2);
  1670. }
  1671. wlan_vdev_obj_unlock(ch_filter->vdev);
  1672. }
  1673. QDF_STATUS wlan_util_pdev_vdevs_deschan_match(struct wlan_objmgr_pdev *pdev,
  1674. struct wlan_objmgr_vdev *vdev,
  1675. wlan_objmgr_ref_dbgid dbg_id)
  1676. {
  1677. struct wlan_vdev_ch_check_filter ch_filter;
  1678. if (!pdev)
  1679. return QDF_STATUS_E_INVAL;
  1680. if (wlan_pdev_nif_feat_cap_get(pdev, WLAN_PDEV_F_CHAN_CONCURRENCY))
  1681. return QDF_STATUS_SUCCESS;
  1682. if (wlan_objmgr_vdev_try_get_ref(vdev, dbg_id) == QDF_STATUS_SUCCESS) {
  1683. ch_filter.flag = 0;
  1684. ch_filter.vdev = vdev;
  1685. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
  1686. wlan_pdev_chan_match,
  1687. &ch_filter, 0, dbg_id);
  1688. wlan_objmgr_vdev_release_ref(vdev, dbg_id);
  1689. if (ch_filter.flag == 0)
  1690. return QDF_STATUS_SUCCESS;
  1691. }
  1692. return QDF_STATUS_E_FAILURE;
  1693. }
  1694. static void wlan_vdev_restart_progress(struct wlan_objmgr_pdev *pdev,
  1695. void *object, void *arg)
  1696. {
  1697. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)object;
  1698. uint8_t *flag = (uint8_t *)arg;
  1699. wlan_vdev_obj_lock(vdev);
  1700. if (wlan_vdev_is_restart_progress(vdev) == QDF_STATUS_SUCCESS)
  1701. *flag = 1;
  1702. wlan_vdev_obj_unlock(vdev);
  1703. }
  1704. QDF_STATUS wlan_util_is_pdev_restart_progress(struct wlan_objmgr_pdev *pdev,
  1705. wlan_objmgr_ref_dbgid dbg_id)
  1706. {
  1707. uint8_t flag = 0;
  1708. if (!pdev)
  1709. return QDF_STATUS_E_INVAL;
  1710. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
  1711. wlan_vdev_restart_progress,
  1712. &flag, 0, dbg_id);
  1713. if (flag == 1)
  1714. return QDF_STATUS_SUCCESS;
  1715. return QDF_STATUS_E_INVAL;
  1716. }
  1717. static void wlan_vdev_scan_allowed(struct wlan_objmgr_pdev *pdev, void *object,
  1718. void *arg)
  1719. {
  1720. struct wlan_objmgr_vdev *vdev = (struct wlan_objmgr_vdev *)object;
  1721. uint8_t *flag = (uint8_t *)arg;
  1722. wlan_vdev_obj_lock(vdev);
  1723. if (wlan_vdev_mlme_is_scan_allowed(vdev) != QDF_STATUS_SUCCESS)
  1724. *flag = 1;
  1725. wlan_vdev_obj_unlock(vdev);
  1726. }
  1727. QDF_STATUS wlan_util_is_pdev_scan_allowed(struct wlan_objmgr_pdev *pdev,
  1728. wlan_objmgr_ref_dbgid dbg_id)
  1729. {
  1730. uint8_t flag = 0;
  1731. if (!pdev)
  1732. return QDF_STATUS_E_INVAL;
  1733. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
  1734. wlan_vdev_scan_allowed,
  1735. &flag, 0, dbg_id);
  1736. if (flag == 1)
  1737. return QDF_STATUS_E_FAILURE;
  1738. return QDF_STATUS_SUCCESS;
  1739. }
  1740. void
  1741. wlan_util_stats_get_rssi(bool db2dbm_enabled, int32_t bcn_snr, int32_t dat_snr,
  1742. int8_t *rssi)
  1743. {
  1744. uint32_t snr;
  1745. if (db2dbm_enabled) {
  1746. if (TGT_IS_VALID_RSSI(bcn_snr))
  1747. *rssi = bcn_snr;
  1748. else if (TGT_IS_VALID_RSSI(dat_snr))
  1749. *rssi = dat_snr;
  1750. else
  1751. *rssi = TGT_NOISE_FLOOR_DBM;
  1752. } else {
  1753. if (TGT_IS_VALID_SNR(bcn_snr))
  1754. snr = bcn_snr;
  1755. else if (TGT_IS_VALID_SNR(dat_snr))
  1756. snr = dat_snr;
  1757. else
  1758. snr = TGT_INVALID_SNR;
  1759. /* Get the absolute rssi value from the current rssi value */
  1760. *rssi = snr + TGT_NOISE_FLOOR_DBM;
  1761. }
  1762. }
  1763. /**
  1764. * wlan_util_get_mode_specific_peer_count - This api gives vdev mode specific
  1765. * peer count`
  1766. * @pdev: PDEV object
  1767. * @object: vdev object
  1768. * @arg: argument passed by caller
  1769. *
  1770. * Return: void
  1771. */
  1772. static void
  1773. wlan_util_get_mode_specific_peer_count(struct wlan_objmgr_pdev *pdev,
  1774. void *object, void *arg)
  1775. {
  1776. struct wlan_objmgr_vdev *vdev = object;
  1777. uint16_t temp_count = 0;
  1778. struct wlan_op_mode_peer_count *count = arg;
  1779. wlan_vdev_obj_lock(vdev);
  1780. if (wlan_vdev_mlme_get_opmode(vdev) == count->opmode) {
  1781. temp_count = wlan_vdev_get_peer_count(vdev);
  1782. /* Decrement the self peer count */
  1783. if (temp_count > 1)
  1784. count->peer_count += (temp_count - 1);
  1785. }
  1786. wlan_vdev_obj_unlock(vdev);
  1787. }
  1788. uint16_t wlan_util_get_peer_count_for_mode(struct wlan_objmgr_pdev *pdev,
  1789. enum QDF_OPMODE mode)
  1790. {
  1791. struct wlan_op_mode_peer_count count;
  1792. count.opmode = mode;
  1793. count.peer_count = 0;
  1794. wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
  1795. wlan_util_get_mode_specific_peer_count, &count,
  1796. 0, WLAN_OBJMGR_ID);
  1797. return count.peer_count;
  1798. }
  1799. #ifdef CONFIG_QCA_MINIDUMP
  1800. static bool wlan_minidump_log_enabled(struct wlan_objmgr_psoc *psoc,
  1801. enum wlan_minidump_host_data type)
  1802. {
  1803. bool setval = false;
  1804. switch (type) {
  1805. case WLAN_MD_CP_EXT_PDEV:
  1806. if (cfg_get(psoc, CFG_OL_MD_CP_EXT_PDEV))
  1807. setval = true;
  1808. break;
  1809. case WLAN_MD_CP_EXT_PSOC:
  1810. if (cfg_get(psoc, CFG_OL_MD_CP_EXT_PSOC))
  1811. setval = true;
  1812. break;
  1813. case WLAN_MD_CP_EXT_VDEV:
  1814. if (cfg_get(psoc, CFG_OL_MD_CP_EXT_VDEV))
  1815. setval = true;
  1816. break;
  1817. case WLAN_MD_CP_EXT_PEER:
  1818. if (cfg_get(psoc, CFG_OL_MD_CP_EXT_PEER))
  1819. setval = true;
  1820. break;
  1821. case WLAN_MD_DP_SOC:
  1822. if (cfg_get(psoc, CFG_OL_MD_DP_SOC))
  1823. setval = true;
  1824. break;
  1825. case WLAN_MD_DP_PDEV:
  1826. if (cfg_get(psoc, CFG_OL_MD_DP_PDEV))
  1827. setval = true;
  1828. break;
  1829. case WLAN_MD_DP_PEER:
  1830. if (cfg_get(psoc, CFG_OL_MD_DP_PEER))
  1831. setval = true;
  1832. break;
  1833. case WLAN_MD_DP_SRNG_REO_DEST:
  1834. case WLAN_MD_DP_SRNG_REO_EXCEPTION:
  1835. case WLAN_MD_DP_SRNG_RX_REL:
  1836. case WLAN_MD_DP_SRNG_REO_REINJECT:
  1837. case WLAN_MD_DP_SRNG_REO_CMD:
  1838. case WLAN_MD_DP_SRNG_REO_STATUS:
  1839. if (cfg_get(psoc, CFG_OL_MD_DP_SRNG_REO))
  1840. setval = true;
  1841. break;
  1842. case WLAN_MD_DP_SRNG_TCL_DATA:
  1843. case WLAN_MD_DP_SRNG_TCL_CMD:
  1844. case WLAN_MD_DP_SRNG_TCL_STATUS:
  1845. case WLAN_MD_DP_SRNG_TX_COMP:
  1846. if (cfg_get(psoc, CFG_OL_MD_DP_SRNG_TCL))
  1847. setval = true;
  1848. break;
  1849. case WLAN_MD_DP_SRNG_WBM_DESC_REL:
  1850. case WLAN_MD_DP_SRNG_WBM_IDLE_LINK:
  1851. if (cfg_get(psoc, CFG_OL_MD_DP_SRNG_WBM))
  1852. setval = true;
  1853. break;
  1854. case WLAN_MD_DP_LINK_DESC_BANK:
  1855. if (cfg_get(psoc, CFG_OL_MD_DP_LINK_DESC_BANK))
  1856. setval = true;
  1857. break;
  1858. case WLAN_MD_DP_SRNG_RXDMA_MON_BUF:
  1859. case WLAN_MD_DP_SRNG_RXDMA_MON_DST:
  1860. case WLAN_MD_DP_SRNG_RXDMA_MON_DESC:
  1861. case WLAN_MD_DP_SRNG_RXDMA_ERR_DST:
  1862. case WLAN_MD_DP_SRNG_RXDMA_MON_STATUS:
  1863. if (cfg_get(psoc, CFG_OL_MD_DP_SRNG_RXDMA))
  1864. setval = true;
  1865. break;
  1866. case WLAN_MD_DP_HAL_SOC:
  1867. if (cfg_get(psoc, CFG_OL_MD_DP_HAL_SOC))
  1868. setval = true;
  1869. break;
  1870. case WLAN_MD_OBJMGR_PSOC:
  1871. case WLAN_MD_OBJMGR_PSOC_TGT_INFO:
  1872. if (cfg_get(psoc, CFG_OL_MD_OBJMGR_PSOC))
  1873. setval = true;
  1874. break;
  1875. case WLAN_MD_OBJMGR_PDEV:
  1876. case WLAN_MD_OBJMGR_PDEV_MLME:
  1877. if (cfg_get(psoc, CFG_OL_MD_OBJMGR_PDEV))
  1878. setval = true;
  1879. break;
  1880. case WLAN_MD_OBJMGR_VDEV_MLME:
  1881. case WLAN_MD_OBJMGR_VDEV_SM:
  1882. case WLAN_MD_OBJMGR_VDEV:
  1883. if (cfg_get(psoc, CFG_OL_MD_OBJMGR_VDEV))
  1884. setval = true;
  1885. break;
  1886. default:
  1887. qdf_debug("Minidump: Type not implemented");
  1888. }
  1889. return setval;
  1890. }
  1891. #else /* CONFIG_QCA_MINIDUMP */
  1892. static bool wlan_minidump_log_enabled(struct wlan_objmgr_psoc *psoc,
  1893. enum wlan_minidump_host_data type)
  1894. {
  1895. return false;
  1896. }
  1897. #endif
  1898. void wlan_minidump_log(void *start_addr, const size_t size,
  1899. void *psoc_obj,
  1900. enum wlan_minidump_host_data type,
  1901. const char *name)
  1902. {
  1903. struct wlan_objmgr_psoc *psoc;
  1904. if (!psoc_obj) {
  1905. qdf_debug("Minidump: Psoc is NULL");
  1906. return;
  1907. }
  1908. psoc = (struct wlan_objmgr_psoc *)psoc_obj;
  1909. if (psoc && wlan_minidump_log_enabled(psoc, type))
  1910. qdf_minidump_log(start_addr, size, name);
  1911. }
  1912. qdf_export_symbol(wlan_minidump_log);
  1913. void wlan_minidump_remove(void *start_addr, const size_t size,
  1914. void *psoc_obj,
  1915. enum wlan_minidump_host_data type,
  1916. const char *name)
  1917. {
  1918. struct wlan_objmgr_psoc *psoc;
  1919. if (!psoc_obj) {
  1920. qdf_debug("Minidump: Psoc is NULL");
  1921. return;
  1922. }
  1923. psoc = (struct wlan_objmgr_psoc *)psoc_obj;
  1924. if (psoc && wlan_minidump_log_enabled(psoc, type))
  1925. qdf_minidump_remove(start_addr, size, name);
  1926. }
  1927. qdf_export_symbol(wlan_minidump_remove);