msm_cvp.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include "msm_cvp.h"
  6. #include "cvp_hfi.h"
  7. #include "cvp_core_hfi.h"
  8. #include "msm_cvp_buf.h"
  9. struct cvp_power_level {
  10. unsigned long core_sum;
  11. unsigned long op_core_sum;
  12. unsigned long bw_sum;
  13. };
  14. int msm_cvp_get_session_info(struct msm_cvp_inst *inst, u32 *session)
  15. {
  16. int rc = 0;
  17. struct msm_cvp_inst *s;
  18. if (!inst || !inst->core || !session) {
  19. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  20. return -EINVAL;
  21. }
  22. s = cvp_get_inst_validate(inst->core, inst);
  23. if (!s)
  24. return -ECONNRESET;
  25. s->cur_cmd_type = EVA_KMD_GET_SESSION_INFO;
  26. *session = hash32_ptr(inst->session);
  27. dprintk(CVP_SESS, "%s: id 0x%x\n", __func__, *session);
  28. s->cur_cmd_type = 0;
  29. cvp_put_inst(s);
  30. return rc;
  31. }
  32. static bool cvp_msg_pending(struct cvp_session_queue *sq,
  33. struct cvp_session_msg **msg, u64 *ktid)
  34. {
  35. struct cvp_session_msg *mptr, *dummy;
  36. bool result = false;
  37. mptr = NULL;
  38. spin_lock(&sq->lock);
  39. if (sq->state == QUEUE_INIT || sq->state == QUEUE_INVALID) {
  40. /* The session is being deleted */
  41. spin_unlock(&sq->lock);
  42. *msg = NULL;
  43. return true;
  44. }
  45. result = list_empty(&sq->msgs);
  46. if (!result) {
  47. if (!ktid) {
  48. mptr =
  49. list_first_entry(&sq->msgs, struct cvp_session_msg,
  50. node);
  51. list_del_init(&mptr->node);
  52. sq->msg_count--;
  53. } else {
  54. result = true;
  55. list_for_each_entry_safe(mptr, dummy, &sq->msgs, node) {
  56. if (*ktid == mptr->pkt.client_data.kdata) {
  57. list_del_init(&mptr->node);
  58. sq->msg_count--;
  59. result = false;
  60. break;
  61. }
  62. }
  63. if (result)
  64. mptr = NULL;
  65. }
  66. }
  67. spin_unlock(&sq->lock);
  68. *msg = mptr;
  69. return !result;
  70. }
  71. static int cvp_wait_process_message(struct msm_cvp_inst *inst,
  72. struct cvp_session_queue *sq, u64 *ktid,
  73. unsigned long timeout,
  74. struct eva_kmd_hfi_packet *out)
  75. {
  76. struct cvp_session_msg *msg = NULL;
  77. struct cvp_hfi_msg_session_hdr *hdr;
  78. int rc = 0;
  79. if (wait_event_timeout(sq->wq,
  80. cvp_msg_pending(sq, &msg, ktid), timeout) == 0) {
  81. dprintk(CVP_WARN, "session queue wait timeout\n");
  82. rc = -ETIMEDOUT;
  83. goto exit;
  84. }
  85. if (msg == NULL) {
  86. dprintk(CVP_WARN, "%s: queue state %d, msg cnt %d\n", __func__,
  87. sq->state, sq->msg_count);
  88. if (inst->state >= MSM_CVP_CLOSE_DONE ||
  89. (sq->state != QUEUE_ACTIVE &&
  90. sq->state != QUEUE_START)) {
  91. rc = -ECONNRESET;
  92. goto exit;
  93. }
  94. msm_cvp_comm_kill_session(inst);
  95. goto exit;
  96. }
  97. if (!out) {
  98. kmem_cache_free(cvp_driver->msg_cache, msg);
  99. goto exit;
  100. }
  101. hdr = (struct cvp_hfi_msg_session_hdr *)&msg->pkt;
  102. memcpy(out, &msg->pkt, get_msg_size(hdr));
  103. if (hdr->client_data.kdata >= get_pkt_array_size())
  104. msm_cvp_unmap_frame(inst, hdr->client_data.kdata);
  105. kmem_cache_free(cvp_driver->msg_cache, msg);
  106. exit:
  107. return rc;
  108. }
  109. static int msm_cvp_session_receive_hfi(struct msm_cvp_inst *inst,
  110. struct eva_kmd_hfi_packet *out_pkt)
  111. {
  112. unsigned long wait_time;
  113. struct cvp_session_queue *sq;
  114. struct msm_cvp_inst *s;
  115. int rc = 0;
  116. if (!inst) {
  117. dprintk(CVP_ERR, "%s invalid session\n", __func__);
  118. return -EINVAL;
  119. }
  120. s = cvp_get_inst_validate(inst->core, inst);
  121. if (!s)
  122. return -ECONNRESET;
  123. s->cur_cmd_type = EVA_KMD_RECEIVE_MSG_PKT;
  124. wait_time = msecs_to_jiffies(CVP_MAX_WAIT_TIME);
  125. sq = &inst->session_queue;
  126. rc = cvp_wait_process_message(inst, sq, NULL, wait_time, out_pkt);
  127. s->cur_cmd_type = 0;
  128. cvp_put_inst(inst);
  129. return rc;
  130. }
  131. static int msm_cvp_session_process_hfi(
  132. struct msm_cvp_inst *inst,
  133. struct eva_kmd_hfi_packet *in_pkt,
  134. unsigned int in_offset,
  135. unsigned int in_buf_num)
  136. {
  137. int pkt_idx, pkt_type, rc = 0;
  138. struct cvp_hfi_device *hdev;
  139. unsigned int offset = 0, buf_num = 0, signal;
  140. struct cvp_session_queue *sq;
  141. struct msm_cvp_inst *s;
  142. bool is_config_pkt;
  143. enum buf_map_type map_type;
  144. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  145. if (!inst || !inst->core || !in_pkt) {
  146. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  147. return -EINVAL;
  148. }
  149. s = cvp_get_inst_validate(inst->core, inst);
  150. if (!s)
  151. return -ECONNRESET;
  152. inst->cur_cmd_type = EVA_KMD_SEND_CMD_PKT;
  153. hdev = inst->core->device;
  154. pkt_idx = get_pkt_index((struct cvp_hal_session_cmd_pkt *)in_pkt);
  155. if (pkt_idx < 0) {
  156. dprintk(CVP_ERR, "%s incorrect packet %d, %x\n", __func__,
  157. in_pkt->pkt_data[0],
  158. in_pkt->pkt_data[1]);
  159. goto exit;
  160. } else {
  161. signal = cvp_hfi_defs[pkt_idx].resp;
  162. is_config_pkt = cvp_hfi_defs[pkt_idx].is_config_pkt;
  163. }
  164. if (signal == HAL_NO_RESP) {
  165. /* Frame packets are not allowed before session starts*/
  166. sq = &inst->session_queue;
  167. spin_lock(&sq->lock);
  168. if ((sq->state != QUEUE_START && !is_config_pkt) ||
  169. (sq->state >= QUEUE_INVALID)) {
  170. /*
  171. * A init packet is allowed in case of
  172. * QUEUE_ACTIVE, QUEUE_START, QUEUE_STOP
  173. * A frame packet is only allowed in case of
  174. * QUEUE_START
  175. */
  176. spin_unlock(&sq->lock);
  177. dprintk(CVP_ERR, "%s: invalid queue state %d\n",
  178. __func__, sq->state);
  179. rc = -EINVAL;
  180. goto exit;
  181. }
  182. spin_unlock(&sq->lock);
  183. }
  184. if (in_offset && in_buf_num) {
  185. offset = in_offset;
  186. buf_num = in_buf_num;
  187. }
  188. if (!is_buf_param_valid(buf_num, offset)) {
  189. dprintk(CVP_ERR, "Incorrect buffer num and offset in cmd\n");
  190. return -EINVAL;
  191. }
  192. pkt_type = in_pkt->pkt_data[1];
  193. map_type = cvp_find_map_type(pkt_type);
  194. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  195. /* The kdata will be overriden by transaction ID if the cmd has buf */
  196. cmd_hdr->client_data.kdata = pkt_idx;
  197. if (map_type == MAP_PERSIST)
  198. rc = msm_cvp_map_user_persist(inst, in_pkt, offset, buf_num);
  199. else if (map_type == UNMAP_PERSIST)
  200. rc = msm_cvp_mark_user_persist(inst, in_pkt, offset, buf_num);
  201. else
  202. rc = msm_cvp_map_frame(inst, in_pkt, offset, buf_num);
  203. if (rc)
  204. goto exit;
  205. rc = call_hfi_op(hdev, session_send, (void *)inst->session, in_pkt);
  206. if (rc) {
  207. dprintk(CVP_ERR,
  208. "%s: Failed in call_hfi_op %d, %x\n",
  209. __func__, in_pkt->pkt_data[0], in_pkt->pkt_data[1]);
  210. goto exit;
  211. }
  212. if (signal != HAL_NO_RESP)
  213. dprintk(CVP_ERR, "%s signal %d from UMD is not HAL_NO_RESP\n",
  214. __func__, signal);
  215. exit:
  216. inst->cur_cmd_type = 0;
  217. cvp_put_inst(inst);
  218. return rc;
  219. }
  220. static bool cvp_fence_wait(struct cvp_fence_queue *q,
  221. struct cvp_fence_command **fence,
  222. enum queue_state *state)
  223. {
  224. struct cvp_fence_command *f;
  225. *fence = NULL;
  226. mutex_lock(&q->lock);
  227. *state = q->state;
  228. if (*state != QUEUE_START) {
  229. mutex_unlock(&q->lock);
  230. return true;
  231. }
  232. if (list_empty(&q->wait_list)) {
  233. mutex_unlock(&q->lock);
  234. return false;
  235. }
  236. f = list_first_entry(&q->wait_list, struct cvp_fence_command, list);
  237. list_del_init(&f->list);
  238. list_add_tail(&f->list, &q->sched_list);
  239. mutex_unlock(&q->lock);
  240. *fence = f;
  241. return true;
  242. }
  243. static int cvp_readjust_clock(struct msm_cvp_core *core,
  244. u32 avg_cycles, enum hfi_hw_thread i)
  245. {
  246. int rc = 0;
  247. struct allowed_clock_rates_table *tbl = NULL;
  248. unsigned int tbl_size = 0;
  249. unsigned int cvp_min_rate = 0, cvp_max_rate = 0;
  250. unsigned long tmp = core->curr_freq;
  251. unsigned long lo_freq = 0;
  252. u32 j;
  253. tbl = core->resources.allowed_clks_tbl;
  254. tbl_size = core->resources.allowed_clks_tbl_size;
  255. cvp_min_rate = tbl[0].clock_rate;
  256. cvp_max_rate = tbl[tbl_size - 1].clock_rate;
  257. if (!((avg_cycles > core->dyn_clk.hi_ctrl_lim[i] &&
  258. core->curr_freq != cvp_max_rate) ||
  259. (avg_cycles <= core->dyn_clk.lo_ctrl_lim[i] &&
  260. core->curr_freq != cvp_min_rate))) {
  261. return rc;
  262. }
  263. core->curr_freq = ((avg_cycles * core->dyn_clk.sum_fps[i]) << 1)/3;
  264. dprintk(CVP_PWR,
  265. "%s - cycles tot %u, avg %u. sum_fps %u, cur_freq %u\n",
  266. __func__,
  267. core->dyn_clk.cycle[i].total,
  268. avg_cycles,
  269. core->dyn_clk.sum_fps[i],
  270. core->curr_freq);
  271. if (core->curr_freq > cvp_max_rate) {
  272. core->curr_freq = cvp_max_rate;
  273. lo_freq = (tbl_size > 1) ?
  274. tbl[tbl_size - 2].clock_rate :
  275. cvp_min_rate;
  276. } else if (core->curr_freq <= cvp_min_rate) {
  277. core->curr_freq = cvp_min_rate;
  278. lo_freq = cvp_min_rate;
  279. } else {
  280. for (j = 1; j < tbl_size; j++)
  281. if (core->curr_freq <= tbl[j].clock_rate)
  282. break;
  283. core->curr_freq = tbl[j].clock_rate;
  284. lo_freq = tbl[j-1].clock_rate;
  285. }
  286. dprintk(CVP_PWR,
  287. "%s:%d - %d - Readjust to %u\n",
  288. __func__, __LINE__, i, core->curr_freq);
  289. rc = msm_cvp_set_clocks(core);
  290. if (rc) {
  291. dprintk(CVP_ERR,
  292. "Failed to set clock rate %u: %d %s\n",
  293. core->curr_freq, rc, __func__);
  294. core->curr_freq = tmp;
  295. } else {
  296. lo_freq = (lo_freq < core->dyn_clk.conf_freq) ?
  297. core->dyn_clk.conf_freq : lo_freq;
  298. core->dyn_clk.hi_ctrl_lim[i] = core->dyn_clk.sum_fps[i] ?
  299. ((core->curr_freq*3)>>1)/core->dyn_clk.sum_fps[i] : 0;
  300. core->dyn_clk.lo_ctrl_lim[i] =
  301. core->dyn_clk.sum_fps[i] ?
  302. ((lo_freq*3)>>1)/core->dyn_clk.sum_fps[i] : 0;
  303. dprintk(CVP_PWR,
  304. "%s - Readjust clk to %u. New lim [%d] hi %u lo %u\n",
  305. __func__, core->curr_freq, i,
  306. core->dyn_clk.hi_ctrl_lim[i],
  307. core->dyn_clk.lo_ctrl_lim[i]);
  308. }
  309. return rc;
  310. }
  311. static int cvp_check_clock(struct msm_cvp_inst *inst,
  312. struct cvp_hfi_msg_session_hdr_ext *hdr)
  313. {
  314. int rc = 0;
  315. u32 i, j;
  316. u32 hw_cycles[HFI_MAX_HW_THREADS] = {0};
  317. u32 fw_cycles = 0;
  318. struct msm_cvp_core *core = inst->core;
  319. for (i = 0; i < HFI_MAX_HW_ACTIVATIONS_PER_FRAME; ++i)
  320. fw_cycles += hdr->fw_cycles[i];
  321. for (i = 0; i < HFI_MAX_HW_THREADS; ++i)
  322. for (j = 0; j < HFI_MAX_HW_ACTIVATIONS_PER_FRAME; ++j)
  323. hw_cycles[i] += hdr->hw_cycles[i][j];
  324. dprintk(CVP_PWR, "%s - cycles fw %u. FDU %d MPU %d ODU %d ICA %d\n",
  325. __func__, fw_cycles, hw_cycles[0],
  326. hw_cycles[1], hw_cycles[2], hw_cycles[3]);
  327. mutex_lock(&core->clk_lock);
  328. for (i = 0; i < HFI_MAX_HW_THREADS; ++i) {
  329. dprintk(CVP_PWR, "%s - %d: hw_cycles %u, tens_thresh %u\n",
  330. __func__, i, hw_cycles[i],
  331. core->dyn_clk.hi_ctrl_lim[i]);
  332. if (core->dyn_clk.hi_ctrl_lim[i]) {
  333. if (core->dyn_clk.cycle[i].size < CVP_CYCLE_STAT_SIZE)
  334. core->dyn_clk.cycle[i].size++;
  335. else
  336. core->dyn_clk.cycle[i].total -=
  337. core->dyn_clk.cycle[i].busy[
  338. core->dyn_clk.cycle[i].idx];
  339. if (hw_cycles[i]) {
  340. core->dyn_clk.cycle[i].busy[
  341. core->dyn_clk.cycle[i].idx]
  342. = hw_cycles[i] + fw_cycles;
  343. core->dyn_clk.cycle[i].total
  344. += hw_cycles[i] + fw_cycles;
  345. dprintk(CVP_PWR,
  346. "%s: busy (hw + fw) cycles = %u\n",
  347. __func__,
  348. core->dyn_clk.cycle[i].busy[
  349. core->dyn_clk.cycle[i].idx]);
  350. dprintk(CVP_PWR, "total cycles %u\n",
  351. core->dyn_clk.cycle[i].total);
  352. } else {
  353. core->dyn_clk.cycle[i].busy[
  354. core->dyn_clk.cycle[i].idx] =
  355. hdr->busy_cycles;
  356. core->dyn_clk.cycle[i].total +=
  357. hdr->busy_cycles;
  358. dprintk(CVP_PWR,
  359. "%s - busy cycles = %u total %u\n",
  360. __func__,
  361. core->dyn_clk.cycle[i].busy[
  362. core->dyn_clk.cycle[i].idx],
  363. core->dyn_clk.cycle[i].total);
  364. }
  365. core->dyn_clk.cycle[i].idx =
  366. (core->dyn_clk.cycle[i].idx ==
  367. CVP_CYCLE_STAT_SIZE-1) ?
  368. 0 : core->dyn_clk.cycle[i].idx+1;
  369. dprintk(CVP_PWR, "%s - %d: size %u, tens_thresh %u\n",
  370. __func__, i, core->dyn_clk.cycle[i].size,
  371. core->dyn_clk.hi_ctrl_lim[i]);
  372. if (core->dyn_clk.cycle[i].size == CVP_CYCLE_STAT_SIZE
  373. && core->dyn_clk.hi_ctrl_lim[i] != 0) {
  374. u32 avg_cycles =
  375. core->dyn_clk.cycle[i].total>>3;
  376. rc = cvp_readjust_clock(core,
  377. avg_cycles,
  378. i);
  379. }
  380. }
  381. }
  382. mutex_unlock(&core->clk_lock);
  383. return rc;
  384. }
  385. static int cvp_fence_proc(struct msm_cvp_inst *inst,
  386. struct cvp_fence_command *fc,
  387. struct cvp_hfi_cmd_session_hdr *pkt)
  388. {
  389. int rc = 0;
  390. unsigned long timeout;
  391. u64 ktid;
  392. int synx_state = SYNX_STATE_SIGNALED_SUCCESS;
  393. struct cvp_hfi_device *hdev;
  394. struct cvp_session_queue *sq;
  395. u32 hfi_err = HFI_ERR_NONE;
  396. struct cvp_hfi_msg_session_hdr_ext hdr;
  397. bool clock_check = false;
  398. dprintk(CVP_SYNX, "%s %s\n", current->comm, __func__);
  399. hdev = inst->core->device;
  400. sq = &inst->session_queue_fence;
  401. ktid = pkt->client_data.kdata;
  402. rc = cvp_synx_ops(inst, CVP_INPUT_SYNX, fc, &synx_state);
  403. if (rc) {
  404. msm_cvp_unmap_frame(inst, pkt->client_data.kdata);
  405. goto exit;
  406. }
  407. rc = call_hfi_op(hdev, session_send, (void *)inst->session,
  408. (struct eva_kmd_hfi_packet *)pkt);
  409. if (rc) {
  410. dprintk(CVP_ERR, "%s %s: Failed in call_hfi_op %d, %x\n",
  411. current->comm, __func__, pkt->size, pkt->packet_type);
  412. synx_state = SYNX_STATE_SIGNALED_ERROR;
  413. goto exit;
  414. }
  415. timeout = msecs_to_jiffies(CVP_MAX_WAIT_TIME);
  416. rc = cvp_wait_process_message(inst, sq, &ktid, timeout,
  417. (struct eva_kmd_hfi_packet *)&hdr);
  418. /* Only FD support dcvs at certain FW */
  419. if (!msm_cvp_dcvs_disable &&
  420. hdr.packet_type == HFI_MSG_SESSION_CVP_FD) {
  421. if (hdr.size == sizeof(struct cvp_hfi_msg_session_hdr_ext)
  422. + sizeof(struct cvp_hfi_buf_type)) {
  423. struct cvp_hfi_msg_session_hdr_ext *fhdr =
  424. (struct cvp_hfi_msg_session_hdr_ext *)&hdr;
  425. struct msm_cvp_core *core = inst->core;
  426. dprintk(CVP_PWR, "busy cycle %d, total %d\n",
  427. fhdr->busy_cycles, fhdr->total_cycles);
  428. if (core && (core->dyn_clk.sum_fps[HFI_HW_FDU] ||
  429. core->dyn_clk.sum_fps[HFI_HW_MPU] ||
  430. core->dyn_clk.sum_fps[HFI_HW_OD] ||
  431. core->dyn_clk.sum_fps[HFI_HW_ICA])) {
  432. clock_check = true;
  433. }
  434. } else {
  435. dprintk(CVP_WARN, "dcvs is disabled, %d != %d + %d\n",
  436. hdr.size, sizeof(struct cvp_hfi_msg_session_hdr_ext),
  437. sizeof(struct cvp_hfi_buf_type));
  438. }
  439. }
  440. hfi_err = hdr.error_type;
  441. if (rc) {
  442. dprintk(CVP_ERR, "%s %s: cvp_wait_process_message rc %d\n",
  443. current->comm, __func__, rc);
  444. synx_state = SYNX_STATE_SIGNALED_ERROR;
  445. goto exit;
  446. }
  447. if (hfi_err == HFI_ERR_SESSION_FLUSHED) {
  448. dprintk(CVP_SYNX, "%s %s: cvp_wait_process_message flushed\n",
  449. current->comm, __func__);
  450. synx_state = SYNX_STATE_SIGNALED_CANCEL;
  451. } else if (hfi_err == HFI_ERR_SESSION_STREAM_CORRUPT) {
  452. dprintk(CVP_INFO, "%s %s: cvp_wait_process_msg non-fatal %d\n",
  453. current->comm, __func__, hfi_err);
  454. synx_state = SYNX_STATE_SIGNALED_SUCCESS;
  455. } else if (hfi_err != HFI_ERR_NONE) {
  456. dprintk(CVP_ERR, "%s %s: cvp_wait_process_message hfi err %d\n",
  457. current->comm, __func__, hfi_err);
  458. synx_state = SYNX_STATE_SIGNALED_CANCEL;
  459. }
  460. exit:
  461. rc = cvp_synx_ops(inst, CVP_OUTPUT_SYNX, fc, &synx_state);
  462. if (clock_check)
  463. cvp_check_clock(inst,
  464. (struct cvp_hfi_msg_session_hdr_ext *)&hdr);
  465. return rc;
  466. }
  467. static int cvp_alloc_fence_data(struct cvp_fence_command **f, u32 size)
  468. {
  469. struct cvp_fence_command *fcmd;
  470. int alloc_size = sizeof(struct cvp_hfi_msg_session_hdr_ext);
  471. fcmd = kzalloc(sizeof(struct cvp_fence_command), GFP_KERNEL);
  472. if (!fcmd)
  473. return -ENOMEM;
  474. alloc_size = (alloc_size >= size) ? alloc_size : size;
  475. fcmd->pkt = kzalloc(alloc_size, GFP_KERNEL);
  476. if (!fcmd->pkt) {
  477. kfree(fcmd);
  478. return -ENOMEM;
  479. }
  480. *f = fcmd;
  481. return 0;
  482. }
  483. static void cvp_free_fence_data(struct cvp_fence_command *f)
  484. {
  485. kfree(f->pkt);
  486. f->pkt = NULL;
  487. kfree(f);
  488. f = NULL;
  489. }
  490. static int cvp_fence_thread(void *data)
  491. {
  492. int rc = 0;
  493. struct msm_cvp_inst *inst;
  494. struct cvp_fence_queue *q;
  495. enum queue_state state;
  496. struct cvp_fence_command *f;
  497. struct cvp_hfi_cmd_session_hdr *pkt;
  498. u32 *synx;
  499. u64 ktid;
  500. dprintk(CVP_SYNX, "Enter %s\n", current->comm);
  501. inst = (struct msm_cvp_inst *)data;
  502. if (!inst || !inst->core || !inst->core->device) {
  503. dprintk(CVP_ERR, "%s invalid inst %pK\n", current->comm, inst);
  504. rc = -EINVAL;
  505. goto exit;
  506. }
  507. q = &inst->fence_cmd_queue;
  508. wait:
  509. dprintk(CVP_SYNX, "%s starts wait\n", current->comm);
  510. f = NULL;
  511. wait_event_interruptible(q->wq, cvp_fence_wait(q, &f, &state));
  512. if (state != QUEUE_START)
  513. goto exit;
  514. if (!f)
  515. goto wait;
  516. pkt = f->pkt;
  517. synx = (u32 *)f->synx;
  518. ktid = pkt->client_data.kdata & (FENCE_BIT - 1);
  519. dprintk(CVP_SYNX, "%s pkt type %d on ktid %llu frameID %llu\n",
  520. current->comm, pkt->packet_type, ktid, f->frame_id);
  521. rc = cvp_fence_proc(inst, f, pkt);
  522. mutex_lock(&q->lock);
  523. cvp_release_synx(inst, f);
  524. list_del_init(&f->list);
  525. state = q->state;
  526. mutex_unlock(&q->lock);
  527. dprintk(CVP_SYNX, "%s done with %d ktid %llu frameID %llu rc %d\n",
  528. current->comm, pkt->packet_type, ktid, f->frame_id, rc);
  529. cvp_free_fence_data(f);
  530. if (rc && state != QUEUE_START)
  531. goto exit;
  532. goto wait;
  533. exit:
  534. dprintk(CVP_SYNX, "%s exit\n", current->comm);
  535. cvp_put_inst(inst);
  536. do_exit(rc);
  537. return rc;
  538. }
  539. static int msm_cvp_session_process_hfi_fence(struct msm_cvp_inst *inst,
  540. struct eva_kmd_arg *arg)
  541. {
  542. int rc = 0;
  543. int idx;
  544. struct eva_kmd_hfi_fence_packet *fence_pkt;
  545. struct eva_kmd_hfi_synx_packet *synx_pkt;
  546. struct eva_kmd_fence_ctrl *kfc;
  547. struct cvp_hfi_cmd_session_hdr *pkt;
  548. unsigned int offset = 0, buf_num = 0, in_offset, in_buf_num;
  549. struct msm_cvp_inst *s;
  550. struct cvp_fence_command *f;
  551. struct cvp_fence_queue *q;
  552. u32 *fence;
  553. enum op_mode mode;
  554. if (!inst || !inst->core || !arg || !inst->core->device) {
  555. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  556. return -EINVAL;
  557. }
  558. s = cvp_get_inst_validate(inst->core, inst);
  559. if (!s)
  560. return -ECONNRESET;
  561. q = &inst->fence_cmd_queue;
  562. mutex_lock(&q->lock);
  563. mode = q->mode;
  564. mutex_unlock(&q->lock);
  565. if (mode == OP_DRAINING) {
  566. dprintk(CVP_SYNX, "%s: flush in progress\n", __func__);
  567. rc = -EBUSY;
  568. goto exit;
  569. }
  570. in_offset = arg->buf_offset;
  571. in_buf_num = arg->buf_num;
  572. fence_pkt = &arg->data.hfi_fence_pkt;
  573. pkt = (struct cvp_hfi_cmd_session_hdr *)&fence_pkt->pkt_data;
  574. idx = get_pkt_index((struct cvp_hal_session_cmd_pkt *)pkt);
  575. if (idx < 0 ||
  576. (pkt->size > MAX_HFI_FENCE_OFFSET * sizeof(unsigned int))) {
  577. dprintk(CVP_ERR, "%s incorrect packet %d %#x\n", __func__,
  578. pkt->size, pkt->packet_type);
  579. goto exit;
  580. }
  581. if (in_offset && in_buf_num) {
  582. offset = in_offset;
  583. buf_num = in_buf_num;
  584. }
  585. if (!is_buf_param_valid(buf_num, offset)) {
  586. dprintk(CVP_ERR, "Incorrect buf num and offset in cmd\n");
  587. goto exit;
  588. }
  589. rc = msm_cvp_map_frame(inst, (struct eva_kmd_hfi_packet *)pkt, offset,
  590. buf_num);
  591. if (rc)
  592. goto exit;
  593. rc = cvp_alloc_fence_data(&f, pkt->size);
  594. if (rc)
  595. goto exit;
  596. f->type = cvp_hfi_defs[idx].type;
  597. f->mode = OP_NORMAL;
  598. synx_pkt = &arg->data.hfi_synx_pkt;
  599. if (synx_pkt->fence_data[0] != 0xFEEDFACE) {
  600. dprintk(CVP_ERR, "%s deprecated synx path\n", __func__);
  601. cvp_free_fence_data(f);
  602. msm_cvp_unmap_frame(inst, pkt->client_data.kdata);
  603. goto exit;
  604. } else {
  605. kfc = &synx_pkt->fc;
  606. fence = (u32 *)&kfc->fences;
  607. f->frame_id = kfc->frame_id;
  608. f->signature = 0xFEEDFACE;
  609. f->num_fences = kfc->num_fences;
  610. f->output_index = kfc->output_index;
  611. }
  612. dprintk(CVP_SYNX, "%s: frameID %llu ktid %llu\n",
  613. __func__, f->frame_id, pkt->client_data.kdata);
  614. memcpy(f->pkt, pkt, pkt->size);
  615. f->pkt->client_data.kdata |= FENCE_BIT;
  616. rc = cvp_import_synx(inst, f, fence);
  617. if (rc) {
  618. kfree(f);
  619. goto exit;
  620. }
  621. mutex_lock(&q->lock);
  622. list_add_tail(&f->list, &inst->fence_cmd_queue.wait_list);
  623. mutex_unlock(&q->lock);
  624. wake_up(&inst->fence_cmd_queue.wq);
  625. exit:
  626. cvp_put_inst(s);
  627. return rc;
  628. }
  629. static inline int div_by_1dot5(unsigned int a)
  630. {
  631. unsigned long i = a << 1;
  632. return (unsigned int) i/3;
  633. }
  634. static inline int max_3(unsigned int a, unsigned int b, unsigned int c)
  635. {
  636. return (a >= b) ? ((a >= c) ? a : c) : ((b >= c) ? b : c);
  637. }
  638. static bool is_subblock_profile_existed(struct msm_cvp_inst *inst)
  639. {
  640. return (inst->prop.od_cycles ||
  641. inst->prop.mpu_cycles ||
  642. inst->prop.fdu_cycles ||
  643. inst->prop.ica_cycles);
  644. }
  645. static void aggregate_power_update(struct msm_cvp_core *core,
  646. struct cvp_power_level *nrt_pwr,
  647. struct cvp_power_level *rt_pwr,
  648. unsigned int max_clk_rate)
  649. {
  650. struct msm_cvp_inst *inst;
  651. int i;
  652. unsigned long fdu_sum[2] = {0}, od_sum[2] = {0}, mpu_sum[2] = {0};
  653. unsigned long ica_sum[2] = {0}, fw_sum[2] = {0};
  654. unsigned long op_fdu_max[2] = {0}, op_od_max[2] = {0};
  655. unsigned long op_mpu_max[2] = {0}, op_ica_max[2] = {0};
  656. unsigned long op_fw_max[2] = {0}, bw_sum[2] = {0}, op_bw_max[2] = {0};
  657. core->dyn_clk.sum_fps[HFI_HW_FDU] = 0;
  658. core->dyn_clk.sum_fps[HFI_HW_MPU] = 0;
  659. core->dyn_clk.sum_fps[HFI_HW_OD] = 0;
  660. core->dyn_clk.sum_fps[HFI_HW_ICA] = 0;
  661. list_for_each_entry(inst, &core->instances, list) {
  662. if (inst->state == MSM_CVP_CORE_INVALID ||
  663. inst->state == MSM_CVP_CORE_UNINIT ||
  664. !is_subblock_profile_existed(inst))
  665. continue;
  666. if (inst->prop.priority <= CVP_RT_PRIO_THRESHOLD) {
  667. /* Non-realtime session use index 0 */
  668. i = 0;
  669. } else {
  670. i = 1;
  671. }
  672. dprintk(CVP_PROF, "pwrUpdate fdu %u od %u mpu %u ica %u\n",
  673. inst->prop.fdu_cycles,
  674. inst->prop.od_cycles,
  675. inst->prop.mpu_cycles,
  676. inst->prop.ica_cycles);
  677. dprintk(CVP_PROF, "pwrUpdate fw %u fdu_o %u od_o %u mpu_o %u\n",
  678. inst->prop.fw_cycles,
  679. inst->prop.fdu_op_cycles,
  680. inst->prop.od_op_cycles,
  681. inst->prop.mpu_op_cycles);
  682. dprintk(CVP_PROF, "pwrUpdate ica_o %u fw_o %u bw %u bw_o %u\n",
  683. inst->prop.ica_op_cycles,
  684. inst->prop.fw_op_cycles,
  685. inst->prop.ddr_bw,
  686. inst->prop.ddr_op_bw);
  687. fdu_sum[i] += inst->prop.fdu_cycles;
  688. od_sum[i] += inst->prop.od_cycles;
  689. mpu_sum[i] += inst->prop.mpu_cycles;
  690. ica_sum[i] += inst->prop.ica_cycles;
  691. fw_sum[i] += inst->prop.fw_cycles;
  692. op_fdu_max[i] =
  693. (op_fdu_max[i] >= inst->prop.fdu_op_cycles) ?
  694. op_fdu_max[i] : inst->prop.fdu_op_cycles;
  695. op_od_max[i] =
  696. (op_od_max[i] >= inst->prop.od_op_cycles) ?
  697. op_od_max[i] : inst->prop.od_op_cycles;
  698. op_mpu_max[i] =
  699. (op_mpu_max[i] >= inst->prop.mpu_op_cycles) ?
  700. op_mpu_max[i] : inst->prop.mpu_op_cycles;
  701. op_ica_max[i] =
  702. (op_ica_max[i] >= inst->prop.ica_op_cycles) ?
  703. op_ica_max[i] : inst->prop.ica_op_cycles;
  704. op_fw_max[i] =
  705. (op_fw_max[i] >= inst->prop.fw_op_cycles) ?
  706. op_fw_max[i] : inst->prop.fw_op_cycles;
  707. bw_sum[i] += inst->prop.ddr_bw;
  708. op_bw_max[i] =
  709. (op_bw_max[i] >= inst->prop.ddr_op_bw) ?
  710. op_bw_max[i] : inst->prop.ddr_op_bw;
  711. dprintk(CVP_PWR, "%s:%d - fps fdu %d mpu %d od %d ica %d\n",
  712. __func__, __LINE__,
  713. inst->prop.fps[HFI_HW_FDU], inst->prop.fps[HFI_HW_MPU],
  714. inst->prop.fps[HFI_HW_OD], inst->prop.fps[HFI_HW_ICA]);
  715. core->dyn_clk.sum_fps[HFI_HW_FDU] += inst->prop.fps[HFI_HW_FDU];
  716. core->dyn_clk.sum_fps[HFI_HW_MPU] += inst->prop.fps[HFI_HW_MPU];
  717. core->dyn_clk.sum_fps[HFI_HW_OD] += inst->prop.fps[HFI_HW_OD];
  718. core->dyn_clk.sum_fps[HFI_HW_ICA] += inst->prop.fps[HFI_HW_ICA];
  719. dprintk(CVP_PWR, "%s:%d - sum_fps fdu %d mpu %d od %d ica %d\n",
  720. __func__, __LINE__,
  721. core->dyn_clk.sum_fps[HFI_HW_FDU],
  722. core->dyn_clk.sum_fps[HFI_HW_MPU],
  723. core->dyn_clk.sum_fps[HFI_HW_OD],
  724. core->dyn_clk.sum_fps[HFI_HW_ICA]);
  725. }
  726. for (i = 0; i < 2; i++) {
  727. fdu_sum[i] = max_3(fdu_sum[i], od_sum[i], mpu_sum[i]);
  728. fdu_sum[i] = max_3(fdu_sum[i], ica_sum[i], fw_sum[i]);
  729. op_fdu_max[i] = max_3(op_fdu_max[i], op_od_max[i],
  730. op_mpu_max[i]);
  731. op_fdu_max[i] = max_3(op_fdu_max[i],
  732. op_ica_max[i], op_fw_max[i]);
  733. op_fdu_max[i] =
  734. (op_fdu_max[i] > max_clk_rate) ?
  735. max_clk_rate : op_fdu_max[i];
  736. bw_sum[i] = (bw_sum[i] >= op_bw_max[i]) ?
  737. bw_sum[i] : op_bw_max[i];
  738. }
  739. nrt_pwr->core_sum += fdu_sum[0];
  740. nrt_pwr->op_core_sum = (nrt_pwr->op_core_sum >= op_fdu_max[0]) ?
  741. nrt_pwr->op_core_sum : op_fdu_max[0];
  742. nrt_pwr->bw_sum += bw_sum[0];
  743. rt_pwr->core_sum += fdu_sum[1];
  744. rt_pwr->op_core_sum = (rt_pwr->op_core_sum >= op_fdu_max[1]) ?
  745. rt_pwr->op_core_sum : op_fdu_max[1];
  746. rt_pwr->bw_sum += bw_sum[1];
  747. }
  748. /**
  749. * adjust_bw_freqs(): calculate CVP clock freq and bw required to sustain
  750. * required use case.
  751. * Bandwidth vote will be best-effort, not returning error if the request
  752. * b/w exceeds max limit.
  753. * Clock vote from non-realtime sessions will be best effort, not returning
  754. * error if the aggreated session clock request exceeds max limit.
  755. * Clock vote from realtime session will be hard request. If aggregated
  756. * session clock request exceeds max limit, the function will return
  757. * error.
  758. *
  759. * Ensure caller acquires clk_lock!
  760. */
  761. static int adjust_bw_freqs(void)
  762. {
  763. struct msm_cvp_core *core;
  764. struct iris_hfi_device *hdev;
  765. struct bus_info *bus;
  766. struct clock_set *clocks;
  767. struct clock_info *cl;
  768. struct allowed_clock_rates_table *tbl = NULL;
  769. unsigned int tbl_size;
  770. unsigned int cvp_min_rate, cvp_max_rate, max_bw, min_bw;
  771. struct cvp_power_level rt_pwr = {0}, nrt_pwr = {0};
  772. unsigned long tmp, core_sum, op_core_sum, bw_sum;
  773. int i, rc = 0;
  774. unsigned long ctrl_freq;
  775. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  776. hdev = core->device->hfi_device_data;
  777. clocks = &core->resources.clock_set;
  778. cl = &clocks->clock_tbl[clocks->count - 1];
  779. tbl = core->resources.allowed_clks_tbl;
  780. tbl_size = core->resources.allowed_clks_tbl_size;
  781. cvp_min_rate = tbl[0].clock_rate;
  782. cvp_max_rate = tbl[tbl_size - 1].clock_rate;
  783. bus = &core->resources.bus_set.bus_tbl[1];
  784. max_bw = bus->range[1];
  785. min_bw = max_bw/10;
  786. aggregate_power_update(core, &nrt_pwr, &rt_pwr, cvp_max_rate);
  787. dprintk(CVP_PROF, "PwrUpdate nrt %u %u rt %u %u\n",
  788. nrt_pwr.core_sum, nrt_pwr.op_core_sum,
  789. rt_pwr.core_sum, rt_pwr.op_core_sum);
  790. if (rt_pwr.core_sum > cvp_max_rate) {
  791. dprintk(CVP_WARN, "%s clk vote out of range %lld\n",
  792. __func__, rt_pwr.core_sum);
  793. return -ENOTSUPP;
  794. }
  795. core_sum = rt_pwr.core_sum + nrt_pwr.core_sum;
  796. op_core_sum = (rt_pwr.op_core_sum >= nrt_pwr.op_core_sum) ?
  797. rt_pwr.op_core_sum : nrt_pwr.op_core_sum;
  798. core_sum = (core_sum >= op_core_sum) ?
  799. core_sum : op_core_sum;
  800. if (core_sum > cvp_max_rate) {
  801. core_sum = cvp_max_rate;
  802. } else if (core_sum <= cvp_min_rate) {
  803. core_sum = cvp_min_rate;
  804. } else {
  805. for (i = 1; i < tbl_size; i++)
  806. if (core_sum <= tbl[i].clock_rate)
  807. break;
  808. core_sum = tbl[i].clock_rate;
  809. }
  810. bw_sum = rt_pwr.bw_sum + nrt_pwr.bw_sum;
  811. bw_sum = bw_sum >> 10;
  812. bw_sum = (bw_sum > max_bw) ? max_bw : bw_sum;
  813. bw_sum = (bw_sum < min_bw) ? min_bw : bw_sum;
  814. dprintk(CVP_PROF, "%s %lld %lld\n", __func__,
  815. core_sum, bw_sum);
  816. if (!cl->has_scaling) {
  817. dprintk(CVP_ERR, "Cannot scale CVP clock\n");
  818. return -EINVAL;
  819. }
  820. tmp = core->curr_freq;
  821. core->curr_freq = core_sum;
  822. rc = msm_cvp_set_clocks(core);
  823. if (rc) {
  824. dprintk(CVP_ERR,
  825. "Failed to set clock rate %u %s: %d %s\n",
  826. core_sum, cl->name, rc, __func__);
  827. core->curr_freq = tmp;
  828. return rc;
  829. }
  830. ctrl_freq = (core->curr_freq*3)>>1;
  831. core->dyn_clk.conf_freq = core->curr_freq;
  832. for (i = 0; i < HFI_MAX_HW_THREADS; ++i) {
  833. core->dyn_clk.hi_ctrl_lim[i] = core->dyn_clk.sum_fps[i] ?
  834. ctrl_freq/core->dyn_clk.sum_fps[i] : 0;
  835. core->dyn_clk.lo_ctrl_lim[i] =
  836. core->dyn_clk.hi_ctrl_lim[i];
  837. }
  838. hdev->clk_freq = core->curr_freq;
  839. rc = icc_set_bw(bus->client, bw_sum, 0);
  840. if (rc)
  841. dprintk(CVP_ERR, "Failed voting bus %s to ab %u\n",
  842. bus->name, bw_sum);
  843. return rc;
  844. }
  845. int msm_cvp_update_power(struct msm_cvp_inst *inst)
  846. {
  847. int rc = 0;
  848. struct msm_cvp_core *core;
  849. struct msm_cvp_inst *s;
  850. if (!inst) {
  851. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  852. return -EINVAL;
  853. }
  854. s = cvp_get_inst_validate(inst->core, inst);
  855. if (!s)
  856. return -ECONNRESET;
  857. inst->cur_cmd_type = EVA_KMD_UPDATE_POWER;
  858. core = inst->core;
  859. mutex_lock(&core->clk_lock);
  860. rc = adjust_bw_freqs();
  861. mutex_unlock(&core->clk_lock);
  862. inst->cur_cmd_type = 0;
  863. cvp_put_inst(s);
  864. return rc;
  865. }
  866. int msm_cvp_session_delete(struct msm_cvp_inst *inst)
  867. {
  868. return 0;
  869. }
  870. int msm_cvp_session_create(struct msm_cvp_inst *inst)
  871. {
  872. int rc = 0;
  873. struct synx_initialization_params params;
  874. struct cvp_session_queue *sq;
  875. if (!inst || !inst->core)
  876. return -EINVAL;
  877. if (inst->state >= MSM_CVP_CLOSE_DONE)
  878. return -ECONNRESET;
  879. if (inst->state != MSM_CVP_CORE_INIT_DONE ||
  880. inst->state > MSM_CVP_OPEN_DONE) {
  881. dprintk(CVP_ERR,
  882. "%s Incorrect CVP state %d to create session\n",
  883. __func__, inst->state);
  884. return -EINVAL;
  885. }
  886. rc = msm_cvp_comm_try_state(inst, MSM_CVP_OPEN_DONE);
  887. if (rc) {
  888. dprintk(CVP_ERR,
  889. "Failed to move instance to open done state\n");
  890. goto fail_init;
  891. }
  892. rc = cvp_comm_set_arp_buffers(inst);
  893. if (rc) {
  894. dprintk(CVP_ERR,
  895. "Failed to set ARP buffers\n");
  896. goto fail_init;
  897. }
  898. params.name = "cvp-kernel-client";
  899. if (synx_initialize(&inst->synx_session_id, &params)) {
  900. dprintk(CVP_ERR, "%s synx_initialize failed\n", __func__);
  901. rc = -EFAULT;
  902. }
  903. sq = &inst->session_queue;
  904. spin_lock(&sq->lock);
  905. sq->state = QUEUE_ACTIVE;
  906. spin_unlock(&sq->lock);
  907. fail_init:
  908. return rc;
  909. }
  910. static int session_state_check_init(struct msm_cvp_inst *inst)
  911. {
  912. mutex_lock(&inst->lock);
  913. if (inst->state == MSM_CVP_OPEN || inst->state == MSM_CVP_OPEN_DONE) {
  914. mutex_unlock(&inst->lock);
  915. return 0;
  916. }
  917. mutex_unlock(&inst->lock);
  918. return msm_cvp_session_create(inst);
  919. }
  920. static int cvp_fence_thread_start(struct msm_cvp_inst *inst)
  921. {
  922. u32 tnum = 0;
  923. u32 i = 0;
  924. int rc = 0;
  925. char tname[16];
  926. struct task_struct *thread;
  927. struct cvp_fence_queue *q;
  928. struct cvp_session_queue *sq;
  929. if (!inst->prop.fthread_nr)
  930. return 0;
  931. q = &inst->fence_cmd_queue;
  932. mutex_lock(&q->lock);
  933. q->state = QUEUE_START;
  934. mutex_unlock(&q->lock);
  935. for (i = 0; i < inst->prop.fthread_nr; ++i) {
  936. if (!cvp_get_inst_validate(inst->core, inst)) {
  937. rc = -ECONNRESET;
  938. goto exit;
  939. }
  940. snprintf(tname, sizeof(tname), "fthread_%d", tnum++);
  941. thread = kthread_run(cvp_fence_thread, inst, tname);
  942. if (!thread) {
  943. dprintk(CVP_ERR, "%s create %s fail", __func__, tname);
  944. rc = -ECHILD;
  945. goto exit;
  946. }
  947. }
  948. sq = &inst->session_queue_fence;
  949. spin_lock(&sq->lock);
  950. sq->state = QUEUE_START;
  951. spin_unlock(&sq->lock);
  952. exit:
  953. if (rc) {
  954. mutex_lock(&q->lock);
  955. q->state = QUEUE_STOP;
  956. mutex_unlock(&q->lock);
  957. wake_up_all(&q->wq);
  958. }
  959. return rc;
  960. }
  961. static int cvp_fence_thread_stop(struct msm_cvp_inst *inst)
  962. {
  963. struct cvp_fence_queue *q;
  964. struct cvp_session_queue *sq;
  965. if (!inst->prop.fthread_nr)
  966. return 0;
  967. q = &inst->fence_cmd_queue;
  968. mutex_lock(&q->lock);
  969. q->state = QUEUE_STOP;
  970. mutex_unlock(&q->lock);
  971. sq = &inst->session_queue_fence;
  972. spin_lock(&sq->lock);
  973. sq->state = QUEUE_STOP;
  974. spin_unlock(&sq->lock);
  975. wake_up_all(&q->wq);
  976. wake_up_all(&sq->wq);
  977. return 0;
  978. }
  979. static int msm_cvp_session_start(struct msm_cvp_inst *inst,
  980. struct eva_kmd_arg *arg)
  981. {
  982. struct cvp_session_queue *sq;
  983. sq = &inst->session_queue;
  984. spin_lock(&sq->lock);
  985. if (sq->msg_count) {
  986. dprintk(CVP_ERR, "session start failed queue not empty%d\n",
  987. sq->msg_count);
  988. spin_unlock(&sq->lock);
  989. return -EINVAL;
  990. }
  991. sq->state = QUEUE_START;
  992. spin_unlock(&sq->lock);
  993. return cvp_fence_thread_start(inst);
  994. }
  995. static int msm_cvp_session_stop(struct msm_cvp_inst *inst,
  996. struct eva_kmd_arg *arg)
  997. {
  998. struct cvp_session_queue *sq;
  999. struct eva_kmd_session_control *sc = &arg->data.session_ctrl;
  1000. sq = &inst->session_queue;
  1001. spin_lock(&sq->lock);
  1002. if (sq->msg_count) {
  1003. dprintk(CVP_ERR, "session stop incorrect: queue not empty%d\n",
  1004. sq->msg_count);
  1005. sc->ctrl_data[0] = sq->msg_count;
  1006. spin_unlock(&sq->lock);
  1007. return -EUCLEAN;
  1008. }
  1009. sq->state = QUEUE_STOP;
  1010. pr_info(CVP_DBG_TAG "Stop session: %pK session_id = %d\n",
  1011. "sess", inst, hash32_ptr(inst->session));
  1012. spin_unlock(&sq->lock);
  1013. wake_up_all(&inst->session_queue.wq);
  1014. return cvp_fence_thread_stop(inst);
  1015. }
  1016. int msm_cvp_session_queue_stop(struct msm_cvp_inst *inst)
  1017. {
  1018. struct cvp_session_queue *sq;
  1019. sq = &inst->session_queue;
  1020. spin_lock(&sq->lock);
  1021. if (sq->state == QUEUE_STOP) {
  1022. spin_unlock(&sq->lock);
  1023. return 0;
  1024. }
  1025. sq->state = QUEUE_STOP;
  1026. dprintk(CVP_SESS, "Stop session queue: %pK session_id = %d\n",
  1027. inst, hash32_ptr(inst->session));
  1028. spin_unlock(&sq->lock);
  1029. wake_up_all(&inst->session_queue.wq);
  1030. return cvp_fence_thread_stop(inst);
  1031. }
  1032. static int msm_cvp_session_ctrl(struct msm_cvp_inst *inst,
  1033. struct eva_kmd_arg *arg)
  1034. {
  1035. struct eva_kmd_session_control *ctrl = &arg->data.session_ctrl;
  1036. int rc = 0;
  1037. unsigned int ctrl_type;
  1038. ctrl_type = ctrl->ctrl_type;
  1039. if (!inst && ctrl_type != SESSION_CREATE) {
  1040. dprintk(CVP_ERR, "%s invalid session\n", __func__);
  1041. return -EINVAL;
  1042. }
  1043. switch (ctrl_type) {
  1044. case SESSION_STOP:
  1045. rc = msm_cvp_session_stop(inst, arg);
  1046. break;
  1047. case SESSION_START:
  1048. rc = msm_cvp_session_start(inst, arg);
  1049. break;
  1050. case SESSION_CREATE:
  1051. rc = msm_cvp_session_create(inst);
  1052. break;
  1053. case SESSION_DELETE:
  1054. rc = msm_cvp_session_delete(inst);
  1055. break;
  1056. case SESSION_INFO:
  1057. default:
  1058. dprintk(CVP_ERR, "%s Unsupported session ctrl%d\n",
  1059. __func__, ctrl->ctrl_type);
  1060. rc = -EINVAL;
  1061. }
  1062. return rc;
  1063. }
  1064. static unsigned int msm_cvp_get_hw_aggregate_cycles(enum hw_block hwblk)
  1065. {
  1066. struct msm_cvp_core *core;
  1067. struct msm_cvp_inst *inst;
  1068. unsigned long cycles_sum = 0;
  1069. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1070. if (!core) {
  1071. dprintk(CVP_ERR, "%s: invalid core\n", __func__);
  1072. return -EINVAL;
  1073. }
  1074. mutex_lock(&core->clk_lock);
  1075. list_for_each_entry(inst, &core->instances, list) {
  1076. if (inst->state == MSM_CVP_CORE_INVALID ||
  1077. inst->state == MSM_CVP_CORE_UNINIT ||
  1078. !is_subblock_profile_existed(inst))
  1079. continue;
  1080. switch (hwblk) {
  1081. case CVP_FDU:
  1082. {
  1083. cycles_sum += inst->prop.fdu_cycles;
  1084. break;
  1085. }
  1086. case CVP_ICA:
  1087. {
  1088. cycles_sum += inst->prop.ica_cycles;
  1089. break;
  1090. }
  1091. case CVP_MPU:
  1092. {
  1093. cycles_sum += inst->prop.mpu_cycles;
  1094. break;
  1095. }
  1096. case CVP_OD:
  1097. {
  1098. cycles_sum += inst->prop.od_cycles;
  1099. break;
  1100. }
  1101. default:
  1102. dprintk(CVP_ERR, "unrecognized hw block %d\n",
  1103. hwblk);
  1104. break;
  1105. }
  1106. }
  1107. mutex_unlock(&core->clk_lock);
  1108. cycles_sum = cycles_sum&0xFFFFFFFF;
  1109. return (unsigned int)cycles_sum;
  1110. }
  1111. static int msm_cvp_get_sysprop(struct msm_cvp_inst *inst,
  1112. struct eva_kmd_arg *arg)
  1113. {
  1114. struct eva_kmd_sys_properties *props = &arg->data.sys_properties;
  1115. struct cvp_hfi_device *hdev;
  1116. struct iris_hfi_device *hfi;
  1117. struct cvp_session_prop *session_prop;
  1118. int i, rc = 0;
  1119. if (!inst || !inst->core || !inst->core->device) {
  1120. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1121. return -EINVAL;
  1122. }
  1123. hdev = inst->core->device;
  1124. hfi = hdev->hfi_device_data;
  1125. if (props->prop_num > MAX_KMD_PROP_NUM_PER_PACKET) {
  1126. dprintk(CVP_ERR, "Too many properties %d to get\n",
  1127. props->prop_num);
  1128. return -E2BIG;
  1129. }
  1130. session_prop = &inst->prop;
  1131. for (i = 0; i < props->prop_num; i++) {
  1132. switch (props->prop_data[i].prop_type) {
  1133. case EVA_KMD_PROP_HFI_VERSION:
  1134. {
  1135. props->prop_data[i].data = hfi->version;
  1136. break;
  1137. }
  1138. case EVA_KMD_PROP_SESSION_DUMPOFFSET:
  1139. {
  1140. props->prop_data[i].data =
  1141. session_prop->dump_offset;
  1142. break;
  1143. }
  1144. case EVA_KMD_PROP_SESSION_DUMPSIZE:
  1145. {
  1146. props->prop_data[i].data =
  1147. session_prop->dump_size;
  1148. break;
  1149. }
  1150. case EVA_KMD_PROP_PWR_FDU:
  1151. {
  1152. props->prop_data[i].data =
  1153. msm_cvp_get_hw_aggregate_cycles(CVP_FDU);
  1154. break;
  1155. }
  1156. case EVA_KMD_PROP_PWR_ICA:
  1157. {
  1158. props->prop_data[i].data =
  1159. msm_cvp_get_hw_aggregate_cycles(CVP_ICA);
  1160. break;
  1161. }
  1162. case EVA_KMD_PROP_PWR_OD:
  1163. {
  1164. props->prop_data[i].data =
  1165. msm_cvp_get_hw_aggregate_cycles(CVP_OD);
  1166. break;
  1167. }
  1168. case EVA_KMD_PROP_PWR_MPU:
  1169. {
  1170. props->prop_data[i].data =
  1171. msm_cvp_get_hw_aggregate_cycles(CVP_MPU);
  1172. break;
  1173. }
  1174. default:
  1175. dprintk(CVP_ERR, "unrecognized sys property %d\n",
  1176. props->prop_data[i].prop_type);
  1177. rc = -EFAULT;
  1178. }
  1179. }
  1180. return rc;
  1181. }
  1182. static int msm_cvp_set_sysprop(struct msm_cvp_inst *inst,
  1183. struct eva_kmd_arg *arg)
  1184. {
  1185. struct eva_kmd_sys_properties *props = &arg->data.sys_properties;
  1186. struct eva_kmd_sys_property *prop_array;
  1187. struct cvp_session_prop *session_prop;
  1188. int i, rc = 0;
  1189. if (!inst) {
  1190. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1191. return -EINVAL;
  1192. }
  1193. if (props->prop_num > MAX_KMD_PROP_NUM_PER_PACKET) {
  1194. dprintk(CVP_ERR, "Too many properties %d to set\n",
  1195. props->prop_num);
  1196. return -E2BIG;
  1197. }
  1198. prop_array = &arg->data.sys_properties.prop_data[0];
  1199. session_prop = &inst->prop;
  1200. for (i = 0; i < props->prop_num; i++) {
  1201. switch (prop_array[i].prop_type) {
  1202. case EVA_KMD_PROP_SESSION_TYPE:
  1203. session_prop->type = prop_array[i].data;
  1204. break;
  1205. case EVA_KMD_PROP_SESSION_KERNELMASK:
  1206. session_prop->kernel_mask = prop_array[i].data;
  1207. break;
  1208. case EVA_KMD_PROP_SESSION_PRIORITY:
  1209. session_prop->priority = prop_array[i].data;
  1210. break;
  1211. case EVA_KMD_PROP_SESSION_SECURITY:
  1212. session_prop->is_secure = prop_array[i].data;
  1213. break;
  1214. case EVA_KMD_PROP_SESSION_DSPMASK:
  1215. session_prop->dsp_mask = prop_array[i].data;
  1216. break;
  1217. case EVA_KMD_PROP_PWR_FDU:
  1218. session_prop->fdu_cycles = prop_array[i].data;
  1219. break;
  1220. case EVA_KMD_PROP_PWR_ICA:
  1221. session_prop->ica_cycles =
  1222. div_by_1dot5(prop_array[i].data);
  1223. break;
  1224. case EVA_KMD_PROP_PWR_OD:
  1225. session_prop->od_cycles = prop_array[i].data;
  1226. break;
  1227. case EVA_KMD_PROP_PWR_MPU:
  1228. session_prop->mpu_cycles = prop_array[i].data;
  1229. break;
  1230. case EVA_KMD_PROP_PWR_FW:
  1231. session_prop->fw_cycles =
  1232. div_by_1dot5(prop_array[i].data);
  1233. break;
  1234. case EVA_KMD_PROP_PWR_DDR:
  1235. session_prop->ddr_bw = prop_array[i].data;
  1236. break;
  1237. case EVA_KMD_PROP_PWR_SYSCACHE:
  1238. session_prop->ddr_cache = prop_array[i].data;
  1239. break;
  1240. case EVA_KMD_PROP_PWR_FDU_OP:
  1241. session_prop->fdu_op_cycles = prop_array[i].data;
  1242. break;
  1243. case EVA_KMD_PROP_PWR_ICA_OP:
  1244. session_prop->ica_op_cycles =
  1245. div_by_1dot5(prop_array[i].data);
  1246. break;
  1247. case EVA_KMD_PROP_PWR_OD_OP:
  1248. session_prop->od_op_cycles = prop_array[i].data;
  1249. break;
  1250. case EVA_KMD_PROP_PWR_MPU_OP:
  1251. session_prop->mpu_op_cycles = prop_array[i].data;
  1252. break;
  1253. case EVA_KMD_PROP_PWR_FW_OP:
  1254. session_prop->fw_op_cycles =
  1255. div_by_1dot5(prop_array[i].data);
  1256. break;
  1257. case EVA_KMD_PROP_PWR_DDR_OP:
  1258. session_prop->ddr_op_bw = prop_array[i].data;
  1259. break;
  1260. case EVA_KMD_PROP_PWR_SYSCACHE_OP:
  1261. session_prop->ddr_op_cache = prop_array[i].data;
  1262. break;
  1263. case EVA_KMD_PROP_PWR_FPS_FDU:
  1264. session_prop->fps[HFI_HW_FDU] = prop_array[i].data;
  1265. break;
  1266. case EVA_KMD_PROP_PWR_FPS_MPU:
  1267. session_prop->fps[HFI_HW_MPU] = prop_array[i].data;
  1268. break;
  1269. case EVA_KMD_PROP_PWR_FPS_OD:
  1270. session_prop->fps[HFI_HW_OD] = prop_array[i].data;
  1271. break;
  1272. case EVA_KMD_PROP_PWR_FPS_ICA:
  1273. session_prop->fps[HFI_HW_ICA] = prop_array[i].data;
  1274. break;
  1275. case EVA_KMD_PROP_SESSION_DUMPOFFSET:
  1276. session_prop->dump_offset = prop_array[i].data;
  1277. break;
  1278. case EVA_KMD_PROP_SESSION_DUMPSIZE:
  1279. session_prop->dump_size = prop_array[i].data;
  1280. break;
  1281. default:
  1282. dprintk(CVP_ERR,
  1283. "unrecognized sys property to set %d\n",
  1284. prop_array[i].prop_type);
  1285. rc = -EFAULT;
  1286. }
  1287. }
  1288. return rc;
  1289. }
  1290. static int cvp_drain_fence_cmd_queue_partial(struct msm_cvp_inst *inst)
  1291. {
  1292. unsigned long wait_time;
  1293. struct cvp_fence_queue *q;
  1294. struct cvp_fence_command *f;
  1295. int rc = 0;
  1296. int count = 0, max_count = 0;
  1297. q = &inst->fence_cmd_queue;
  1298. mutex_lock(&q->lock);
  1299. list_for_each_entry(f, &q->sched_list, list) {
  1300. if (f->mode == OP_FLUSH)
  1301. continue;
  1302. ++count;
  1303. }
  1304. list_for_each_entry(f, &q->wait_list, list) {
  1305. if (f->mode == OP_FLUSH)
  1306. continue;
  1307. ++count;
  1308. }
  1309. mutex_unlock(&q->lock);
  1310. wait_time = count * CVP_MAX_WAIT_TIME * 1000;
  1311. dprintk(CVP_SYNX, "%s: wait %d us for %d fence command\n",
  1312. __func__, wait_time, count);
  1313. count = 0;
  1314. max_count = wait_time / 100;
  1315. retry:
  1316. mutex_lock(&q->lock);
  1317. f = list_first_entry(&q->sched_list, struct cvp_fence_command, list);
  1318. /* Wait for all normal frames to finish before return */
  1319. if ((f && f->mode == OP_FLUSH) ||
  1320. (list_empty(&q->sched_list) && list_empty(&q->wait_list))) {
  1321. mutex_unlock(&q->lock);
  1322. return rc;
  1323. }
  1324. mutex_unlock(&q->lock);
  1325. usleep_range(100, 200);
  1326. ++count;
  1327. if (count < max_count) {
  1328. goto retry;
  1329. } else {
  1330. rc = -ETIMEDOUT;
  1331. dprintk(CVP_ERR, "%s: timed out!\n", __func__);
  1332. }
  1333. return rc;
  1334. }
  1335. static int cvp_drain_fence_sched_list(struct msm_cvp_inst *inst)
  1336. {
  1337. unsigned long wait_time;
  1338. struct cvp_fence_queue *q;
  1339. struct cvp_fence_command *f;
  1340. int rc = 0;
  1341. int count = 0, max_count = 0;
  1342. u64 ktid;
  1343. q = &inst->fence_cmd_queue;
  1344. mutex_lock(&q->lock);
  1345. list_for_each_entry(f, &q->sched_list, list) {
  1346. ktid = f->pkt->client_data.kdata & (FENCE_BIT - 1);
  1347. dprintk(CVP_SYNX, "%s: frame %llu %llu is in sched_list\n",
  1348. __func__, ktid, f->frame_id);
  1349. ++count;
  1350. }
  1351. mutex_unlock(&q->lock);
  1352. wait_time = count * CVP_MAX_WAIT_TIME * 1000;
  1353. dprintk(CVP_SYNX, "%s: wait %d us for %d fence command\n",
  1354. __func__, wait_time, count);
  1355. count = 0;
  1356. max_count = wait_time / 100;
  1357. retry:
  1358. mutex_lock(&q->lock);
  1359. if (list_empty(&q->sched_list)) {
  1360. mutex_unlock(&q->lock);
  1361. return rc;
  1362. }
  1363. mutex_unlock(&q->lock);
  1364. usleep_range(100, 200);
  1365. ++count;
  1366. if (count < max_count) {
  1367. goto retry;
  1368. } else {
  1369. rc = -ETIMEDOUT;
  1370. dprintk(CVP_ERR, "%s: timed out!\n", __func__);
  1371. }
  1372. return rc;
  1373. }
  1374. static void cvp_clean_fence_queue(struct msm_cvp_inst *inst, int synx_state)
  1375. {
  1376. struct cvp_fence_queue *q;
  1377. struct cvp_fence_command *f, *d;
  1378. u64 ktid;
  1379. q = &inst->fence_cmd_queue;
  1380. mutex_lock(&q->lock);
  1381. q->mode = OP_DRAINING;
  1382. list_for_each_entry_safe(f, d, &q->wait_list, list) {
  1383. ktid = f->pkt->client_data.kdata & (FENCE_BIT - 1);
  1384. dprintk(CVP_SYNX, "%s: (%#x) flush frame %llu %llu wait_list\n",
  1385. __func__, hash32_ptr(inst->session), ktid, f->frame_id);
  1386. list_del_init(&f->list);
  1387. msm_cvp_unmap_frame(inst, f->pkt->client_data.kdata);
  1388. cvp_cancel_synx(inst, CVP_OUTPUT_SYNX, f, synx_state);
  1389. cvp_release_synx(inst, f);
  1390. cvp_free_fence_data(f);
  1391. }
  1392. list_for_each_entry(f, &q->sched_list, list) {
  1393. ktid = f->pkt->client_data.kdata & (FENCE_BIT - 1);
  1394. dprintk(CVP_SYNX, "%s: (%#x)flush frame %llu %llu sched_list\n",
  1395. __func__, hash32_ptr(inst->session), ktid, f->frame_id);
  1396. cvp_cancel_synx(inst, CVP_INPUT_SYNX, f, synx_state);
  1397. }
  1398. mutex_unlock(&q->lock);
  1399. }
  1400. int cvp_clean_session_queues(struct msm_cvp_inst *inst)
  1401. {
  1402. struct cvp_fence_queue *q;
  1403. struct cvp_session_queue *sq;
  1404. u32 count = 0, max_retries = 100;
  1405. cvp_clean_fence_queue(inst, SYNX_STATE_SIGNALED_ERROR);
  1406. cvp_fence_thread_stop(inst);
  1407. /* Waiting for all output synx sent */
  1408. q = &inst->fence_cmd_queue;
  1409. retry:
  1410. mutex_lock(&q->lock);
  1411. if (list_empty(&q->sched_list)) {
  1412. mutex_unlock(&q->lock);
  1413. return 0;
  1414. }
  1415. mutex_unlock(&q->lock);
  1416. usleep_range(500, 1000);
  1417. if (++count > max_retries)
  1418. return -EBUSY;
  1419. goto retry;
  1420. sq = &inst->session_queue_fence;
  1421. spin_lock(&sq->lock);
  1422. sq->state = QUEUE_INVALID;
  1423. spin_unlock(&sq->lock);
  1424. sq = &inst->session_queue_fence;
  1425. spin_lock(&sq->lock);
  1426. sq->state = QUEUE_INVALID;
  1427. spin_unlock(&sq->lock);
  1428. }
  1429. static int cvp_flush_all(struct msm_cvp_inst *inst)
  1430. {
  1431. int rc = 0;
  1432. struct msm_cvp_inst *s;
  1433. struct cvp_fence_queue *q;
  1434. struct cvp_hfi_device *hdev;
  1435. if (!inst || !inst->core) {
  1436. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1437. return -EINVAL;
  1438. }
  1439. s = cvp_get_inst_validate(inst->core, inst);
  1440. if (!s)
  1441. return -ECONNRESET;
  1442. dprintk(CVP_SESS, "session %llx (%#x)flush all starts\n",
  1443. inst, hash32_ptr(inst->session));
  1444. q = &inst->fence_cmd_queue;
  1445. hdev = inst->core->device;
  1446. cvp_clean_fence_queue(inst, SYNX_STATE_SIGNALED_CANCEL);
  1447. dprintk(CVP_SESS, "%s: (%#x) send flush to fw\n",
  1448. __func__, hash32_ptr(inst->session));
  1449. /* Send flush to FW */
  1450. rc = call_hfi_op(hdev, session_flush, (void *)inst->session);
  1451. if (rc) {
  1452. dprintk(CVP_WARN, "%s: continue flush without fw. rc %d\n",
  1453. __func__, rc);
  1454. goto exit;
  1455. }
  1456. /* Wait for FW response */
  1457. rc = wait_for_sess_signal_receipt(inst, HAL_SESSION_FLUSH_DONE);
  1458. if (rc)
  1459. dprintk(CVP_WARN, "%s: wait for signal failed, rc %d\n",
  1460. __func__, rc);
  1461. dprintk(CVP_SESS, "%s: (%#x) received flush from fw\n",
  1462. __func__, hash32_ptr(inst->session));
  1463. exit:
  1464. rc = cvp_drain_fence_sched_list(inst);
  1465. mutex_lock(&q->lock);
  1466. q->mode = OP_NORMAL;
  1467. mutex_unlock(&q->lock);
  1468. cvp_put_inst(s);
  1469. return rc;
  1470. }
  1471. static void cvp_mark_fence_command(struct msm_cvp_inst *inst, u64 frame_id)
  1472. {
  1473. int found = false;
  1474. struct cvp_fence_queue *q;
  1475. struct cvp_fence_command *f;
  1476. q = &inst->fence_cmd_queue;
  1477. list_for_each_entry(f, &q->sched_list, list) {
  1478. if (found) {
  1479. f->mode = OP_FLUSH;
  1480. continue;
  1481. }
  1482. if (f->frame_id >= frame_id) {
  1483. found = true;
  1484. f->mode = OP_FLUSH;
  1485. }
  1486. }
  1487. list_for_each_entry(f, &q->wait_list, list) {
  1488. if (found) {
  1489. f->mode = OP_FLUSH;
  1490. continue;
  1491. }
  1492. if (f->frame_id >= frame_id) {
  1493. found = true;
  1494. f->mode = OP_FLUSH;
  1495. }
  1496. }
  1497. }
  1498. static int cvp_flush_frame(struct msm_cvp_inst *inst, u64 frame_id)
  1499. {
  1500. int rc = 0;
  1501. struct msm_cvp_inst *s;
  1502. struct cvp_fence_queue *q;
  1503. struct cvp_fence_command *f, *d;
  1504. u64 ktid;
  1505. if (!inst || !inst->core) {
  1506. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1507. return -EINVAL;
  1508. }
  1509. s = cvp_get_inst_validate(inst->core, inst);
  1510. if (!s)
  1511. return -ECONNRESET;
  1512. dprintk(CVP_SESS, "Session %llx, flush frame with id %llu\n",
  1513. inst, frame_id);
  1514. q = &inst->fence_cmd_queue;
  1515. mutex_lock(&q->lock);
  1516. q->mode = OP_DRAINING;
  1517. cvp_mark_fence_command(inst, frame_id);
  1518. list_for_each_entry_safe(f, d, &q->wait_list, list) {
  1519. if (f->mode != OP_FLUSH)
  1520. continue;
  1521. ktid = f->pkt->client_data.kdata & (FENCE_BIT - 1);
  1522. dprintk(CVP_SYNX, "%s: flush frame %llu %llu from wait_list\n",
  1523. __func__, ktid, f->frame_id);
  1524. list_del_init(&f->list);
  1525. msm_cvp_unmap_frame(inst, f->pkt->client_data.kdata);
  1526. cvp_cancel_synx(inst, CVP_OUTPUT_SYNX, f,
  1527. SYNX_STATE_SIGNALED_CANCEL);
  1528. cvp_release_synx(inst, f);
  1529. cvp_free_fence_data(f);
  1530. }
  1531. list_for_each_entry(f, &q->sched_list, list) {
  1532. if (f->mode != OP_FLUSH)
  1533. continue;
  1534. ktid = f->pkt->client_data.kdata & (FENCE_BIT - 1);
  1535. dprintk(CVP_SYNX, "%s: flush frame %llu %llu from sched_list\n",
  1536. __func__, ktid, f->frame_id);
  1537. cvp_cancel_synx(inst, CVP_INPUT_SYNX, f,
  1538. SYNX_STATE_SIGNALED_CANCEL);
  1539. }
  1540. mutex_unlock(&q->lock);
  1541. rc = cvp_drain_fence_cmd_queue_partial(inst);
  1542. if (rc)
  1543. dprintk(CVP_WARN, "%s: continue flush. rc %d\n",
  1544. __func__, rc);
  1545. rc = cvp_flush_all(inst);
  1546. cvp_put_inst(s);
  1547. return rc;
  1548. }
  1549. int msm_cvp_handle_syscall(struct msm_cvp_inst *inst, struct eva_kmd_arg *arg)
  1550. {
  1551. int rc = 0;
  1552. if (!inst || !arg) {
  1553. dprintk(CVP_ERR, "%s: invalid args\n", __func__);
  1554. return -EINVAL;
  1555. }
  1556. dprintk(CVP_HFI, "%s: arg->type = %x", __func__, arg->type);
  1557. if (arg->type != EVA_KMD_SESSION_CONTROL &&
  1558. arg->type != EVA_KMD_SET_SYS_PROPERTY &&
  1559. arg->type != EVA_KMD_GET_SYS_PROPERTY) {
  1560. rc = session_state_check_init(inst);
  1561. if (rc) {
  1562. dprintk(CVP_ERR,
  1563. "Incorrect session state %d for command %#x",
  1564. inst->state, arg->type);
  1565. return rc;
  1566. }
  1567. }
  1568. switch (arg->type) {
  1569. case EVA_KMD_GET_SESSION_INFO:
  1570. {
  1571. struct eva_kmd_session_info *session =
  1572. (struct eva_kmd_session_info *)&arg->data.session;
  1573. rc = msm_cvp_get_session_info(inst, &session->session_id);
  1574. break;
  1575. }
  1576. case EVA_KMD_UPDATE_POWER:
  1577. {
  1578. rc = msm_cvp_update_power(inst);
  1579. break;
  1580. }
  1581. case EVA_KMD_REGISTER_BUFFER:
  1582. {
  1583. struct eva_kmd_buffer *buf =
  1584. (struct eva_kmd_buffer *)&arg->data.regbuf;
  1585. rc = msm_cvp_register_buffer(inst, buf);
  1586. break;
  1587. }
  1588. case EVA_KMD_UNREGISTER_BUFFER:
  1589. {
  1590. struct eva_kmd_buffer *buf =
  1591. (struct eva_kmd_buffer *)&arg->data.unregbuf;
  1592. rc = msm_cvp_unregister_buffer(inst, buf);
  1593. break;
  1594. }
  1595. case EVA_KMD_RECEIVE_MSG_PKT:
  1596. {
  1597. struct eva_kmd_hfi_packet *out_pkt =
  1598. (struct eva_kmd_hfi_packet *)&arg->data.hfi_pkt;
  1599. rc = msm_cvp_session_receive_hfi(inst, out_pkt);
  1600. break;
  1601. }
  1602. case EVA_KMD_SEND_CMD_PKT:
  1603. {
  1604. struct eva_kmd_hfi_packet *in_pkt =
  1605. (struct eva_kmd_hfi_packet *)&arg->data.hfi_pkt;
  1606. rc = msm_cvp_session_process_hfi(inst, in_pkt,
  1607. arg->buf_offset, arg->buf_num);
  1608. break;
  1609. }
  1610. case EVA_KMD_SEND_FENCE_CMD_PKT:
  1611. {
  1612. rc = msm_cvp_session_process_hfi_fence(inst, arg);
  1613. break;
  1614. }
  1615. case EVA_KMD_SESSION_CONTROL:
  1616. rc = msm_cvp_session_ctrl(inst, arg);
  1617. break;
  1618. case EVA_KMD_GET_SYS_PROPERTY:
  1619. rc = msm_cvp_get_sysprop(inst, arg);
  1620. break;
  1621. case EVA_KMD_SET_SYS_PROPERTY:
  1622. rc = msm_cvp_set_sysprop(inst, arg);
  1623. break;
  1624. case EVA_KMD_FLUSH_ALL:
  1625. rc = cvp_flush_all(inst);
  1626. break;
  1627. case EVA_KMD_FLUSH_FRAME:
  1628. rc = cvp_flush_frame(inst, arg->data.frame_id);
  1629. break;
  1630. default:
  1631. dprintk(CVP_HFI, "%s: unknown arg type %#x\n",
  1632. __func__, arg->type);
  1633. rc = -ENOTSUPP;
  1634. break;
  1635. }
  1636. return rc;
  1637. }
  1638. int msm_cvp_session_deinit(struct msm_cvp_inst *inst)
  1639. {
  1640. int rc = 0;
  1641. struct cvp_hal_session *session;
  1642. if (!inst || !inst->core) {
  1643. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1644. return -EINVAL;
  1645. }
  1646. dprintk(CVP_SESS, "%s: inst %pK (%#x)\n", __func__,
  1647. inst, hash32_ptr(inst->session));
  1648. session = (struct cvp_hal_session *)inst->session;
  1649. if (!session)
  1650. return rc;
  1651. rc = msm_cvp_comm_try_state(inst, MSM_CVP_CLOSE_DONE);
  1652. if (rc)
  1653. dprintk(CVP_ERR, "%s: close failed\n", __func__);
  1654. rc = msm_cvp_session_deinit_buffers(inst);
  1655. return rc;
  1656. }
  1657. int msm_cvp_session_init(struct msm_cvp_inst *inst)
  1658. {
  1659. int rc = 0;
  1660. if (!inst) {
  1661. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1662. return -EINVAL;
  1663. }
  1664. dprintk(CVP_SESS, "%s: inst %pK (%#x)\n", __func__,
  1665. inst, hash32_ptr(inst->session));
  1666. /* set default frequency */
  1667. inst->clk_data.core_id = 0;
  1668. inst->clk_data.min_freq = 1000;
  1669. inst->clk_data.ddr_bw = 1000;
  1670. inst->clk_data.sys_cache_bw = 1000;
  1671. inst->prop.type = 1;
  1672. inst->prop.kernel_mask = 0xFFFFFFFF;
  1673. inst->prop.priority = 0;
  1674. inst->prop.is_secure = 0;
  1675. inst->prop.dsp_mask = 0;
  1676. inst->prop.fthread_nr = 3;
  1677. return rc;
  1678. }