cvp_smem.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/dma-buf.h>
  7. #include <linux/dma-heap.h>
  8. #include <linux/dma-direction.h>
  9. #include <linux/iommu.h>
  10. #include <linux/msm_dma_iommu_mapping.h>
  11. #include <soc/qcom/secure_buffer.h>
  12. #include <linux/mem-buf.h>
  13. #include <linux/slab.h>
  14. #include <linux/types.h>
  15. #include <linux/qcom-dma-mapping.h>
  16. #include <linux/version.h>
  17. #include "msm_cvp_core.h"
  18. #include "msm_cvp_debug.h"
  19. #include "msm_cvp_resources.h"
  20. #include "cvp_core_hfi.h"
  21. #include "msm_cvp_dsp.h"
  22. static void * __cvp_dma_buf_vmap(struct dma_buf *dbuf)
  23. {
  24. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  25. struct dma_buf_map map;
  26. #else
  27. struct iosys_map map;
  28. #endif
  29. void *dma_map;
  30. int err;
  31. err = dma_buf_vmap(dbuf, &map);
  32. dma_map = err ? NULL : map.vaddr;
  33. if (!dma_map)
  34. dprintk(CVP_ERR, "map to kvaddr failed\n");
  35. return dma_map;
  36. }
  37. static void __cvp_dma_buf_vunmap(struct dma_buf *dbuf, void *vaddr)
  38. {
  39. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  40. struct dma_buf_map map = { \
  41. .vaddr = vaddr, \
  42. .is_iomem = false, \
  43. };
  44. #else
  45. struct iosys_map map = { \
  46. .vaddr = vaddr, \
  47. .is_iomem = false, \
  48. };
  49. #endif
  50. if (vaddr)
  51. dma_buf_vunmap(dbuf, &map);
  52. }
  53. static int msm_dma_get_device_address(struct dma_buf *dbuf, u32 align,
  54. dma_addr_t *iova, u32 flags, struct msm_cvp_platform_resources *res,
  55. struct cvp_dma_mapping_info *mapping_info)
  56. {
  57. int rc = 0;
  58. struct dma_buf_attachment *attach;
  59. struct sg_table *table = NULL;
  60. struct context_bank_info *cb = NULL;
  61. if (!dbuf || !iova || !mapping_info) {
  62. dprintk(CVP_ERR, "Invalid params: %pK, %pK, %pK\n",
  63. dbuf, iova, mapping_info);
  64. return -EINVAL;
  65. }
  66. if (is_iommu_present(res)) {
  67. cb = msm_cvp_smem_get_context_bank(res, flags);
  68. if (!cb) {
  69. dprintk(CVP_ERR,
  70. "%s: Failed to get context bank device\n",
  71. __func__);
  72. rc = -EIO;
  73. goto mem_map_failed;
  74. }
  75. /* Prepare a dma buf for dma on the given device */
  76. attach = dma_buf_attach(dbuf, cb->dev);
  77. if (IS_ERR_OR_NULL(attach)) {
  78. rc = PTR_ERR(attach) ?: -ENOMEM;
  79. dprintk(CVP_ERR, "Failed to attach dmabuf\n");
  80. goto mem_buf_attach_failed;
  81. }
  82. /*
  83. * Get the scatterlist for the given attachment
  84. * Mapping of sg is taken care by map attachment
  85. */
  86. /*
  87. * We do not need dma_map function to perform cache operations
  88. * on the whole buffer size and hence pass skip sync flag.
  89. * We do the required cache operations separately for the
  90. * required buffer size
  91. */
  92. attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
  93. if (flags & SMEM_CAMERA)
  94. attach->dma_map_attrs |= DMA_ATTR_QTI_SMMU_PROXY_MAP;
  95. if (res->sys_cache_present)
  96. attach->dma_map_attrs |=
  97. DMA_ATTR_IOMMU_USE_UPSTREAM_HINT;
  98. table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
  99. if (IS_ERR_OR_NULL(table)) {
  100. dprintk(CVP_ERR, "Failed to map table %d\n", PTR_ERR(table));
  101. dprintk(CVP_ERR,
  102. "Mapping detail dma_buf 0x%llx, %s, size %#x\n",
  103. dbuf, dbuf->name, dbuf->size);
  104. rc = PTR_ERR(table) ?: -ENOMEM;
  105. goto mem_map_table_failed;
  106. }
  107. if (table->sgl) {
  108. *iova = table->sgl->dma_address;
  109. } else {
  110. dprintk(CVP_ERR, "sgl is NULL\n");
  111. rc = -ENOMEM;
  112. goto mem_map_sg_failed;
  113. }
  114. mapping_info->dev = cb->dev;
  115. mapping_info->domain = cb->domain;
  116. mapping_info->table = table;
  117. mapping_info->attach = attach;
  118. mapping_info->buf = dbuf;
  119. mapping_info->cb_info = (void *)cb;
  120. } else {
  121. dprintk(CVP_MEM, "iommu not present, use phys mem addr\n");
  122. }
  123. return 0;
  124. mem_map_sg_failed:
  125. dma_buf_unmap_attachment(attach, table, DMA_BIDIRECTIONAL);
  126. mem_map_table_failed:
  127. dma_buf_detach(dbuf, attach);
  128. mem_buf_attach_failed:
  129. mem_map_failed:
  130. return rc;
  131. }
  132. static int msm_dma_put_device_address(u32 flags,
  133. struct cvp_dma_mapping_info *mapping_info)
  134. {
  135. int rc = 0;
  136. if (!mapping_info) {
  137. dprintk(CVP_WARN, "Invalid mapping_info\n");
  138. return -EINVAL;
  139. }
  140. if (!mapping_info->dev || !mapping_info->table ||
  141. !mapping_info->buf || !mapping_info->attach ||
  142. !mapping_info->cb_info) {
  143. dprintk(CVP_WARN, "Invalid params\n");
  144. return -EINVAL;
  145. }
  146. dma_buf_unmap_attachment(mapping_info->attach,
  147. mapping_info->table, DMA_BIDIRECTIONAL);
  148. dma_buf_detach(mapping_info->buf, mapping_info->attach);
  149. mapping_info->dev = NULL;
  150. mapping_info->domain = NULL;
  151. mapping_info->table = NULL;
  152. mapping_info->attach = NULL;
  153. mapping_info->buf = NULL;
  154. mapping_info->cb_info = NULL;
  155. return rc;
  156. }
  157. struct dma_buf *msm_cvp_smem_get_dma_buf(int fd)
  158. {
  159. struct dma_buf *dma_buf;
  160. dma_buf = dma_buf_get(fd);
  161. if (IS_ERR_OR_NULL(dma_buf)) {
  162. dprintk(CVP_ERR, "Failed to get dma_buf for %d, error %ld\n",
  163. fd, PTR_ERR(dma_buf));
  164. dma_buf = NULL;
  165. }
  166. return dma_buf;
  167. }
  168. void msm_cvp_smem_put_dma_buf(void *dma_buf)
  169. {
  170. if (!dma_buf) {
  171. dprintk(CVP_ERR, "%s: NULL dma_buf\n", __func__);
  172. return;
  173. }
  174. dma_heap_buffer_free((struct dma_buf *)dma_buf);
  175. }
  176. int msm_cvp_map_smem(struct msm_cvp_inst *inst,
  177. struct msm_cvp_smem *smem,
  178. const char *str)
  179. {
  180. int *vmid_list;
  181. int *perms_list;
  182. int nelems = 0;
  183. int i, rc = 0;
  184. dma_addr_t iova = 0;
  185. u32 temp = 0, checksum = 0;
  186. u32 align = SZ_4K;
  187. struct dma_buf *dma_buf;
  188. bool is_config_pkt = false;
  189. if (!inst || !smem) {
  190. dprintk(CVP_ERR, "%s: Invalid params: %pK %pK\n",
  191. __func__, inst, smem);
  192. return -EINVAL;
  193. }
  194. dma_buf = smem->dma_buf;
  195. rc = mem_buf_dma_buf_copy_vmperm(dma_buf,
  196. &vmid_list, &perms_list, &nelems);
  197. if (rc) {
  198. dprintk(CVP_ERR, "%s fail to get vmid and perms %d\n",
  199. __func__, rc);
  200. return rc;
  201. }
  202. for (temp = 0; temp < nelems; temp++) {
  203. if (vmid_list[temp] == VMID_CP_PIXEL)
  204. smem->flags |= (SMEM_SECURE | SMEM_PIXEL);
  205. else if (vmid_list[temp] == VMID_CP_NON_PIXEL)
  206. smem->flags |= (SMEM_SECURE | SMEM_NON_PIXEL);
  207. else if (vmid_list[temp] == VMID_CP_CAMERA ||
  208. /* To-do: what if the EVA driver runs in TVM */
  209. vmid_list[temp] == VMID_TVM)
  210. smem->flags |= (SMEM_SECURE | SMEM_CAMERA);
  211. dprintk(CVP_MEM, "inst %pK VM idx %d VM_ID %d fd %d pkt_type %#x\n",
  212. inst, temp, vmid_list[temp], smem->fd, smem->pkt_type);
  213. }
  214. rc = msm_dma_get_device_address(dma_buf, align, &iova, smem->flags,
  215. &(inst->core->resources), &smem->mapping_info);
  216. if (rc) {
  217. dprintk(CVP_ERR, "Failed to get device address: %d\n", rc);
  218. goto exit;
  219. }
  220. temp = (u32)iova;
  221. if ((dma_addr_t)temp != iova) {
  222. dprintk(CVP_ERR, "iova(%pa) truncated to %#x", &iova, temp);
  223. rc = -EINVAL;
  224. goto exit;
  225. }
  226. smem->size = dma_buf->size;
  227. smem->device_addr = (u32)iova;
  228. i = get_pkt_index_from_type(smem->pkt_type);
  229. if (i > 0 && smem->pkt_type != HFI_CMD_SESSION_CVP_SET_PERSIST_BUFFERS
  230. && smem->pkt_type != HFI_CMD_SESSION_CVP_SET_MODEL_BUFFERS
  231. && smem->pkt_type != HFI_CMD_SESSION_EVA_DLFL_CONFIG)
  232. /* User persist buffer has no feature config info */
  233. is_config_pkt = cvp_hfi_defs[i].is_config_pkt;
  234. if (i > 0 && cvp_hfi_defs[i].checksum_enabled) {
  235. dma_buf_begin_cpu_access(dma_buf, DMA_BIDIRECTIONAL);
  236. smem->kvaddr = __cvp_dma_buf_vmap(dma_buf);
  237. if (!smem->kvaddr) {
  238. dprintk(CVP_WARN, "%s Fail map into kernel\n",
  239. __func__);
  240. dma_buf_end_cpu_access(dma_buf, DMA_BIDIRECTIONAL);
  241. } else {
  242. for (i = 0; i < 256; i++)
  243. checksum += *(u32 *)(smem->kvaddr + i*sizeof(u32));
  244. dprintk(CVP_MEM, "Map checksum %#x fd=%d\n",
  245. checksum, smem->fd);
  246. }
  247. }
  248. print_smem(CVP_MEM, str, inst, smem);
  249. atomic_inc(&inst->smem_count);
  250. goto success;
  251. exit:
  252. smem->device_addr = 0x0;
  253. success:
  254. kfree(vmid_list);
  255. kfree(perms_list);
  256. return rc;
  257. }
  258. int msm_cvp_unmap_smem(struct msm_cvp_inst *inst,
  259. struct msm_cvp_smem *smem,
  260. const char *str)
  261. {
  262. int i, rc = 0;
  263. u32 checksum = 0;
  264. struct dma_buf *dma_buf;
  265. if (!smem) {
  266. dprintk(CVP_ERR, "%s: Invalid params: %pK\n", __func__, smem);
  267. rc = -EINVAL;
  268. goto exit;
  269. }
  270. print_smem(CVP_MEM, str, inst, smem);
  271. dma_buf = smem->dma_buf;
  272. i = get_pkt_index_from_type(smem->pkt_type);
  273. if (i > 0 && cvp_hfi_defs[i].checksum_enabled) {
  274. if (!smem->kvaddr) {
  275. dprintk(CVP_WARN, "%s DS buf Fail map into kernel\n",
  276. __func__);
  277. dma_buf_end_cpu_access(dma_buf, DMA_BIDIRECTIONAL);
  278. } else {
  279. for (i = 0; i < 256; i++)
  280. checksum += *(u32 *)(smem->kvaddr + i*sizeof(u32));
  281. dprintk(CVP_MEM, "Unmap checksum %#x fd=%d\n",
  282. checksum, smem->fd);
  283. __cvp_dma_buf_vunmap(dma_buf, smem->kvaddr);
  284. smem->kvaddr = 0;
  285. dma_buf_end_cpu_access(dma_buf, DMA_BIDIRECTIONAL);
  286. }
  287. }
  288. rc = msm_dma_put_device_address(smem->flags, &smem->mapping_info);
  289. if (rc) {
  290. dprintk(CVP_ERR, "Failed to put device address: %d\n", rc);
  291. goto exit;
  292. }
  293. smem->device_addr = 0x0;
  294. atomic_dec(&inst->smem_count);
  295. exit:
  296. return rc;
  297. }
  298. static int alloc_dma_mem(size_t size, u32 align, int map_kernel,
  299. struct msm_cvp_platform_resources *res, struct msm_cvp_smem *mem)
  300. {
  301. dma_addr_t iova = 0;
  302. int rc = 0;
  303. struct dma_buf *dbuf = NULL;
  304. struct dma_heap *heap = NULL;
  305. struct mem_buf_lend_kernel_arg arg;
  306. int vmids[1];
  307. int perms[1];
  308. if (!res) {
  309. dprintk(CVP_ERR, "%s: NULL res\n", __func__);
  310. return -EINVAL;
  311. }
  312. align = ALIGN(align, SZ_4K);
  313. size = ALIGN(size, SZ_4K);
  314. if (is_iommu_present(res)) {
  315. heap = dma_heap_find("qcom,system");
  316. dprintk(CVP_MEM, "%s size %zx align %d flag %d\n",
  317. __func__, size, align, mem->flags);
  318. } else {
  319. dprintk(CVP_ERR,
  320. "No IOMMU CB: allocate shared memory heap size %zx align %d\n",
  321. size, align);
  322. }
  323. dbuf = dma_heap_buffer_alloc(heap, size, 0, 0);
  324. if (IS_ERR_OR_NULL(dbuf)) {
  325. dprintk(CVP_ERR,
  326. "Failed to allocate shared memory = %x bytes, %x %x\n",
  327. size, mem->flags, PTR_ERR(dbuf));
  328. rc = -ENOMEM;
  329. goto fail_shared_mem_alloc;
  330. }
  331. perms[0] = PERM_READ | PERM_WRITE;
  332. arg.nr_acl_entries = 1;
  333. arg.vmids = vmids;
  334. arg.perms = perms;
  335. if (mem->flags & SMEM_NON_PIXEL) {
  336. vmids[0] = VMID_CP_NON_PIXEL;
  337. rc = mem_buf_lend(dbuf, &arg);
  338. } else if (mem->flags & SMEM_PIXEL) {
  339. vmids[0] = VMID_CP_PIXEL;
  340. rc = mem_buf_lend(dbuf, &arg);
  341. }
  342. if (rc) {
  343. dprintk(CVP_ERR, "Failed to lend dmabuf %d, vmid %d\n",
  344. rc, vmids[0]);
  345. goto fail_device_address;
  346. }
  347. if (!gfa_cv.dmabuf_f_op)
  348. gfa_cv.dmabuf_f_op = (const struct file_operations *)dbuf->file->f_op;
  349. mem->size = size;
  350. mem->dma_buf = dbuf;
  351. mem->kvaddr = NULL;
  352. rc = msm_dma_get_device_address(dbuf, align, &iova, mem->flags,
  353. res, &mem->mapping_info);
  354. if (rc) {
  355. dprintk(CVP_ERR, "Failed to get device address: %d\n",
  356. rc);
  357. goto fail_device_address;
  358. }
  359. mem->device_addr = (u32)iova;
  360. if ((dma_addr_t)mem->device_addr != iova) {
  361. dprintk(CVP_ERR, "iova(%pa) truncated to %#x",
  362. &iova, mem->device_addr);
  363. goto fail_device_address;
  364. }
  365. if (map_kernel) {
  366. dma_buf_begin_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  367. mem->kvaddr = __cvp_dma_buf_vmap(dbuf);
  368. if (!mem->kvaddr) {
  369. dprintk(CVP_ERR,
  370. "Failed to map shared mem in kernel\n");
  371. rc = -EIO;
  372. goto fail_map;
  373. }
  374. }
  375. dprintk(CVP_MEM,
  376. "%s: dma_buf=%pK,iova=%x,size=%d,kvaddr=%pK,flags=%#lx\n",
  377. __func__, mem->dma_buf, mem->device_addr, mem->size,
  378. mem->kvaddr, mem->flags);
  379. return rc;
  380. fail_map:
  381. if (map_kernel)
  382. dma_buf_end_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  383. fail_device_address:
  384. dma_heap_buffer_free(dbuf);
  385. fail_shared_mem_alloc:
  386. return rc;
  387. }
  388. static int free_dma_mem(struct msm_cvp_smem *mem)
  389. {
  390. dprintk(CVP_MEM,
  391. "%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK\n",
  392. __func__, mem->dma_buf, mem->device_addr, mem->size, mem->kvaddr);
  393. if (mem->device_addr) {
  394. msm_dma_put_device_address(mem->flags, &mem->mapping_info);
  395. mem->device_addr = 0x0;
  396. }
  397. if (mem->kvaddr) {
  398. __cvp_dma_buf_vunmap(mem->dma_buf, mem->kvaddr);
  399. mem->kvaddr = NULL;
  400. dma_buf_end_cpu_access(mem->dma_buf, DMA_BIDIRECTIONAL);
  401. }
  402. if (mem->dma_buf) {
  403. dma_heap_buffer_free(mem->dma_buf);
  404. mem->dma_buf = NULL;
  405. }
  406. return 0;
  407. }
  408. int msm_cvp_smem_alloc(size_t size, u32 align, int map_kernel,
  409. void *res, struct msm_cvp_smem *smem)
  410. {
  411. int rc = 0;
  412. if (!smem || !size) {
  413. dprintk(CVP_ERR, "%s: NULL smem or %d size\n",
  414. __func__, (u32)size);
  415. return -EINVAL;
  416. }
  417. rc = alloc_dma_mem(size, align, map_kernel,
  418. (struct msm_cvp_platform_resources *)res, smem);
  419. return rc;
  420. }
  421. int msm_cvp_smem_free(struct msm_cvp_smem *smem)
  422. {
  423. int rc = 0;
  424. if (!smem) {
  425. dprintk(CVP_ERR, "NULL smem passed\n");
  426. return -EINVAL;
  427. }
  428. rc = free_dma_mem(smem);
  429. return rc;
  430. };
  431. int msm_cvp_smem_cache_operations(struct dma_buf *dbuf,
  432. enum smem_cache_ops cache_op, unsigned long offset, unsigned long size)
  433. {
  434. int rc = 0;
  435. if (!dbuf) {
  436. dprintk(CVP_ERR, "%s: Invalid params\n", __func__);
  437. return -EINVAL;
  438. }
  439. switch (cache_op) {
  440. case SMEM_CACHE_CLEAN:
  441. case SMEM_CACHE_CLEAN_INVALIDATE:
  442. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  443. offset, size);
  444. if (rc)
  445. break;
  446. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  447. offset, size);
  448. break;
  449. case SMEM_CACHE_INVALIDATE:
  450. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_TO_DEVICE,
  451. offset, size);
  452. if (rc)
  453. break;
  454. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_FROM_DEVICE,
  455. offset, size);
  456. break;
  457. default:
  458. dprintk(CVP_ERR, "%s: cache (%d) operation not supported\n",
  459. __func__, cache_op);
  460. rc = -EINVAL;
  461. break;
  462. }
  463. return rc;
  464. }
  465. struct context_bank_info *msm_cvp_smem_get_context_bank(
  466. struct msm_cvp_platform_resources *res,
  467. unsigned int flags)
  468. {
  469. struct context_bank_info *cb = NULL, *match = NULL;
  470. char *search_str;
  471. char *non_secure_cb = "cvp_hlos";
  472. char *secure_nonpixel_cb = "cvp_sec_nonpixel";
  473. char *secure_pixel_cb = "cvp_sec_pixel";
  474. char *camera_cb = "cvp_camera";
  475. char *dsp_cb = "cvp_dsp";
  476. bool is_secure = (flags & SMEM_SECURE) ? true : false;
  477. if (flags & SMEM_PIXEL)
  478. search_str = secure_pixel_cb;
  479. else if (flags & SMEM_NON_PIXEL)
  480. search_str = secure_nonpixel_cb;
  481. else if (flags & SMEM_CAMERA)
  482. /* Secure Camera pixel buffer */
  483. search_str = camera_cb;
  484. else if (flags & SMEM_CDSP)
  485. search_str = dsp_cb;
  486. else
  487. search_str = non_secure_cb;
  488. list_for_each_entry(cb, &res->context_banks, list) {
  489. if (cb->is_secure == is_secure &&
  490. !strcmp(search_str, cb->name)) {
  491. match = cb;
  492. break;
  493. }
  494. }
  495. if (!match)
  496. dprintk(CVP_ERR,
  497. "%s: cb not found for flags %x, is_secure %d\n",
  498. __func__, flags, is_secure);
  499. return match;
  500. }
  501. int msm_cvp_map_ipcc_regs(u32 *iova)
  502. {
  503. struct context_bank_info *cb;
  504. struct msm_cvp_core *core;
  505. struct cvp_hfi_ops *ops_tbl;
  506. struct iris_hfi_device *dev = NULL;
  507. phys_addr_t paddr;
  508. u32 size;
  509. core = cvp_driver->cvp_core;
  510. if (core) {
  511. ops_tbl = core->dev_ops;
  512. if (ops_tbl)
  513. dev = ops_tbl->hfi_device_data;
  514. }
  515. if (!dev)
  516. return -EINVAL;
  517. paddr = dev->res->ipcc_reg_base;
  518. size = dev->res->ipcc_reg_size;
  519. if (!paddr || !size)
  520. return -EINVAL;
  521. cb = msm_cvp_smem_get_context_bank(dev->res, 0);
  522. if (!cb) {
  523. dprintk(CVP_ERR, "%s: fail to get context bank\n", __func__);
  524. return -EINVAL;
  525. }
  526. *iova = dma_map_resource(cb->dev, paddr, size, DMA_BIDIRECTIONAL, 0);
  527. if (*iova == DMA_MAPPING_ERROR) {
  528. dprintk(CVP_WARN, "%s: fail to map IPCC regs\n", __func__);
  529. return -EFAULT;
  530. }
  531. return 0;
  532. }
  533. int msm_cvp_unmap_ipcc_regs(u32 iova)
  534. {
  535. struct context_bank_info *cb;
  536. struct msm_cvp_core *core;
  537. struct cvp_hfi_ops *ops_tbl;
  538. struct iris_hfi_device *dev = NULL;
  539. u32 size;
  540. core = cvp_driver->cvp_core;
  541. if (core) {
  542. ops_tbl = core->dev_ops;
  543. if (ops_tbl)
  544. dev = ops_tbl->hfi_device_data;
  545. }
  546. if (!dev)
  547. return -EINVAL;
  548. size = dev->res->ipcc_reg_size;
  549. if (!iova || !size)
  550. return -EINVAL;
  551. cb = msm_cvp_smem_get_context_bank(dev->res, 0);
  552. if (!cb) {
  553. dprintk(CVP_ERR, "%s: fail to get context bank\n", __func__);
  554. return -EINVAL;
  555. }
  556. dma_unmap_resource(cb->dev, iova, size, DMA_BIDIRECTIONAL, 0);
  557. return 0;
  558. }