pll_util.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
  4. */
  5. #define pr_fmt(fmt) "%s: " fmt, __func__
  6. #include <linux/kernel.h>
  7. #include <linux/err.h>
  8. #include <linux/string.h>
  9. #include <linux/of_address.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/memblock.h>
  13. #include "pll_drv.h"
  14. /**
  15. * mdss_pll_get_mp_by_reg_name() -- Find power module by regulator name
  16. *@pll_res: Pointer to the PLL resource
  17. *@name: Regulator name as specified in the pll dtsi
  18. *
  19. * This is a helper function to retrieve the regulator information
  20. * for each pll resource.
  21. */
  22. struct dss_vreg *mdss_pll_get_mp_by_reg_name(struct mdss_pll_resources *pll_res
  23. , char *name)
  24. {
  25. struct dss_vreg *regulator = NULL;
  26. int i;
  27. if ((pll_res == NULL) || (pll_res->mp.vreg_config == NULL)) {
  28. pr_err("%s Invalid PLL resource\n", __func__);
  29. goto error;
  30. }
  31. regulator = pll_res->mp.vreg_config;
  32. for (i = 0; i < pll_res->mp.num_vreg; i++) {
  33. if (!strcmp(name, regulator->vreg_name)) {
  34. pr_debug("Found regulator match for %s\n", name);
  35. break;
  36. }
  37. regulator++;
  38. }
  39. error:
  40. return regulator;
  41. }
  42. int mdss_pll_util_resource_enable(struct mdss_pll_resources *pll_res,
  43. bool enable)
  44. {
  45. int rc = 0;
  46. struct dss_module_power *mp = &pll_res->mp;
  47. if (enable) {
  48. rc = msm_dss_enable_vreg(mp->vreg_config, mp->num_vreg, enable);
  49. if (rc) {
  50. pr_err("Failed to enable vregs rc=%d\n", rc);
  51. goto vreg_err;
  52. }
  53. rc = msm_dss_clk_set_rate(mp->clk_config, mp->num_clk);
  54. if (rc) {
  55. pr_err("Failed to set clock rate rc=%d\n", rc);
  56. goto clk_err;
  57. }
  58. rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, enable);
  59. if (rc) {
  60. pr_err("clock enable failed rc:%d\n", rc);
  61. goto clk_err;
  62. }
  63. } else {
  64. msm_dss_enable_clk(mp->clk_config, mp->num_clk, enable);
  65. msm_dss_enable_vreg(mp->vreg_config, mp->num_vreg, enable);
  66. }
  67. return rc;
  68. clk_err:
  69. msm_dss_enable_vreg(mp->vreg_config, mp->num_vreg, 0);
  70. vreg_err:
  71. return rc;
  72. }
  73. static int mdss_pll_util_parse_dt_supply(struct platform_device *pdev,
  74. struct mdss_pll_resources *pll_res)
  75. {
  76. int i = 0, rc = 0;
  77. u32 tmp = 0;
  78. struct device_node *of_node = NULL, *supply_root_node = NULL;
  79. struct device_node *supply_node = NULL;
  80. struct dss_module_power *mp = &pll_res->mp;
  81. of_node = pdev->dev.of_node;
  82. mp->num_vreg = 0;
  83. supply_root_node = of_get_child_by_name(of_node,
  84. "qcom,platform-supply-entries");
  85. if (!supply_root_node) {
  86. pr_err("no supply entry present\n");
  87. return rc;
  88. }
  89. for_each_child_of_node(supply_root_node, supply_node) {
  90. mp->num_vreg++;
  91. }
  92. if (mp->num_vreg == 0) {
  93. pr_debug("no vreg\n");
  94. return rc;
  95. }
  96. pr_debug("vreg found. count=%d\n", mp->num_vreg);
  97. mp->vreg_config = devm_kzalloc(&pdev->dev, sizeof(struct dss_vreg) *
  98. mp->num_vreg, GFP_KERNEL);
  99. if (!mp->vreg_config) {
  100. rc = -ENOMEM;
  101. return rc;
  102. }
  103. for_each_child_of_node(supply_root_node, supply_node) {
  104. const char *st = NULL;
  105. rc = of_property_read_string(supply_node,
  106. "qcom,supply-name", &st);
  107. if (rc) {
  108. pr_err(":error reading name. rc=%d\n", rc);
  109. goto error;
  110. }
  111. strlcpy(mp->vreg_config[i].vreg_name, st,
  112. sizeof(mp->vreg_config[i].vreg_name));
  113. rc = of_property_read_u32(supply_node,
  114. "qcom,supply-min-voltage", &tmp);
  115. if (rc) {
  116. pr_err(": error reading min volt. rc=%d\n", rc);
  117. goto error;
  118. }
  119. mp->vreg_config[i].min_voltage = tmp;
  120. rc = of_property_read_u32(supply_node,
  121. "qcom,supply-max-voltage", &tmp);
  122. if (rc) {
  123. pr_err(": error reading max volt. rc=%d\n", rc);
  124. goto error;
  125. }
  126. mp->vreg_config[i].max_voltage = tmp;
  127. rc = of_property_read_u32(supply_node,
  128. "qcom,supply-enable-load", &tmp);
  129. if (rc) {
  130. pr_err(": error reading enable load. rc=%d\n", rc);
  131. goto error;
  132. }
  133. mp->vreg_config[i].enable_load = tmp;
  134. rc = of_property_read_u32(supply_node,
  135. "qcom,supply-disable-load", &tmp);
  136. if (rc) {
  137. pr_err(": error reading disable load. rc=%d\n", rc);
  138. goto error;
  139. }
  140. mp->vreg_config[i].disable_load = tmp;
  141. rc = of_property_read_u32(supply_node,
  142. "qcom,supply-pre-on-sleep", &tmp);
  143. if (rc)
  144. pr_debug("error reading supply pre sleep value. rc=%d\n",
  145. rc);
  146. mp->vreg_config[i].pre_on_sleep = (!rc ? tmp : 0);
  147. rc = of_property_read_u32(supply_node,
  148. "qcom,supply-pre-off-sleep", &tmp);
  149. if (rc)
  150. pr_debug("error reading supply pre sleep value. rc=%d\n",
  151. rc);
  152. mp->vreg_config[i].pre_off_sleep = (!rc ? tmp : 0);
  153. rc = of_property_read_u32(supply_node,
  154. "qcom,supply-post-on-sleep", &tmp);
  155. if (rc)
  156. pr_debug("error reading supply post sleep value. rc=%d\n",
  157. rc);
  158. mp->vreg_config[i].post_on_sleep = (!rc ? tmp : 0);
  159. rc = of_property_read_u32(supply_node,
  160. "qcom,supply-post-off-sleep", &tmp);
  161. if (rc)
  162. pr_debug("error reading supply post sleep value. rc=%d\n",
  163. rc);
  164. mp->vreg_config[i].post_off_sleep = (!rc ? tmp : 0);
  165. pr_debug("%s min=%d, max=%d, enable=%d, disable=%d, preonsleep=%d, postonsleep=%d, preoffsleep=%d, postoffsleep=%d\n",
  166. mp->vreg_config[i].vreg_name,
  167. mp->vreg_config[i].min_voltage,
  168. mp->vreg_config[i].max_voltage,
  169. mp->vreg_config[i].enable_load,
  170. mp->vreg_config[i].disable_load,
  171. mp->vreg_config[i].pre_on_sleep,
  172. mp->vreg_config[i].post_on_sleep,
  173. mp->vreg_config[i].pre_off_sleep,
  174. mp->vreg_config[i].post_off_sleep);
  175. ++i;
  176. rc = 0;
  177. }
  178. return rc;
  179. error:
  180. if (mp->vreg_config) {
  181. devm_kfree(&pdev->dev, mp->vreg_config);
  182. mp->vreg_config = NULL;
  183. mp->num_vreg = 0;
  184. }
  185. return rc;
  186. }
  187. static int mdss_pll_util_parse_dt_clock(struct platform_device *pdev,
  188. struct mdss_pll_resources *pll_res)
  189. {
  190. u32 i = 0, rc = 0;
  191. struct dss_module_power *mp = &pll_res->mp;
  192. const char *clock_name;
  193. u32 clock_rate;
  194. mp->num_clk = of_property_count_strings(pdev->dev.of_node,
  195. "clock-names");
  196. if (mp->num_clk <= 0) {
  197. pr_err("clocks are not defined\n");
  198. goto clk_err;
  199. }
  200. mp->clk_config = devm_kzalloc(&pdev->dev,
  201. sizeof(struct dss_clk) * mp->num_clk, GFP_KERNEL);
  202. if (!mp->clk_config) {
  203. rc = -ENOMEM;
  204. mp->num_clk = 0;
  205. goto clk_err;
  206. }
  207. for (i = 0; i < mp->num_clk; i++) {
  208. of_property_read_string_index(pdev->dev.of_node, "clock-names",
  209. i, &clock_name);
  210. strlcpy(mp->clk_config[i].clk_name, clock_name,
  211. sizeof(mp->clk_config[i].clk_name));
  212. of_property_read_u32_index(pdev->dev.of_node, "clock-rate",
  213. i, &clock_rate);
  214. mp->clk_config[i].rate = clock_rate;
  215. if (!clock_rate)
  216. mp->clk_config[i].type = DSS_CLK_AHB;
  217. else
  218. mp->clk_config[i].type = DSS_CLK_PCLK;
  219. }
  220. clk_err:
  221. return rc;
  222. }
  223. static void mdss_pll_free_bootmem(u32 mem_addr, u32 size)
  224. {
  225. unsigned long pfn_start, pfn_end, pfn_idx;
  226. pfn_start = mem_addr >> PAGE_SHIFT;
  227. pfn_end = (mem_addr + size) >> PAGE_SHIFT;
  228. for (pfn_idx = pfn_start; pfn_idx < pfn_end; pfn_idx++)
  229. free_reserved_page(pfn_to_page(pfn_idx));
  230. }
  231. static int mdss_pll_util_parse_dt_dfps(struct platform_device *pdev,
  232. struct mdss_pll_resources *pll_res)
  233. {
  234. int rc = 0;
  235. struct device_node *pnode;
  236. const u32 *addr;
  237. struct vm_struct *area;
  238. u64 size;
  239. u32 offsets[2];
  240. unsigned long virt_add;
  241. pnode = of_parse_phandle(pdev->dev.of_node, "memory-region", 0);
  242. if (IS_ERR_OR_NULL(pnode)) {
  243. rc = PTR_ERR(pnode);
  244. goto pnode_err;
  245. }
  246. addr = of_get_address(pnode, 0, &size, NULL);
  247. if (!addr) {
  248. pr_err("failed to parse the dfps memory address\n");
  249. rc = -EINVAL;
  250. goto pnode_err;
  251. }
  252. /* maintain compatibility for 32/64 bit */
  253. offsets[0] = (u32) of_read_ulong(addr, 2);
  254. offsets[1] = (u32) size;
  255. area = get_vm_area(offsets[1], VM_IOREMAP);
  256. if (!area) {
  257. rc = -ENOMEM;
  258. goto dfps_mem_err;
  259. }
  260. virt_add = (unsigned long)area->addr;
  261. rc = ioremap_page_range(virt_add, (virt_add + offsets[1]),
  262. offsets[0], PAGE_KERNEL);
  263. if (rc) {
  264. rc = -ENOMEM;
  265. goto ioremap_err;
  266. }
  267. pll_res->dfps = kzalloc(sizeof(struct dfps_info), GFP_KERNEL);
  268. if (IS_ERR_OR_NULL(pll_res->dfps)) {
  269. rc = PTR_ERR(pll_res->dfps);
  270. pr_err("couldn't allocate dfps kernel memory\n");
  271. goto addr_err;
  272. }
  273. /* memcopy complete dfps structure from kernel virtual memory */
  274. memcpy_fromio(pll_res->dfps, area->addr, sizeof(struct dfps_info));
  275. addr_err:
  276. if (virt_add)
  277. unmap_kernel_range(virt_add, (unsigned long) size);
  278. ioremap_err:
  279. if (area)
  280. vfree(area->addr);
  281. dfps_mem_err:
  282. /* free the dfps memory here */
  283. memblock_free(offsets[0], offsets[1]);
  284. mdss_pll_free_bootmem(offsets[0], offsets[1]);
  285. pnode_err:
  286. if (pnode)
  287. of_node_put(pnode);
  288. return rc;
  289. }
  290. int mdss_pll_util_resource_parse(struct platform_device *pdev,
  291. struct mdss_pll_resources *pll_res)
  292. {
  293. int rc = 0;
  294. struct dss_module_power *mp = &pll_res->mp;
  295. rc = mdss_pll_util_parse_dt_supply(pdev, pll_res);
  296. if (rc) {
  297. pr_err("vreg parsing failed rc=%d\n", rc);
  298. goto end;
  299. }
  300. rc = mdss_pll_util_parse_dt_clock(pdev, pll_res);
  301. if (rc) {
  302. pr_err("clock name parsing failed rc=%d\n", rc);
  303. goto clk_err;
  304. }
  305. if (mdss_pll_util_parse_dt_dfps(pdev, pll_res))
  306. pr_err("dfps not enabled!\n");
  307. return rc;
  308. clk_err:
  309. devm_kfree(&pdev->dev, mp->vreg_config);
  310. mp->num_vreg = 0;
  311. end:
  312. return rc;
  313. }