dp_rx.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #ifdef MESH_MODE_SUPPORT
  25. #include "if_meta_hdr.h"
  26. #endif
  27. #include "dp_internal.h"
  28. #include "dp_rx_mon.h"
  29. #ifdef RX_DESC_DEBUG_CHECK
  30. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  31. {
  32. rx_desc->magic = DP_RX_DESC_MAGIC;
  33. rx_desc->nbuf = nbuf;
  34. }
  35. #else
  36. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  37. {
  38. rx_desc->nbuf = nbuf;
  39. }
  40. #endif
  41. #ifdef CONFIG_WIN
  42. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  43. {
  44. return vdev->ap_bridge_enabled;
  45. }
  46. #else
  47. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  48. {
  49. if (vdev->opmode != wlan_op_mode_sta)
  50. return true;
  51. else
  52. return false;
  53. }
  54. #endif
  55. /*
  56. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  57. * called during dp rx initialization
  58. * and at the end of dp_rx_process.
  59. *
  60. * @soc: core txrx main context
  61. * @mac_id: mac_id which is one of 3 mac_ids
  62. * @dp_rxdma_srng: dp rxdma circular ring
  63. * @rx_desc_pool: Poiter to free Rx descriptor pool
  64. * @num_req_buffers: number of buffer to be replenished
  65. * @desc_list: list of descs if called from dp_rx_process
  66. * or NULL during dp rx initialization or out of buffer
  67. * interrupt.
  68. * @tail: tail of descs list
  69. * Return: return success or failure
  70. */
  71. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  72. struct dp_srng *dp_rxdma_srng,
  73. struct rx_desc_pool *rx_desc_pool,
  74. uint32_t num_req_buffers,
  75. union dp_rx_desc_list_elem_t **desc_list,
  76. union dp_rx_desc_list_elem_t **tail)
  77. {
  78. uint32_t num_alloc_desc;
  79. uint16_t num_desc_to_free = 0;
  80. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  81. uint32_t num_entries_avail;
  82. uint32_t count;
  83. int sync_hw_ptr = 1;
  84. qdf_dma_addr_t paddr;
  85. qdf_nbuf_t rx_netbuf;
  86. void *rxdma_ring_entry;
  87. union dp_rx_desc_list_elem_t *next;
  88. QDF_STATUS ret;
  89. void *rxdma_srng;
  90. rxdma_srng = dp_rxdma_srng->hal_srng;
  91. if (!rxdma_srng) {
  92. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  93. "rxdma srng not initialized");
  94. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  95. return QDF_STATUS_E_FAILURE;
  96. }
  97. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  98. "requested %d buffers for replenish", num_req_buffers);
  99. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  100. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  101. rxdma_srng,
  102. sync_hw_ptr);
  103. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  104. "no of availble entries in rxdma ring: %d",
  105. num_entries_avail);
  106. if (!(*desc_list) && (num_entries_avail >
  107. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  108. num_req_buffers = num_entries_avail;
  109. } else if (num_entries_avail < num_req_buffers) {
  110. num_desc_to_free = num_req_buffers - num_entries_avail;
  111. num_req_buffers = num_entries_avail;
  112. }
  113. if (qdf_unlikely(!num_req_buffers)) {
  114. num_desc_to_free = num_req_buffers;
  115. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  116. goto free_descs;
  117. }
  118. /*
  119. * if desc_list is NULL, allocate the descs from freelist
  120. */
  121. if (!(*desc_list)) {
  122. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  123. rx_desc_pool,
  124. num_req_buffers,
  125. desc_list,
  126. tail);
  127. if (!num_alloc_desc) {
  128. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  129. "no free rx_descs in freelist");
  130. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  131. num_req_buffers);
  132. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  133. return QDF_STATUS_E_NOMEM;
  134. }
  135. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  136. "%d rx desc allocated", num_alloc_desc);
  137. num_req_buffers = num_alloc_desc;
  138. }
  139. count = 0;
  140. while (count < num_req_buffers) {
  141. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  142. RX_BUFFER_SIZE,
  143. RX_BUFFER_RESERVATION,
  144. RX_BUFFER_ALIGNMENT,
  145. FALSE);
  146. if (rx_netbuf == NULL) {
  147. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  148. continue;
  149. }
  150. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  151. QDF_DMA_BIDIRECTIONAL);
  152. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  153. qdf_nbuf_free(rx_netbuf);
  154. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  155. continue;
  156. }
  157. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  158. /*
  159. * check if the physical address of nbuf->data is
  160. * less then 0x50000000 then free the nbuf and try
  161. * allocating new nbuf. We can try for 100 times.
  162. * this is a temp WAR till we fix it properly.
  163. */
  164. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  165. if (ret == QDF_STATUS_E_FAILURE) {
  166. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  167. break;
  168. }
  169. count++;
  170. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  171. rxdma_srng);
  172. qdf_assert_always(rxdma_ring_entry);
  173. next = (*desc_list)->next;
  174. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  175. (*desc_list)->rx_desc.in_use = 1;
  176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  177. "rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  178. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  179. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  180. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  181. (*desc_list)->rx_desc.cookie,
  182. rx_desc_pool->owner);
  183. *desc_list = next;
  184. }
  185. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  186. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  187. "successfully replenished %d buffers", num_req_buffers);
  188. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  189. "%d rx desc added back to free list", num_desc_to_free);
  190. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  191. (RX_BUFFER_SIZE * num_req_buffers));
  192. free_descs:
  193. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  194. /*
  195. * add any available free desc back to the free list
  196. */
  197. if (*desc_list)
  198. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  199. mac_id, rx_desc_pool);
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. /*
  203. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  204. * pkts to RAW mode simulation to
  205. * decapsulate the pkt.
  206. *
  207. * @vdev: vdev on which RAW mode is enabled
  208. * @nbuf_list: list of RAW pkts to process
  209. * @peer: peer object from which the pkt is rx
  210. *
  211. * Return: void
  212. */
  213. void
  214. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  215. struct dp_peer *peer)
  216. {
  217. qdf_nbuf_t deliver_list_head = NULL;
  218. qdf_nbuf_t deliver_list_tail = NULL;
  219. qdf_nbuf_t nbuf;
  220. nbuf = nbuf_list;
  221. while (nbuf) {
  222. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  223. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  224. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  225. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  226. /*
  227. * reset the chfrag_start and chfrag_end bits in nbuf cb
  228. * as this is a non-amsdu pkt and RAW mode simulation expects
  229. * these bit s to be 0 for non-amsdu pkt.
  230. */
  231. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  232. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  233. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  234. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  235. }
  236. nbuf = next;
  237. }
  238. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  239. &deliver_list_tail, (struct cdp_peer*) peer);
  240. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  241. }
  242. #ifdef DP_LFR
  243. /*
  244. * In case of LFR, data of a new peer might be sent up
  245. * even before peer is added.
  246. */
  247. static inline struct dp_vdev *
  248. dp_get_vdev_from_peer(struct dp_soc *soc,
  249. uint16_t peer_id,
  250. struct dp_peer *peer,
  251. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  252. {
  253. struct dp_vdev *vdev;
  254. uint8_t vdev_id;
  255. if (unlikely(!peer)) {
  256. if (peer_id != HTT_INVALID_PEER) {
  257. vdev_id = DP_PEER_METADATA_ID_GET(
  258. mpdu_desc_info.peer_meta_data);
  259. QDF_TRACE(QDF_MODULE_ID_DP,
  260. QDF_TRACE_LEVEL_DEBUG,
  261. FL("PeerID %d not found use vdevID %d"),
  262. peer_id, vdev_id);
  263. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  264. vdev_id);
  265. } else {
  266. QDF_TRACE(QDF_MODULE_ID_DP,
  267. QDF_TRACE_LEVEL_DEBUG,
  268. FL("Invalid PeerID %d"),
  269. peer_id);
  270. return NULL;
  271. }
  272. } else {
  273. vdev = peer->vdev;
  274. }
  275. return vdev;
  276. }
  277. #else
  278. static inline struct dp_vdev *
  279. dp_get_vdev_from_peer(struct dp_soc *soc,
  280. uint16_t peer_id,
  281. struct dp_peer *peer,
  282. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  283. {
  284. if (unlikely(!peer)) {
  285. QDF_TRACE(QDF_MODULE_ID_DP,
  286. QDF_TRACE_LEVEL_DEBUG,
  287. FL("Peer not found for peerID %d"),
  288. peer_id);
  289. return NULL;
  290. } else {
  291. return peer->vdev;
  292. }
  293. }
  294. #endif
  295. /**
  296. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  297. *
  298. * @soc: core txrx main context
  299. * @sa_peer : source peer entry
  300. * @rx_tlv_hdr : start address of rx tlvs
  301. * @nbuf : nbuf that has to be intrabss forwarded
  302. *
  303. * Return: bool: true if it is forwarded else false
  304. */
  305. static bool
  306. dp_rx_intrabss_fwd(struct dp_soc *soc,
  307. struct dp_peer *sa_peer,
  308. uint8_t *rx_tlv_hdr,
  309. qdf_nbuf_t nbuf)
  310. {
  311. uint16_t da_idx;
  312. uint16_t len;
  313. struct dp_peer *da_peer;
  314. struct dp_ast_entry *ast_entry;
  315. qdf_nbuf_t nbuf_copy;
  316. struct dp_vdev *vdev = sa_peer->vdev;
  317. /*
  318. * intrabss forwarding is not applicable if
  319. * vap is nawds enabled or ap_bridge is false.
  320. */
  321. if (vdev->nawds_enabled)
  322. return false;
  323. /* check if the destination peer is available in peer table
  324. * and also check if the source peer and destination peer
  325. * belong to the same vap and destination peer is not bss peer.
  326. */
  327. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  328. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  329. da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
  330. ast_entry = soc->ast_table[da_idx];
  331. if (!ast_entry)
  332. return false;
  333. da_peer = ast_entry->peer;
  334. if (!da_peer)
  335. return false;
  336. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  337. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  338. len = qdf_nbuf_len(nbuf);
  339. /* linearize the nbuf just before we send to
  340. * dp_tx_send()
  341. */
  342. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  343. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  344. return false;
  345. nbuf = qdf_nbuf_unshare(nbuf);
  346. if (!nbuf) {
  347. DP_STATS_INC_PKT(sa_peer,
  348. rx.intra_bss.fail,
  349. 1,
  350. len);
  351. /* return true even though the pkt is
  352. * not forwarded. Basically skb_unshare
  353. * failed and we want to continue with
  354. * next nbuf.
  355. */
  356. return true;
  357. }
  358. }
  359. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  360. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  361. 1, len);
  362. return true;
  363. } else {
  364. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  365. len);
  366. return false;
  367. }
  368. }
  369. }
  370. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  371. * source, then clone the pkt and send the cloned pkt for
  372. * intra BSS forwarding and original pkt up the network stack
  373. * Note: how do we handle multicast pkts. do we forward
  374. * all multicast pkts as is or let a higher layer module
  375. * like igmpsnoop decide whether to forward or not with
  376. * Mcast enhancement.
  377. */
  378. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  379. !sa_peer->bss_peer))) {
  380. nbuf_copy = qdf_nbuf_copy(nbuf);
  381. if (!nbuf_copy)
  382. return false;
  383. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  384. len = qdf_nbuf_len(nbuf_copy);
  385. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  386. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  387. qdf_nbuf_free(nbuf_copy);
  388. } else
  389. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  390. }
  391. /* return false as we have to still send the original pkt
  392. * up the stack
  393. */
  394. return false;
  395. }
  396. #ifdef MESH_MODE_SUPPORT
  397. /**
  398. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  399. *
  400. * @vdev: DP Virtual device handle
  401. * @nbuf: Buffer pointer
  402. * @rx_tlv_hdr: start of rx tlv header
  403. * @peer: pointer to peer
  404. *
  405. * This function allocated memory for mesh receive stats and fill the
  406. * required stats. Stores the memory address in skb cb.
  407. *
  408. * Return: void
  409. */
  410. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  411. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  412. {
  413. struct mesh_recv_hdr_s *rx_info = NULL;
  414. uint32_t pkt_type;
  415. uint32_t nss;
  416. uint32_t rate_mcs;
  417. uint32_t bw;
  418. /* fill recv mesh stats */
  419. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  420. /* upper layers are resposible to free this memory */
  421. if (rx_info == NULL) {
  422. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  423. "Memory allocation failed for mesh rx stats");
  424. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  425. return;
  426. }
  427. rx_info->rs_flags = MESH_RXHDR_VER1;
  428. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  429. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  430. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  431. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  432. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  433. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  434. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  435. if (vdev->osif_get_key)
  436. vdev->osif_get_key(vdev->osif_vdev,
  437. &rx_info->rs_decryptkey[0],
  438. &peer->mac_addr.raw[0],
  439. rx_info->rs_keyix);
  440. }
  441. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  442. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  443. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  444. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  445. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  446. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  447. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  448. (bw << 24);
  449. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  450. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  451. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  452. rx_info->rs_flags,
  453. rx_info->rs_rssi,
  454. rx_info->rs_channel,
  455. rx_info->rs_ratephy1,
  456. rx_info->rs_keyix);
  457. }
  458. /**
  459. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  460. *
  461. * @vdev: DP Virtual device handle
  462. * @nbuf: Buffer pointer
  463. * @rx_tlv_hdr: start of rx tlv header
  464. *
  465. * This checks if the received packet is matching any filter out
  466. * catogery and and drop the packet if it matches.
  467. *
  468. * Return: status(0 indicates drop, 1 indicate to no drop)
  469. */
  470. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  471. uint8_t *rx_tlv_hdr)
  472. {
  473. union dp_align_mac_addr mac_addr;
  474. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  475. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  476. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  477. return QDF_STATUS_SUCCESS;
  478. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  479. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  480. return QDF_STATUS_SUCCESS;
  481. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  482. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  483. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  484. return QDF_STATUS_SUCCESS;
  485. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  486. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  487. &mac_addr.raw[0]))
  488. return QDF_STATUS_E_FAILURE;
  489. if (!qdf_mem_cmp(&mac_addr.raw[0],
  490. &vdev->mac_addr.raw[0],
  491. DP_MAC_ADDR_LEN))
  492. return QDF_STATUS_SUCCESS;
  493. }
  494. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  495. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  496. &mac_addr.raw[0]))
  497. return QDF_STATUS_E_FAILURE;
  498. if (!qdf_mem_cmp(&mac_addr.raw[0],
  499. &vdev->mac_addr.raw[0],
  500. DP_MAC_ADDR_LEN))
  501. return QDF_STATUS_SUCCESS;
  502. }
  503. }
  504. return QDF_STATUS_E_FAILURE;
  505. }
  506. #else
  507. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  508. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  509. {
  510. }
  511. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  512. uint8_t *rx_tlv_hdr)
  513. {
  514. return QDF_STATUS_E_FAILURE;
  515. }
  516. #endif
  517. #ifdef CONFIG_WIN
  518. /**
  519. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  520. * clients
  521. * @pdev: DP pdev handle
  522. * @rx_pkt_hdr: Rx packet Header
  523. *
  524. * return: dp_vdev*
  525. */
  526. static
  527. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  528. uint8_t *rx_pkt_hdr)
  529. {
  530. struct ieee80211_frame *wh;
  531. struct dp_neighbour_peer *peer = NULL;
  532. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  533. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  534. return NULL;
  535. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  536. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  537. neighbour_peer_list_elem) {
  538. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  539. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  540. QDF_TRACE(
  541. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  542. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  543. peer->neighbour_peers_macaddr.raw[0],
  544. peer->neighbour_peers_macaddr.raw[1],
  545. peer->neighbour_peers_macaddr.raw[2],
  546. peer->neighbour_peers_macaddr.raw[3],
  547. peer->neighbour_peers_macaddr.raw[4],
  548. peer->neighbour_peers_macaddr.raw[5]);
  549. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  550. return pdev->monitor_vdev;
  551. }
  552. }
  553. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  554. return NULL;
  555. }
  556. /**
  557. * dp_rx_process_nac_rssi_frames(): Store RSSI for configured NAC
  558. * @pdev: DP pdev handle
  559. * @rx_tlv_hdr: tlv hdr buf
  560. *
  561. * return: None
  562. */
  563. #ifdef ATH_SUPPORT_NAC_RSSI
  564. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  565. {
  566. struct dp_vdev *vdev = NULL;
  567. struct dp_soc *soc = pdev->soc;
  568. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  569. struct ieee80211_frame *wh = (struct ieee80211_frame *)rx_pkt_hdr;
  570. if (pdev->nac_rssi_filtering) {
  571. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  572. if (vdev->cdp_nac_rssi_enabled &&
  573. (qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
  574. wh->i_addr1, DP_MAC_ADDR_LEN) == 0)) {
  575. QDF_TRACE(QDF_MODULE_ID_DP,
  576. QDF_TRACE_LEVEL_DEBUG, "RSSI updated");
  577. vdev->cdp_nac_rssi.vdev_id = vdev->vdev_id;
  578. vdev->cdp_nac_rssi.client_rssi =
  579. hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  580. dp_wdi_event_handler(WDI_EVENT_NAC_RSSI, soc,
  581. (void *)&vdev->cdp_nac_rssi,
  582. HTT_INVALID_PEER, WDI_NO_VAL,
  583. pdev->pdev_id);
  584. }
  585. }
  586. }
  587. }
  588. #else
  589. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  590. {
  591. }
  592. #endif
  593. /**
  594. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  595. * @soc: DP SOC handle
  596. * @mpdu: mpdu for which peer is invalid
  597. *
  598. * return: integer type
  599. */
  600. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  601. {
  602. struct dp_invalid_peer_msg msg;
  603. struct dp_vdev *vdev = NULL;
  604. struct dp_pdev *pdev = NULL;
  605. struct ieee80211_frame *wh;
  606. uint8_t i;
  607. qdf_nbuf_t curr_nbuf, next_nbuf;
  608. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  609. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  610. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  611. if (!DP_FRAME_IS_DATA(wh)) {
  612. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  613. "NAWDS valid only for data frames");
  614. goto free;
  615. }
  616. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  617. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  618. "Invalid nbuf length");
  619. goto free;
  620. }
  621. for (i = 0; i < MAX_PDEV_CNT; i++) {
  622. pdev = soc->pdev_list[i];
  623. if (!pdev) {
  624. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  625. "PDEV not found");
  626. continue;
  627. }
  628. if (pdev->filter_neighbour_peers) {
  629. /* Next Hop scenario not yet handle */
  630. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  631. if (vdev) {
  632. dp_rx_mon_deliver(soc, i,
  633. pdev->invalid_peer_head_msdu,
  634. pdev->invalid_peer_tail_msdu);
  635. pdev->invalid_peer_head_msdu = NULL;
  636. pdev->invalid_peer_tail_msdu = NULL;
  637. return 0;
  638. }
  639. }
  640. dp_rx_process_nac_rssi_frames(pdev, rx_tlv_hdr);
  641. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  642. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  643. DP_MAC_ADDR_LEN) == 0) {
  644. goto out;
  645. }
  646. }
  647. }
  648. if (!vdev) {
  649. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  650. "VDEV not found");
  651. goto free;
  652. }
  653. out:
  654. msg.wh = wh;
  655. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  656. msg.nbuf = mpdu;
  657. msg.vdev_id = vdev->vdev_id;
  658. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  659. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->osif_pdev, &msg);
  660. free:
  661. /* Drop and free packet */
  662. curr_nbuf = mpdu;
  663. while (curr_nbuf) {
  664. next_nbuf = qdf_nbuf_next(curr_nbuf);
  665. qdf_nbuf_free(curr_nbuf);
  666. curr_nbuf = next_nbuf;
  667. }
  668. return 0;
  669. }
  670. /**
  671. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  672. * @soc: DP SOC handle
  673. * @mpdu: mpdu for which peer is invalid
  674. * @mpdu_done: if an mpdu is completed
  675. *
  676. * return: integer type
  677. */
  678. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  679. qdf_nbuf_t mpdu, bool mpdu_done)
  680. {
  681. /* Only trigger the process when mpdu is completed */
  682. if (mpdu_done)
  683. dp_rx_process_invalid_peer(soc, mpdu);
  684. }
  685. #else
  686. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  687. {
  688. qdf_nbuf_t curr_nbuf, next_nbuf;
  689. struct dp_pdev *pdev;
  690. uint8_t i;
  691. curr_nbuf = mpdu;
  692. while (curr_nbuf) {
  693. next_nbuf = qdf_nbuf_next(curr_nbuf);
  694. /* Drop and free packet */
  695. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  696. qdf_nbuf_len(curr_nbuf));
  697. qdf_nbuf_free(curr_nbuf);
  698. curr_nbuf = next_nbuf;
  699. }
  700. /* reset the head and tail pointers */
  701. for (i = 0; i < MAX_PDEV_CNT; i++) {
  702. pdev = soc->pdev_list[i];
  703. if (!pdev) {
  704. QDF_TRACE(QDF_MODULE_ID_DP,
  705. QDF_TRACE_LEVEL_ERROR,
  706. "PDEV not found");
  707. continue;
  708. }
  709. pdev->invalid_peer_head_msdu = NULL;
  710. pdev->invalid_peer_tail_msdu = NULL;
  711. }
  712. return 0;
  713. }
  714. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  715. qdf_nbuf_t mpdu, bool mpdu_done)
  716. {
  717. /* To avoid compiler warning */
  718. mpdu_done = mpdu_done;
  719. /* Process the nbuf */
  720. dp_rx_process_invalid_peer(soc, mpdu);
  721. }
  722. #endif
  723. #if defined(FEATURE_LRO)
  724. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  725. {
  726. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  727. FL("----------------------RX DESC LRO----------------------\n"));
  728. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  729. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  730. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  731. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  732. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  733. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  734. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  735. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  736. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  737. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  738. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  739. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  740. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  741. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  742. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  743. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  744. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  745. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  746. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  747. FL("---------------------------------------------------------\n"));
  748. }
  749. /**
  750. * dp_rx_lro() - LRO related processing
  751. * @rx_tlv: TLV data extracted from the rx packet
  752. * @peer: destination peer of the msdu
  753. * @msdu: network buffer
  754. * @ctx: LRO context
  755. *
  756. * This function performs the LRO related processing of the msdu
  757. *
  758. * Return: true: LRO enabled false: LRO is not enabled
  759. */
  760. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  761. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  762. {
  763. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  764. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  765. FL("no peer, no vdev or LRO disabled"));
  766. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  767. return;
  768. }
  769. qdf_assert(rx_tlv);
  770. dp_rx_print_lro_info(rx_tlv);
  771. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  772. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  773. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  774. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  775. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  776. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  777. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  778. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  779. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  780. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  781. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  782. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  783. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  784. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  785. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  786. HAL_RX_TLV_GET_IPV6(rx_tlv);
  787. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  788. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  789. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  790. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  791. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  792. }
  793. #else
  794. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  795. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  796. {
  797. }
  798. #endif
  799. /**
  800. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  801. *
  802. * @nbuf: pointer to msdu.
  803. * @mpdu_len: mpdu length
  804. *
  805. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  806. */
  807. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  808. {
  809. bool last_nbuf;
  810. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  811. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  812. last_nbuf = false;
  813. } else {
  814. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  815. last_nbuf = true;
  816. }
  817. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  818. return last_nbuf;
  819. }
  820. /**
  821. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  822. * multiple nbufs.
  823. * @nbuf: pointer to the first msdu of an amsdu.
  824. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  825. *
  826. *
  827. * This function implements the creation of RX frag_list for cases
  828. * where an MSDU is spread across multiple nbufs.
  829. *
  830. * Return: returns the head nbuf which contains complete frag_list.
  831. */
  832. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  833. {
  834. qdf_nbuf_t parent, next, frag_list;
  835. uint16_t frag_list_len = 0;
  836. uint16_t mpdu_len;
  837. bool last_nbuf;
  838. /*
  839. * this is a case where the complete msdu fits in one single nbuf.
  840. * in this case HW sets both start and end bit and we only need to
  841. * reset these bits for RAW mode simulator to decap the pkt
  842. */
  843. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  844. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  845. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  846. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  847. return nbuf;
  848. }
  849. /*
  850. * This is a case where we have multiple msdus (A-MSDU) spread across
  851. * multiple nbufs. here we create a fraglist out of these nbufs.
  852. *
  853. * the moment we encounter a nbuf with continuation bit set we
  854. * know for sure we have an MSDU which is spread across multiple
  855. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  856. */
  857. parent = nbuf;
  858. frag_list = nbuf->next;
  859. nbuf = nbuf->next;
  860. /*
  861. * set the start bit in the first nbuf we encounter with continuation
  862. * bit set. This has the proper mpdu length set as it is the first
  863. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  864. * nbufs will form the frag_list of the parent nbuf.
  865. */
  866. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  867. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  868. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  869. /*
  870. * this is where we set the length of the fragments which are
  871. * associated to the parent nbuf. We iterate through the frag_list
  872. * till we hit the last_nbuf of the list.
  873. */
  874. do {
  875. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  876. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  877. frag_list_len += qdf_nbuf_len(nbuf);
  878. if (last_nbuf) {
  879. next = nbuf->next;
  880. nbuf->next = NULL;
  881. break;
  882. }
  883. nbuf = nbuf->next;
  884. } while (!last_nbuf);
  885. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  886. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  887. parent->next = next;
  888. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  889. return parent;
  890. }
  891. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  892. struct dp_peer *peer,
  893. qdf_nbuf_t nbuf_head,
  894. qdf_nbuf_t nbuf_tail)
  895. {
  896. /*
  897. * highly unlikely to have a vdev without a registerd rx
  898. * callback function. if so let us free the nbuf_list.
  899. */
  900. if (qdf_unlikely(!vdev->osif_rx)) {
  901. qdf_nbuf_t nbuf;
  902. do {
  903. nbuf = nbuf_head;
  904. nbuf_head = nbuf_head->next;
  905. qdf_nbuf_free(nbuf);
  906. } while (nbuf_head);
  907. return;
  908. }
  909. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  910. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  911. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  912. &nbuf_tail, (struct cdp_peer *) peer);
  913. }
  914. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  915. }
  916. /**
  917. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  918. * @nbuf: pointer to the first msdu of an amsdu.
  919. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  920. *
  921. * The ipsumed field of the skb is set based on whether HW validated the
  922. * IP/TCP/UDP checksum.
  923. *
  924. * Return: void
  925. */
  926. static inline void dp_rx_cksum_offload(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  927. {
  928. qdf_nbuf_rx_cksum_t cksum = {0};
  929. if (qdf_likely(!hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr) &&
  930. !hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr))) {
  931. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  932. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  933. }
  934. }
  935. /**
  936. * dp_rx_msdu_stats_update() - update per msdu stats.
  937. * @soc: core txrx main context
  938. * @nbuf: pointer to the first msdu of an amsdu.
  939. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  940. * @peer: pointer to the peer object.
  941. * @ring_id: reo dest ring number on which pkt is reaped.
  942. *
  943. * update all the per msdu stats for that nbuf.
  944. * Return: void
  945. */
  946. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  947. qdf_nbuf_t nbuf,
  948. uint8_t *rx_tlv_hdr,
  949. struct dp_peer *peer,
  950. uint8_t ring_id)
  951. {
  952. bool is_ampdu, is_not_amsdu;
  953. uint16_t peer_id;
  954. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  955. struct dp_vdev *vdev = peer->vdev;
  956. struct ether_header *eh;
  957. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  958. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  959. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  960. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  961. qdf_nbuf_is_rx_chfrag_end(nbuf);
  962. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  963. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  964. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  965. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  966. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  967. eh = (struct ether_header *)qdf_nbuf_data(nbuf);
  968. if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
  969. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  970. } else {
  971. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  972. }
  973. }
  974. /*
  975. * currently we can return from here as we have similar stats
  976. * updated at per ppdu level instead of msdu level
  977. */
  978. if (!soc->process_rx_status)
  979. return;
  980. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  981. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  982. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  983. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  984. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  985. tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
  986. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  987. reception_type = hal_rx_msdu_start_reception_type_get(rx_tlv_hdr);
  988. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  989. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  990. /* Save tid to skb->priority */
  991. DP_RX_TID_SAVE(nbuf, tid);
  992. DP_STATS_INC(vdev->pdev, rx.bw[bw], 1);
  993. DP_STATS_INC(vdev->pdev, rx.reception_type[reception_type], 1);
  994. DP_STATS_INC(peer, rx.nss[nss], 1);
  995. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  996. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  997. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  998. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  999. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1000. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1001. DP_STATS_INC(peer, rx.bw[bw], 1);
  1002. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1003. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1004. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1005. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1006. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1007. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1008. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1009. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1010. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1011. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1012. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1013. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1014. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1015. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1016. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1017. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1018. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1019. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1020. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1021. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1022. ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
  1023. if ((soc->process_rx_status) &&
  1024. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1025. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1026. soc->cdp_soc.ol_ops->update_dp_stats(
  1027. vdev->pdev->osif_pdev,
  1028. &peer->stats,
  1029. peer_id,
  1030. UPDATE_PEER_STATS);
  1031. }
  1032. }
  1033. }
  1034. #ifdef WDS_VENDOR_EXTENSION
  1035. int dp_wds_rx_policy_check(
  1036. uint8_t *rx_tlv_hdr,
  1037. struct dp_vdev *vdev,
  1038. struct dp_peer *peer,
  1039. int rx_mcast
  1040. )
  1041. {
  1042. struct dp_peer *bss_peer;
  1043. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1044. int rx_policy_ucast, rx_policy_mcast;
  1045. if (vdev->opmode == wlan_op_mode_ap) {
  1046. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1047. if (bss_peer->bss_peer) {
  1048. /* if wds policy check is not enabled on this vdev, accept all frames */
  1049. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1050. return 1;
  1051. }
  1052. break;
  1053. }
  1054. }
  1055. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1056. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1057. } else { /* sta mode */
  1058. if (!peer->wds_ecm.wds_rx_filter) {
  1059. return 1;
  1060. }
  1061. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1062. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1063. }
  1064. /* ------------------------------------------------
  1065. * self
  1066. * peer- rx rx-
  1067. * wds ucast mcast dir policy accept note
  1068. * ------------------------------------------------
  1069. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1070. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1071. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1072. * 1 1 0 00 x1 0 bad frame, won't see it
  1073. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1074. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1075. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1076. * 1 0 1 00 1x 0 bad frame, won't see it
  1077. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1078. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1079. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1080. * 1 1 0 00 x0 0 bad frame, won't see it
  1081. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1082. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1083. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1084. * 1 0 1 00 0x 0 bad frame, won't see it
  1085. *
  1086. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1087. * 0 x x 01 xx 1
  1088. * 0 x x 10 xx 0
  1089. * 0 x x 00 xx 0 bad frame, won't see it
  1090. * ------------------------------------------------
  1091. */
  1092. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1093. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1094. rx_3addr = fr_ds ^ to_ds;
  1095. rx_4addr = fr_ds & to_ds;
  1096. if (vdev->opmode == wlan_op_mode_ap) {
  1097. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1098. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1099. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1100. return 1;
  1101. }
  1102. } else { /* sta mode */
  1103. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1104. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1105. return 1;
  1106. }
  1107. }
  1108. return 0;
  1109. }
  1110. #else
  1111. int dp_wds_rx_policy_check(
  1112. uint8_t *rx_tlv_hdr,
  1113. struct dp_vdev *vdev,
  1114. struct dp_peer *peer,
  1115. int rx_mcast
  1116. )
  1117. {
  1118. return 1;
  1119. }
  1120. #endif
  1121. /**
  1122. * dp_rx_process() - Brain of the Rx processing functionality
  1123. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1124. * @soc: core txrx main context
  1125. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1126. * @quota: No. of units (packets) that can be serviced in one shot.
  1127. *
  1128. * This function implements the core of Rx functionality. This is
  1129. * expected to handle only non-error frames.
  1130. *
  1131. * Return: uint32_t: No. of elements processed
  1132. */
  1133. uint32_t
  1134. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  1135. {
  1136. void *hal_soc;
  1137. void *ring_desc;
  1138. struct dp_rx_desc *rx_desc = NULL;
  1139. qdf_nbuf_t nbuf, next;
  1140. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1141. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1142. uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset;
  1143. uint16_t msdu_len;
  1144. uint16_t peer_id;
  1145. struct dp_peer *peer = NULL;
  1146. struct dp_vdev *vdev = NULL;
  1147. uint32_t pkt_len;
  1148. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1149. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1150. enum hal_reo_error_status error;
  1151. uint32_t peer_mdata;
  1152. uint8_t *rx_tlv_hdr;
  1153. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1154. uint8_t mac_id = 0;
  1155. struct dp_pdev *pdev;
  1156. struct dp_srng *dp_rxdma_srng;
  1157. struct rx_desc_pool *rx_desc_pool;
  1158. struct dp_soc *soc = int_ctx->soc;
  1159. uint8_t ring_id = 0;
  1160. uint8_t core_id = 0;
  1161. qdf_nbuf_t nbuf_head = NULL;
  1162. qdf_nbuf_t nbuf_tail = NULL;
  1163. qdf_nbuf_t deliver_list_head = NULL;
  1164. qdf_nbuf_t deliver_list_tail = NULL;
  1165. DP_HIST_INIT();
  1166. /* Debug -- Remove later */
  1167. qdf_assert(soc && hal_ring);
  1168. hal_soc = soc->hal_soc;
  1169. /* Debug -- Remove later */
  1170. qdf_assert(hal_soc);
  1171. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1172. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1173. /*
  1174. * Need API to convert from hal_ring pointer to
  1175. * Ring Type / Ring Id combo
  1176. */
  1177. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1178. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1179. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1180. hal_srng_access_end(hal_soc, hal_ring);
  1181. goto done;
  1182. }
  1183. /*
  1184. * start reaping the buffers from reo ring and queue
  1185. * them in per vdev queue.
  1186. * Process the received pkts in a different per vdev loop.
  1187. */
  1188. while (qdf_likely(quota && (ring_desc =
  1189. hal_srng_dst_get_next(hal_soc, hal_ring)))) {
  1190. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1191. ring_id = hal_srng_ring_id_get(hal_ring);
  1192. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1193. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1194. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1195. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1196. /* Don't know how to deal with this -- assert */
  1197. qdf_assert(0);
  1198. }
  1199. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1200. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1201. qdf_assert(rx_desc);
  1202. rx_bufs_reaped[rx_desc->pool_id]++;
  1203. /* TODO */
  1204. /*
  1205. * Need a separate API for unmapping based on
  1206. * phyiscal address
  1207. */
  1208. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1209. QDF_DMA_BIDIRECTIONAL);
  1210. core_id = smp_processor_id();
  1211. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1212. /* Get MPDU DESC info */
  1213. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1214. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1215. mpdu_desc_info.peer_meta_data);
  1216. /* Get MSDU DESC info */
  1217. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1218. /*
  1219. * save msdu flags first, last and continuation msdu in
  1220. * nbuf->cb
  1221. */
  1222. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1223. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1224. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1225. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1226. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1227. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1228. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1229. /*
  1230. * if continuation bit is set then we have MSDU spread
  1231. * across multiple buffers, let us not decrement quota
  1232. * till we reap all buffers of that MSDU.
  1233. */
  1234. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1235. quota -= 1;
  1236. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1237. &tail[rx_desc->pool_id],
  1238. rx_desc);
  1239. }
  1240. done:
  1241. hal_srng_access_end(hal_soc, hal_ring);
  1242. /* Update histogram statistics by looping through pdev's */
  1243. DP_RX_HIST_STATS_PER_PDEV();
  1244. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1245. /*
  1246. * continue with next mac_id if no pkts were reaped
  1247. * from that pool
  1248. */
  1249. if (!rx_bufs_reaped[mac_id])
  1250. continue;
  1251. pdev = soc->pdev_list[mac_id];
  1252. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1253. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1254. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1255. rx_desc_pool, rx_bufs_reaped[mac_id],
  1256. &head[mac_id], &tail[mac_id]);
  1257. }
  1258. /* Peer can be NULL is case of LFR */
  1259. if (qdf_likely(peer != NULL))
  1260. vdev = NULL;
  1261. /*
  1262. * BIG loop where each nbuf is dequeued from global queue,
  1263. * processed and queued back on a per vdev basis. These nbufs
  1264. * are sent to stack as and when we run out of nbufs
  1265. * or a new nbuf dequeued from global queue has a different
  1266. * vdev when compared to previous nbuf.
  1267. */
  1268. nbuf = nbuf_head;
  1269. while (nbuf) {
  1270. next = nbuf->next;
  1271. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1272. /*
  1273. * Check if DMA completed -- msdu_done is the last bit
  1274. * to be written
  1275. */
  1276. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1277. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1278. FL("MSDU DONE failure"));
  1279. hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO);
  1280. qdf_assert(0);
  1281. }
  1282. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1283. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1284. peer = dp_peer_find_by_id(soc, peer_id);
  1285. rx_bufs_used++;
  1286. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1287. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1288. deliver_list_tail);
  1289. deliver_list_head = NULL;
  1290. deliver_list_tail = NULL;
  1291. }
  1292. if (qdf_likely(peer != NULL)) {
  1293. vdev = peer->vdev;
  1294. } else {
  1295. qdf_nbuf_free(nbuf);
  1296. nbuf = next;
  1297. continue;
  1298. }
  1299. if (qdf_unlikely(vdev == NULL)) {
  1300. qdf_nbuf_free(nbuf);
  1301. nbuf = next;
  1302. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1303. continue;
  1304. }
  1305. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1306. /*
  1307. * The below condition happens when an MSDU is spread
  1308. * across multiple buffers. This can happen in two cases
  1309. * 1. The nbuf size is smaller then the received msdu.
  1310. * ex: we have set the nbuf size to 2048 during
  1311. * nbuf_alloc. but we received an msdu which is
  1312. * 2304 bytes in size then this msdu is spread
  1313. * across 2 nbufs.
  1314. *
  1315. * 2. AMSDUs when RAW mode is enabled.
  1316. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1317. * across 1st nbuf and 2nd nbuf and last MSDU is
  1318. * spread across 2nd nbuf and 3rd nbuf.
  1319. *
  1320. * for these scenarios let us create a skb frag_list and
  1321. * append these buffers till the last MSDU of the AMSDU
  1322. */
  1323. if (qdf_unlikely(vdev->rx_decap_type ==
  1324. htt_cmn_pkt_type_raw)) {
  1325. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1326. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  1327. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1328. next = nbuf->next;
  1329. }
  1330. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1331. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1332. QDF_TRACE(QDF_MODULE_ID_DP,
  1333. QDF_TRACE_LEVEL_ERROR,
  1334. FL("Policy Check Drop pkt"));
  1335. /* Drop & free packet */
  1336. qdf_nbuf_free(nbuf);
  1337. /* Statistics */
  1338. nbuf = next;
  1339. continue;
  1340. }
  1341. if (qdf_unlikely(peer && peer->bss_peer)) {
  1342. QDF_TRACE(QDF_MODULE_ID_DP,
  1343. QDF_TRACE_LEVEL_ERROR,
  1344. FL("received pkt with same src MAC"));
  1345. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  1346. /* Drop & free packet */
  1347. qdf_nbuf_free(nbuf);
  1348. /* Statistics */
  1349. nbuf = next;
  1350. continue;
  1351. }
  1352. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1353. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1354. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1355. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1356. qdf_nbuf_free(nbuf);
  1357. nbuf = next;
  1358. continue;
  1359. }
  1360. dp_rx_cksum_offload(nbuf, rx_tlv_hdr);
  1361. dp_set_rx_queue(nbuf, ring_id);
  1362. /*
  1363. * HW structures call this L3 header padding --
  1364. * even though this is actually the offset from
  1365. * the buffer beginning where the L2 header
  1366. * begins.
  1367. */
  1368. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1369. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1370. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1371. l2_hdr_offset =
  1372. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1373. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1374. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1375. if (unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1376. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1377. else {
  1378. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1379. qdf_nbuf_pull_head(nbuf,
  1380. RX_PKT_TLVS_LEN +
  1381. l2_hdr_offset);
  1382. }
  1383. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1384. if (qdf_unlikely(vdev->mesh_vdev)) {
  1385. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1386. rx_tlv_hdr)
  1387. == QDF_STATUS_SUCCESS) {
  1388. QDF_TRACE(QDF_MODULE_ID_DP,
  1389. QDF_TRACE_LEVEL_INFO_MED,
  1390. FL("mesh pkt filtered"));
  1391. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1392. 1);
  1393. qdf_nbuf_free(nbuf);
  1394. nbuf = next;
  1395. continue;
  1396. }
  1397. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1398. }
  1399. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1400. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1401. "p_id %d msdu_len %d hdr_off %d",
  1402. peer_id, msdu_len, l2_hdr_offset);
  1403. print_hex_dump(KERN_ERR,
  1404. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1405. qdf_nbuf_data(nbuf), 128, false);
  1406. #endif /* NAPIER_EMULATION */
  1407. if (qdf_likely(vdev->rx_decap_type ==
  1408. htt_cmn_pkt_type_ethernet) &&
  1409. (qdf_likely(!vdev->mesh_vdev))) {
  1410. /* WDS Source Port Learning */
  1411. dp_rx_wds_srcport_learn(soc,
  1412. rx_tlv_hdr,
  1413. peer,
  1414. nbuf);
  1415. /* Intrabss-fwd */
  1416. if (dp_rx_check_ap_bridge(vdev))
  1417. if (dp_rx_intrabss_fwd(soc,
  1418. peer,
  1419. rx_tlv_hdr,
  1420. nbuf)) {
  1421. nbuf = next;
  1422. continue; /* Get next desc */
  1423. }
  1424. }
  1425. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1426. DP_RX_LIST_APPEND(deliver_list_head,
  1427. deliver_list_tail,
  1428. nbuf);
  1429. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1430. qdf_nbuf_len(nbuf));
  1431. nbuf = next;
  1432. }
  1433. if (deliver_list_head)
  1434. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1435. deliver_list_tail);
  1436. return rx_bufs_used; /* Assume no scale factor for now */
  1437. }
  1438. /**
  1439. * dp_rx_detach() - detach dp rx
  1440. * @pdev: core txrx pdev context
  1441. *
  1442. * This function will detach DP RX into main device context
  1443. * will free DP Rx resources.
  1444. *
  1445. * Return: void
  1446. */
  1447. void
  1448. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1449. {
  1450. uint8_t pdev_id = pdev->pdev_id;
  1451. struct dp_soc *soc = pdev->soc;
  1452. struct rx_desc_pool *rx_desc_pool;
  1453. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1454. if (rx_desc_pool->pool_size != 0) {
  1455. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1456. }
  1457. return;
  1458. }
  1459. /**
  1460. * dp_rx_attach() - attach DP RX
  1461. * @pdev: core txrx pdev context
  1462. *
  1463. * This function will attach a DP RX instance into the main
  1464. * device (SOC) context. Will allocate dp rx resource and
  1465. * initialize resources.
  1466. *
  1467. * Return: QDF_STATUS_SUCCESS: success
  1468. * QDF_STATUS_E_RESOURCES: Error return
  1469. */
  1470. QDF_STATUS
  1471. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1472. {
  1473. uint8_t pdev_id = pdev->pdev_id;
  1474. struct dp_soc *soc = pdev->soc;
  1475. struct dp_srng rxdma_srng;
  1476. uint32_t rxdma_entries;
  1477. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1478. union dp_rx_desc_list_elem_t *tail = NULL;
  1479. struct dp_srng *dp_rxdma_srng;
  1480. struct rx_desc_pool *rx_desc_pool;
  1481. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1482. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1483. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1484. return QDF_STATUS_SUCCESS;
  1485. }
  1486. pdev = soc->pdev_list[pdev_id];
  1487. rxdma_srng = pdev->rx_refill_buf_ring;
  1488. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1489. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1490. soc->hal_soc, RXDMA_BUF);
  1491. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1492. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1493. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1494. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1495. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1496. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1497. 0, &desc_list, &tail);
  1498. return QDF_STATUS_SUCCESS;
  1499. }
  1500. /*
  1501. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1502. * @soc: core txrx main context
  1503. * @pdev: core txrx pdev context
  1504. *
  1505. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1506. * until retry times reaches max threshold or succeeded.
  1507. *
  1508. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1509. */
  1510. qdf_nbuf_t
  1511. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1512. {
  1513. uint8_t *buf;
  1514. int32_t nbuf_retry_count;
  1515. QDF_STATUS ret;
  1516. qdf_nbuf_t nbuf = NULL;
  1517. for (nbuf_retry_count = 0; nbuf_retry_count <
  1518. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1519. nbuf_retry_count++) {
  1520. /* Allocate a new skb */
  1521. nbuf = qdf_nbuf_alloc(soc->osdev,
  1522. RX_BUFFER_SIZE,
  1523. RX_BUFFER_RESERVATION,
  1524. RX_BUFFER_ALIGNMENT,
  1525. FALSE);
  1526. if (nbuf == NULL) {
  1527. DP_STATS_INC(pdev,
  1528. replenish.nbuf_alloc_fail, 1);
  1529. continue;
  1530. }
  1531. buf = qdf_nbuf_data(nbuf);
  1532. memset(buf, 0, RX_BUFFER_SIZE);
  1533. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1534. QDF_DMA_BIDIRECTIONAL);
  1535. /* nbuf map failed */
  1536. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1537. qdf_nbuf_free(nbuf);
  1538. DP_STATS_INC(pdev, replenish.map_err, 1);
  1539. continue;
  1540. }
  1541. /* qdf_nbuf alloc and map succeeded */
  1542. break;
  1543. }
  1544. /* qdf_nbuf still alloc or map failed */
  1545. if (qdf_unlikely(nbuf_retry_count >=
  1546. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1547. return NULL;
  1548. return nbuf;
  1549. }