sde_hw_intf.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
  7. #include <linux/iopoll.h>
  8. #include "sde_hwio.h"
  9. #include "sde_hw_catalog.h"
  10. #include "sde_hw_intf.h"
  11. #include "sde_dbg.h"
  12. #define INTF_TIMING_ENGINE_EN 0x000
  13. #define INTF_CONFIG 0x004
  14. #define INTF_HSYNC_CTL 0x008
  15. #define INTF_VSYNC_PERIOD_F0 0x00C
  16. #define INTF_VSYNC_PERIOD_F1 0x010
  17. #define INTF_VSYNC_PULSE_WIDTH_F0 0x014
  18. #define INTF_VSYNC_PULSE_WIDTH_F1 0x018
  19. #define INTF_DISPLAY_V_START_F0 0x01C
  20. #define INTF_DISPLAY_V_START_F1 0x020
  21. #define INTF_DISPLAY_V_END_F0 0x024
  22. #define INTF_DISPLAY_V_END_F1 0x028
  23. #define INTF_ACTIVE_V_START_F0 0x02C
  24. #define INTF_ACTIVE_V_START_F1 0x030
  25. #define INTF_ACTIVE_V_END_F0 0x034
  26. #define INTF_ACTIVE_V_END_F1 0x038
  27. #define INTF_DISPLAY_HCTL 0x03C
  28. #define INTF_ACTIVE_HCTL 0x040
  29. #define INTF_BORDER_COLOR 0x044
  30. #define INTF_UNDERFLOW_COLOR 0x048
  31. #define INTF_HSYNC_SKEW 0x04C
  32. #define INTF_POLARITY_CTL 0x050
  33. #define INTF_TEST_CTL 0x054
  34. #define INTF_TP_COLOR0 0x058
  35. #define INTF_TP_COLOR1 0x05C
  36. #define INTF_CONFIG2 0x060
  37. #define INTF_DISPLAY_DATA_HCTL 0x064
  38. #define INTF_ACTIVE_DATA_HCTL 0x068
  39. #define INTF_FRAME_LINE_COUNT_EN 0x0A8
  40. #define INTF_FRAME_COUNT 0x0AC
  41. #define INTF_LINE_COUNT 0x0B0
  42. #define INTF_DEFLICKER_CONFIG 0x0F0
  43. #define INTF_DEFLICKER_STRNG_COEFF 0x0F4
  44. #define INTF_DEFLICKER_WEAK_COEFF 0x0F8
  45. #define INTF_REG_SPLIT_LINK 0x080
  46. #define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084
  47. #define INTF_PANEL_FORMAT 0x090
  48. #define INTF_TPG_ENABLE 0x100
  49. #define INTF_TPG_MAIN_CONTROL 0x104
  50. #define INTF_TPG_VIDEO_CONFIG 0x108
  51. #define INTF_TPG_COMPONENT_LIMITS 0x10C
  52. #define INTF_TPG_RECTANGLE 0x110
  53. #define INTF_TPG_INITIAL_VALUE 0x114
  54. #define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118
  55. #define INTF_TPG_RGB_MAPPING 0x11C
  56. #define INTF_PROG_FETCH_START 0x170
  57. #define INTF_PROG_ROT_START 0x174
  58. #define INTF_MISR_CTRL 0x180
  59. #define INTF_MISR_SIGNATURE 0x184
  60. #define INTF_VSYNC_TIMESTAMP_CTRL 0x210
  61. #define INTF_VSYNC_TIMESTAMP0 0x214
  62. #define INTF_VSYNC_TIMESTAMP1 0x218
  63. #define INTF_MDP_VSYNC_TIMESTAMP0 0x21C
  64. #define INTF_MDP_VSYNC_TIMESTAMP1 0x220
  65. #define INTF_WD_TIMER_0_JITTER_CTL 0x224
  66. #define INTF_WD_TIMER_0_LTJ_SLOPE 0x228
  67. #define INTF_WD_TIMER_0_LTJ_MAX 0x22C
  68. #define INTF_WD_TIMER_0_CTL 0x230
  69. #define INTF_WD_TIMER_0_CTL2 0x234
  70. #define INTF_WD_TIMER_0_LOAD_VALUE 0x238
  71. #define INTF_MUX 0x25C
  72. #define INTF_UNDERRUN_COUNT 0x268
  73. #define INTF_STATUS 0x26C
  74. #define INTF_AVR_CONTROL 0x270
  75. #define INTF_AVR_MODE 0x274
  76. #define INTF_AVR_TRIGGER 0x278
  77. #define INTF_AVR_VTOTAL 0x27C
  78. #define INTF_TEAR_MDP_VSYNC_SEL 0x280
  79. #define INTF_TEAR_TEAR_CHECK_EN 0x284
  80. #define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288
  81. #define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C
  82. #define INTF_TEAR_SYNC_WRCOUNT 0x290
  83. #define INTF_TEAR_VSYNC_INIT_VAL 0x294
  84. #define INTF_TEAR_INT_COUNT_VAL 0x298
  85. #define INTF_TEAR_SYNC_THRESH 0x29C
  86. #define INTF_TEAR_START_POS 0x2A0
  87. #define INTF_TEAR_RD_PTR_IRQ 0x2A4
  88. #define INTF_TEAR_WR_PTR_IRQ 0x2A8
  89. #define INTF_TEAR_OUT_LINE_COUNT 0x2AC
  90. #define INTF_TEAR_LINE_COUNT 0x2B0
  91. #define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4
  92. #define INTF_TEAR_TEAR_DETECT_CTRL 0x2B8
  93. static struct sde_intf_cfg *_intf_offset(enum sde_intf intf,
  94. struct sde_mdss_cfg *m,
  95. void __iomem *addr,
  96. struct sde_hw_blk_reg_map *b)
  97. {
  98. int i;
  99. for (i = 0; i < m->intf_count; i++) {
  100. if ((intf == m->intf[i].id) &&
  101. (m->intf[i].type != INTF_NONE)) {
  102. b->base_off = addr;
  103. b->blk_off = m->intf[i].base;
  104. b->length = m->intf[i].len;
  105. b->hw_rev = m->hw_rev;
  106. b->log_mask = SDE_DBG_MASK_INTF;
  107. return &m->intf[i];
  108. }
  109. }
  110. return ERR_PTR(-EINVAL);
  111. }
  112. static void sde_hw_intf_avr_trigger(struct sde_hw_intf *ctx)
  113. {
  114. struct sde_hw_blk_reg_map *c;
  115. if (!ctx)
  116. return;
  117. c = &ctx->hw;
  118. SDE_REG_WRITE(c, INTF_AVR_TRIGGER, 0x1);
  119. SDE_DEBUG("AVR Triggered\n");
  120. }
  121. static int sde_hw_intf_avr_setup(struct sde_hw_intf *ctx,
  122. const struct intf_timing_params *params,
  123. const struct intf_avr_params *avr_params)
  124. {
  125. struct sde_hw_blk_reg_map *c;
  126. u32 hsync_period, vsync_period;
  127. u32 min_fps, default_fps, diff_fps;
  128. u32 vsync_period_slow;
  129. u32 avr_vtotal;
  130. u32 add_porches = 0;
  131. if (!ctx || !params || !avr_params) {
  132. SDE_ERROR("invalid input parameter(s)\n");
  133. return -EINVAL;
  134. }
  135. c = &ctx->hw;
  136. min_fps = avr_params->min_fps;
  137. default_fps = avr_params->default_fps;
  138. diff_fps = default_fps - min_fps;
  139. hsync_period = params->hsync_pulse_width +
  140. params->h_back_porch + params->width +
  141. params->h_front_porch;
  142. vsync_period = params->vsync_pulse_width +
  143. params->v_back_porch + params->height +
  144. params->v_front_porch;
  145. if (diff_fps)
  146. add_porches = mult_frac(vsync_period, diff_fps, min_fps);
  147. vsync_period_slow = vsync_period + add_porches;
  148. avr_vtotal = vsync_period_slow * hsync_period;
  149. SDE_REG_WRITE(c, INTF_AVR_VTOTAL, avr_vtotal);
  150. return 0;
  151. }
  152. static void sde_hw_intf_avr_ctrl(struct sde_hw_intf *ctx,
  153. const struct intf_avr_params *avr_params)
  154. {
  155. struct sde_hw_blk_reg_map *c;
  156. u32 avr_mode = 0;
  157. u32 avr_ctrl = 0;
  158. if (!ctx || !avr_params)
  159. return;
  160. c = &ctx->hw;
  161. if (avr_params->avr_mode) {
  162. avr_ctrl = BIT(0);
  163. avr_mode = (avr_params->avr_mode == SDE_RM_QSYNC_ONE_SHOT_MODE) ?
  164. (BIT(0) | BIT(8)) : 0x0;
  165. if (avr_params->avr_step_lines)
  166. avr_mode |= avr_params->avr_step_lines << 16;
  167. }
  168. SDE_REG_WRITE(c, INTF_AVR_CONTROL, avr_ctrl);
  169. SDE_REG_WRITE(c, INTF_AVR_MODE, avr_mode);
  170. }
  171. static u32 sde_hw_intf_get_avr_status(struct sde_hw_intf *ctx)
  172. {
  173. struct sde_hw_blk_reg_map *c;
  174. u32 avr_ctrl;
  175. if (!ctx)
  176. return false;
  177. c = &ctx->hw;
  178. avr_ctrl = SDE_REG_READ(c, INTF_AVR_CONTROL);
  179. return avr_ctrl >> 31;
  180. }
  181. static inline void _check_and_set_comp_bit(struct sde_hw_intf *ctx,
  182. bool dsc_4hs_merge, bool compression_en, u32 *intf_cfg2)
  183. {
  184. if (((SDE_HW_MAJOR(ctx->mdss->hw_rev) >= SDE_HW_MAJOR(SDE_HW_VER_700)) && compression_en)
  185. || (IS_SDE_MAJOR_SAME(ctx->mdss->hw_rev, SDE_HW_VER_600) && dsc_4hs_merge))
  186. (*intf_cfg2) |= BIT(12);
  187. else if (!compression_en)
  188. (*intf_cfg2) &= ~BIT(12);
  189. }
  190. static void sde_hw_intf_reset_counter(struct sde_hw_intf *ctx)
  191. {
  192. struct sde_hw_blk_reg_map *c = &ctx->hw;
  193. SDE_REG_WRITE(c, INTF_LINE_COUNT, BIT(31));
  194. }
  195. static u64 sde_hw_intf_get_vsync_timestamp(struct sde_hw_intf *ctx, bool is_vid)
  196. {
  197. struct sde_hw_blk_reg_map *c = &ctx->hw;
  198. u32 timestamp_lo, timestamp_hi;
  199. u64 timestamp = 0;
  200. u32 reg_ts_0, reg_ts_1;
  201. if (ctx->cap->features & BIT(SDE_INTF_MDP_VSYNC_TS) && is_vid) {
  202. reg_ts_0 = INTF_MDP_VSYNC_TIMESTAMP0;
  203. reg_ts_1 = INTF_MDP_VSYNC_TIMESTAMP1;
  204. } else {
  205. reg_ts_0 = INTF_VSYNC_TIMESTAMP0;
  206. reg_ts_1 = INTF_VSYNC_TIMESTAMP1;
  207. }
  208. timestamp_hi = SDE_REG_READ(c, reg_ts_1);
  209. timestamp_lo = SDE_REG_READ(c, reg_ts_0);
  210. timestamp = timestamp_hi;
  211. timestamp = (timestamp << 32) | timestamp_lo;
  212. return timestamp;
  213. }
  214. static void sde_hw_intf_setup_timing_engine(struct sde_hw_intf *ctx,
  215. const struct intf_timing_params *p,
  216. const struct sde_format *fmt)
  217. {
  218. struct sde_hw_blk_reg_map *c = &ctx->hw;
  219. u32 hsync_period, vsync_period;
  220. u32 display_v_start, display_v_end;
  221. u32 hsync_start_x, hsync_end_x;
  222. u32 hsync_data_start_x, hsync_data_end_x;
  223. u32 active_h_start, active_h_end;
  224. u32 active_v_start, active_v_end;
  225. u32 active_hctl, display_hctl, hsync_ctl;
  226. u32 polarity_ctl, den_polarity, hsync_polarity, vsync_polarity;
  227. u32 panel_format;
  228. u32 intf_cfg, intf_cfg2 = 0;
  229. u32 display_data_hctl = 0, active_data_hctl = 0;
  230. u32 data_width;
  231. bool dp_intf = false;
  232. /* read interface_cfg */
  233. intf_cfg = SDE_REG_READ(c, INTF_CONFIG);
  234. if (ctx->cap->type == INTF_EDP || ctx->cap->type == INTF_DP)
  235. dp_intf = true;
  236. hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width +
  237. p->h_front_porch;
  238. vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height +
  239. p->v_front_porch;
  240. display_v_start = ((p->vsync_pulse_width + p->v_back_porch) *
  241. hsync_period) + p->hsync_skew;
  242. display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) +
  243. p->hsync_skew - 1;
  244. hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width;
  245. hsync_start_x = p->h_back_porch + p->hsync_pulse_width;
  246. hsync_end_x = hsync_period - p->h_front_porch - 1;
  247. /*
  248. * DATA_HCTL_EN controls data timing which can be different from
  249. * video timing. It is recommended to enable it for all cases, except
  250. * if compression is enabled in 1 pixel per clock mode
  251. */
  252. if (!p->compression_en || p->wide_bus_en)
  253. intf_cfg2 |= BIT(4);
  254. if (p->wide_bus_en)
  255. intf_cfg2 |= BIT(0);
  256. /*
  257. * If widebus is disabled:
  258. * For uncompressed stream, the data is valid for the entire active
  259. * window period.
  260. * For compressed stream, data is valid for a shorter time period
  261. * inside the active window depending on the compression ratio.
  262. *
  263. * If widebus is enabled:
  264. * For uncompressed stream, data is valid for only half the active
  265. * window, since the data rate is doubled in this mode.
  266. * p->width holds the adjusted width for DP but unadjusted width for DSI
  267. * For compressed stream, data validity window needs to be adjusted for
  268. * compression ratio and then further halved.
  269. */
  270. data_width = p->width;
  271. if (p->compression_en) {
  272. data_width = DIV_ROUND_UP(p->dce_bytes_per_line, 3);
  273. if (p->wide_bus_en)
  274. data_width >>= 1;
  275. } else if (!dp_intf && p->wide_bus_en) {
  276. data_width = p->width >> 1;
  277. } else {
  278. data_width = p->width;
  279. }
  280. hsync_data_start_x = hsync_start_x;
  281. hsync_data_end_x = hsync_start_x + data_width - 1;
  282. display_hctl = (hsync_end_x << 16) | hsync_start_x;
  283. display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x;
  284. if (dp_intf) {
  285. // DP timing adjustment
  286. display_v_start += p->hsync_pulse_width + p->h_back_porch;
  287. display_v_end -= p->h_front_porch;
  288. }
  289. intf_cfg |= BIT(29); /* ACTIVE_H_ENABLE */
  290. intf_cfg |= BIT(30); /* ACTIVE_V_ENABLE */
  291. active_h_start = hsync_start_x;
  292. active_h_end = active_h_start + p->xres - 1;
  293. active_v_start = display_v_start;
  294. active_v_end = active_v_start + (p->yres * hsync_period) - 1;
  295. active_hctl = (active_h_end << 16) | active_h_start;
  296. if (dp_intf) {
  297. display_hctl = active_hctl;
  298. if (p->compression_en) {
  299. active_data_hctl = (hsync_start_x +
  300. p->extra_dto_cycles) << 16;
  301. active_data_hctl += hsync_start_x;
  302. display_data_hctl = active_data_hctl;
  303. }
  304. }
  305. _check_and_set_comp_bit(ctx, p->dsc_4hs_merge, p->compression_en,
  306. &intf_cfg2);
  307. den_polarity = 0;
  308. if (ctx->cap->type == INTF_HDMI) {
  309. hsync_polarity = p->yres >= 720 ? 0 : 1;
  310. vsync_polarity = p->yres >= 720 ? 0 : 1;
  311. } else if (ctx->cap->type == INTF_DP) {
  312. hsync_polarity = p->hsync_polarity;
  313. vsync_polarity = p->vsync_polarity;
  314. } else {
  315. hsync_polarity = 0;
  316. vsync_polarity = 0;
  317. }
  318. polarity_ctl = (den_polarity << 2) | /* DEN Polarity */
  319. (vsync_polarity << 1) | /* VSYNC Polarity */
  320. (hsync_polarity << 0); /* HSYNC Polarity */
  321. if (!SDE_FORMAT_IS_YUV(fmt))
  322. panel_format = (fmt->bits[C0_G_Y] |
  323. (fmt->bits[C1_B_Cb] << 2) |
  324. (fmt->bits[C2_R_Cr] << 4) |
  325. (0x21 << 8));
  326. else
  327. /* Interface treats all the pixel data in RGB888 format */
  328. panel_format = (COLOR_8BIT |
  329. (COLOR_8BIT << 2) |
  330. (COLOR_8BIT << 4) |
  331. (0x21 << 8));
  332. if (p->wide_bus_en)
  333. intf_cfg2 |= BIT(0);
  334. /* Synchronize timing engine enable to TE */
  335. if ((ctx->cap->features & BIT(SDE_INTF_TE_ALIGN_VSYNC))
  336. && p->poms_align_vsync)
  337. intf_cfg2 |= BIT(16);
  338. if (ctx->cfg.split_link_en)
  339. SDE_REG_WRITE(c, INTF_REG_SPLIT_LINK, 0x3);
  340. SDE_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl);
  341. SDE_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period);
  342. SDE_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0,
  343. p->vsync_pulse_width * hsync_period);
  344. SDE_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl);
  345. SDE_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start);
  346. SDE_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end);
  347. SDE_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl);
  348. SDE_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start);
  349. SDE_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end);
  350. SDE_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr);
  351. SDE_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr);
  352. SDE_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew);
  353. SDE_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl);
  354. SDE_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3);
  355. SDE_REG_WRITE(c, INTF_CONFIG, intf_cfg);
  356. SDE_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format);
  357. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  358. SDE_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl);
  359. SDE_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl);
  360. }
  361. static void sde_hw_intf_enable_timing_engine(
  362. struct sde_hw_intf *intf,
  363. u8 enable)
  364. {
  365. struct sde_hw_blk_reg_map *c = &intf->hw;
  366. /* Note: Display interface select is handled in top block hw layer */
  367. SDE_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0);
  368. if (enable && (intf->cap->features & (BIT(SDE_INTF_PANEL_VSYNC_TS) | BIT(SDE_INTF_MDP_VSYNC_TS))))
  369. SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, BIT(0));
  370. }
  371. static void sde_hw_intf_setup_prg_fetch(
  372. struct sde_hw_intf *intf,
  373. const struct intf_prog_fetch *fetch)
  374. {
  375. struct sde_hw_blk_reg_map *c = &intf->hw;
  376. int fetch_enable;
  377. /*
  378. * Fetch should always be outside the active lines. If the fetching
  379. * is programmed within active region, hardware behavior is unknown.
  380. */
  381. fetch_enable = SDE_REG_READ(c, INTF_CONFIG);
  382. if (fetch->enable) {
  383. fetch_enable |= BIT(31);
  384. SDE_REG_WRITE(c, INTF_PROG_FETCH_START,
  385. fetch->fetch_start);
  386. } else {
  387. fetch_enable &= ~BIT(31);
  388. }
  389. SDE_REG_WRITE(c, INTF_CONFIG, fetch_enable);
  390. }
  391. static void sde_hw_intf_configure_wd_timer_jitter(struct sde_hw_intf *intf,
  392. struct intf_wd_jitter_params *wd_jitter)
  393. {
  394. struct sde_hw_blk_reg_map *c;
  395. u32 reg, jitter_ctl = 0;
  396. c = &intf->hw;
  397. /*
  398. * Load Jitter values with jitter feature disabled.
  399. */
  400. SDE_REG_WRITE(c, INTF_WD_TIMER_0_JITTER_CTL, 0x1);
  401. if (wd_jitter->jitter)
  402. jitter_ctl |= ((wd_jitter->jitter & 0x3FF) << 16);
  403. if (wd_jitter->ltj_max) {
  404. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LTJ_MAX, wd_jitter->ltj_max);
  405. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LTJ_SLOPE, wd_jitter->ltj_slope);
  406. }
  407. reg = SDE_REG_READ(c, INTF_WD_TIMER_0_JITTER_CTL);
  408. reg |= jitter_ctl;
  409. SDE_REG_WRITE(c, INTF_WD_TIMER_0_JITTER_CTL, reg);
  410. if (wd_jitter->jitter)
  411. reg |= BIT(31);
  412. if (wd_jitter->ltj_max)
  413. reg |= BIT(30);
  414. SDE_REG_WRITE(c, INTF_WD_TIMER_0_JITTER_CTL, reg);
  415. }
  416. static void sde_hw_intf_setup_vsync_source(struct sde_hw_intf *intf, u32 frame_rate)
  417. {
  418. struct sde_hw_blk_reg_map *c;
  419. u32 reg = 0;
  420. if (!intf)
  421. return;
  422. c = &intf->hw;
  423. reg = CALCULATE_WD_LOAD_VALUE(frame_rate);
  424. SDE_REG_WRITE(c, INTF_WD_TIMER_0_LOAD_VALUE, reg);
  425. SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL, BIT(0)); /* clear timer */
  426. reg = BIT(8); /* enable heartbeat timer */
  427. reg |= BIT(0); /* enable WD timer */
  428. reg |= BIT(1); /* select default 16 clock ticks */
  429. SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL2, reg);
  430. /* make sure that timers are enabled/disabled for vsync state */
  431. wmb();
  432. }
  433. static void sde_hw_intf_bind_pingpong_blk(
  434. struct sde_hw_intf *intf,
  435. bool enable,
  436. const enum sde_pingpong pp)
  437. {
  438. struct sde_hw_blk_reg_map *c;
  439. u32 mux_cfg;
  440. if (!intf)
  441. return;
  442. c = &intf->hw;
  443. if (enable) {
  444. mux_cfg = SDE_REG_READ(c, INTF_MUX);
  445. mux_cfg &= ~0x0f;
  446. mux_cfg |= (pp - PINGPONG_0) & 0x7;
  447. /* Splitlink case, pp0->sublink0, pp1->sublink1 */
  448. if (intf->cfg.split_link_en)
  449. mux_cfg = 0x10000;
  450. } else {
  451. mux_cfg = 0xf000f;
  452. }
  453. SDE_REG_WRITE(c, INTF_MUX, mux_cfg);
  454. }
  455. static void sde_hw_intf_get_status(
  456. struct sde_hw_intf *intf,
  457. struct intf_status *s)
  458. {
  459. struct sde_hw_blk_reg_map *c = &intf->hw;
  460. s->is_en = SDE_REG_READ(c, INTF_TIMING_ENGINE_EN);
  461. if (s->is_en) {
  462. s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT);
  463. s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  464. } else {
  465. s->line_count = 0;
  466. s->frame_count = 0;
  467. }
  468. }
  469. static void sde_hw_intf_v1_get_status(
  470. struct sde_hw_intf *intf,
  471. struct intf_status *s)
  472. {
  473. struct sde_hw_blk_reg_map *c = &intf->hw;
  474. s->is_en = SDE_REG_READ(c, INTF_STATUS) & BIT(0);
  475. s->is_prog_fetch_en = (SDE_REG_READ(c, INTF_CONFIG) & BIT(31));
  476. if (s->is_en) {
  477. s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT);
  478. s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  479. } else {
  480. s->line_count = 0;
  481. s->frame_count = 0;
  482. }
  483. }
  484. static void sde_hw_intf_setup_misr(struct sde_hw_intf *intf,
  485. bool enable, u32 frame_count)
  486. {
  487. struct sde_hw_blk_reg_map *c = &intf->hw;
  488. u32 config = 0;
  489. SDE_REG_WRITE(c, INTF_MISR_CTRL, MISR_CTRL_STATUS_CLEAR);
  490. /* clear misr data */
  491. wmb();
  492. if (enable)
  493. config = (frame_count & MISR_FRAME_COUNT_MASK) |
  494. MISR_CTRL_ENABLE |
  495. INTF_MISR_CTRL_FREE_RUN_MASK |
  496. INTF_MISR_CTRL_INPUT_SEL_DATA;
  497. SDE_REG_WRITE(c, INTF_MISR_CTRL, config);
  498. }
  499. static int sde_hw_intf_collect_misr(struct sde_hw_intf *intf, bool nonblock,
  500. u32 *misr_value)
  501. {
  502. struct sde_hw_blk_reg_map *c = &intf->hw;
  503. u32 ctrl = 0;
  504. if (!misr_value)
  505. return -EINVAL;
  506. ctrl = SDE_REG_READ(c, INTF_MISR_CTRL);
  507. if (!nonblock) {
  508. if (ctrl & MISR_CTRL_ENABLE) {
  509. int rc;
  510. rc = readl_poll_timeout(c->base_off + c->blk_off +
  511. INTF_MISR_CTRL, ctrl,
  512. (ctrl & MISR_CTRL_STATUS) > 0, 500,
  513. 84000);
  514. if (rc)
  515. return rc;
  516. } else {
  517. return -EINVAL;
  518. }
  519. }
  520. *misr_value = SDE_REG_READ(c, INTF_MISR_SIGNATURE);
  521. return 0;
  522. }
  523. static u32 sde_hw_intf_get_line_count(struct sde_hw_intf *intf)
  524. {
  525. struct sde_hw_blk_reg_map *c;
  526. if (!intf)
  527. return 0;
  528. c = &intf->hw;
  529. return SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff;
  530. }
  531. static u32 sde_hw_intf_get_underrun_line_count(struct sde_hw_intf *intf)
  532. {
  533. struct sde_hw_blk_reg_map *c;
  534. u32 hsync_period;
  535. if (!intf)
  536. return 0;
  537. c = &intf->hw;
  538. hsync_period = SDE_REG_READ(c, INTF_HSYNC_CTL);
  539. hsync_period = ((hsync_period & 0xffff0000) >> 16);
  540. return hsync_period ?
  541. SDE_REG_READ(c, INTF_UNDERRUN_COUNT) / hsync_period :
  542. 0xebadebad;
  543. }
  544. static u32 sde_hw_intf_get_intr_status(struct sde_hw_intf *intf)
  545. {
  546. if (!intf)
  547. return -EINVAL;
  548. return SDE_REG_READ(&intf->hw, INTF_INTR_STATUS);
  549. }
  550. static int sde_hw_intf_setup_te_config(struct sde_hw_intf *intf,
  551. struct sde_hw_tear_check *te)
  552. {
  553. struct sde_hw_blk_reg_map *c;
  554. u32 cfg = 0;
  555. spinlock_t tearcheck_spinlock;
  556. if (!intf)
  557. return -EINVAL;
  558. spin_lock_init(&tearcheck_spinlock);
  559. c = &intf->hw;
  560. if (te->hw_vsync_mode)
  561. cfg |= BIT(20);
  562. cfg |= te->vsync_count;
  563. /*
  564. * Local spinlock is acquired here to avoid pre-emption
  565. * as below register programming should be completed in
  566. * less than 2^16 vsync clk cycles.
  567. */
  568. spin_lock(&tearcheck_spinlock);
  569. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT,
  570. (te->start_pos + te->sync_threshold_start + 1));
  571. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  572. wmb(); /* disable vsync counter before updating single buffer registers */
  573. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height);
  574. SDE_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val);
  575. SDE_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq);
  576. SDE_REG_WRITE(c, INTF_TEAR_WR_PTR_IRQ, te->wr_ptr_irq);
  577. SDE_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos);
  578. SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH,
  579. ((te->sync_threshold_continue << 16) |
  580. te->sync_threshold_start));
  581. cfg |= BIT(19); /* VSYNC_COUNTER_EN */
  582. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  583. spin_unlock(&tearcheck_spinlock);
  584. return 0;
  585. }
  586. static int sde_hw_intf_setup_autorefresh_config(struct sde_hw_intf *intf,
  587. struct sde_hw_autorefresh *cfg)
  588. {
  589. struct sde_hw_blk_reg_map *c;
  590. u32 refresh_cfg;
  591. if (!intf || !cfg)
  592. return -EINVAL;
  593. c = &intf->hw;
  594. refresh_cfg = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
  595. if (cfg->enable)
  596. refresh_cfg = BIT(31) | cfg->frame_count;
  597. else
  598. refresh_cfg &= ~BIT(31);
  599. SDE_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg);
  600. return 0;
  601. }
  602. static int sde_hw_intf_get_autorefresh_config(struct sde_hw_intf *intf,
  603. struct sde_hw_autorefresh *cfg)
  604. {
  605. struct sde_hw_blk_reg_map *c;
  606. u32 val;
  607. if (!intf || !cfg)
  608. return -EINVAL;
  609. c = &intf->hw;
  610. val = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
  611. cfg->enable = (val & BIT(31)) >> 31;
  612. cfg->frame_count = val & 0xffff;
  613. return 0;
  614. }
  615. static int sde_hw_intf_poll_timeout_wr_ptr(struct sde_hw_intf *intf,
  616. u32 timeout_us)
  617. {
  618. struct sde_hw_blk_reg_map *c;
  619. u32 val;
  620. int rc;
  621. if (!intf)
  622. return -EINVAL;
  623. c = &intf->hw;
  624. rc = readl_poll_timeout(c->base_off + c->blk_off + INTF_TEAR_LINE_COUNT,
  625. val, (val & 0xffff) >= 1, 10, timeout_us);
  626. return rc;
  627. }
  628. static int sde_hw_intf_enable_te(struct sde_hw_intf *intf, bool enable)
  629. {
  630. struct sde_hw_blk_reg_map *c;
  631. if (!intf)
  632. return -EINVAL;
  633. c = &intf->hw;
  634. SDE_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, enable);
  635. if (enable && (intf->cap->features & (BIT(SDE_INTF_PANEL_VSYNC_TS) | BIT(SDE_INTF_MDP_VSYNC_TS))))
  636. SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, BIT(0));
  637. return 0;
  638. }
  639. static void sde_hw_intf_update_te(struct sde_hw_intf *intf,
  640. struct sde_hw_tear_check *te)
  641. {
  642. struct sde_hw_blk_reg_map *c;
  643. int cfg;
  644. if (!intf || !te)
  645. return;
  646. c = &intf->hw;
  647. cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_THRESH);
  648. cfg &= ~0xFFFF;
  649. cfg |= te->sync_threshold_start;
  650. SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, cfg);
  651. }
  652. static int sde_hw_intf_connect_external_te(struct sde_hw_intf *intf,
  653. bool enable_external_te)
  654. {
  655. struct sde_hw_blk_reg_map *c = &intf->hw;
  656. u32 cfg;
  657. int orig;
  658. if (!intf)
  659. return -EINVAL;
  660. c = &intf->hw;
  661. cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC);
  662. orig = (bool)(cfg & BIT(20));
  663. if (enable_external_te)
  664. cfg |= BIT(20);
  665. else
  666. cfg &= ~BIT(20);
  667. SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
  668. return orig;
  669. }
  670. static int sde_hw_intf_get_vsync_info(struct sde_hw_intf *intf,
  671. struct sde_hw_pp_vsync_info *info)
  672. {
  673. struct sde_hw_blk_reg_map *c = &intf->hw;
  674. u32 val;
  675. if (!intf || !info)
  676. return -EINVAL;
  677. c = &intf->hw;
  678. val = SDE_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL);
  679. info->rd_ptr_init_val = val & 0xffff;
  680. val = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
  681. info->rd_ptr_frame_count = (val & 0xffff0000) >> 16;
  682. info->rd_ptr_line_count = val & 0xffff;
  683. val = SDE_REG_READ(c, INTF_TEAR_LINE_COUNT);
  684. info->wr_ptr_line_count = val & 0xffff;
  685. val = SDE_REG_READ(c, INTF_FRAME_COUNT);
  686. info->intf_frame_count = val;
  687. return 0;
  688. }
  689. static int sde_hw_intf_v1_check_and_reset_tearcheck(struct sde_hw_intf *intf,
  690. struct intf_tear_status *status)
  691. {
  692. struct sde_hw_blk_reg_map *c = &intf->hw;
  693. u32 start_pos;
  694. if (!intf || !status)
  695. return -EINVAL;
  696. c = &intf->hw;
  697. status->read_count = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
  698. start_pos = SDE_REG_READ(c, INTF_TEAR_START_POS);
  699. status->write_count = SDE_REG_READ(c, INTF_TEAR_SYNC_WRCOUNT);
  700. status->write_count &= 0xffff0000;
  701. status->write_count |= start_pos;
  702. SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, status->write_count);
  703. return 0;
  704. }
  705. static void sde_hw_intf_vsync_sel(struct sde_hw_intf *intf,
  706. u32 vsync_source)
  707. {
  708. struct sde_hw_blk_reg_map *c;
  709. if (!intf)
  710. return;
  711. c = &intf->hw;
  712. SDE_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf));
  713. }
  714. static void sde_hw_intf_enable_compressed_input(struct sde_hw_intf *intf,
  715. bool compression_en, bool dsc_4hs_merge)
  716. {
  717. struct sde_hw_blk_reg_map *c;
  718. u32 intf_cfg2;
  719. if (!intf)
  720. return;
  721. /*
  722. * callers can either call this function to enable/disable the 64 bit
  723. * compressed input or this configuration can be applied along
  724. * with timing generation parameters
  725. */
  726. c = &intf->hw;
  727. intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2);
  728. _check_and_set_comp_bit(intf, dsc_4hs_merge, compression_en,
  729. &intf_cfg2);
  730. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  731. }
  732. static void sde_hw_intf_enable_wide_bus(struct sde_hw_intf *intf,
  733. bool enable)
  734. {
  735. struct sde_hw_blk_reg_map *c;
  736. u32 intf_cfg2;
  737. if (!intf)
  738. return;
  739. c = &intf->hw;
  740. intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2);
  741. intf_cfg2 &= ~BIT(0);
  742. intf_cfg2 |= enable ? BIT(0) : 0;
  743. SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
  744. }
  745. static void _setup_intf_ops(struct sde_hw_intf_ops *ops,
  746. unsigned long cap)
  747. {
  748. ops->setup_timing_gen = sde_hw_intf_setup_timing_engine;
  749. ops->setup_prg_fetch = sde_hw_intf_setup_prg_fetch;
  750. ops->enable_timing = sde_hw_intf_enable_timing_engine;
  751. ops->setup_misr = sde_hw_intf_setup_misr;
  752. ops->collect_misr = sde_hw_intf_collect_misr;
  753. ops->get_line_count = sde_hw_intf_get_line_count;
  754. ops->get_underrun_line_count = sde_hw_intf_get_underrun_line_count;
  755. ops->get_intr_status = sde_hw_intf_get_intr_status;
  756. ops->avr_setup = sde_hw_intf_avr_setup;
  757. ops->avr_trigger = sde_hw_intf_avr_trigger;
  758. ops->avr_ctrl = sde_hw_intf_avr_ctrl;
  759. ops->enable_compressed_input = sde_hw_intf_enable_compressed_input;
  760. ops->enable_wide_bus = sde_hw_intf_enable_wide_bus;
  761. if (cap & BIT(SDE_INTF_STATUS))
  762. ops->get_status = sde_hw_intf_v1_get_status;
  763. else
  764. ops->get_status = sde_hw_intf_get_status;
  765. if (cap & BIT(SDE_INTF_INPUT_CTRL))
  766. ops->bind_pingpong_blk = sde_hw_intf_bind_pingpong_blk;
  767. if (cap & BIT(SDE_INTF_WD_TIMER))
  768. ops->setup_vsync_source = sde_hw_intf_setup_vsync_source;
  769. if (cap & BIT(SDE_INTF_AVR_STATUS))
  770. ops->get_avr_status = sde_hw_intf_get_avr_status;
  771. if (cap & BIT(SDE_INTF_TE)) {
  772. ops->setup_tearcheck = sde_hw_intf_setup_te_config;
  773. ops->enable_tearcheck = sde_hw_intf_enable_te;
  774. ops->update_tearcheck = sde_hw_intf_update_te;
  775. ops->connect_external_te = sde_hw_intf_connect_external_te;
  776. ops->get_vsync_info = sde_hw_intf_get_vsync_info;
  777. ops->setup_autorefresh = sde_hw_intf_setup_autorefresh_config;
  778. ops->get_autorefresh = sde_hw_intf_get_autorefresh_config;
  779. ops->poll_timeout_wr_ptr = sde_hw_intf_poll_timeout_wr_ptr;
  780. ops->vsync_sel = sde_hw_intf_vsync_sel;
  781. ops->check_and_reset_tearcheck =
  782. sde_hw_intf_v1_check_and_reset_tearcheck;
  783. }
  784. if (cap & BIT(SDE_INTF_RESET_COUNTER))
  785. ops->reset_counter = sde_hw_intf_reset_counter;
  786. if (cap & (BIT(SDE_INTF_PANEL_VSYNC_TS) | BIT(SDE_INTF_MDP_VSYNC_TS)))
  787. ops->get_vsync_timestamp = sde_hw_intf_get_vsync_timestamp;
  788. if (cap & BIT(SDE_INTF_WD_JITTER))
  789. ops->configure_wd_jitter = sde_hw_intf_configure_wd_timer_jitter;
  790. }
  791. struct sde_hw_blk_reg_map *sde_hw_intf_init(enum sde_intf idx,
  792. void __iomem *addr,
  793. struct sde_mdss_cfg *m)
  794. {
  795. struct sde_hw_intf *c;
  796. struct sde_intf_cfg *cfg;
  797. c = kzalloc(sizeof(*c), GFP_KERNEL);
  798. if (!c)
  799. return ERR_PTR(-ENOMEM);
  800. cfg = _intf_offset(idx, m, addr, &c->hw);
  801. if (IS_ERR_OR_NULL(cfg)) {
  802. kfree(c);
  803. pr_err("failed to create sde_hw_intf %d\n", idx);
  804. return ERR_PTR(-EINVAL);
  805. }
  806. /*
  807. * Assign ops
  808. */
  809. c->idx = idx;
  810. c->cap = cfg;
  811. c->mdss = m;
  812. _setup_intf_ops(&c->ops, c->cap->features);
  813. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
  814. c->hw.blk_off + c->hw.length, c->hw.xin_id);
  815. return &c->hw;
  816. }
  817. void sde_hw_intf_destroy(struct sde_hw_blk_reg_map *hw)
  818. {
  819. if (hw)
  820. kfree(to_sde_hw_intf(hw));
  821. }