Files
android_kernel_samsung_sm86…/pwr/btpower.c
Balakrishna Godavarthi 17b53a7f38 btpower: Read soc type for dts
This change will always read soc type from dts during
probe.

Change-Id: Ia9f74da42f8dfbebe7104644ef77e228d5efe362
Signed-off-by: Balakrishna Godavarthi <quic_bgodavar@quicinc.com>
2024-01-30 10:45:06 +05:30

2760 lines
76 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*/
/*
* Bluetooth Power Switch Module
* controls power to external Bluetooth device
* with interface to power management device
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/rfkill.h>
#include <linux/skbuff.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <linux/uaccess.h>
#include <linux/of_device.h>
#include <soc/qcom/cmd-db.h>
#include <linux/kdev_t.h>
#include <linux/refcount.h>
#include <linux/idr.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/pinctrl/qcom-pinctrl.h>
#include "btpower.h"
#if (defined CONFIG_BT_SLIM)
#include "btfm_slim.h"
#endif
#include <linux/fs.h>
#ifdef CONFIG_BT_HW_SECURE_DISABLE
#include "linux/smcinvoke_object.h"
#include "linux/IClientEnv.h"
#define PERISEC_HW_STATE_UID 0x108
#define PERISEC_HW_OP_GET_STATE 1
#define PERISEC_HW_BLUETOOTH_UID 0x502
#define PERISEC_FEATURE_NOT_SUPPORTED 12
#define PERISEC_PERIPHERAL_NOT_FOUND 10
#endif
#define PWR_SRC_NOT_AVAILABLE -2
#define DEFAULT_INVALID_VALUE -1
#define PWR_SRC_INIT_STATE_IDX 0
#define BTPOWER_MBOX_MSG_MAX_LEN 64
#define BTPOWER_MBOX_TIMEOUT_MS 1000
#define XO_CLK_RETRY_COUNT_MAX 5
#define MAX_PROP_SIZE 32
#define BTPOWER_CONFIG_MAX_TIMEOUT 600
#define SIGIO_OOBS_SINGAL 0x00010000
#define SIGIO_INTERACTION_SIGNAL 0x00020000
#define SIGIO_SOC_ACCESS_SIGNAL 0x00040000
#define SIGIO_GPIO_HIGH 0x00000001
#define SIGIO_GPIO_LOW 0x00000000
#define SIGIO_SSR_ON_UWB 0x00000001
#define SIGIO_UWB_SSR_COMPLETED 0x00000002
#define CRASH_REASON_NOT_FOUND ((char *)"Crash reason not found")
/**
* enum btpower_vreg_param: Voltage regulator TCS param
* @BTPOWER_VREG_VOLTAGE: Provides voltage level to be configured in TCS
* @BTPOWER_VREG_MODE: Regulator mode
* @BTPOWER_VREG_TCS_ENABLE: Set Voltage regulator enable config in TCS
*/
enum btpower_vreg_param {
BTPOWER_VREG_VOLTAGE,
BTPOWER_VREG_MODE,
BTPOWER_VREG_ENABLE,
};
/**
* enum btpower_tcs_seq: TCS sequence ID for trigger
* BTPOWER_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
* BTPOWER_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
* BTPOWER_TCS_ALL_SEQ: Update for both up and down triggers
*/
enum btpower_tcs_seq {
BTPOWER_TCS_UP_SEQ,
BTPOWER_TCS_DOWN_SEQ,
BTPOWER_TCS_ALL_SEQ,
};
enum power_src_pos {
BT_RESET_GPIO = PWR_SRC_INIT_STATE_IDX,
BT_SW_CTRL_GPIO,
BT_VDD_AON_LDO,
BT_VDD_DIG_LDO,
BT_VDD_RFA1_LDO,
BT_VDD_RFA2_LDO,
BT_VDD_ASD_LDO,
BT_VDD_XTAL_LDO,
BT_VDD_PA_LDO,
BT_VDD_CORE_LDO,
BT_VDD_IO_LDO,
BT_VDD_LDO,
BT_VDD_RFA_0p8,
BT_VDD_RFACMN,
BT_VDD_ANT_LDO,
// these indexes GPIOs/regs value are fetched during crash.
BT_RESET_GPIO_CURRENT,
BT_SW_CTRL_GPIO_CURRENT,
BT_VDD_AON_LDO_CURRENT,
BT_VDD_DIG_LDO_CURRENT,
BT_VDD_RFA1_LDO_CURRENT,
BT_VDD_RFA2_LDO_CURRENT,
BT_VDD_ASD_LDO_CURRENT,
BT_VDD_XTAL_LDO_CURRENT,
BT_VDD_PA_LDO_CURRENT,
BT_VDD_CORE_LDO_CURRENT,
BT_VDD_IO_LDO_CURRENT,
BT_VDD_LDO_CURRENT,
BT_VDD_RFA_0p8_CURRENT,
BT_VDD_RFACMN_CURRENT,
BT_VDD_IPA_2p2,
BT_VDD_IPA_2p2_CURRENT,
BT_VDD_ANT_LDO_CURRENT,
/* The below bucks are voted for HW WAR on some platform which supports
* WNC39xx.
*/
BT_VDD_SMPS,
BT_VDD_SMPS_CURRENT,
/* New entries need to be added before PWR_SRC_SIZE.
* Its hold the max size of power sources states.
*/
BT_POWER_SRC_SIZE,
};
// Regulator structure for QCA6174/QCA9377/QCA9379 BT SoC series
static struct vreg_data bt_vregs_info_qca61x4_937x[] = {
{NULL, "qcom,bt-vdd-aon", 928000, 928000, 0, false, false,
{BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-io", 1710000, 3460000, 0, false, false,
{BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-core", 3135000, 3465000, 0, false, false,
{BT_VDD_CORE_LDO, BT_VDD_CORE_LDO_CURRENT}},
};
// Regulator structure for QCA6390,QCA6490 and WCN6750 BT SoC series
static struct vreg_data bt_vregs_info_qca6xx0[] = {
{NULL, "qcom,bt-vdd-io", 1800000, 1800000, 0, false, true,
{BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-aon", 966000, 966000, 0, false, true,
{BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfacmn", 950000, 950000, 0, false, true,
{BT_VDD_RFACMN, BT_VDD_RFACMN_CURRENT}},
/* BT_CX_MX */
{NULL, "qcom,bt-vdd-dig", 966000, 966000, 0, false, true,
{BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfa-0p8", 950000, 952000, 0, false, true,
{BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}},
{NULL, "qcom,bt-vdd-rfa1", 1900000, 1900000, 0, false, true,
{BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true,
{BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-asd", 2800000, 2800000, 0, false, true,
{BT_VDD_ASD_LDO, BT_VDD_ASD_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-ipa-2p2", 2200000, 2210000, 0, false, true,
{BT_VDD_IPA_2p2, BT_VDD_IPA_2p2_CURRENT}},
};
// Regulator structure for kiwi BT SoC series
static struct vreg_data bt_vregs_info_kiwi[] = {
{NULL, "qcom,bt-vdd18-aon", 1800000, 1800000, 0, false, true,
{BT_VDD_LDO, BT_VDD_LDO_CURRENT}},
{NULL, "qcom,bt-vdd12-io", 1200000, 1200000, 0, false, true,
{BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
{NULL, "qcom,bt-ant-ldo", 1776000, 1776000, 0, false, true,
{BT_VDD_ANT_LDO, BT_VDD_ANT_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-dig", 950000, 950000, 0, false, true,
{BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-aon", 950000, 950000, 0, false, true,
{BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfaOp8", 950000, 952000, 0, false, true,
{BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}},
/* BT_CX_MX */
{NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true,
{BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfa1", 1350000, 1350000, 0, false, true,
{BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}},
};
// Regulator structure for kiwi BT SoC series
static struct vreg_data bt_vregs_info_peach[] = {
{NULL, "qcom,bt-vdd18-aon", 1800000, 1800000, 0, false, true,
{BT_VDD_LDO, BT_VDD_LDO_CURRENT}},
{NULL, "qcom,bt-vdd12-io", 1200000, 1200000, 0, false, true,
{BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
{NULL, "qcom,bt-ant-ldo", 1776000, 1776000, 0, false, true,
{BT_VDD_ANT_LDO, BT_VDD_ANT_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-dig", 950000, 950000, 0, false, true,
{BT_VDD_DIG_LDO, BT_VDD_DIG_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-aon", 950000, 950000, 0, false, true,
{BT_VDD_AON_LDO, BT_VDD_AON_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfaOp8", 950000, 952000, 0, false, true,
{BT_VDD_RFA_0p8, BT_VDD_RFA_0p8_CURRENT}},
/* BT_CX_MX */
{NULL, "qcom,bt-vdd-rfa2", 1900000, 1900000, 0, false, true,
{BT_VDD_RFA2_LDO, BT_VDD_RFA2_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-rfa1", 1350000, 1350000, 0, false, true,
{BT_VDD_RFA1_LDO, BT_VDD_RFA1_LDO_CURRENT}},
};
// Regulator structure for WCN399x BT SoC series
static struct pwr_data bt_vreg_info_wcn399x = {
.compatible = "qcom,wcn3990",
.bt_vregs = (struct vreg_data []) {
{NULL, "qcom,bt-vdd-smps", 984000, 984000, 0, false, false,
{BT_VDD_SMPS, BT_VDD_SMPS_CURRENT}},
{NULL, "qcom,bt-vdd-io", 1700000, 1900000, 0, false, false,
{BT_VDD_IO_LDO, BT_VDD_IO_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-core", 1304000, 1304000, 0, false, false,
{BT_VDD_CORE_LDO, BT_VDD_CORE_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-pa", 3000000, 3312000, 0, false, false,
{BT_VDD_PA_LDO, BT_VDD_PA_LDO_CURRENT}},
{NULL, "qcom,bt-vdd-xtal", 1700000, 1900000, 0, false, false,
{BT_VDD_XTAL_LDO, BT_VDD_XTAL_LDO_CURRENT}},
},
.bt_num_vregs = 5,
};
static struct pwr_data bt_vreg_info_qca6174 = {
.compatible = "qcom,qca6174",
.bt_vregs = bt_vregs_info_qca61x4_937x,
.bt_num_vregs = ARRAY_SIZE(bt_vregs_info_qca61x4_937x),
};
static struct pwr_data bt_vreg_info_qca6390 = {
.compatible = "qcom,qca6390",
.bt_vregs = bt_vregs_info_qca6xx0,
.bt_num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0),
};
static struct pwr_data bt_vreg_info_qca6490 = {
.compatible = "qcom,qca6490",
.bt_vregs = bt_vregs_info_qca6xx0,
.bt_num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0),
};
static struct pwr_data bt_vreg_info_kiwi = {
.compatible = "qcom,kiwi",
.bt_vregs = bt_vregs_info_kiwi,
.bt_num_vregs = ARRAY_SIZE(bt_vregs_info_kiwi),
};
static struct pwr_data bt_vreg_info_kiwi_no_share_ant_power = {
.compatible = "qcom,kiwi-no-share-ant-power",
.bt_vregs = bt_vregs_info_kiwi,
.bt_num_vregs = ARRAY_SIZE(bt_vregs_info_kiwi),
};
static struct pwr_data bt_vreg_info_converged = {
.compatible = "qcom,bt-qca-converged",
.bt_vregs = bt_vregs_info_kiwi,
.bt_num_vregs = ARRAY_SIZE(bt_vregs_info_kiwi),
};
static struct pwr_data bt_vreg_info_wcn6750 = {
.compatible = "qcom,wcn6750-bt",
.bt_vregs = bt_vregs_info_qca6xx0,
.bt_num_vregs = ARRAY_SIZE(bt_vregs_info_qca6xx0),
};
static struct pwr_data bt_vreg_info_peach = {
.compatible = "qcom,peach-bt",
.platform_vregs = bt_vregs_info_peach,
.platform_num_vregs = ARRAY_SIZE(bt_vregs_info_peach),
//.uwb_vregs = uwb_vregs_info,
//.bt_vregs = platform_vregs_info,
//.uwb_num_vregs = ARRAY_SIZE(uwb_vregs_info),
//.bt_num_vregs = ARRAY_SIZE(platform_vregs_info),
};
static const struct of_device_id bt_power_match_table[] = {
{ .compatible = "qcom,qca6174", .data = &bt_vreg_info_qca6174},
{ .compatible = "qcom,wcn3990", .data = &bt_vreg_info_wcn399x},
{ .compatible = "qcom,qca6390", .data = &bt_vreg_info_qca6390},
{ .compatible = "qcom,qca6490", .data = &bt_vreg_info_qca6490},
{ .compatible = "qcom,kiwi", .data = &bt_vreg_info_kiwi},
{ .compatible = "qcom,kiwi-no-share-ant-power",
.data = &bt_vreg_info_kiwi_no_share_ant_power},
{ .compatible = "qcom,wcn6750-bt", .data = &bt_vreg_info_wcn6750},
{ .compatible = "qcom,bt-qca-converged", .data = &bt_vreg_info_converged},
{ .compatible = "qcom,peach-bt", .data = &bt_vreg_info_peach},
{},
};
static int btpower_enable_ipa_vreg(struct platform_pwr_data *pdata);
static struct platform_pwr_data *pwr_data;
static bool previous;
static struct class *bt_class;
static int bt_major;
static int soc_id;
static bool probe_finished;
static void bt_power_vote(struct work_struct *work);
static struct {
int platform_state[BT_POWER_SRC_SIZE];
int bt_state[BT_POWER_SRC_SIZE];
int uwb_state[BT_POWER_SRC_SIZE];
} power_src;
#ifdef CONFIG_BT_HW_SECURE_DISABLE
int perisec_cnss_bt_hw_disable_check(struct platform_pwr_data *plat_priv)
{
struct Object client_env;
struct Object app_object;
int bt_uid = PERISEC_HW_BLUETOOTH_UID;
union ObjectArg obj_arg[2] = {{{0, 0}}};
int ret;
u8 state = 0;
/* Once this flag is set, secure peripheral feature
* will not be supported till next reboot
*/
if (plat_priv->sec_peri_feature_disable)
return 0;
/* get rootObj */
ret = get_client_env_object(&client_env);
if (ret) {
pr_err("Failed to get client_env_object, ret: %d\n", ret);
goto end;
}
ret = IClientEnv_open(client_env, PERISEC_HW_STATE_UID, &app_object);
if (ret) {
pr_err("Failed to get app_object, ret: %d\n", ret);
if (ret == PERISEC_FEATURE_NOT_SUPPORTED) {
ret = 0; /* Do not Assert */
plat_priv->sec_peri_feature_disable = true;
pr_err("Secure HW feature not supported\n");
}
goto exit_release_clientenv;
}
obj_arg[0].b = (struct ObjectBuf) {&bt_uid, sizeof(u32)};
obj_arg[1].b = (struct ObjectBuf) {&state, sizeof(u8)};
ret = Object_invoke(app_object, PERISEC_HW_OP_GET_STATE, obj_arg,
ObjectCounts_pack(1, 1, 0, 0));
pr_err("SMC invoke ret: %d state: %d\n", ret, state);
if (ret) {
if (ret == PERISEC_PERIPHERAL_NOT_FOUND) {
ret = 0; /* Do not Assert */
plat_priv->sec_peri_feature_disable = true;
pr_err("Secure HW mode is not updated. Peripheral not found\n");
}
} else {
if (state == 1)
plat_priv->bt_sec_hw_disable = 1;
else
plat_priv->bt_sec_hw_disable = 0;
}
Object_release(app_object);
exit_release_clientenv:
Object_release(client_env);
end:
if (ret) {
pr_err("SecMode:Unable to get sec mode BT Hardware status\n");
}
return ret;
}
#else
int perisec_cnss_bt_hw_disable_check(struct platform_pwr_data *plat_priv)
{
return 0;
}
#endif
#ifdef CONFIG_MSM_BT_OOBS
static void btpower_uart_transport_locked(struct platform_pwr_data *drvdata,
bool locked)
{
pr_err("%s: %s\n", __func__, (locked ? "busy" : "idle"));
}
static irqreturn_t btpower_host_wake_isr(int irq, void *data)
{
struct platform_pwr_data *drvdata = data;
struct kernel_siginfo siginfo;
int rc = 0;
int host_waking = SIGIO_OOBS_SINGAL;
if (gpio_get_value(drvdata->bt_gpio_host_wake))
host_waking |= SIGIO_GPIO_HIGH;
else
host_waking |= SIGIO_GPIO_LOW;
pr_err("%s: bt-hostwake-gpio(%d) IRQ(%d) value(%d)\n", __func__,
drvdata->bt_gpio_host_wake, drvdata->irq, host_waking);
if (drvdata->reftask_bt == NULL) {
pr_err("%s: ignore BT-HOSTWAKE IRQ\n", __func__);
return IRQ_HANDLED;
}
// Sending signal to HAL layer
memset(&siginfo, 0, sizeof(siginfo));
siginfo.si_signo = SIGIO;
siginfo.si_code = SI_QUEUE;
siginfo.si_int = host_waking;
rc = send_sig_info(siginfo.si_signo, &siginfo, drvdata->reftask_bt);
if (rc < 0) {
pr_err("%s: failed (%d) to send SIG to HAL(%d)\n", __func__,
rc, drvdata->reftask_bt->pid);
}
return IRQ_HANDLED;
}
#endif
static int vreg_configure(struct vreg_data *vreg, bool retention)
{
int rc = 0;
if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
rc = regulator_set_voltage(vreg->reg,
(retention ? 0: vreg->min_vol),
vreg->max_vol);
if (rc < 0) {
pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
__func__, vreg->name, rc);
return rc;
}
}
if (vreg->load_curr >= 0) {
rc = regulator_set_load(vreg->reg,
(retention ? 0 : vreg->load_curr));
if (rc < 0) {
pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
__func__, vreg->name, rc);
return rc;
}
}
return rc;
}
static int vreg_enable(struct vreg_data *vreg)
{
int rc = 0;
pr_err("%s: vreg_en for : %s\n", __func__, vreg->name);
if (!vreg->is_enabled) {
if (vreg_configure(vreg, false) < 0)
return rc;
rc = regulator_enable(vreg->reg);
if (rc < 0) {
pr_err("%s: regulator_enable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
return rc;
}
vreg->is_enabled = true;
}
return rc;
}
static int vreg_disable_retention(struct vreg_data *vreg)
{
int rc = 0;
if (!vreg)
return rc;
pr_err("%s: disable_retention for : %s\n", __func__, vreg->name);
if ((vreg->is_enabled) && (vreg->is_retention_supp))
rc = vreg_configure(vreg, false);
return rc;
}
static int vreg_enable_retention(struct vreg_data *vreg)
{
int rc = 0;
if (!vreg)
return rc;
pr_err("%s: enable_retention for : %s\n", __func__, vreg->name);
if ((vreg->is_enabled) && (vreg->is_retention_supp))
if ((vreg->min_vol != 0) && (vreg->max_vol != 0))
rc = vreg_configure(vreg, true);
return rc;
}
static int vreg_disable(struct vreg_data *vreg)
{
int rc = 0;
if (!vreg)
return rc;
pr_err("%s for : %s\n", __func__, vreg->name);
if (vreg->is_enabled) {
rc = regulator_disable(vreg->reg);
if (rc < 0) {
pr_err("%s, regulator_disable(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
vreg->is_enabled = false;
if ((vreg->min_vol != 0) && (vreg->max_vol != 0)) {
/* Set the min voltage to 0 */
rc = regulator_set_voltage(vreg->reg, 0,
vreg->max_vol);
if (rc < 0) {
pr_err("%s: regulator_set_voltage(%s) failed rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
}
if (vreg->load_curr >= 0) {
rc = regulator_set_load(vreg->reg, 0);
if (rc < 0) {
pr_err("%s: regulator_set_load(%s) failed rc=%d\n",
__func__, vreg->name, rc);
}
}
}
out:
return rc;
}
static int bt_clk_enable(struct bt_power_clk_data *clk)
{
int rc = 0;
pr_err("%s: %s\n", __func__, clk->name);
/* Get the clock handle for vreg */
if (!clk->clk || clk->is_enabled) {
pr_err("%s: error - node: %p, clk->is_enabled:%d\n",
__func__, clk->clk, clk->is_enabled);
return -EINVAL;
}
rc = clk_prepare_enable(clk->clk);
if (rc) {
pr_err("%s: failed to enable %s, rc(%d)\n",
__func__, clk->name, rc);
return rc;
}
clk->is_enabled = true;
return rc;
}
static int bt_clk_disable(struct bt_power_clk_data *clk)
{
int rc = 0;
pr_err("%s: %s\n", __func__, clk->name);
/* Get the clock handle for vreg */
if (!clk->clk || !clk->is_enabled) {
pr_err("%s: error - node: %p, clk->is_enabled:%d\n",
__func__, clk->clk, clk->is_enabled);
return -EINVAL;
}
clk_disable_unprepare(clk->clk);
clk->is_enabled = false;
return rc;
}
static void btpower_set_xo_clk_gpio_state(bool enable)
{
int xo_clk_gpio = pwr_data->xo_gpio_clk;
int retry = 0;
int rc = 0;
if (xo_clk_gpio < 0)
return;
retry_gpio_req:
rc = gpio_request(xo_clk_gpio, "bt_xo_clk_gpio");
if (rc) {
if (retry++ < XO_CLK_RETRY_COUNT_MAX) {
/* wait for ~(10 - 20) ms */
usleep_range(10000, 20000);
goto retry_gpio_req;
}
}
if (rc) {
pr_err("%s: unable to request XO clk gpio %d (%d)\n",
__func__, xo_clk_gpio, rc);
return;
}
if (enable) {
gpio_direction_output(xo_clk_gpio, 1);
/*XO CLK must be asserted for some time before BT_EN */
usleep_range(100, 200);
} else {
/* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
usleep_range(4000, 6000);
gpio_direction_output(xo_clk_gpio, 0);
}
pr_err("%s:gpio(%d) success\n", __func__, xo_clk_gpio);
gpio_free(xo_clk_gpio);
}
#ifdef CONFIG_MSM_BT_OOBS
void bt_configure_wakeup_gpios(int on)
{
int bt_gpio_dev_wake = pwr_data->bt_gpio_dev_wake;
int bt_host_wake_gpio = pwr_data->bt_gpio_host_wake;
int rc;
if (on) {
if (gpio_is_valid(bt_gpio_dev_wake)) {
gpio_set_value(bt_gpio_dev_wake, 1);
pr_err("%s: BT-ON asserting BT_WAKE(%d)\n", __func__,
bt_gpio_dev_wake);
}
if (gpio_is_valid(bt_host_wake_gpio)) {
pwr_data->irq = gpio_to_irq(bt_host_wake_gpio);
pr_err("%s: BT-ON bt-host_wake-gpio(%d) IRQ(%d)\n",
__func__, bt_host_wake_gpio, pwr_data->irq);
rc = request_irq(pwr_data->irq,
btpower_host_wake_isr,
IRQF_TRIGGER_FALLING |
IRQF_TRIGGER_RISING,
"btpower_hostwake_isr", pwr_data);
if (rc)
pr_err("%s: unable to request IRQ %d (%d)\n",
__func__, bt_host_wake_gpio, rc);
}
} else {
if (gpio_is_valid(bt_host_wake_gpio)) {
pr_err("%s: BT-OFF bt-hostwake-gpio(%d) IRQ(%d) value(%d)\n",
__func__, bt_host_wake_gpio, pwr_data->irq,
gpio_get_value(bt_host_wake_gpio));
free_irq(pwr_data->irq, pwr_data);
}
if (gpio_is_valid(bt_gpio_dev_wake))
gpio_set_value(bt_gpio_dev_wake, 0);
}
}
#endif
static int bt_configure_gpios(int on)
{
int rc = 0;
int bt_reset_gpio = pwr_data->bt_gpio_sys_rst;
int wl_reset_gpio = pwr_data->wl_gpio_sys_rst;
int bt_sw_ctrl_gpio = pwr_data->bt_gpio_sw_ctrl;
int bt_debug_gpio = pwr_data->bt_gpio_debug;
int assert_dbg_gpio = 0;
if (on) {
rc = gpio_request(bt_reset_gpio, "bt_sys_rst_n");
if (rc) {
pr_err("%s: unable to request gpio %d (%d)\n",
__func__, bt_reset_gpio, rc);
return rc;
}
pr_err("BTON:Turn Bt OFF asserting BT_EN to low\n");
pr_err("bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio,
gpio_get_value(bt_reset_gpio));
rc = gpio_direction_output(bt_reset_gpio, 0);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
power_src.platform_state[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
msleep(50);
pr_err("BTON:Turn Bt OFF post asserting BT_EN to low\n");
pr_err("bt-reset-gpio(%d) value(%d)\n", bt_reset_gpio,
gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
power_src.platform_state[BT_SW_CTRL_GPIO] =
gpio_get_value(bt_sw_ctrl_gpio);
rc = msm_gpio_mpm_wake_set(pwr_data->sw_cntrl_gpio, 1);
if (rc < 0) {
pr_err("Failed to set msm_gpio_mpm_wake_set for sw_cntrl gpio, ret: %d\n",
rc);
return rc;
} else {
pr_err("Set msm_gpio_mpm_wake_set for sw_cntrl gpio successful\n");
}
pr_err("BTON:Turn Bt OFF bt-sw-ctrl-gpio(%d) value(%d)\n",
bt_sw_ctrl_gpio,
power_src.platform_state[BT_SW_CTRL_GPIO]);
}
if (wl_reset_gpio >= 0)
pr_err("BTON:Turn Bt ON wl-reset-gpio(%d) value(%d)\n",
wl_reset_gpio, gpio_get_value(wl_reset_gpio));
if ((wl_reset_gpio < 0) ||
((wl_reset_gpio >= 0) && gpio_get_value(wl_reset_gpio))) {
btpower_set_xo_clk_gpio_state(true);
pr_err("BTON: WLAN ON Asserting BT_EN to high\n");
rc = gpio_direction_output(bt_reset_gpio, 1);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
power_src.platform_state[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
btpower_set_xo_clk_gpio_state(false);
}
if ((wl_reset_gpio >= 0) && (gpio_get_value(wl_reset_gpio) == 0)) {
if (gpio_get_value(bt_reset_gpio)) {
pr_err("BTON: WLAN OFF and BT ON are too close\n");
pr_err("reset BT_EN, enable it after delay\n");
rc = gpio_direction_output(bt_reset_gpio, 0);
if (rc) {
pr_err("%s: Unable to set direction\n",
__func__);
return rc;
}
power_src.platform_state[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
}
pr_err("BTON: WLAN OFF waiting for 100ms delay\n");
pr_err("for AON output to fully discharge\n");
msleep(100);
pr_err("BTON: WLAN OFF Asserting BT_EN to high\n");
btpower_set_xo_clk_gpio_state(true);
rc = gpio_direction_output(bt_reset_gpio, 1);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
power_src.platform_state[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
btpower_set_xo_clk_gpio_state(false);
}
/* Below block of code executes if WL_EN is pulled high when
* BT_EN is about to pull high. so above two if conditions are
* not executed.
*/
if (!gpio_get_value(bt_reset_gpio)) {
btpower_set_xo_clk_gpio_state(true);
pr_err("BTON: WLAN ON and BT ON are too close\n");
pr_err("Asserting BT_EN to high\n");
rc = gpio_direction_output(bt_reset_gpio, 1);
if (rc) {
pr_err("%s: Unable to set direction\n", __func__);
return rc;
}
power_src.platform_state[BT_RESET_GPIO] =
gpio_get_value(bt_reset_gpio);
btpower_set_xo_clk_gpio_state(false);
}
msleep(50);
#ifdef CONFIG_MSM_BT_OOBS
bt_configure_wakeup_gpios(on);
#endif
/* Check if SW_CTRL is asserted */
if (bt_sw_ctrl_gpio >= 0) {
rc = gpio_direction_input(bt_sw_ctrl_gpio);
if (rc) {
pr_err("%s:SWCTRL Dir Set Problem:%d\n",
__func__, rc);
} else if (!gpio_get_value(bt_sw_ctrl_gpio)) {
/* SW_CTRL not asserted, assert debug GPIO */
if (bt_debug_gpio >= 0)
assert_dbg_gpio = 1;
}
}
if (assert_dbg_gpio) {
rc = gpio_request(bt_debug_gpio, "bt_debug_n");
if (rc) {
pr_err("unable to request Debug Gpio\n");
} else {
rc = gpio_direction_output(bt_debug_gpio, 1);
if (rc)
pr_err("%s:Prob Set Debug-Gpio\n",
__func__);
}
}
pr_err("BTON:Turn Bt On bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
power_src.platform_state[BT_SW_CTRL_GPIO] =
gpio_get_value(bt_sw_ctrl_gpio);
pr_err("BTON: Turn BT ON bt-sw-ctrl-gpio(%d) value(%d)\n",
bt_sw_ctrl_gpio,
power_src.platform_state[BT_SW_CTRL_GPIO]);
}
} else {
#ifdef CONFIG_MSM_BT_OOBS
bt_configure_wakeup_gpios(on);
#endif
gpio_set_value(bt_reset_gpio, 0);
msleep(100);
pr_err("BT-OFF:bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
pr_err("BT-OFF:bt-sw-ctrl-gpio(%d) value(%d)\n",
bt_sw_ctrl_gpio,
gpio_get_value(bt_sw_ctrl_gpio));
}
}
pr_err("%s: bt_gpio= %d on: %d\n", __func__, bt_reset_gpio, on);
return rc;
}
static int bt_regulators_pwr(int pwr_state)
{
int i, log_indx, bt_num_vregs, rc = 0;
struct vreg_data *bt_vregs = NULL;
rc = perisec_cnss_bt_hw_disable_check(pwr_data);
bt_num_vregs = pwr_data->bt_num_vregs;
if (!bt_num_vregs) {
pr_warn("%s: not avilable to %s\n",
__func__, reg_mode[pwr_state]);
return 0;
}
pr_err("%s: %s\n", __func__, reg_mode[pwr_state]);
if (pwr_state == POWER_ENABLE) {
/* Power On */
if (pwr_data->bt_sec_hw_disable) {
pr_err("%s:secure hw mode on,BT ON not allowed",
__func__);
return -EINVAL;
}
for (i = 0; i < bt_num_vregs; i++) {
bt_vregs = &pwr_data->bt_vregs[i];
log_indx = bt_vregs->indx.init;
if (bt_vregs->reg) {
power_src.bt_state[log_indx] = DEFAULT_INVALID_VALUE;
rc = vreg_enable(bt_vregs);
if (rc < 0) {
pr_err("%s: bt_power regulators config failed\n",
__func__);
goto regulator_fail;
}
if (bt_vregs->is_enabled)
power_src.bt_state[log_indx] =
regulator_get_voltage(bt_vregs->reg);
}
}
/* Parse dt_info and check if a target requires clock voting.
* Enable BT clock when BT is on and disable it when BT is off
*/
if (pwr_data->bt_chip_clk) {
rc = bt_clk_enable(pwr_data->bt_chip_clk);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
goto clk_fail;
}
}
if (pwr_data->bt_gpio_sys_rst > 0) {
power_src.bt_state[BT_RESET_GPIO] = DEFAULT_INVALID_VALUE;
power_src.bt_state[BT_SW_CTRL_GPIO] = DEFAULT_INVALID_VALUE;
rc = bt_configure_gpios(POWER_ENABLE);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
goto gpio_fail;
}
}
} else if (pwr_state == POWER_DISABLE) {
/* Power Off */
if (pwr_data->bt_gpio_sys_rst > 0) {
if (pwr_data->bt_sec_hw_disable) {
pr_err("%s: secure hw mode on, not allowed to access gpio",
__func__);
}else {
bt_configure_gpios(POWER_DISABLE);
}
}
gpio_fail:
if (pwr_data->bt_gpio_sys_rst > 0)
gpio_free(pwr_data->bt_gpio_sys_rst);
if (pwr_data->bt_gpio_debug > 0)
gpio_free(pwr_data->bt_gpio_debug);
if (pwr_data->bt_chip_clk)
bt_clk_disable(pwr_data->bt_chip_clk);
clk_fail:
regulator_fail:
for (i = 0; i < bt_num_vregs; i++) {
bt_vregs = &pwr_data->bt_vregs[i];
rc = vreg_disable(bt_vregs);
}
} else if (pwr_state == POWER_RETENTION) {
/* Retention mode */
for (i = 0; i < bt_num_vregs; i++) {
bt_vregs = &pwr_data->bt_vregs[i];
rc = vreg_enable_retention(bt_vregs);
}
} else {
pr_err("%s: Invalid power mode: %d\n", __func__, pwr_state);
rc = -1;
}
return rc;
}
static int uwb_regulators_pwr(int pwr_state)
{
int i, log_indx, uwb_num_vregs, rc = 0;
struct vreg_data *uwb_vregs = NULL;
rc = perisec_cnss_bt_hw_disable_check(pwr_data);
uwb_num_vregs = pwr_data->uwb_num_vregs;
if (!uwb_num_vregs) {
pr_warn("%s: not avilable to %s\n",
__func__, reg_mode[pwr_state]);
return 0;
}
pr_err("%s: %s\n", __func__, reg_mode[pwr_state]);
switch (pwr_state) {
case POWER_ENABLE:
for (i = 0; i < uwb_num_vregs; i++) {
uwb_vregs = &pwr_data->uwb_vregs[i];
log_indx = uwb_vregs->indx.init;
if (uwb_vregs->reg) {
power_src.uwb_state[log_indx] = DEFAULT_INVALID_VALUE;
rc = vreg_enable(uwb_vregs);
if (rc < 0) {
pr_err("%s: UWB regulators config failed\n",
__func__);
goto UWB_regulator_fail;
}
if (uwb_vregs->is_enabled)
power_src.uwb_state[log_indx] =
regulator_get_voltage(uwb_vregs->reg);
}
}
rc = bt_configure_gpios(POWER_ENABLE);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
goto UWB_gpio_fail;
}
break;
case POWER_DISABLE:
rc = bt_configure_gpios(POWER_DISABLE);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
goto UWB_gpio_fail;
}
UWB_gpio_fail:
UWB_regulator_fail:
for (i = 0; i < uwb_num_vregs; i++) {
uwb_vregs = &pwr_data->uwb_vregs[i];
rc = vreg_disable(uwb_vregs);
}
break;
case POWER_RETENTION:
for (i = 0; i < uwb_num_vregs; i++) {
uwb_vregs = &pwr_data->uwb_vregs[i];
rc = vreg_enable_retention(uwb_vregs);
}
break;
}
return rc;
}
static int platform_regulators_pwr(int pwr_state)
{
int i, log_indx, platform_num_vregs, rc = 0;
struct vreg_data *platform_vregs = NULL;
rc = perisec_cnss_bt_hw_disable_check(pwr_data);
platform_num_vregs = pwr_data->platform_num_vregs;
if (!platform_num_vregs) {
pr_warn("%s: not avilable to %s\n",
__func__, reg_mode[pwr_state]);
return 0;
}
pr_err("%s: %s\n", __func__, reg_mode[pwr_state]);
switch (pwr_state) {
case POWER_ENABLE:
for (i = 0; i < platform_num_vregs; i++) {
platform_vregs = &pwr_data->platform_vregs[i];
log_indx = platform_vregs->indx.init;
if (platform_vregs->reg) {
power_src.platform_state[log_indx] = DEFAULT_INVALID_VALUE;
rc = vreg_enable(platform_vregs);
if (rc < 0) {
pr_err("%s: Platform regulators config failed\n",
__func__);
goto Platform_regulator_fail;
}
if (platform_vregs->is_enabled) {
power_src.platform_state[log_indx] = regulator_get_voltage(platform_vregs->reg);
}
}
}
rc = bt_configure_gpios(POWER_ENABLE);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
goto Platform_gpio_fail;
}
break;
case POWER_DISABLE:
rc = bt_configure_gpios(POWER_DISABLE);
if (rc < 0) {
pr_err("%s: bt_power gpio config failed\n",
__func__);
}
Platform_gpio_fail:
if (pwr_data->bt_gpio_sys_rst > 0)
gpio_free(pwr_data->bt_gpio_sys_rst);
if (pwr_data->bt_gpio_debug > 0)
gpio_free(pwr_data->bt_gpio_debug);
Platform_regulator_fail:
for (i = 0; i < platform_num_vregs; i++) {
platform_vregs = &pwr_data->platform_vregs[i];
rc = vreg_disable(platform_vregs);
}
break;
case POWER_RETENTION:
for (i=0; i < platform_num_vregs; i++) {
platform_vregs = &pwr_data->platform_vregs[i];
rc = vreg_enable_retention(platform_vregs);
}
break;
case POWER_DISABLE_RETENTION:
for (i = 0; i < platform_num_vregs; i++) {
platform_vregs = &pwr_data->platform_vregs[i];
rc = vreg_disable_retention(platform_vregs);
}
break;
}
return rc;
}
static int power_regulators(int core_type, int mode) {
int ret = 0;
if ((mode != POWER_DISABLE) && (mode != POWER_ENABLE) &&
(mode != POWER_RETENTION)) {
pr_err("%s: Received wrong Mode to do regulator operation\n",
__func__);
return -1;
}
switch (core_type) {
case BT_CORE:
ret = bt_regulators_pwr(mode);
if (ret)
pr_err("%s: Failed to configure BT regulators to mode(%d)\n",
__func__, mode);
break;
case UWB_CORE:
ret = uwb_regulators_pwr(mode);
if (ret)
pr_err("%s: Failed to configure UWB regulators to mode(%d)\n",
__func__, mode);
break;
case PLATFORM_CORE:
ret = platform_regulators_pwr(mode);
if (ret)
pr_err("%s: Failed to configure platform regulators to mode(%d)\n",
__func__, mode);
break;
default:
pr_err("%s: Received wrong Core Type to do regulator operation\n",
__func__);
return -1;
}
return ret;
}
static int btpower_toggle_radio(void *data, bool blocked)
{
int ret = 0;
int (*power_control)(int Core, int enable);
power_control =
((struct platform_pwr_data *)data)->power_setup;
if (previous != blocked)
ret = (*power_control)(BT_CORE, !blocked);
if (!ret)
previous = blocked;
return ret;
}
static const struct rfkill_ops btpower_rfkill_ops = {
.set_block = btpower_toggle_radio,
};
static ssize_t extldo_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, 6, "false\n");
}
static DEVICE_ATTR_RO(extldo);
static int btpower_rfkill_probe(struct platform_device *pdev)
{
struct rfkill *rfkill;
int ret;
rfkill = rfkill_alloc("bt_power", &pdev->dev, RFKILL_TYPE_BLUETOOTH,
&btpower_rfkill_ops,
pdev->dev.platform_data);
if (!rfkill) {
dev_err(&pdev->dev, "rfkill allocate failed\n");
return -ENOMEM;
}
/* add file into rfkill0 to handle LDO27 */
ret = device_create_file(&pdev->dev, &dev_attr_extldo);
if (ret < 0)
pr_err("%s: device create file error\n", __func__);
/* force Bluetooth off during init to allow for user control */
rfkill_init_sw_state(rfkill, 1);
previous = true;
ret = rfkill_register(rfkill);
if (ret) {
dev_err(&pdev->dev, "rfkill register failed=%d\n", ret);
rfkill_destroy(rfkill);
return ret;
}
platform_set_drvdata(pdev, rfkill);
return 0;
}
static void btpower_rfkill_remove(struct platform_device *pdev)
{
struct rfkill *rfkill;
pr_info("%s\n", __func__);
rfkill = platform_get_drvdata(pdev);
if (rfkill)
rfkill_unregister(rfkill);
rfkill_destroy(rfkill);
platform_set_drvdata(pdev, NULL);
}
static int dt_parse_vreg_info(struct device *dev, struct device_node *child,
struct vreg_data *vreg_data)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE];
struct vreg_data *vreg = vreg_data;
struct device_node *np = child;
const char *vreg_name = vreg_data->name;
if (!child)
np = dev->of_node;
snprintf(prop_name, sizeof(prop_name), "%s-supply", vreg_name);
if (of_parse_phandle(np, prop_name, 0)) {
vreg->reg = regulator_get(dev, vreg_name);
if (IS_ERR(vreg->reg)) {
ret = PTR_ERR(vreg->reg);
vreg->reg = NULL;
pr_warn("%s: failed to get: %s error:%d\n", __func__,
vreg_name, ret);
return ret;
}
snprintf(prop_name, sizeof(prop_name), "%s-config", vreg->name);
prop = of_get_property(np, prop_name, &len);
if (!prop || len != (4 * sizeof(__be32))) {
pr_err("%s: Property %s %s, use default\n",
__func__, prop_name,
prop ? "invalid format" : "doesn't exist");
} else {
vreg->min_vol = be32_to_cpup(&prop[0]);
vreg->max_vol = be32_to_cpup(&prop[1]);
vreg->load_curr = be32_to_cpup(&prop[2]);
vreg->is_retention_supp = be32_to_cpup(&prop[3]);
}
pr_err("%s: Got regulator: %s, min_vol: %u, max_vol: %u, load_curr: %u, is_retention_supp: %u\n",
__func__, vreg->name, vreg->min_vol, vreg->max_vol,
vreg->load_curr, vreg->is_retention_supp);
} else {
pr_err("%s: %s is not provided in device tree\n", __func__,
vreg_name);
}
return ret;
}
static int bt_dt_parse_clk_info(struct device *dev,
struct bt_power_clk_data **clk_data)
{
int ret = -EINVAL;
struct bt_power_clk_data *clk = NULL;
struct device_node *np = dev->of_node;
pr_info("%s\n", __func__);
*clk_data = NULL;
if (of_parse_phandle(np, "clocks", 0)) {
clk = devm_kzalloc(dev, sizeof(*clk), GFP_KERNEL);
if (!clk) {
ret = -ENOMEM;
goto err;
}
/* Allocated 20 bytes size buffer for clock name string */
clk->name = devm_kzalloc(dev, 20, GFP_KERNEL);
/* Parse clock name from node */
ret = of_property_read_string_index(np, "clock-names", 0,
&(clk->name));
if (ret < 0) {
pr_err("%s: reading \"clock-names\" failed\n",
__func__);
return ret;
}
clk->clk = devm_clk_get(dev, clk->name);
if (IS_ERR(clk->clk)) {
ret = PTR_ERR(clk->clk);
pr_err("%s: failed to get %s, ret (%d)\n",
__func__, clk->name, ret);
clk->clk = NULL;
return ret;
}
*clk_data = clk;
} else {
pr_err("%s: clocks is not provided in device tree\n", __func__);
}
err:
return ret;
}
static void bt_power_vreg_put(void)
{
int i = 0;
struct vreg_data *bt_vregs = NULL;
int bt_num_vregs = pwr_data->bt_num_vregs;
for (; i < bt_num_vregs; i++) {
bt_vregs = &pwr_data->bt_vregs[i];
if (bt_vregs->reg)
regulator_put(bt_vregs->reg);
}
}
static int get_gpio_dt_pinfo(struct platform_device *pdev) {
int ret;
struct device_node *child;
child = pdev->dev.of_node;
pwr_data->bt_gpio_sys_rst =
of_get_named_gpio(child,
"qcom,bt-reset-gpio", 0);
if (pwr_data->bt_gpio_sys_rst < 0)
pr_err("bt-reset-gpio not provided in devicetree\n");
pwr_data->wl_gpio_sys_rst =
of_get_named_gpio(child,
"qcom,wl-reset-gpio", 0);
if (pwr_data->wl_gpio_sys_rst < 0)
pr_err("%s: wl-reset-gpio not provided in device tree\n",
__func__);
ret = of_property_read_u32(child, "mpm_wake_set_gpios",
&pwr_data->sw_cntrl_gpio);
if (ret)
pr_warn("sw_cntrl-gpio not provided in devicetree\n");
pwr_data->bt_gpio_sw_ctrl =
of_get_named_gpio(child,
"qcom,bt-sw-ctrl-gpio", 0);
if (pwr_data->bt_gpio_sw_ctrl < 0)
pr_err("bt-sw-ctrl-gpio not provided in devicetree\n");
pwr_data->bt_gpio_debug =
of_get_named_gpio(child,
"qcom,bt-debug-gpio", 0);
if (pwr_data->bt_gpio_debug < 0)
pr_warn("bt-debug-gpio not provided in devicetree\n");
pwr_data->xo_gpio_clk =
of_get_named_gpio(child,
"qcom,xo-clk-gpio", 0);
if (pwr_data->xo_gpio_clk < 0)
pr_warn("xo-clk-gpio not provided in devicetree\n");
#ifdef CONFIG_MSM_BT_OOBS
pwr_data->bt_gpio_dev_wake =
of_get_named_gpio(child,
"qcom,btwake_gpio", 0);
if (pwr_data->bt_gpio_dev_wake < 0)
pr_warn("%s: btwake-gpio not provided in device tree\n",
__func__);
pwr_data->bt_gpio_host_wake =
of_get_named_gpio(child,
"qcom,bthostwake_gpio", 0);
if (pwr_data->bt_gpio_host_wake < 0)
pr_warn("%s: bthostwake_gpio not provided in device tree\n",
__func__);
#endif
return true;
}
static int get_power_dt_pinfo(struct platform_device *pdev)
{
int rc, i;
const struct pwr_data *data;
data = of_device_get_match_data(&pdev->dev);
if (!data) {
pr_err("%s: failed to get dev node\n", __func__);
return -EINVAL;
}
memcpy(&pwr_data->compatible, &data->compatible, MAX_PROP_SIZE);
pwr_data->bt_vregs = data->bt_vregs;
pwr_data->bt_num_vregs = data->bt_num_vregs;
if (pwr_data->is_ganges_dt) {
pwr_data->uwb_vregs = data->uwb_vregs;
pwr_data->platform_vregs = data->platform_vregs;
pwr_data->uwb_num_vregs = data->uwb_num_vregs;
pwr_data->platform_num_vregs = data->platform_num_vregs;
pr_err("%s: bt_num_vregs =%d uwb_num_vregs =%d platform_num_vregs=%d\n",
__func__, pwr_data->bt_num_vregs, pwr_data->uwb_num_vregs,
pwr_data->platform_num_vregs);
} else {
pr_err("%s: bt_num_vregs =%d\n", __func__, pwr_data->bt_num_vregs);
}
for (i = 0; i < pwr_data->bt_num_vregs; i++) {
rc = dt_parse_vreg_info(&(pdev->dev), pwr_data->bt_of_node,
&pwr_data->bt_vregs[i]);
/* No point to go further if failed to get regulator handler */
if (rc)
return rc;
}
if(pwr_data->is_ganges_dt) {
for (i = 0; i < pwr_data->platform_num_vregs; i++) {
rc = dt_parse_vreg_info(&(pdev->dev), NULL,
&pwr_data->platform_vregs[i]);
/* No point to go further if failed to get regulator handler */
if (rc)
return rc;
}
for (i = 0; i < pwr_data->uwb_num_vregs; i++) {
rc = dt_parse_vreg_info(&(pdev->dev), pwr_data->uwb_of_node,
&pwr_data->uwb_vregs[i]);
/* No point to go further if failed to get regulator handler */
if (rc)
return rc;
}
}
return rc;
}
static int bt_power_populate_dt_pinfo(struct platform_device *pdev)
{
struct device_node *of_node;
int rc;
pr_info("%s\n", __func__);
if (!pwr_data)
return -ENOMEM;
if (pwr_data->is_ganges_dt) {
for_each_available_child_of_node(pdev->dev.of_node, of_node) {
if (!strcmp(of_node->name, "bt_ganges")) {
pwr_data->bt_of_node = of_node;
pr_err("%s: %s device node found\n", __func__,
pwr_data->bt_of_node->name);
} else if (!strcmp(of_node->name, "uwb_ganges")) {
pwr_data->uwb_of_node = of_node;
pr_err("%s: %s device node found\n", __func__,
pwr_data->uwb_of_node->name);
}
}
}
rc = get_power_dt_pinfo(pdev);
if (rc < 0)
pr_err("%s: failed to get the pin info from the DTSI\n",
__func__);
rc = get_gpio_dt_pinfo(pdev);
if (rc < 0)
pr_err("%s: failed to get the gpio info from the DTSI\n",
__func__);
bt_dt_parse_clk_info(&pdev->dev,
&pwr_data->bt_chip_clk);
pwr_data->power_setup = power_regulators;
return 0;
}
static inline bool bt_is_ganges_dt(struct platform_device *plat_dev)
{
return of_property_read_bool(plat_dev->dev.of_node, "qcom,peach-bt");
}
static void bt_power_pdc_init_params(struct platform_pwr_data *pdata) {
int ret;
struct device *dev = &pdata->pdev->dev;
pdata->pdc_init_table_len = of_property_count_strings(dev->of_node,
"qcom,pdc_init_table");
if (pdata->pdc_init_table_len > 0) {
pdata->pdc_init_table = kcalloc(pdata->pdc_init_table_len,
sizeof(char *), GFP_KERNEL);
ret = of_property_read_string_array(dev->of_node, "qcom,pdc_init_table",
pdata->pdc_init_table, pdata->pdc_init_table_len);
if (ret < 0)
pr_err("Failed to get PDC Init Table\n");
else
pr_err("PDC Init table configured\n");
} else {
pr_err("PDC Init Table not configured\n");
}
}
static void bt_signal_handler(struct work_struct *w_arg)
{
struct kernel_siginfo siginfo;
int rc = 0;
// Sending signal to HAL layer
memset(&siginfo, 0, sizeof(siginfo));
siginfo.si_signo = SIGIO;
siginfo.si_code = SI_QUEUE;
siginfo.si_int = pwr_data->wrkq_signal_state;
rc = send_sig_info(siginfo.si_signo, &siginfo, pwr_data->reftask_bt);
if (rc < 0) {
pr_err("%s: failed (%d) to send SIG to HAL(%d)\n", __func__,
rc, pwr_data->reftask_bt->pid);
return;
}
pr_err("%s Succesfull\n", __func__);
}
static void uwb_signal_handler(struct work_struct *w_arg)
{
struct kernel_siginfo siginfo;
int rc = 0;
// Sending signal to HAL layer
memset(&siginfo, 0, sizeof(siginfo));
siginfo.si_signo = SIGIO;
siginfo.si_code = SI_QUEUE;
siginfo.si_int = pwr_data->wrkq_signal_state;
rc = send_sig_info(siginfo.si_signo, &siginfo, pwr_data->reftask_uwb);
if (rc < 0) {
pr_err("%s: failed (%d) to send SIG to HAL(%d)\n", __func__,
rc, pwr_data->reftask_uwb->pid);
return;
}
pr_err("%s Succesfull\n", __func__);
}
static int bt_power_probe(struct platform_device *pdev)
{
int ret = 0;
int itr;
/* Fill whole array with -2 i.e NOT_AVAILABLE state by default
* for any GPIO or Reg handle.
*/
for (itr = PWR_SRC_INIT_STATE_IDX; itr < BT_POWER_SRC_SIZE; ++itr) {
power_src.bt_state[itr] = PWR_SRC_NOT_AVAILABLE;
power_src.platform_state[itr] = PWR_SRC_NOT_AVAILABLE;
power_src.uwb_state[itr] = PWR_SRC_NOT_AVAILABLE;
}
pwr_data = kzalloc(sizeof(*pwr_data), GFP_KERNEL);
if (!pwr_data)
return -ENOMEM;
pwr_data->pdev = pdev;
pwr_data->is_ganges_dt = of_property_read_bool(pdev->dev.of_node,
"qcom,peach-bt");
pr_info("%s: is_ganges_dt = %d\n", __func__, pwr_data->is_ganges_dt);
pwr_data->workq = alloc_workqueue("workq", WQ_HIGHPRI, WQ_DFL_ACTIVE);
if (!pwr_data->workq) {
pr_err("%s: Failed to creat the Work Queue (workq)\n",
__func__);
return -ENOMEM;
}
INIT_WORK(&pwr_data->uwb_wq, uwb_signal_handler);
INIT_WORK(&pwr_data->bt_wq, bt_signal_handler);
INIT_WORK(&pwr_data->wq_pwr_voting, bt_power_vote);
for (itr = 0; itr < BTPWR_MAX_REQ; itr++)
init_waitqueue_head(&pwr_data->rsp_wait_q[itr]);
skb_queue_head_init(&pwr_data->rxq);
mutex_init(&pwr_data->pwr_mtx);
mutex_init(&pwr_data->btpower_state.state_machine_lock);
pwr_data->btpower_state.power_state = IDLE;
pwr_data->btpower_state.retention_mode = RETENTION_IDLE;
pwr_data->btpower_state.grant_state = NO_GRANT_FOR_ANY_SS;
pwr_data->btpower_state.grant_pending = NO_OTHER_CLIENT_WAITING_FOR_GRANT;
perisec_cnss_bt_hw_disable_check(pwr_data);
if (pdev->dev.of_node) {
ret = bt_power_populate_dt_pinfo(pdev);
if (ret < 0) {
pr_err("%s, Failed to populate device tree info\n",
__func__);
goto free_pdata;
}
if (pwr_data->bt_sec_hw_disable) {
pr_info("%s: bt is in secure mode\n", __func__);
} else {
pr_info(" %s:send platform data of btpower\n", __func__);
pdev->dev.platform_data = pwr_data;
}
} else if (pdev->dev.platform_data) {
/* Optional data set to default if not provided */
if (!((struct platform_pwr_data *)
(pdev->dev.platform_data))->power_setup)
((struct platform_pwr_data *)
(pdev->dev.platform_data))->power_setup =
power_regulators;
memcpy(pwr_data, pdev->dev.platform_data,
sizeof(struct platform_pwr_data));
} else {
pr_err("%s: Failed to get platform data\n", __func__);
goto free_pdata;
}
if (btpower_rfkill_probe(pdev) < 0)
goto free_pdata;
bt_power_pdc_init_params(pwr_data);
btpower_aop_mbox_init(pwr_data);
probe_finished = true;
return 0;
free_pdata:
kfree(pwr_data);
return ret;
}
static int bt_power_remove(struct platform_device *pdev)
{
dev_dbg(&pdev->dev, "%s\n", __func__);
probe_finished = false;
btpower_rfkill_remove(pdev);
bt_power_vreg_put();
kfree(pwr_data);
return 0;
}
int btpower_register_slimdev(struct device *dev)
{
pr_info("%s\n", __func__);
if (!pwr_data || (dev == NULL)) {
pr_err("%s: Failed to allocate memory\n", __func__);
return -EINVAL;
}
pwr_data->slim_dev = dev;
return 0;
}
EXPORT_SYMBOL(btpower_register_slimdev);
int btpower_get_chipset_version(void)
{
pr_info("%s\n", __func__);
return soc_id;
}
EXPORT_SYMBOL(btpower_get_chipset_version);
static void set_pwr_srcs_status (struct vreg_data *handle, int core_type) {
int power_src_state;
if (!handle)
pr_err("%s: invalid handler received \n", __func__);
if (handle->is_enabled)
power_src_state = (int)regulator_get_voltage(handle->reg);
else
power_src_state = DEFAULT_INVALID_VALUE;
switch (core_type) {
case BT_CORE:
power_src.bt_state[handle->indx.crash] = power_src_state;
if (power_src_state != DEFAULT_INVALID_VALUE) {
pr_err("%s(%p) value(%d)\n", handle->name, handle,
power_src.bt_state[handle->indx.crash]);
} else {
pr_err("%s:%s is_enabled: %d\n", __func__, handle->name,
handle->is_enabled);
}
break;
case UWB_CORE:
power_src.uwb_state[handle->indx.crash] = power_src_state;
if (power_src_state != DEFAULT_INVALID_VALUE) {
pr_err("%s(%p) value(%d)\n", handle->name, handle,
power_src.uwb_state[handle->indx.crash]);
} else {
pr_err("%s:%s is_enabled: %d\n", __func__, handle->name,
handle->is_enabled);
}
break;
case PLATFORM_CORE:
power_src.platform_state[handle->indx.crash] = power_src_state;
if (power_src_state != DEFAULT_INVALID_VALUE) {
pr_err("%s(%p) value(%d)\n", handle->name, handle,
power_src.platform_state[handle->indx.crash]);
} else {
pr_err("%s:%s is_enabled: %d\n", __func__, handle->name,
handle->is_enabled);
}
break;
default:
pr_err("%s: invalid core type received = %d\n", __func__, core_type);
break;
}
}
static inline void update_pwr_state(int state)
{
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
pwr_data->btpower_state.power_state = state;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
}
static inline int get_pwr_state(void)
{
int state;
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
state = (int)pwr_data->btpower_state.power_state;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
return state;
}
static inline void btpower_set_retenion_mode_state(int state)
{
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
pwr_data->btpower_state.retention_mode = state;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
}
static inline int btpower_get_retenion_mode_state(void)
{
int state;
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
state = (int)pwr_data->btpower_state.retention_mode;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
return state;
}
static inline void btpower_set_grant_pending_state(enum grant_states state)
{
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
pwr_data->btpower_state.grant_pending = state;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
}
static inline enum grant_states btpower_get_grant_pending_state(void)
{
enum grant_states state;
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
state = pwr_data->btpower_state.grant_pending;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
return state;
}
static inline void btpower_set_grant_state(enum grant_states state)
{
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
pwr_data->btpower_state.grant_state = state;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
}
static inline enum grant_states btpower_get_grant_state(void)
{
enum grant_states state;
mutex_lock(&pwr_data->btpower_state.state_machine_lock);
state = pwr_data->btpower_state.grant_state;
mutex_unlock(&pwr_data->btpower_state.state_machine_lock);
return state;
}
static void update_sub_state(int state)
{
pwr_data->sub_state = state;
}
static int get_sub_state(void)
{
return (int)pwr_data->sub_state;
}
int power_enable (enum SubSystem SubSystemType)
{
int ret;
switch (get_pwr_state()) {
case IDLE:
ret = power_regulators(PLATFORM_CORE, POWER_ENABLE);
if (SubSystemType == BLUETOOTH) {
ret = power_regulators(BT_CORE, POWER_ENABLE);
update_pwr_state(BT_ON);
} else {
ret = power_regulators(UWB_CORE, POWER_ENABLE);
update_pwr_state(UWB_ON);
}
break;
case BT_ON:
if (SubSystemType == BLUETOOTH) {
pr_err("%s: BT Regulators already Voted-On\n",
__func__);
return 0;
}
ret = power_regulators(UWB_CORE, POWER_ENABLE);
update_pwr_state(ALL_CLIENTS_ON);
break;
case UWB_ON:
if (SubSystemType == UWB) {
pr_err("%s: UWB Regulators already Voted-On\n",
__func__);
return 0;
}
ret = power_regulators(BT_CORE, POWER_ENABLE);
update_pwr_state(ALL_CLIENTS_ON);
break;
case ALL_CLIENTS_ON:
pr_err("%s: Both BT and UWB Regulators already Voted-On\n",
__func__);
return 0;
}
return ret;
}
void send_signal_to_subsystem (int SubSystemType, int state) {
pwr_data->wrkq_signal_state = state;
if (SubSystemType == BLUETOOTH)
queue_work(pwr_data->workq, &pwr_data->bt_wq);
else
queue_work(pwr_data->workq, &pwr_data->uwb_wq);
}
int power_disable(enum SubSystem SubSystemType)
{
int ret = 0;
int ret_mode_state = btpower_get_retenion_mode_state();
enum grant_states grant_state = btpower_get_grant_state();
enum grant_states grant_pending = btpower_get_grant_pending_state();
switch (get_pwr_state()) {
case IDLE:
pr_err("%s: both BT and UWB regulators already voted-Off\n", __func__);
return 0;
case ALL_CLIENTS_ON:
if (SubSystemType == BLUETOOTH) {
ret = power_regulators(BT_CORE, POWER_DISABLE);
update_pwr_state(UWB_ON);
if (ret_mode_state == BOTH_CLIENTS_IN_RETENTION)
btpower_set_retenion_mode_state(UWB_IN_RETENTION);
else if (ret_mode_state == BT_IN_RETENTION)
btpower_set_retenion_mode_state(RETENTION_IDLE);
if (get_sub_state() == SSR_ON_BT) {
update_sub_state(SUB_STATE_IDLE);
send_signal_to_subsystem(UWB, BT_SSR_COMPLETED);
}
if (grant_state == BT_HAS_GRANT) {
if (grant_pending == UWB_WAITING_FOR_GRANT) {
send_signal_to_subsystem(UWB,
SIGIO_SOC_ACCESS_SIGNAL|(ACCESS_GRANTED + 1));
btpower_set_grant_state(UWB_HAS_GRANT);
} else {
btpower_set_grant_state(NO_GRANT_FOR_ANY_SS);
}
}
if (grant_pending == BT_WAITING_FOR_GRANT)
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
} else {
ret = power_regulators(UWB_CORE, POWER_DISABLE);
update_pwr_state(BT_ON);
if (ret_mode_state == BOTH_CLIENTS_IN_RETENTION)
btpower_set_retenion_mode_state(BT_IN_RETENTION);
else if (ret_mode_state == UWB_IN_RETENTION)
btpower_set_retenion_mode_state(RETENTION_IDLE);
if (get_sub_state() == SSR_ON_UWB) {
send_signal_to_subsystem(BLUETOOTH,
(SIGIO_INTERACTION_SIGNAL|SIGIO_UWB_SSR_COMPLETED));
}
if (grant_state == UWB_HAS_GRANT) {
if (grant_pending == BT_WAITING_FOR_GRANT) {
send_signal_to_subsystem(BLUETOOTH,
SIGIO_SOC_ACCESS_SIGNAL|(ACCESS_GRANTED + 1));
btpower_set_grant_state(BT_HAS_GRANT);
} else {
btpower_set_grant_state(NO_GRANT_FOR_ANY_SS);
}
}
if (grant_pending == UWB_WAITING_FOR_GRANT)
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
}
break;
case UWB_ON:
if (SubSystemType == BLUETOOTH) {
pr_err("%s: BT Regulator already Voted-Off\n", __func__);
return 0;
}
ret = power_regulators(UWB_CORE, POWER_DISABLE);
ret = power_regulators(PLATFORM_CORE, POWER_DISABLE);
update_pwr_state(IDLE);
update_sub_state(SUB_STATE_IDLE);
btpower_set_retenion_mode_state(RETENTION_IDLE);
btpower_set_grant_state(NO_GRANT_FOR_ANY_SS);
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
break;
case BT_ON:
if (SubSystemType == UWB) {
pr_err("%s: UWB Regulator already Voted-Off\n", __func__);
return 0;
}
ret = power_regulators(BT_CORE, POWER_DISABLE);
ret = power_regulators(PLATFORM_CORE, POWER_DISABLE);
update_pwr_state(IDLE);
update_sub_state(SUB_STATE_IDLE);
btpower_set_retenion_mode_state(RETENTION_IDLE);
btpower_set_grant_state(NO_GRANT_FOR_ANY_SS);
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
break;
}
return ret;
}
static int client_state_notified(int SubSystemType) {
if (get_sub_state() != SUB_STATE_IDLE) {
pr_err("%s: SSR is already running on other Sub-system\n", __func__);
return -1;
}
if (SubSystemType == BLUETOOTH) {
update_sub_state(SSR_ON_BT);
if (get_pwr_state() == ALL_CLIENTS_ON) {
if (!pwr_data->reftask_uwb) {
pr_err("%s: UWB PID is not register to send signal\n",
__func__);
return -1;
}
send_signal_to_subsystem(UWB, SSR_ON_BT);
}
} else {
update_sub_state(SSR_ON_UWB);
if (get_pwr_state() == ALL_CLIENTS_ON) {
if (!pwr_data->reftask_bt) {
pr_err("%s: BT PID is not register to send signal\n",
__func__);
return -1;
}
send_signal_to_subsystem(BLUETOOTH,
(SIGIO_INTERACTION_SIGNAL|SIGIO_SSR_ON_UWB));
}
}
return 0;
}
void btpower_register_client(int client, int cmd)
{
if (cmd == REG_BT_PID) {
pwr_data->reftask_bt = get_current();
pr_info("%s: Registering BT Service(PID-%d) with Power driver\n",
__func__, pwr_data->reftask_bt->tgid);
return;
} else if (cmd == REG_UWB_PID) {
pwr_data->reftask_uwb = get_current();
pr_info("%s: Registering UWB Service(PID-%d) with Power driver\n",
__func__, pwr_data->reftask_uwb->tgid);
return;
}
if (client == BLUETOOTH)
client_state_notified(BLUETOOTH);
else
client_state_notified(UWB);
}
void log_power_src_val(void)
{
int itr = 0;
power_src.platform_state[BT_SW_CTRL_GPIO_CURRENT] =
gpio_get_value(pwr_data->bt_gpio_sw_ctrl);
power_src.platform_state[BT_RESET_GPIO_CURRENT] =
gpio_get_value(pwr_data->bt_gpio_sys_rst);
for (itr = 0; itr < pwr_data->bt_num_vregs; itr++)
set_pwr_srcs_status(&pwr_data->bt_vregs[itr], BT_CORE);
for (itr = 0; itr < pwr_data->platform_num_vregs; itr++)
set_pwr_srcs_status(&pwr_data->platform_vregs[itr], PLATFORM_CORE);
for (itr = 0; itr < pwr_data->uwb_num_vregs; itr++)
set_pwr_srcs_status(&pwr_data->uwb_vregs[itr], UWB_CORE);
}
int btpower_retenion(enum plt_pwr_state client)
{
int ret;
int current_pwr_state = get_pwr_state();
int retention_mode_state = btpower_get_retenion_mode_state();
if (current_pwr_state == IDLE) {
pr_err("%s: invalid retention_mode request\n", __func__);
return -1;
}
ret = power_regulators((client == POWER_ON_BT_RETENION ? BT_CORE : UWB_CORE),
POWER_RETENTION);
if (ret < 0)
return ret;
if ((current_pwr_state == BT_ON || current_pwr_state == UWB_ON) &&
retention_mode_state == IDLE) {
ret = power_regulators(PLATFORM_CORE, POWER_RETENTION);
if (ret < 0)
return ret;
btpower_set_retenion_mode_state(client == POWER_ON_BT_RETENION ?
BT_IN_RETENTION: UWB_IN_RETENTION);
} else if (current_pwr_state == ALL_CLIENTS_ON &&
retention_mode_state == IDLE) {
btpower_set_retenion_mode_state(client == POWER_ON_BT_RETENION ?
BT_IN_RETENTION: UWB_IN_RETENTION);
} else if (current_pwr_state == ALL_CLIENTS_ON &&
(retention_mode_state == BT_IN_RETENTION ||
retention_mode_state == UWB_IN_RETENTION)) {
ret = power_regulators(PLATFORM_CORE, POWER_RETENTION);
if (ret < 0)
return ret;
btpower_set_retenion_mode_state(BOTH_CLIENTS_IN_RETENTION);
} else if (retention_mode_state == UWB_OUT_OF_RETENTION ||
retention_mode_state == BT_OUT_OF_RETENTION) {
ret = power_regulators(PLATFORM_CORE, POWER_RETENTION);
if (ret < 0)
return ret;
btpower_set_retenion_mode_state(BOTH_CLIENTS_IN_RETENTION);
}
return ret;
}
int btpower_off(enum plt_pwr_state client)
{
return power_disable((client == POWER_OFF_BT) ? BLUETOOTH : UWB);
}
int btpower_on(enum plt_pwr_state client)
{
int ret = 0;
int current_ssr_state = get_sub_state();
int retention_mode_state = btpower_get_retenion_mode_state();
if (retention_mode_state == UWB_IN_RETENTION ||
retention_mode_state == BT_IN_RETENTION) {
ret = platform_regulators_pwr(POWER_DISABLE_RETENTION);
if (ret < 0)
return ret;
if (retention_mode_state == BT_IN_RETENTION)
btpower_set_retenion_mode_state(BT_OUT_OF_RETENTION);
else
btpower_set_retenion_mode_state(UWB_OUT_OF_RETENTION);
}
/* No Point in going further if SSR is on any subsystem */
if (current_ssr_state != SUB_STATE_IDLE) {
pr_err("%s: %s not allowing to power on\n", __func__,
ssr_state[current_ssr_state]);
return -1;
}
ret = power_enable(client == POWER_ON_BT ? BLUETOOTH : UWB);
/* Return current state machine to clients */
if (!ret)
ret = (int)get_pwr_state();
return ret;
}
int STREAM_TO_UINT32(struct sk_buff *skb)
{
return (skb->data[0] | (skb->data[1] << 8) |
(skb->data[2] << 16) | (skb->data[3] << 24));
}
int btpower_access_ctrl(enum plt_pwr_state request)
{
enum grant_states grant_state = btpower_get_grant_state();
enum grant_states grant_pending = btpower_get_grant_pending_state();
int current_ssr_state = get_sub_state();
pr_info("%s: request for %s grant_state %s grant_pending %s\n", __func__,
pwr_req[(int)request], ConvertGrantToString(grant_state),
ConvertGrantToString(grant_pending));
if (current_ssr_state != SUB_STATE_IDLE &&
(request == BT_ACCESS_REQ || request == UWB_ACCESS_REQ)) {
pr_err("%s: not allowing this request as %s\n", __func__,
ssr_state[current_ssr_state]);
return (int)ACCESS_DISALLOWED;
}
if ((grant_state == NO_GRANT_FOR_ANY_SS &&
grant_pending != NO_OTHER_CLIENT_WAITING_FOR_GRANT)) {
pr_err("%s: access ctrl gone for toss, resetting it back\n", __func__);
grant_pending = NO_OTHER_CLIENT_WAITING_FOR_GRANT;
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
}
if (request == BT_ACCESS_REQ && grant_state == NO_GRANT_FOR_ANY_SS) {
btpower_set_grant_state(BT_HAS_GRANT);
return ACCESS_GRANTED;
} else if (request == UWB_ACCESS_REQ && grant_state == NO_GRANT_FOR_ANY_SS) {
btpower_set_grant_state(UWB_HAS_GRANT);
return ACCESS_GRANTED;
} else if (request == BT_ACCESS_REQ && grant_state == UWB_HAS_GRANT) {
btpower_set_grant_pending_state(BT_WAITING_FOR_GRANT);
return ACCESS_DENIED;
} else if (request == UWB_ACCESS_REQ && grant_state == BT_HAS_GRANT) {
btpower_set_grant_pending_state(UWB_WAITING_FOR_GRANT);
return ACCESS_DENIED;
} else if (request == BT_RELEASE_ACCESS && grant_state == BT_HAS_GRANT) {
if (grant_pending == UWB_WAITING_FOR_GRANT) {
if (!pwr_data->reftask_uwb) {
pr_err("%s: UWB service got killed\n", __func__);
} else {
send_signal_to_subsystem(UWB,
SIGIO_SOC_ACCESS_SIGNAL|(ACCESS_GRANTED + 1));
btpower_set_grant_state(UWB_HAS_GRANT);
}
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
return ACCESS_RELEASED;
} else {
btpower_set_grant_state(NO_GRANT_FOR_ANY_SS);
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
return ACCESS_RELEASED;
}
} else if (request == UWB_RELEASE_ACCESS && grant_state == UWB_HAS_GRANT) {
if (grant_pending == BT_WAITING_FOR_GRANT) {
if (!pwr_data->reftask_uwb) {
pr_err("%s: BT service got killed\n", __func__);
} else {
send_signal_to_subsystem(BLUETOOTH,
SIGIO_SOC_ACCESS_SIGNAL|(ACCESS_GRANTED+1));
btpower_set_grant_state(BT_HAS_GRANT);
}
} else {
btpower_set_grant_state(NO_GRANT_FOR_ANY_SS);
}
btpower_set_grant_pending_state(NO_OTHER_CLIENT_WAITING_FOR_GRANT);
return ACCESS_RELEASED;
} else {
pr_err("%s: unhandled event\n", __func__);
}
return ACCESS_DISALLOWED;
}
static void bt_power_vote(struct work_struct *work)
{
struct sk_buff *skb;
int request;
int ret;
while (1) {
mutex_lock(&pwr_data->pwr_mtx);
skb = skb_dequeue(&pwr_data->rxq);
if (!skb) {
mutex_unlock(&pwr_data->pwr_mtx);
break;
}
request = STREAM_TO_UINT32(skb);
skb_pull(skb, sizeof(uint32_t));
mutex_unlock(&pwr_data->pwr_mtx);
pr_err("%s: request from is %s cur state = %s %s retention %s access %s pending %s\n",
__func__, pwr_req[request], pwr_states[get_pwr_state()],
ssr_state[get_sub_state()],
retention_mode[btpower_get_retenion_mode_state()],
ConvertGrantToString(btpower_get_grant_state()),
ConvertGrantToString(btpower_get_grant_pending_state()));
if (request == POWER_ON_BT || request == POWER_ON_UWB)
ret = btpower_on((enum plt_pwr_state)request);
else if (request == POWER_OFF_UWB || request == POWER_OFF_BT)
ret = btpower_off((enum plt_pwr_state)request);
else if (request == POWER_ON_BT_RETENION || request == POWER_ON_UWB_RETENION)
ret = btpower_retenion(request);
else if (request >= BT_ACCESS_REQ && request <= UWB_RELEASE_ACCESS) {
ret = btpower_access_ctrl(request);
pr_info("%s: grant status %s\n", __func__, ConvertGrantRetToString((int)ret));
}
pr_err("%s: request from is %s cur state = %s %s retention %s access %s pending %s\n",
__func__, pwr_req[request], pwr_states[get_pwr_state()],
ssr_state[get_sub_state()],
retention_mode[btpower_get_retenion_mode_state()],
ConvertGrantToString(btpower_get_grant_state()),
ConvertGrantToString(btpower_get_grant_pending_state()));
pwr_data->wait_status[request] = ret;
wake_up_interruptible(&pwr_data->rsp_wait_q[request]);
}
}
int schedule_client_voting(enum plt_pwr_state request)
{
struct sk_buff *skb;
wait_queue_head_t *rsp_wait_q;
int *status;
int ret = 0;
uint32_t req = (uint32_t)request;
mutex_lock(&pwr_data->pwr_mtx);
skb = alloc_skb(sizeof(uint32_t), GFP_KERNEL);
if (!skb) {
mutex_unlock(&pwr_data->pwr_mtx);
return -1;
}
rsp_wait_q = &pwr_data->rsp_wait_q[(u8)request];
status = &pwr_data->wait_status[(u8)request];
*status = PWR_WAITING_RSP;
skb_put_data(skb, &req, sizeof(uint32_t));
skb_queue_tail(&pwr_data->rxq, skb);
queue_work(system_highpri_wq, &pwr_data->wq_pwr_voting);
mutex_unlock(&pwr_data->pwr_mtx);
ret = wait_event_interruptible_timeout(*rsp_wait_q, (*status) != PWR_WAITING_RSP,
msecs_to_jiffies(BTPOWER_CONFIG_MAX_TIMEOUT));
pr_err("%s: %d\n", __func__, *status);
if (ret == 0) {
pr_err("%s: failed to vote %d due to timeout\n", __func__, request);
ret = -ETIMEDOUT;
} else {
ret = *status;
}
return ret;
}
char* GetBtSecondaryCrashReason(enum BtSecondaryReasonCode reason)
{
for(int i =0; i < (int)(sizeof(btSecReasonMap)/sizeof(BtSecondaryReasonMap)); i++)
if (btSecReasonMap[i].reason == reason)
return btSecReasonMap[i].reasonstr;
return CRASH_REASON_NOT_FOUND;
}
char* GetBtPrimaryCrashReason(enum BtPrimaryReasonCode reason)
{
for(int i =0; i < (int)(sizeof(btPriReasonMap)/sizeof(BtPrimaryReasonMap)); i++)
if (btPriReasonMap[i].reason == reason)
return btPriReasonMap[i].reasonstr;
return CRASH_REASON_NOT_FOUND;
}
char* GetUwbSecondaryCrashReason(enum UwbSecondaryReasonCode reason)
{
for(int i =0; i < (int)(sizeof(uwbSecReasonMap)/sizeof(UwbSecondaryReasonMap)); i++)
if (uwbSecReasonMap[i].reason == reason)
return uwbSecReasonMap[i].reasonstr;
return CRASH_REASON_NOT_FOUND;
}
char* GetUwbPrimaryCrashReason(enum UwbPrimaryReasonCode reason)
{
for(int i =0; i < (int)(sizeof(uwbPriReasonMap)/sizeof(UwbPrimaryReasonMap)); i++)
if (uwbPriReasonMap[i].reason == reason)
return uwbPriReasonMap[i].reasonstr;
return CRASH_REASON_NOT_FOUND;
}
int btpower_handle_client_request(unsigned int cmd, int arg)
{
int ret = -1;
pr_info("%s: %s cmd voted to %s, current state = %s, %s\n", __func__,
(cmd == BT_CMD_PWR_CTRL ? "BT_CMD_PWR_CTRL" : "UWB_CMD_PWR_CTRL"),
bt_arg[(int)arg], pwr_states[get_pwr_state()],
ssr_state[(int)get_sub_state()]);
if (cmd == BT_CMD_PWR_CTRL) {
switch ((int)arg) {
case POWER_DISABLE:
ret = schedule_client_voting(POWER_OFF_BT);
break;
case POWER_ENABLE:
ret = schedule_client_voting(POWER_ON_BT);
break;
case POWER_RETENTION:
ret = schedule_client_voting(POWER_ON_BT_RETENION);
break;
}
} else if (cmd == UWB_CMD_PWR_CTRL) {
switch ((int)arg) {
case POWER_DISABLE:
ret = schedule_client_voting(POWER_OFF_UWB);
break;
case POWER_ENABLE:
ret = schedule_client_voting(POWER_ON_UWB);
break;
case POWER_RETENTION:
ret = schedule_client_voting(POWER_ON_UWB_RETENION);
break;
}
}
pr_err("%s: %s, SSR state = %s\n", __func__,
pwr_states[get_pwr_state()], ssr_state[(int)get_sub_state()]);
return ret;
}
int btpower_process_access_req(unsigned int cmd, int req)
{
int ret = -1;
pr_info("%s: by %s: request type %s\n", __func__,
cmd == BT_CMD_ACCESS_CTRL ? "BT" : "UWB",
req == 1 ? "Request" : "Release");
if (cmd == BT_CMD_ACCESS_CTRL && req == 1)
ret = schedule_client_voting(BT_ACCESS_REQ);
else if (cmd == BT_CMD_ACCESS_CTRL && req == 2)
ret = schedule_client_voting(BT_RELEASE_ACCESS);
else if (cmd == UWB_CMD_ACCESS_CTRL && req == 1)
ret = schedule_client_voting(UWB_ACCESS_REQ);
else if (cmd == UWB_CMD_ACCESS_CTRL && req == 2)
ret = schedule_client_voting(UWB_RELEASE_ACCESS);
else
pr_err("%s: unhandled command %04x req %02x", __func__, cmd, req);
return ret;
}
static long bt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int ret = 0;
int chipset_version = 0;
int itr;
unsigned int panic_reason = 0;
unsigned short primary_reason = 0, sec_reason = 0;
#ifdef CONFIG_MSM_BT_OOBS
enum btpower_obs_param clk_cntrl;
#endif
if (!pwr_data || !probe_finished) {
pr_err("%s: BTPower Probing Pending.Try Again\n", __func__);
return -EAGAIN;
}
switch (cmd) {
#ifdef CONFIG_MSM_BT_OOBS
case BT_CMD_OBS_VOTE_CLOCK:
if (!gpio_is_valid(pwr_data->bt_gpio_dev_wake)) {
pr_err("%s: BT_CMD_OBS_VOTE_CLOCK bt_dev_wake_n(%d) not configured\n",
__func__, pwr_data->bt_gpio_dev_wake);
return -EIO;
}
clk_cntrl = (enum btpower_obs_param)arg;
switch (clk_cntrl) {
case BTPOWER_OBS_CLK_OFF:
btpower_uart_transport_locked(pwr_data, false);
ret = 0;
break;
case BTPOWER_OBS_CLK_ON:
btpower_uart_transport_locked(pwr_data, true);
ret = 0;
break;
case BTPOWER_OBS_DEV_OFF:
gpio_set_value(pwr_data->bt_gpio_dev_wake, 0);
ret = 0;
break;
case BTPOWER_OBS_DEV_ON:
gpio_set_value(pwr_data->bt_gpio_dev_wake, 1);
ret = 0;
break;
default:
pr_err("%s: BT_CMD_OBS_VOTE_CLOCK clk_cntrl(%d)\n",
__func__, clk_cntrl);
return -EINVAL;
}
pr_err("%s: BT_CMD_OBS_VOTE_CLOCK clk_cntrl(%d) %s\n",
__func__, clk_cntrl,
gpio_get_value(pwr_data->bt_gpio_dev_wake) ?
"Assert" : "Deassert");
break;
#endif
case BT_CMD_SLIM_TEST:
#if (defined CONFIG_BT_SLIM)
if (!pwr_data->slim_dev) {
pr_err("%s: slim_dev is null\n", __func__);
return -EINVAL;
}
ret = btfm_slim_hw_init(
pwr_data->slim_dev->platform_data
);
#endif
break;
case BT_CMD_PWR_CTRL:
case UWB_CMD_PWR_CTRL: {
ret = btpower_handle_client_request(cmd, (int)arg);
break;
}
case BT_CMD_REGISTRATION:
btpower_register_client(BLUETOOTH, (int)arg);
break;
case UWB_CMD_REGISTRATION:
btpower_register_client(UWB, (int)arg);
break;
case BT_CMD_ACCESS_CTRL:
case UWB_CMD_ACCESS_CTRL: {
ret = btpower_process_access_req(cmd, (int)arg);
break;
}
case BT_CMD_CHIPSET_VERS:
chipset_version = (int)arg;
pr_warn("%s: unified Current SOC Version : %x\n", __func__,
chipset_version);
if (chipset_version) {
soc_id = chipset_version;
} else {
pr_err("%s: got invalid soc version\n", __func__);
soc_id = 0;
}
break;
case BT_CMD_GET_CHIPSET_ID:
pr_err("%s: BT_CMD_GET_CHIPSET_ID = %s\n", __func__,
pwr_data->compatible);
if (copy_to_user((void __user *)arg, pwr_data->compatible,
MAX_PROP_SIZE)) {
pr_err("%s: copy to user failed\n", __func__);
ret = -EFAULT;
}
break;
case BT_CMD_CHECK_SW_CTRL:
/* Check if SW_CTRL is asserted */
pr_err("BT_CMD_CHECK_SW_CTRL\n");
if (pwr_data->bt_gpio_sw_ctrl > 0) {
power_src.bt_state[BT_SW_CTRL_GPIO] =
DEFAULT_INVALID_VALUE;
ret = gpio_direction_input(
pwr_data->bt_gpio_sw_ctrl);
if (ret) {
pr_err("%s:gpio_direction_input api\n",
__func__);
pr_err("%s:failed for SW_CTRL:%d\n",
__func__, ret);
} else {
power_src.bt_state[BT_SW_CTRL_GPIO] =
gpio_get_value(
pwr_data->bt_gpio_sw_ctrl);
pr_err("bt-sw-ctrl-gpio(%d) value(%d)\n",
pwr_data->bt_gpio_sw_ctrl,
power_src.bt_state[BT_SW_CTRL_GPIO]);
}
} else {
pr_err("bt_gpio_sw_ctrl not configured\n");
return -EINVAL;
}
break;
case BT_CMD_GETVAL_POWER_SRCS:
pr_err("BT_CMD_GETVAL_POWER_SRCS\n");
power_src.platform_state[BT_SW_CTRL_GPIO_CURRENT] =
gpio_get_value(pwr_data->bt_gpio_sw_ctrl);
power_src.platform_state[BT_RESET_GPIO_CURRENT] =
gpio_get_value(pwr_data->bt_gpio_sys_rst);
for (itr = 0; itr < pwr_data->bt_num_vregs; itr++)
set_pwr_srcs_status(&pwr_data->bt_vregs[itr], BT_CORE);
for (itr = 0; itr < pwr_data->platform_num_vregs; itr++)
set_pwr_srcs_status(&pwr_data->platform_vregs[itr], PLATFORM_CORE);
for (itr = 0; itr < pwr_data->uwb_num_vregs; itr++)
set_pwr_srcs_status(&pwr_data->uwb_vregs[itr], UWB_CORE);
if (copy_to_user((void __user *)arg, &power_src, sizeof(power_src))) {
pr_err("%s: copy to user failed\n", __func__);
ret = -EFAULT;
}
break;
case BT_CMD_SET_IPA_TCS_INFO:
pr_err("%s: BT_CMD_SET_IPA_TCS_INFO\n", __func__);
btpower_enable_ipa_vreg(pwr_data);
break;
case BT_CMD_KERNEL_PANIC:
pr_err("%s: BT_CMD_KERNEL_PANIC\n", __func__);
panic_reason = (unsigned int)arg;
primary_reason = panic_reason & 0xFFFF;
sec_reason = (panic_reason & 0xFFFF0000) >> 16;
pr_err("%s: BT kernel panic Primary reason = %s, Secondary reason = %s\n",
__func__, GetBtPrimaryCrashReason(primary_reason),
GetBtSecondaryCrashReason(sec_reason));
panic("%s: BT kernel panic Primary reason = %s, Secondary reason = %s\n",
__func__, GetBtPrimaryCrashReason(primary_reason),
GetBtSecondaryCrashReason(sec_reason));
break;
case UWB_CMD_KERNEL_PANIC:
pr_err("%s: UWB_CMD_KERNEL_PANIC\n", __func__);
panic_reason = (unsigned int)arg;
primary_reason = panic_reason & 0xFFFF;
sec_reason = (panic_reason & 0xFFFF0000) >> 16;
pr_err("%s: UWB kernel panic Primary reason = %s, Secondary reason = %s\n",
__func__, GetUwbPrimaryCrashReason(primary_reason),
GetUwbSecondaryCrashReason(sec_reason));
panic("%s: UWB kernel panic Primary reason = %s, Secondary reason = %s\n",
__func__, GetUwbPrimaryCrashReason(primary_reason),
GetUwbSecondaryCrashReason(sec_reason));
break;
default:
return -ENOIOCTLCMD;
}
return ret;
}
static int bt_power_release(struct inode *inode, struct file *file)
{
if (!pwr_data || !probe_finished) {
pr_err("%s: BTPower Probing Pending.Try Again\n", __func__);
return -EAGAIN;
}
pwr_data->reftask = get_current();
if (pwr_data->reftask_bt != NULL) {
if (pwr_data->reftask->tgid == pwr_data->reftask_bt->tgid)
{
pr_err("%s called by BT service(PID-%d)\n",
__func__, pwr_data->reftask->tgid);
/*
if(get_pwr_state() == BT_ON)
{
bt_regulators_pwr(POWER_DISABLE);
platform_regulators_pwr(POWER_DISABLE);
update_pwr_state(IDLE);
}
else if (get_pwr_state() == ALL_CLIENTS_ON)
{
bt_regulators_pwr(POWER_DISABLE);
update_pwr_state(UWB_ON);
}
*/
}
} else if (pwr_data->reftask_uwb != NULL) {
if (pwr_data->reftask->tgid == pwr_data->reftask_uwb->tgid)
{
pr_err("%s called by uwb service(PID-%d)\n",
__func__, pwr_data->reftask->tgid);
/*
if(get_pwr_state() == UWB_ON)
{
uwb_regulators_pwr(POWER_DISABLE);
platform_regulators_pwr(POWER_DISABLE);
update_pwr_state(IDLE);
}
else if (get_pwr_state() == ALL_CLIENTS_ON)
{
uwb_regulators_pwr(POWER_DISABLE);
update_pwr_state(BT_ON);
}
*/
}
}
return 0;
}
static struct platform_driver bt_power_driver = {
.probe = bt_power_probe,
.remove = bt_power_remove,
.driver = {
.name = "bt_power",
.of_match_table = bt_power_match_table,
},
};
static const struct file_operations bt_dev_fops = {
.unlocked_ioctl = bt_ioctl,
.compat_ioctl = bt_ioctl,
.release = bt_power_release,
};
static int __init btpower_init(void)
{
int ret = 0;
probe_finished = false;
ret = platform_driver_register(&bt_power_driver);
if (ret) {
pr_err("%s: platform_driver_register error: %d\n",
__func__, ret);
goto driver_err;
}
bt_major = register_chrdev(0, "bt", &bt_dev_fops);
if (bt_major < 0) {
pr_err("%s: failed to allocate char dev\n", __func__);
ret = -1;
goto chrdev_err;
}
bt_class = class_create(THIS_MODULE, "bt-dev");
if (IS_ERR(bt_class)) {
pr_err("%s: coudn't create class\n", __func__);
ret = -1;
goto class_err;
}
if (device_create(bt_class, NULL, MKDEV(bt_major, 0),
NULL, "btpower") == NULL) {
pr_err("%s: failed to allocate char dev\n", __func__);
goto device_err;
}
return 0;
device_err:
class_destroy(bt_class);
class_err:
unregister_chrdev(bt_major, "bt");
chrdev_err:
platform_driver_unregister(&bt_power_driver);
driver_err:
return ret;
}
/**
* bt_aop_send_msg: Sends json message to AOP using QMP
* @plat_priv: Pointer to cnss platform data
* @msg: String in json format
*
* AOP accepts JSON message to configure WLAN/BT resources. Format as follows:
* To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
* res: <VReg_name>.<param>, <seq_param>: <value>}
* To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
* enable: <Value>}
* QMP returns timeout error if format not correct or AOP operation fails.
*
* Return: 0 for success
*/
int bt_aop_send_msg(struct platform_pwr_data *plat_priv, char *mbox_msg)
{
struct qmp_pkt pkt;
int ret = 0;
pkt.size = BTPOWER_MBOX_MSG_MAX_LEN;
pkt.data = mbox_msg;
pr_err("%s: %s\n", __func__, mbox_msg);
ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
if (ret < 0)
pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
else
ret =0;
return ret;
}
int bt_aop_pdc_reconfig(struct platform_pwr_data *pdata)
{
unsigned int i;
int ret;
if (pdata->pdc_init_table_len <= 0 || !pdata->pdc_init_table)
return 0;
pr_err("Setting PDC defaults\n");
for (i = 0; i < pdata->pdc_init_table_len; i++) {
ret =bt_aop_send_msg(pdata,(char *)pdata->pdc_init_table[i]);
if (ret < 0)
break;
}
return ret;
}
int btpower_aop_mbox_init(struct platform_pwr_data *pdata)
{
struct mbox_client *mbox = &pdata->mbox_client_data;
struct mbox_chan *chan;
int ret = 0;
mbox->dev = &pdata->pdev->dev;
mbox->tx_block = true;
mbox->tx_tout = BTPOWER_MBOX_TIMEOUT_MS;
mbox->knows_txdone = false;
pdata->mbox_chan = NULL;
chan = mbox_request_channel(mbox, 0);
if (IS_ERR(chan)) {
pr_err("%s: failed to get mbox channel\n", __func__);
return PTR_ERR(chan);
}
pdata->mbox_chan = chan;
ret = of_property_read_string(pdata->pdev->dev.of_node,
"qcom,vreg_ipa",
&pdata->vreg_ipa);
if (ret)
pr_err("%s: vreg for iPA not configured\n", __func__);
else
pr_err("%s: Mbox channel initialized\n", __func__);
ret = bt_aop_pdc_reconfig(pdata);
if (ret)
pr_err("Failed to reconfig BT WLAN PDC, err = %d\n", ret);
return 0;
}
static int btpower_aop_set_vreg_param(struct platform_pwr_data *pdata,
const char *vreg_name,
enum btpower_vreg_param param,
enum btpower_tcs_seq seq, int val)
{
struct qmp_pkt pkt;
char mbox_msg[BTPOWER_MBOX_MSG_MAX_LEN];
static const char * const vreg_param_str[] = {"v", "m", "e"};
static const char *const tcs_seq_str[] = {"upval", "dwnval", "enable"};
int ret = 0;
if (param > BTPOWER_VREG_ENABLE || seq > BTPOWER_TCS_ALL_SEQ || !vreg_name)
return -EINVAL;
snprintf(mbox_msg, BTPOWER_MBOX_MSG_MAX_LEN,
"{class: wlan_pdc, res: %s.%s, %s: %d}", vreg_name,
vreg_param_str[param], tcs_seq_str[seq], val);
pr_err("%s: sending AOP Mbox msg: %s\n", __func__, mbox_msg);
pkt.size = BTPOWER_MBOX_MSG_MAX_LEN;
pkt.data = mbox_msg;
ret = mbox_send_message(pdata->mbox_chan, &pkt);
if (ret < 0)
pr_err("%s:Failed to send AOP mbox msg(%s), err(%d)\n",
__func__, mbox_msg, ret);
return ret;
}
static int btpower_enable_ipa_vreg(struct platform_pwr_data *pdata)
{
int ret = 0;
static bool config_done;
if (config_done) {
pr_err("%s: IPA Vreg already configured\n", __func__);
return 0;
}
if (!pdata->vreg_ipa || !pdata->mbox_chan) {
pr_err("%s: mbox/iPA vreg not configured\n", __func__);
} else {
ret = btpower_aop_set_vreg_param(pdata,
pdata->vreg_ipa,
BTPOWER_VREG_ENABLE,
BTPOWER_TCS_UP_SEQ, 1);
if (ret >= 0) {
pr_err("%s:Enabled iPA\n", __func__);
config_done = true;
}
}
return ret;
}
static void __exit btpower_exit(void)
{
platform_driver_unregister(&bt_power_driver);
}
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM Bluetooth power control driver");
module_init(btpower_init);
module_exit(btpower_exit);