Files
android_kernel_samsung_sm86…/qdf/linux/src/qdf_crypto.c
Meng Yuan fadf69f0d9 qcacmn: fix uninitialized array elements issue
Fix the issue about using uninitialized array elements.

Change-Id: I400fae1283bdee34c2e455aae21e0d3bb122a928
CRs-Fixed: 3394984
2023-02-20 07:06:09 -08:00

745 lines
19 KiB
C

/*
* Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: qdf_crypto.c
*
* This source file contains linux specific definitions for QDF crypto APIs
*/
/* Include Files */
#include "qdf_crypto.h"
#include <linux/export.h>
#include <crypto/hash.h>
#include <crypto/aes.h>
#include <crypto/skcipher.h>
#include <crypto/aead.h>
#include <linux/ieee80211.h>
#include <qdf_module.h>
/* Function Definitions and Documentation */
#define MAX_HMAC_ELEMENT_CNT 10
/*
* xor: API to calculate xor
* @a: first variable
* @b: second variable
* @len: length of variables
*/
static void xor(uint8_t *a, const uint8_t *b, size_t len)
{
unsigned int i;
for (i = 0; i < len; i++)
a[i] ^= b[i];
}
int qdf_get_hash(uint8_t *type,
uint8_t element_cnt, uint8_t *addr[], uint32_t *addr_len,
int8_t *hash)
{
return qdf_get_hmac_hash(type, NULL, 0, element_cnt,
addr, addr_len, hash);
}
int qdf_get_hmac_hash(uint8_t *type, uint8_t *key,
uint32_t keylen,
uint8_t element_cnt, uint8_t *addr[], uint32_t *addr_len,
int8_t *hash)
{
int i;
size_t src_len[MAX_HMAC_ELEMENT_CNT];
if (element_cnt > MAX_HMAC_ELEMENT_CNT) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Invalid element count %d"), element_cnt);
return -EINVAL;
}
for (i = 0; i < element_cnt; i++)
src_len[i] = addr_len[i];
return qdf_get_keyed_hash(type, key, keylen, (const uint8_t **)addr,
src_len, element_cnt, hash);
}
QDF_STATUS
qdf_default_hmac_sha256_kdf(uint8_t *secret, uint32_t secret_len,
uint8_t *label, uint8_t *optional_data,
uint32_t optional_data_len, uint8_t *key,
uint32_t keylen)
{
uint8_t tmp_hash[SHA256_DIGEST_SIZE] = {0};
uint8_t count = 1;
uint8_t *addr[4];
uint32_t len[4];
uint32_t current_position = 0, remaining_data = SHA256_DIGEST_SIZE;
addr[0] = tmp_hash;
len[0] = SHA256_DIGEST_SIZE;
addr[1] = label;
len[1] = strlen(label) + 1;
addr[2] = optional_data;
len[2] = optional_data_len;
addr[3] = &count;
len[3] = 1;
if (keylen == 0 ||
(keylen > (WLAN_MAX_PRF_INTERATIONS_COUNT * SHA256_DIGEST_SIZE))) {
qdf_err("invalid key length %d", keylen);
return QDF_STATUS_E_FAILURE;
}
/* Create T1 */
if (qdf_get_hmac_hash(HMAC_SHA256_CRYPTO_TYPE, secret, secret_len, 3,
&addr[1], &len[1], tmp_hash) < 0) {
qdf_err("failed to get hmac hash");
return QDF_STATUS_E_FAILURE;
}
/* Update hash from tmp_hash */
qdf_mem_copy(key + current_position, tmp_hash, remaining_data);
current_position += remaining_data;
for (count = 2; current_position < keylen; count++) {
remaining_data = keylen - current_position;
if (remaining_data > SHA256_DIGEST_SIZE)
remaining_data = SHA256_DIGEST_SIZE;
/* Create T-n */
if (qdf_get_hmac_hash(HMAC_SHA256_CRYPTO_TYPE, secret,
secret_len, 4, addr, len, tmp_hash) < 0) {
qdf_err("failed to get hmac hash");
return QDF_STATUS_E_FAILURE;
}
/* Update hash from tmp_hash */
qdf_mem_copy(key + current_position, tmp_hash, remaining_data);
current_position += remaining_data;
}
return QDF_STATUS_SUCCESS;
}
/* qdf_update_dbl from RFC 5297. Length of d is AES_BLOCK_SIZE (128 bits) */
void qdf_update_dbl(uint8_t *d)
{
int i;
uint8_t msb, msb_prev = 0;
/* left shift by 1 */
for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) {
msb = d[i] & 0x80;
d[i] = d[i] << 1;
d[i] += msb_prev ? 1 : 0;
msb_prev = msb;
}
if (msb)
d[AES_BLOCK_SIZE - 1] ^= 0x87;
}
static inline void xor_128(const uint8_t *a, const uint8_t *b, uint8_t *out)
{
uint8_t i;
for (i = 0; i < AES_BLOCK_SIZE; i++)
out[i] = a[i] ^ b[i];
}
static inline void leftshift_onebit(const uint8_t *input, uint8_t *output)
{
int i, overflow = 0;
for (i = (AES_BLOCK_SIZE - 1); i >= 0; i--) {
output[i] = input[i] << 1;
output[i] |= overflow;
overflow = (input[i] & 0x80) ? 1 : 0;
}
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0))
static void
generate_subkey(struct crypto_aes_ctx *aes_ctx, uint8_t *k1, uint8_t *k2)
{
uint8_t l[AES_BLOCK_SIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
uint8_t tmp[AES_BLOCK_SIZE];
const uint8_t const_rb[AES_BLOCK_SIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87
};
const uint8_t const_zero[AES_BLOCK_SIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
aes_encrypt(aes_ctx, l, const_zero);
if ((l[0] & 0x80) == 0) { /* If MSB(l) = 0, then k1 = l << 1 */
leftshift_onebit(l, k1);
} else { /* Else k1 = ( l << 1 ) (+) Rb */
leftshift_onebit(l, tmp);
xor_128(tmp, const_rb, k1);
}
if ((k1[0] & 0x80) == 0) {
leftshift_onebit(k1, k2);
} else {
leftshift_onebit(k1, tmp);
xor_128(tmp, const_rb, k2);
}
}
#else
static void
generate_subkey(struct crypto_cipher *tfm, uint8_t *k1, uint8_t *k2)
{
uint8_t l[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE];
const uint8_t const_rb[AES_BLOCK_SIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87
};
const uint8_t const_zero[AES_BLOCK_SIZE] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
crypto_cipher_encrypt_one(tfm, l, const_zero);
if ((l[0] & 0x80) == 0) { /* If MSB(l) = 0, then k1 = l << 1 */
leftshift_onebit(l, k1);
} else { /* Else k1 = ( l << 1 ) (+) Rb */
leftshift_onebit(l, tmp);
xor_128(tmp, const_rb, k1);
}
if ((k1[0] & 0x80) == 0) {
leftshift_onebit(k1, k2);
} else {
leftshift_onebit(k1, tmp);
xor_128(tmp, const_rb, k2);
}
}
#endif
static inline void padding(const uint8_t *lastb, uint8_t *pad, uint16_t length)
{
uint8_t j;
/* original last block */
for (j = 0; j < AES_BLOCK_SIZE; j++) {
if (j < length)
pad[j] = lastb[j];
else if (j == length)
pad[j] = 0x80;
else
pad[j] = 0x00;
}
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0))
int qdf_crypto_aes_128_cmac(const uint8_t *key, const uint8_t *data,
uint16_t len, uint8_t *mic)
{
uint8_t x[AES_BLOCK_SIZE], y[AES_BLOCK_SIZE];
uint8_t m_last[AES_BLOCK_SIZE], padded[AES_BLOCK_SIZE];
uint8_t k1[AES_KEYSIZE_128], k2[AES_KEYSIZE_128];
int cmp_blk;
int i, num_block = (len + 15) / AES_BLOCK_SIZE;
struct crypto_aes_ctx aes_ctx;
int ret;
/*
* Calculate MIC and then copy
*/
ret = aes_expandkey(&aes_ctx, key, AES_KEYSIZE_128);
if (ret) {
qdf_err("aes_expandkey failed (%d)", ret);
return ret;
}
generate_subkey(&aes_ctx, k1, k2);
if (num_block == 0) {
num_block = 1;
cmp_blk = 0;
} else {
cmp_blk = ((len % AES_BLOCK_SIZE) == 0) ? 1 : 0;
}
if (cmp_blk) {
/* Last block is complete block */
xor_128(&data[AES_BLOCK_SIZE * (num_block - 1)], k1, m_last);
} else {
/* Last block is not complete block */
padding(&data[AES_BLOCK_SIZE * (num_block - 1)], padded,
len % AES_BLOCK_SIZE);
xor_128(padded, k2, m_last);
}
for (i = 0; i < AES_BLOCK_SIZE; i++)
x[i] = 0;
for (i = 0; i < (num_block - 1); i++) {
/* y = Mi (+) x */
xor_128(x, &data[AES_BLOCK_SIZE * i], y);
/* x = AES-128(KEY, y) */
aes_encrypt(&aes_ctx, x, y);
}
xor_128(x, m_last, y);
aes_encrypt(&aes_ctx, x, y);
memzero_explicit(&aes_ctx, sizeof(aes_ctx));
memcpy(mic, x, CMAC_TLEN);
return 0;
}
#else
int qdf_crypto_aes_128_cmac(const uint8_t *key, const uint8_t *data,
uint16_t len, uint8_t *mic)
{
uint8_t x[AES_BLOCK_SIZE], y[AES_BLOCK_SIZE];
uint8_t m_last[AES_BLOCK_SIZE], padded[AES_BLOCK_SIZE];
uint8_t k1[AES_KEYSIZE_128], k2[AES_KEYSIZE_128];
int cmp_blk;
int i, num_block = (len + 15) / AES_BLOCK_SIZE;
struct crypto_cipher *tfm;
int ret;
/*
* Calculate MIC and then copy
*/
tfm = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
qdf_err("crypto_alloc_cipher failed (%d)", ret);
return ret;
}
ret = crypto_cipher_setkey(tfm, key, AES_KEYSIZE_128);
if (ret) {
qdf_err("crypto_cipher_setkey failed (%d)", ret);
crypto_free_cipher(tfm);
return ret;
}
generate_subkey(tfm, k1, k2);
if (num_block == 0) {
num_block = 1;
cmp_blk = 0;
} else {
cmp_blk = ((len % AES_BLOCK_SIZE) == 0) ? 1 : 0;
}
if (cmp_blk) {
/* Last block is complete block */
xor_128(&data[AES_BLOCK_SIZE * (num_block - 1)], k1, m_last);
} else {
/* Last block is not complete block */
padding(&data[AES_BLOCK_SIZE * (num_block - 1)], padded,
len % AES_BLOCK_SIZE);
xor_128(padded, k2, m_last);
}
for (i = 0; i < AES_BLOCK_SIZE; i++)
x[i] = 0;
for (i = 0; i < (num_block - 1); i++) {
/* y = Mi (+) x */
xor_128(x, &data[AES_BLOCK_SIZE * i], y);
/* x = AES-128(KEY, y) */
crypto_cipher_encrypt_one(tfm, x, y);
}
xor_128(x, m_last, y);
crypto_cipher_encrypt_one(tfm, x, y);
crypto_free_cipher(tfm);
memcpy(mic, x, CMAC_TLEN);
return 0;
}
#endif
/**
* set_desc_flags() - set flags variable in the shash_desc struct
* @desc: pointer to shash_desc struct
* @tfm: pointer to crypto_shash struct
*
* Set the flags variable in the shash_desc struct by getting the flag
* from the crypto_hash struct. The flag is not actually used, prompting
* its removal from kernel code in versions 5.2 and above. Thus, for
* versions 5.2 and above, do not set the flag variable of shash_desc.
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 2, 0))
static void set_desc_flags(struct shash_desc *desc, struct crypto_shash *tfm)
{
desc->flags = crypto_shash_get_flags(tfm);
}
#else
static void set_desc_flags(struct shash_desc *desc, struct crypto_shash *tfm)
{
}
#endif
int qdf_get_keyed_hash(const char *alg, const uint8_t *key,
unsigned int key_len, const uint8_t *src[],
size_t *src_len, size_t num_elements, uint8_t *out)
{
struct crypto_shash *tfm;
int ret;
size_t i;
tfm = crypto_alloc_shash(alg, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Failed to allocate transformation for %s: %ld"),
alg, PTR_ERR(tfm));
return -EINVAL;
}
if (key && key_len) {
ret = crypto_shash_setkey(tfm, key, key_len);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Set key failed for %s, ret:%d"),
alg, -ret);
goto error;
}
}
do {
SHASH_DESC_ON_STACK(desc, tfm);
desc->tfm = tfm;
set_desc_flags(desc, tfm);
ret = crypto_shash_init(desc);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Failed to init hash for %s, ret:%d"),
alg, -ret);
goto error;
}
for (i = 0; i < num_elements; i++) {
ret = crypto_shash_update(desc, src[i], src_len[i]);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF,
QDF_TRACE_LEVEL_ERROR,
FL("Failed to update hash for %s, ret:%d"),
alg, -ret);
goto error;
}
}
ret = crypto_shash_final(desc, out);
if (ret)
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Failed to get digest for %s, ret:%d"),
alg, -ret);
} while (0);
error:
crypto_free_shash(tfm);
return ret;
}
qdf_export_symbol(qdf_get_keyed_hash);
/* AES String to Vector from RFC 5297, 'out' should be of length AES_BLOCK_SIZE
*/
int qdf_aes_s2v(const uint8_t *key, unsigned int key_len, const uint8_t *s[],
size_t s_len[], size_t num_s, uint8_t *out)
{
const char *alg = "cmac(aes)";
uint8_t d[AES_BLOCK_SIZE];
uint8_t buf[AES_BLOCK_SIZE] = { 0 };
size_t buf_len = AES_BLOCK_SIZE;
const uint8_t *a[1];
unsigned int i;
uint8_t *t = NULL;
size_t t_len;
int ret;
if (num_s == 0) {
/* V = AES-CMAC(K, <one>) */
buf[0] = 0x01;
a[0] = buf;
ret = qdf_get_keyed_hash(alg, key, key_len, a, &buf_len, 1,
out);
return ret;
}
/* D = AES-CMAC(K, <zero>) */
a[0] = buf;
ret = qdf_get_keyed_hash(alg, key, key_len, a, &buf_len, 1, d);
if (ret)
goto error;
for (i = 0; i < num_s - 1; i++) {
/* D = qdf_update_dbl(D) xor AES-CMAC(K, Si) */
qdf_update_dbl(d);
ret = qdf_get_keyed_hash(alg, key, key_len, &s[i], &s_len[i], 1,
buf);
if (ret)
goto error;
xor(d, buf, AES_BLOCK_SIZE);
}
if (s_len[i] >= AES_BLOCK_SIZE) {
/* len(Sn) >= 128 */
/* T = Sn xorend D */
t = qdf_mem_malloc(s_len[i]);
if (!t)
return -EINVAL;
qdf_mem_copy(t, s[i], s_len[i]);
xor(t + s_len[i] - AES_BLOCK_SIZE, d, AES_BLOCK_SIZE);
t_len = s_len[i];
} else {
/* len(Sn) < 128 */
/* T = qdf_update_dbl(D) xor pad(Sn) */
qdf_update_dbl(d);
qdf_mem_zero(buf, AES_BLOCK_SIZE);
qdf_mem_copy(buf, s[i], s_len[i]);
buf[s_len[i]] = 0x80;
xor(d, s[i], AES_BLOCK_SIZE);
t = d;
t_len = AES_BLOCK_SIZE;
}
/* V = AES-CMAC(K, T) */
a[0] = t;
ret = qdf_get_keyed_hash(alg, key, key_len, a, &t_len, 1, out);
error:
if (t && t != d)
qdf_mem_free(t);
return ret;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 3, 0))
int qdf_aes_ctr(const uint8_t *key, unsigned int key_len, uint8_t *siv,
const uint8_t *src, size_t src_len, uint8_t *dest, bool enc)
{
struct crypto_skcipher *tfm;
struct skcipher_request *req = NULL;
struct scatterlist sg_in, sg_out;
int ret;
if (!IS_VALID_CTR_KEY_LEN(key_len)) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Invalid key length: %u"), key_len);
return -EINVAL;
}
tfm = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Failed to alloc transformation for ctr(aes):%ld"),
PTR_ERR(tfm));
return -EAGAIN;
}
req = skcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Failed to allocate request for ctr(aes)"));
crypto_free_skcipher(tfm);
return -EAGAIN;
}
ret = crypto_skcipher_setkey(tfm, key, key_len);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Set key failed for ctr(aes), ret:%d"), -ret);
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return ret;
}
sg_init_one(&sg_in, src, src_len);
sg_init_one(&sg_out, dest, src_len);
skcipher_request_set_crypt(req, &sg_in, &sg_out, src_len, siv);
if (enc)
ret = crypto_skcipher_encrypt(req);
else
ret = crypto_skcipher_decrypt(req);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("%s failed for ctr(aes), ret:%d"),
enc ? "Encryption" : "Decryption", -ret);
}
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return ret;
}
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 18, 0))
int qdf_aes_ctr(const uint8_t *key, unsigned int key_len, uint8_t *siv,
const uint8_t *src, size_t src_len, uint8_t *dest, bool enc)
{
struct crypto_ablkcipher *tfm;
struct ablkcipher_request *req = NULL;
struct scatterlist sg_in, sg_out;
int ret;
if (!IS_VALID_CTR_KEY_LEN(key_len)) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Invalid key length: %u"), key_len);
return -EINVAL;
}
tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Failed to alloc transformation for ctr(aes):%ld"),
PTR_ERR(tfm));
return -EAGAIN;
}
req = ablkcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Failed to allocate request for ctr(aes)"));
crypto_free_ablkcipher(tfm);
return -EAGAIN;
}
ret = crypto_ablkcipher_setkey(tfm, key, key_len);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("Set key failed for ctr(aes), ret:%d"), -ret);
ablkcipher_request_free(req);
crypto_free_ablkcipher(tfm);
return ret;
}
sg_init_one(&sg_in, src, src_len);
sg_init_one(&sg_out, dest, src_len);
ablkcipher_request_set_crypt(req, &sg_in, &sg_out, src_len, siv);
if (enc)
ret = crypto_ablkcipher_encrypt(req);
else
ret = crypto_ablkcipher_decrypt(req);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
FL("%s failed for ctr(aes), ret:%d"),
enc ? "Encryption" : "Decryption", -ret);
}
ablkcipher_request_free(req);
crypto_free_ablkcipher(tfm);
return ret;
}
#else
int qdf_aes_ctr(const uint8_t *key, unsigned int key_len, uint8_t *siv,
const uint8_t *src, size_t src_len, uint8_t *dest, bool enc)
{
return -EINVAL;
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0))
int qdf_crypto_aes_gmac(const uint8_t *key, uint16_t key_length,
uint8_t *iv, const uint8_t *aad,
const uint8_t *data, uint16_t data_len, uint8_t *mic)
{
struct crypto_aead *tfm;
int ret = 0;
struct scatterlist sg[4];
uint16_t req_size;
struct aead_request *req = NULL;
uint8_t *aad_ptr, *input;
tfm = crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
tfm = NULL;
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
"%s: crypto_alloc_aead failed (%d)", __func__, ret);
goto err_tfm;
}
ret = crypto_aead_setkey(tfm, key, key_length);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
"crypto_aead_setkey failed (%d)", ret);
goto err_tfm;
}
ret = crypto_aead_setauthsize(tfm, IEEE80211_MMIE_GMAC_MICLEN);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
"crypto_aead_setauthsize failed (%d)", ret);
goto err_tfm;
}
/* Prepare aead request */
req_size = sizeof(*req) + crypto_aead_reqsize(tfm) +
IEEE80211_MMIE_GMAC_MICLEN + AAD_LEN;
req = qdf_mem_malloc(req_size);
if (!req) {
ret = -ENOMEM;
goto err_tfm;
}
input = (uint8_t *)req + sizeof(*req) + crypto_aead_reqsize(tfm);
aad_ptr = input + IEEE80211_MMIE_GMAC_MICLEN;
qdf_mem_copy(aad_ptr, aad, AAD_LEN);
/* Scatter list operations */
sg_init_table(sg, 4);
sg_set_buf(&sg[0], aad_ptr, AAD_LEN);
sg_set_buf(&sg[1], data, data_len);
sg_set_buf(&sg[2], input, IEEE80211_MMIE_GMAC_MICLEN);
sg_set_buf(&sg[3], mic, IEEE80211_MMIE_GMAC_MICLEN);
aead_request_set_tfm(req, tfm);
aead_request_set_crypt(req, sg, sg, 0, iv);
aead_request_set_ad(req,
AAD_LEN + data_len + IEEE80211_MMIE_GMAC_MICLEN);
crypto_aead_encrypt(req);
err_tfm:
if (tfm)
crypto_free_aead(tfm);
if (req)
qdf_mem_free(req);
return ret;
}
#else
int qdf_crypto_aes_gmac(uint8_t *key, uint16_t key_length,
uint8_t *iv, uint8_t *aad, uint8_t *data,
uint16_t data_len, uint8_t *mic)
{
return -EINVAL;
}
#endif