Files
android_kernel_samsung_sm86…/qdf/linux/src/i_qdf_mem.h
Devender Kumar a815fe5825 qcacmn: Fix iommu domain attributes compilation issue with IPA enable
When CONFIG_QCOM_IOMMU_UTIL is enable in vendor config, we have to
use new set of API's to get iommu domain attributes, and while using
__qdf_iommu_attr_to_os seeing compilation issue as some identifiers
like, QCOM_IOMMU_MAPPING_CONF_S1_BYPASS are not declare.

even when CONFIG_QCOM_IOMMU_UTIL is not enable we have dependency
on qcom-iommu-util.h file as it has some identfiers which are in use,
with or without CONFIG_QOM_IOMMU_UTIL.

Fix is to include the header file qcom-iommu-util.h which contains
the declaration of all the identifiers used in __qdf_iommu_attr_to_os
and this file is included if MSM_PLATFORM or QCA_IPA_LL_TX_FLOW_CONTROL
is defined.

Change-Id: I82b1c13717d377a5ec4bcb74ff94f4d15fa1f638
CRs-Fixed: 3487912
2023-07-27 22:25:06 -07:00

813 lines
21 KiB
C

/*
* Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: i_qdf_mem.h
* Linux-specific definitions for QDF memory API's
*/
#ifndef __I_QDF_MEM_H
#define __I_QDF_MEM_H
#ifdef __KERNEL__
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 17)
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 33)
#include <linux/autoconf.h>
#else
#include <generated/autoconf.h>
#endif
#endif
#include <linux/slab.h>
#include <linux/hardirq.h>
#include <linux/vmalloc.h>
#include <linux/pci.h> /* pci_alloc_consistent */
#include <linux/cache.h> /* L1_CACHE_BYTES */
#define __qdf_cache_line_sz L1_CACHE_BYTES
#include "queue.h"
#else
/*
* Provide dummy defs for kernel data types, functions, and enums
* used in this header file.
*/
#define GFP_KERNEL 0
#define GFP_ATOMIC 0
#define __GFP_KSWAPD_RECLAIM 0
#define __GFP_DIRECT_RECLAIM 0
#define kzalloc(size, flags) NULL
#define vmalloc(size) NULL
#define kfree(buf)
#define vfree(buf)
#define pci_alloc_consistent(dev, size, paddr) NULL
#define __qdf_mempool_t void*
#define QDF_RET_IP NULL
#endif /* __KERNEL__ */
#include <qdf_status.h>
#if ((LINUX_VERSION_CODE >= KERNEL_VERSION(5, 9, 0)) && \
(defined(MSM_PLATFORM) || defined(QCA_IPA_LL_TX_FLOW_CONTROL)))
#include <linux/qcom-iommu-util.h>
#endif
#if IS_ENABLED(CONFIG_ARM_SMMU)
#include <pld_common.h>
#ifdef ENABLE_SMMU_S1_TRANSLATION
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 4, 0))
#include <asm/dma-iommu.h>
#endif
#endif
#include <linux/iommu.h>
#endif
#ifdef __KERNEL__
typedef struct mempool_elem {
STAILQ_ENTRY(mempool_elem) mempool_entry;
} mempool_elem_t;
/**
* typedef __qdf_mempool_ctxt_t - Memory pool context
* @pool_id: pool identifier
* @flags: flags
* @elem_size: size of each pool element in bytes
* @pool_mem: pool_addr address of the pool created
* @mem_size: Total size of the pool in bytes
* @free_list: free pool list
* @lock: spinlock object
* @max_elem: Maximum number of elements in the pool
* @free_cnt: Number of free elements available
*/
typedef struct __qdf_mempool_ctxt {
int pool_id;
u_int32_t flags;
size_t elem_size;
void *pool_mem;
u_int32_t mem_size;
STAILQ_HEAD(, mempool_elem) free_list;
spinlock_t lock;
u_int32_t max_elem;
u_int32_t free_cnt;
} __qdf_mempool_ctxt_t;
typedef struct kmem_cache *qdf_kmem_cache_t;
#endif /* __KERNEL__ */
#define __page_size ((size_t)PAGE_SIZE)
#define __qdf_align(a, mask) ALIGN(a, mask)
#ifdef DISABLE_MEMDEBUG_PANIC
#define QDF_MEMDEBUG_PANIC(reason_fmt, args...) \
do { \
/* no-op */ \
} while (false)
#else
#define QDF_MEMDEBUG_PANIC(reason_fmt, args...) \
QDF_DEBUG_PANIC(reason_fmt, ## args)
#endif
/**
* typedef __dma_data_direction - typedef for dma_data_direction
*/
typedef enum dma_data_direction __dma_data_direction;
/**
* __qdf_dma_dir_to_os() - Convert DMA data direction to OS specific enum
* @qdf_dir: QDF DMA data direction
*
* Return:
* enum dma_data_direction
*/
static inline
enum dma_data_direction __qdf_dma_dir_to_os(qdf_dma_dir_t qdf_dir)
{
switch (qdf_dir) {
case QDF_DMA_BIDIRECTIONAL:
return DMA_BIDIRECTIONAL;
case QDF_DMA_TO_DEVICE:
return DMA_TO_DEVICE;
case QDF_DMA_FROM_DEVICE:
return DMA_FROM_DEVICE;
default:
return DMA_NONE;
}
}
/**
* __qdf_mem_map_nbytes_single - Map memory for DMA
* @osdev: pomter OS device context
* @buf: pointer to memory to be dma mapped
* @dir: DMA map direction
* @nbytes: number of bytes to be mapped.
* @phy_addr: pointer to receive physical address.
*
* Return: success/failure
*/
static inline uint32_t __qdf_mem_map_nbytes_single(qdf_device_t osdev,
void *buf, qdf_dma_dir_t dir,
int nbytes,
qdf_dma_addr_t *phy_addr)
{
/* assume that the OS only provides a single fragment */
*phy_addr = dma_map_single(osdev->dev, buf, nbytes,
__qdf_dma_dir_to_os(dir));
return dma_mapping_error(osdev->dev, *phy_addr) ?
QDF_STATUS_E_FAILURE : QDF_STATUS_SUCCESS;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static inline void __qdf_mem_dma_cache_sync(qdf_device_t osdev,
qdf_dma_addr_t buf,
qdf_dma_dir_t dir,
int nbytes)
{
dma_cache_sync(osdev->dev, buf, nbytes, __qdf_dma_dir_to_os(dir));
}
#else
static inline void __qdf_mem_dma_cache_sync(qdf_device_t osdev,
qdf_dma_addr_t buf,
qdf_dma_dir_t dir,
int nbytes)
{
dma_sync_single_for_cpu(osdev->dev, buf, nbytes,
__qdf_dma_dir_to_os(dir));
}
#endif
/**
* __qdf_mem_unmap_nbytes_single() - un_map memory for DMA
*
* @osdev: pomter OS device context
* @phy_addr: physical address of memory to be dma unmapped
* @dir: DMA unmap direction
* @nbytes: number of bytes to be unmapped.
*
* Return - none
*/
static inline void __qdf_mem_unmap_nbytes_single(qdf_device_t osdev,
qdf_dma_addr_t phy_addr,
qdf_dma_dir_t dir, int nbytes)
{
dma_unmap_single(osdev->dev, phy_addr, nbytes,
__qdf_dma_dir_to_os(dir));
}
#ifdef __KERNEL__
typedef __qdf_mempool_ctxt_t *__qdf_mempool_t;
/**
* __qdf_mempool_init() - Create and initialize memory pool
* @osdev: platform device object
* @pool_addr: address of the pool created
* @elem_cnt: no. of elements in pool
* @elem_size: size of each pool element in bytes
* @flags: flags
*
* Return: Handle to memory pool or NULL if allocation failed
*/
int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
int elem_cnt, size_t elem_size, u_int32_t flags);
/**
* __qdf_mempool_destroy() - Destroy memory pool
* @osdev: platform device object
* @pool: memory pool
*
* Returns: none
*/
void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool);
/**
* __qdf_mempool_alloc() - Allocate an element memory pool
* @osdev: platform device object
* @pool: to memory pool
*
* Return: Pointer to the allocated element or NULL if the pool is empty
*/
void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool);
/**
* __qdf_mempool_free() - Free a memory pool element
* @osdev: Platform device object
* @pool: Handle to memory pool
* @buf: Element to be freed
*
* Return: none
*/
void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf);
/**
* __qdf_kmem_cache_create() - OS abstraction for cache creation
* @cache_name: Cache name
* @size: Size of the object to be created
*
* Return: Cache address on successful creation, else NULL
*/
qdf_kmem_cache_t __qdf_kmem_cache_create(const char *cache_name,
qdf_size_t size);
/**
* __qdf_kmem_cache_destroy() - OS abstraction for cache destruction
* @cache: Cache pointer
*
* Return: void
*/
void __qdf_kmem_cache_destroy(qdf_kmem_cache_t cache);
/**
* __qdf_kmem_cache_alloc() - Function to allocation object from a cache
* @cache: Cache address
*
* Return: Object from cache
*
*/
void *__qdf_kmem_cache_alloc(qdf_kmem_cache_t cache);
/**
* __qdf_kmem_cache_free() - Function to free cache object
* @cache: Cache address
* @node: Object to be returned to cache
*
* Return: void
*/
void __qdf_kmem_cache_free(qdf_kmem_cache_t cache, void *node);
#define QDF_RET_IP ((void *)_RET_IP_)
#define __qdf_mempool_elem_size(_pool) ((_pool)->elem_size)
#endif
/**
* __qdf_ioremap() - map bus memory into cpu space
* @HOST_CE_ADDRESS: bus address of the memory
* @HOST_CE_SIZE: memory size to map
*/
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 6, 0))
#define __qdf_ioremap(HOST_CE_ADDRESS, HOST_CE_SIZE) \
ioremap(HOST_CE_ADDRESS, HOST_CE_SIZE)
#else
#define __qdf_ioremap(HOST_CE_ADDRESS, HOST_CE_SIZE) \
ioremap_nocache(HOST_CE_ADDRESS, HOST_CE_SIZE)
#endif
/**
* __qdf_mem_smmu_s1_enabled() - Return SMMU stage 1 translation enable status
* @osdev: parent device instance
*
* Return: true if smmu s1 enabled, false if smmu s1 is bypassed
*/
static inline bool __qdf_mem_smmu_s1_enabled(qdf_device_t osdev)
{
return osdev->smmu_s1_enabled;
}
#if IS_ENABLED(CONFIG_ARM_SMMU) && defined(ENABLE_SMMU_S1_TRANSLATION)
/**
* typedef __qdf_iommu_domain_t - abstraction for struct iommu_domain
*/
typedef struct iommu_domain __qdf_iommu_domain_t;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 13, 0))
#if IS_ENABLED(CONFIG_QCOM_IOMMU_UTIL)
/**
* __qdf_iommu_attr_to_os() - Convert qdf iommu attribute to OS mapping
* configurations bitmap
* @attr: QDF iommu attribute
*
* Return: IOMMU mapping configuration bitmaps
*/
static inline int __qdf_iommu_attr_to_os(enum qdf_iommu_attr attr)
{
switch (attr) {
case QDF_DOMAIN_ATTR_S1_BYPASS:
return QCOM_IOMMU_MAPPING_CONF_S1_BYPASS;
case QDF_DOMAIN_ATTR_ATOMIC:
return QCOM_IOMMU_MAPPING_CONF_ATOMIC;
case QDF_DOMAIN_ATTR_FAST:
return QCOM_IOMMU_MAPPING_CONF_FAST;
default:
return -EINVAL;
}
}
/**
* __qdf_iommu_domain_get_attr() - API to get iommu domain attributes
*
* @domain: iommu domain
* @attr: iommu attribute
* @data: data pointer
*
* Return: 0 for success, and negative values otherwise
*/
static inline int
__qdf_iommu_domain_get_attr(__qdf_iommu_domain_t *domain,
enum qdf_iommu_attr attr, void *data)
{
int mapping_config;
int mapping_bitmap;
int *value;
mapping_bitmap = __qdf_iommu_attr_to_os(attr);
if (mapping_bitmap < 0)
return -EINVAL;
mapping_config = qcom_iommu_get_mappings_configuration(domain);
if (mapping_config < 0)
return -EINVAL;
value = data;
*value = (mapping_config & mapping_bitmap) ? 1 : 0;
return 0;
}
#else /* !CONFIG_QCOM_IOMMU_UTIL */
static inline int
__qdf_iommu_domain_get_attr(__qdf_iommu_domain_t *domain,
enum qdf_iommu_attr attr, void *data)
{
return -ENOTSUPP;
}
#endif /* CONFIG_QCOM_IOMMU_UTIL */
#else
/**
* __qdf_iommu_attr_to_os() - Convert qdf iommu attribute to OS specific enum
* @attr: QDF iommu attribute
*
* Return: enum iommu_attr
*/
static inline
enum iommu_attr __qdf_iommu_attr_to_os(enum qdf_iommu_attr attr)
{
switch (attr) {
case QDF_DOMAIN_ATTR_GEOMETRY:
return DOMAIN_ATTR_GEOMETRY;
case QDF_DOMAIN_ATTR_PAGING:
return DOMAIN_ATTR_PAGING;
case QDF_DOMAIN_ATTR_WINDOWS:
return DOMAIN_ATTR_WINDOWS;
case QDF_DOMAIN_ATTR_FSL_PAMU_STASH:
return DOMAIN_ATTR_FSL_PAMU_STASH;
case QDF_DOMAIN_ATTR_FSL_PAMU_ENABLE:
return DOMAIN_ATTR_FSL_PAMU_ENABLE;
case QDF_DOMAIN_ATTR_FSL_PAMUV1:
return DOMAIN_ATTR_FSL_PAMUV1;
case QDF_DOMAIN_ATTR_NESTING:
return DOMAIN_ATTR_NESTING;
case QDF_DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
return DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE;
case QDF_DOMAIN_ATTR_CONTEXT_BANK:
return DOMAIN_ATTR_CONTEXT_BANK;
case QDF_DOMAIN_ATTR_NON_FATAL_FAULTS:
return DOMAIN_ATTR_NON_FATAL_FAULTS;
case QDF_DOMAIN_ATTR_S1_BYPASS:
return DOMAIN_ATTR_S1_BYPASS;
case QDF_DOMAIN_ATTR_ATOMIC:
return DOMAIN_ATTR_ATOMIC;
case QDF_DOMAIN_ATTR_SECURE_VMID:
return DOMAIN_ATTR_SECURE_VMID;
case QDF_DOMAIN_ATTR_FAST:
return DOMAIN_ATTR_FAST;
case QDF_DOMAIN_ATTR_PGTBL_INFO:
return DOMAIN_ATTR_PGTBL_INFO;
case QDF_DOMAIN_ATTR_USE_UPSTREAM_HINT:
return DOMAIN_ATTR_USE_UPSTREAM_HINT;
case QDF_DOMAIN_ATTR_EARLY_MAP:
return DOMAIN_ATTR_EARLY_MAP;
case QDF_DOMAIN_ATTR_PAGE_TABLE_IS_COHERENT:
return DOMAIN_ATTR_PAGE_TABLE_IS_COHERENT;
case QDF_DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT:
return DOMAIN_ATTR_PAGE_TABLE_FORCE_COHERENT;
case QDF_DOMAIN_ATTR_USE_LLC_NWA:
return DOMAIN_ATTR_USE_LLC_NWA;
case QDF_DOMAIN_ATTR_SPLIT_TABLES:
return DOMAIN_ATTR_SPLIT_TABLES;
case QDF_DOMAIN_ATTR_FAULT_MODEL_NO_CFRE:
return DOMAIN_ATTR_FAULT_MODEL_NO_CFRE;
case QDF_DOMAIN_ATTR_FAULT_MODEL_NO_STALL:
return DOMAIN_ATTR_FAULT_MODEL_NO_STALL;
case QDF_DOMAIN_ATTR_FAULT_MODEL_HUPCF:
return DOMAIN_ATTR_FAULT_MODEL_HUPCF;
default:
return DOMAIN_ATTR_EXTENDED_MAX;
}
}
/**
* __qdf_iommu_domain_get_attr() - API to get iommu domain attributes
*
* @domain: iommu domain
* @attr: iommu attribute
* @data: data pointer
*
* Return: iommu domain attr
*/
static inline int
__qdf_iommu_domain_get_attr(__qdf_iommu_domain_t *domain,
enum qdf_iommu_attr attr, void *data)
{
return iommu_domain_get_attr(domain, __qdf_iommu_attr_to_os(attr),
data);
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 19, 0))
/**
* __qdf_dev_get_domain() - get iommu domain from osdev
* @osdev: parent device instance
*
* Return: iommu domain
*/
static inline struct iommu_domain *
__qdf_dev_get_domain(qdf_device_t osdev)
{
return osdev->domain;
}
#else
static inline struct iommu_domain *
__qdf_dev_get_domain(qdf_device_t osdev)
{
if (osdev->iommu_mapping)
return osdev->iommu_mapping->domain;
return NULL;
}
#endif
/**
* __qdf_mem_paddr_from_dmaaddr() - get actual physical address from dma_addr
* @osdev: parent device instance
* @dma_addr: dma_addr
*
* Get actual physical address from dma_addr based on SMMU enablement status.
* IF SMMU Stage 1 translation is enabled, DMA APIs return IO virtual address
* (IOVA) otherwise returns physical address. So get SMMU physical address
* mapping from IOVA.
*
* Return: dmaable physical address
*/
static inline unsigned long
__qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev,
qdf_dma_addr_t dma_addr)
{
struct iommu_domain *domain;
if (__qdf_mem_smmu_s1_enabled(osdev)) {
domain = __qdf_dev_get_domain(osdev);
if (domain)
return iommu_iova_to_phys(domain, dma_addr);
}
return dma_addr;
}
#else
static inline unsigned long
__qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev,
qdf_dma_addr_t dma_addr)
{
return dma_addr;
}
#endif
/**
* __qdf_os_mem_dma_get_sgtable() - Returns DMA memory scatter gather table
* @dev: device instance
* @sgt: scatter gather table pointer
* @cpu_addr: HLOS virtual address
* @dma_addr: dma/iova
* @size: allocated memory size
*
* Return: physical address
*/
static inline int
__qdf_os_mem_dma_get_sgtable(struct device *dev, void *sgt, void *cpu_addr,
qdf_dma_addr_t dma_addr, size_t size)
{
return dma_get_sgtable(dev, (struct sg_table *)sgt, cpu_addr, dma_addr,
size);
}
/**
* __qdf_os_mem_free_sgtable() - Free a previously allocated sg table
* @sgt: the mapped sg table header
*
* Return: None
*/
static inline void
__qdf_os_mem_free_sgtable(struct sg_table *sgt)
{
sg_free_table(sgt);
}
/**
* __qdf_dma_get_sgtable_dma_addr()-Assigns DMA address to scatterlist elements
* @sgt: scatter gather table pointer
*
* Return: None
*/
static inline void
__qdf_dma_get_sgtable_dma_addr(struct sg_table *sgt)
{
struct scatterlist *sg;
int i;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
if (!sg)
break;
sg->dma_address = sg_phys(sg);
}
}
/**
* __qdf_mem_get_dma_addr() - Return dma addr based on SMMU translation status
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
*
* Based on smmu stage 1 translation enablement status, return corresponding dma
* address from qdf_mem_info_t. If stage 1 translation enabled, return
* IO virtual address otherwise return physical address.
*
* Return: dma address
*/
static inline qdf_dma_addr_t __qdf_mem_get_dma_addr(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
if (__qdf_mem_smmu_s1_enabled(osdev))
return (qdf_dma_addr_t)mem_info->iova;
else
return (qdf_dma_addr_t)mem_info->pa;
}
/**
* __qdf_mem_get_dma_addr_ptr() - Return DMA address storage pointer
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
*
* Based on smmu stage 1 translation enablement status, return corresponding
* dma address pointer from qdf_mem_info_t structure. If stage 1 translation
* enabled, return pointer to IO virtual address otherwise return pointer to
* physical address
*
* Return: dma address storage pointer
*/
static inline qdf_dma_addr_t *
__qdf_mem_get_dma_addr_ptr(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
if (__qdf_mem_smmu_s1_enabled(osdev))
return (qdf_dma_addr_t *)(&mem_info->iova);
else
return (qdf_dma_addr_t *)(&mem_info->pa);
}
/**
* __qdf_update_mem_map_table() - Update DMA memory map info
* @osdev: Parent device instance
* @mem_info: Pointer to shared memory information
* @dma_addr: dma address
* @mem_size: memory size allocated
*
* Store DMA shared memory information
*
* Return: none
*/
static inline void __qdf_update_mem_map_table(qdf_device_t osdev,
qdf_mem_info_t *mem_info,
qdf_dma_addr_t dma_addr,
uint32_t mem_size)
{
mem_info->pa = __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
mem_info->iova = dma_addr;
mem_info->size = mem_size;
}
/**
* __qdf_mem_get_dma_size() - Return DMA memory size
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
*
* Return: DMA memory size
*/
static inline uint32_t
__qdf_mem_get_dma_size(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
return mem_info->size;
}
/**
* __qdf_mem_set_dma_size() - Set DMA memory size
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
* @mem_size: memory size allocated
*
* Return: none
*/
static inline void
__qdf_mem_set_dma_size(qdf_device_t osdev,
qdf_mem_info_t *mem_info,
uint32_t mem_size)
{
mem_info->size = mem_size;
}
/**
* __qdf_mem_get_dma_pa() - Return DMA physical address
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
*
* Return: DMA physical address
*/
static inline qdf_dma_addr_t
__qdf_mem_get_dma_pa(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
return mem_info->pa;
}
/**
* __qdf_mem_set_dma_pa() - Set DMA physical address
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
* @dma_pa: DMA phsical address
*
* Return: none
*/
static inline void
__qdf_mem_set_dma_pa(qdf_device_t osdev,
qdf_mem_info_t *mem_info,
qdf_dma_addr_t dma_pa)
{
mem_info->pa = dma_pa;
}
/**
* __qdf_mem_alloc_consistent() - allocates consistent qdf memory
* @osdev: OS device handle
* @dev: Pointer to device handle
* @size: Size to be allocated
* @paddr: Physical address
* @func: Function name of the call site
* @line: line numbe rof the call site
*
* Return: pointer of allocated memory or null if memory alloc fails
*/
void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
qdf_size_t size, qdf_dma_addr_t *paddr,
const char *func, uint32_t line);
/**
* __qdf_mem_malloc() - allocates QDF memory
* @size: Number of bytes of memory to allocate.
*
* @func: Function name of the call site
* @line: line numbe rof the call site
*
* This function will dynamicallly allocate the specified number of bytes of
* memory.
*
* Return:
* Upon successful allocate, returns a non-NULL pointer to the allocated
* memory. If this function is unable to allocate the amount of memory
* specified (for any reason) it returns NULL.
*/
void *__qdf_mem_malloc(qdf_size_t size, const char *func, uint32_t line);
/**
* __qdf_mem_free() - free QDF memory
* @ptr: Pointer to the starting address of the memory to be freed.
*
* This function will free the memory pointed to by 'ptr'.
* Return: None
*/
void __qdf_mem_free(void *ptr);
/**
* __qdf_mem_valloc() - QDF virtual memory allocation API
* @size: Number of bytes of virtual memory to allocate.
* @func: Caller function name
* @line: Line number
*
* Return: A valid memory location on success, or NULL on failure
*/
void *__qdf_mem_valloc(size_t size, const char *func, uint32_t line);
/**
* __qdf_mem_vfree() - QDF API to free virtual memory
* @ptr: Pointer to the virtual memory to free
*
* Return: None
*/
void __qdf_mem_vfree(void *ptr);
/**
* __qdf_mem_virt_to_phys() - Convert virtual address to physical
* @vaddr: virtual address
*
* Return: physical address
*/
#define __qdf_mem_virt_to_phys(vaddr) virt_to_phys(vaddr)
#ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
/**
* __qdf_untracked_mem_malloc() - allocates non-QDF memory
* @size: Number of bytes of memory to allocate.
* @func: Function name of the call site
* @line: line number of the call site
*
* This function will dynamically allocate the specified number of bytes of
* memory. Memory allocated is not tracked by qdf memory debug framework.
*
* Return:
* Upon successful allocation, returns a non-NULL pointer to the allocated
* memory. If this function is unable to allocate the amount of memory
* specified (for any reason) it returns NULL.
*/
void *__qdf_untracked_mem_malloc(qdf_size_t size, const char *func,
uint32_t line);
/**
* __qdf_untracked_mem_free() - free non-QDF memory
* @ptr: Pointer to the starting address of the memory to be freed.
*
* This function will free the memory pointed to by 'ptr'.
* Return: None
*/
void __qdf_untracked_mem_free(void *ptr);
#endif
/**
* __qdf_mem_free_consistent() - free consistent qdf memory
* @osdev: OS device handle
* @dev: Pointer to device handle
* @size: Size to be allocated
* @vaddr: virtual address
* @paddr: Physical address
* @memctx: Pointer to DMA context
*
* Return: none
*/
void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
qdf_size_t size, void *vaddr,
qdf_dma_addr_t paddr, qdf_dma_context_t memctx);
#endif /* __I_QDF_MEM_H */