Files
android_kernel_samsung_sm86…/target_if/spectral/target_if_spectral.c
Nagasai Bharat Gatkeshwar Sainoji 59d8528e00 qcacmn: Clean up asserts in Spectral module - Part 4
Clean up invalid pointer/value asserts by returning the error status
to the caller in the below spectral module files
1. target_if/spectral/target_if_spectral.c

Change-Id: I57735ce35d33011dd9041a2cd16a740673a12800
CRs-Fixed: 3589879
2023-08-30 07:58:23 -07:00

8192 lines
223 KiB
C

/*
* Copyright (c) 2011,2017-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <wlan_tgt_def_config.h>
#include <hif.h>
#include <target_type.h>
#include <hif_hw_version.h>
#include <wmi_unified_api.h>
#include <target_if_spectral.h>
#include <wlan_lmac_if_def.h>
#include <wlan_osif_priv.h>
#include <init_deinit_lmac.h>
#include <reg_services_public_struct.h>
#include <target_if_spectral_sim.h>
#include <target_if.h>
#include <qdf_module.h>
#include <wlan_reg_services_api.h>
#include <wlan_dfs_ucfg_api.h>
/*
* @spectral_ops - Spectral function table, holds the Spectral functions that
* depend on whether the architecture is Direct Attach or Offload. This is used
* to populate the actual Spectral function table present in the Spectral
* module.
*/
struct target_if_spectral_ops spectral_ops;
int spectral_debug_level = DEBUG_SPECTRAL;
struct spectral_tgt_ops ops_tgt;
#ifdef SPECTRAL_MODULIZED_ENABLE
/**
* target_if_spectral_wmi_service_enabled() - API to check whether a
* given WMI service is enabled
* @psoc: Pointer to psoc
* @wmi_handle: WMI handle
* @service_id: service id
*
* Return: true or false
*/
static
bool target_if_spectral_wmi_service_enabled(struct wlan_objmgr_psoc *psoc,
wmi_unified_t wmi_handle,
uint32_t service_id)
{
struct target_if_psoc_spectral *psoc_spectral;
if (!psoc) {
spectral_err("psoc is null");
return false;
}
if (!wmi_handle) {
spectral_err("wmi handle is null");
return false;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("psoc spectral object is null");
return false;
}
return psoc_spectral->wmi_ops.wmi_service_enabled(wmi_handle,
service_id);
}
#else
/**
* target_if_spectral_wmi_service_enabled() - API to check whether a
* given WMI service is enabled
* @psoc: Pointer to psoc
* @wmi_handle: WMI handle
* @service_id: service id
*
* Return: true or false
*/
static
bool target_if_spectral_wmi_service_enabled(struct wlan_objmgr_psoc *psoc,
wmi_unified_t wmi_handle,
uint32_t service_id)
{
return wmi_service_enabled(wmi_handle, service_id);
}
#endif /* SPECTRAL_MODULIZED_ENABLE */
struct target_if_spectral *get_target_if_spectral_handle_from_pdev(
struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral *spectral;
struct wlan_objmgr_psoc *psoc;
struct wlan_lmac_if_rx_ops *rx_ops;
if (!pdev) {
spectral_err("pdev is null");
return NULL;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return NULL;
}
rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
if (!rx_ops) {
spectral_err("rx_ops is null");
return NULL;
}
spectral = (struct target_if_spectral *)
rx_ops->sptrl_rx_ops.sptrlro_get_pdev_target_handle(pdev);
return spectral;
}
qdf_export_symbol(get_target_if_spectral_handle_from_pdev);
/**
* target_if_spectral_get_normal_mode_cap() - API to get normal
* Spectral scan capability of a given pdev
* @pdev: pdev handle
* @normal_mode_disable: Pointer to caller variable
*
* API to get normal Spectral scan mode capability a given pdev.
* This information is derived from the WMI service
* "WMI_SERVICE_SPECTRAL_SCAN_DISABLED".
*
* Return: QDF_STATUS on success
*/
static QDF_STATUS
target_if_spectral_get_normal_mode_cap(struct wlan_objmgr_pdev *pdev,
bool *normal_mode_disable)
{
struct wlan_objmgr_psoc *psoc;
struct wmi_unified *wmi_handle;
struct target_if_psoc_spectral *psoc_spectral;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("psoc spectral object is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = get_wmi_unified_hdl_from_psoc(psoc);
if (!wmi_handle) {
spectral_err("wmi handle is null");
return QDF_STATUS_E_INVAL;
}
*normal_mode_disable = target_if_spectral_wmi_service_enabled(psoc,
wmi_handle, wmi_service_spectral_scan_disabled);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_get_agile_mode_cap() - API to check agile
* Spectral scan mode capability of a given pdev.
* @pdev: pdev handle
* @agile_cap: Pointer to caller variable
*
* API to check agile Spectral scan mode is disabled for a given pdev.
* This information is derived from the chain mask table entries.
*
* Return: QDF_STATUS on success
*/
static QDF_STATUS
target_if_spectral_get_agile_mode_cap(
struct wlan_objmgr_pdev *pdev,
struct target_if_spectral_agile_mode_cap *agile_cap)
{
struct wlan_objmgr_psoc *psoc;
struct target_psoc_info *tgt_psoc_info;
struct wlan_psoc_host_mac_phy_caps *mac_phy_cap_arr;
struct wlan_psoc_host_mac_phy_caps *mac_phy_cap;
uint8_t pdev_id, i;
uint32_t table_id;
struct wlan_psoc_host_service_ext_param *ext_svc_param;
struct wlan_psoc_host_chainmask_table *table;
struct wmi_unified *wmi_handle;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_FAILURE;
}
wmi_handle = get_wmi_unified_hdl_from_psoc(psoc);
if (!wmi_handle) {
spectral_err("wmi handle is null");
return QDF_STATUS_E_INVAL;
}
/* Agile Spectral is disabled for legacy targets */
if (!target_if_spectral_wmi_service_enabled(psoc, wmi_handle,
wmi_service_ext_msg)) {
agile_cap->agile_spectral_cap = false;
agile_cap->agile_spectral_cap_160 = false;
agile_cap->agile_spectral_cap_80p80 = false;
agile_cap->agile_spectral_cap_320 = false;
return QDF_STATUS_SUCCESS;
}
tgt_psoc_info = wlan_psoc_get_tgt_if_handle(psoc);
if (!tgt_psoc_info) {
spectral_err("target_psoc_info is null");
return QDF_STATUS_E_FAILURE;
}
mac_phy_cap_arr = target_psoc_get_mac_phy_cap(tgt_psoc_info);
if (!mac_phy_cap_arr) {
spectral_err("mac phy cap array is null");
return QDF_STATUS_E_FAILURE;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
mac_phy_cap = &mac_phy_cap_arr[pdev_id];
table_id = mac_phy_cap->chainmask_table_id;
ext_svc_param = target_psoc_get_service_ext_param(tgt_psoc_info);
if (!ext_svc_param) {
spectral_err("Extended service ready params null");
return QDF_STATUS_E_FAILURE;
}
table = &ext_svc_param->chainmask_table[table_id];
for (i = 0; i < table->num_valid_chainmasks; i++) {
agile_cap->agile_spectral_cap |=
table->cap_list[i].supports_aSpectral;
agile_cap->agile_spectral_cap_160 |=
table->cap_list[i].supports_aSpectral_160;
agile_cap->agile_spectral_cap_320 |= 0;
}
agile_cap->agile_spectral_cap_80p80 = agile_cap->agile_spectral_cap_160;
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_init_pdev_feature_cap_per_mode() - API to initialize
* Spectral scan pdev feature caps for a given Spectral mode
* @pdev: pdev handle
* @smode: Spectral scan mode
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE/
* QDF_STATUS_E_INVAL on failure
*/
static QDF_STATUS
target_if_spectral_init_pdev_feature_cap_per_mode(struct wlan_objmgr_pdev *pdev,
enum spectral_scan_mode smode)
{
struct wlan_objmgr_psoc *psoc;
bool normal_mode_disable;
struct target_if_spectral_agile_mode_cap agile_cap = { 0 };
QDF_STATUS status;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
switch (smode) {
case SPECTRAL_SCAN_MODE_NORMAL:
if (target_if_spectral_is_feature_disabled_psoc(psoc)) {
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_NORMAL_SPECTRAL_SCAN_DIS);
return QDF_STATUS_SUCCESS;
}
status = target_if_spectral_get_normal_mode_cap(
pdev, &normal_mode_disable);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to get normal spectral scan caps");
return QDF_STATUS_E_FAILURE;
}
if (normal_mode_disable)
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_NORMAL_SPECTRAL_SCAN_DIS);
else
wlan_pdev_nif_feat_ext_cap_clear(
pdev, WLAN_PDEV_FEXT_NORMAL_SPECTRAL_SCAN_DIS);
break;
case SPECTRAL_SCAN_MODE_AGILE:
if (target_if_spectral_is_feature_disabled_psoc(psoc)) {
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_DIS);
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_160_DIS);
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_80P80_DIS);
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_320_DIS);
return QDF_STATUS_SUCCESS;
}
status = target_if_spectral_get_agile_mode_cap(
pdev, &agile_cap);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to get agile Spectral capability");
return QDF_STATUS_E_FAILURE;
}
if (!agile_cap.agile_spectral_cap)
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_DIS);
else
wlan_pdev_nif_feat_ext_cap_clear(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_DIS);
if (!agile_cap.agile_spectral_cap_160)
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_160_DIS);
else
wlan_pdev_nif_feat_ext_cap_clear(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_160_DIS);
if (!agile_cap.agile_spectral_cap_80p80)
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_80P80_DIS);
else
wlan_pdev_nif_feat_ext_cap_clear(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_80P80_DIS);
if (!agile_cap.agile_spectral_cap_320)
wlan_pdev_nif_feat_ext_cap_set(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_320_DIS);
else
wlan_pdev_nif_feat_ext_cap_clear(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_320_DIS);
break;
default:
spectral_err("Invalid Spectral scan mode %d", smode);
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_init_pdev_feature_caps() - API to initialize
* Spectral scan pdev feature caps for a given pdev
* @pdev: pdev handle
*
* API initialize normal and agile Spectral scan pdev
* feature caps for a given pdev.
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_INVAL on failure
*/
static QDF_STATUS
target_if_spectral_init_pdev_feature_caps(struct wlan_objmgr_pdev *pdev)
{
enum spectral_scan_mode smode;
if (!pdev) {
spectral_err("pdev is NULL!");
return QDF_STATUS_E_INVAL;
}
smode = SPECTRAL_SCAN_MODE_NORMAL;
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++) {
QDF_STATUS status;
status = target_if_spectral_init_pdev_feature_cap_per_mode(
pdev, smode);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
static void target_if_spectral_get_firstvdev_pdev(struct wlan_objmgr_pdev *pdev,
void *obj, void *arg)
{
struct wlan_objmgr_vdev *vdev = obj;
struct wlan_objmgr_vdev **first_vdev = arg;
if (!(*first_vdev))
*first_vdev = vdev;
}
struct wlan_objmgr_vdev *
target_if_spectral_get_vdev(struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct wlan_objmgr_pdev *pdev = NULL;
struct wlan_objmgr_vdev *first_vdev = NULL;
if (!spectral) {
spectral_err("spectral variable in null.");
return NULL;
}
pdev = spectral->pdev_obj;
if (!pdev) {
spectral_err("pdev variable in null.");
return NULL;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return NULL;
}
if (spectral->vdev_id[smode] != WLAN_INVALID_VDEV_ID) {
first_vdev = wlan_objmgr_get_vdev_by_id_from_pdev(
pdev, spectral->vdev_id[smode],
WLAN_SPECTRAL_ID);
return first_vdev;
}
if (wlan_objmgr_pdev_try_get_ref(pdev, WLAN_SPECTRAL_ID) !=
QDF_STATUS_SUCCESS) {
spectral_err("Unable to get pdev reference.");
return NULL;
}
wlan_objmgr_pdev_iterate_obj_list(pdev, WLAN_VDEV_OP,
target_if_spectral_get_firstvdev_pdev,
&first_vdev, 0, WLAN_SPECTRAL_ID);
wlan_objmgr_pdev_release_ref(pdev, WLAN_SPECTRAL_ID);
if (!first_vdev)
return NULL;
if (wlan_objmgr_vdev_try_get_ref(first_vdev, WLAN_SPECTRAL_ID) !=
QDF_STATUS_SUCCESS)
first_vdev = NULL;
return first_vdev;
}
/**
* target_if_send_vdev_spectral_configure_cmd() - Send WMI command to configure
* spectral parameters
* @spectral: Pointer to Spectral target_if internal private data
* @smode: Spectral scan mode
* @param: Pointer to spectral_config giving the Spectral configuration
*
* Return: QDF_STATUS_SUCCESS on success, negative error code on failure
*/
static int
target_if_send_vdev_spectral_configure_cmd(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
struct spectral_config *param)
{
struct vdev_spectral_configure_params sparam;
struct wlan_objmgr_psoc *psoc;
struct wlan_objmgr_pdev *pdev = NULL;
struct wlan_objmgr_vdev *vdev = NULL;
struct target_if_psoc_spectral *psoc_spectral;
if (!spectral || !param || !(spectral->pdev_obj)) {
spectral_err("null params: spectral %pK, spectral_config %pK, pdev: %pK.",
spectral, param, pdev);
return qdf_status_to_os_return(QDF_STATUS_E_NULL_VALUE);
}
pdev = spectral->pdev_obj;
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("psoc spectral object is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
vdev = target_if_spectral_get_vdev(spectral, smode);
if (!vdev)
return QDF_STATUS_E_NOENT;
qdf_mem_zero(&sparam, sizeof(sparam));
sparam.vdev_id = wlan_vdev_get_id(vdev);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
sparam.count = param->ss_count;
sparam.period = param->ss_period;
sparam.fft_recap = param->ss_recapture;
sparam.spectral_pri = param->ss_spectral_pri;
sparam.fft_size = param->ss_fft_size;
sparam.gc_enable = param->ss_gc_ena;
sparam.restart_enable = param->ss_restart_ena;
sparam.noise_floor_ref = param->ss_noise_floor_ref;
sparam.init_delay = param->ss_init_delay;
sparam.nb_tone_thr = param->ss_nb_tone_thr;
sparam.str_bin_thr = param->ss_str_bin_thr;
sparam.wb_rpt_mode = param->ss_wb_rpt_mode;
sparam.rssi_rpt_mode = param->ss_rssi_rpt_mode;
sparam.rssi_thr = param->ss_rssi_thr;
sparam.pwr_format = param->ss_pwr_format;
sparam.rpt_mode = param->ss_rpt_mode;
sparam.bin_scale = param->ss_bin_scale;
sparam.dbm_adj = param->ss_dbm_adj;
sparam.chn_mask = param->ss_chn_mask;
sparam.mode = smode;
sparam.center_freq1 = param->ss_frequency.cfreq1;
sparam.center_freq2 = param->ss_frequency.cfreq2;
sparam.chan_width = param->ss_bandwidth;
return psoc_spectral->wmi_ops.wmi_spectral_configure_cmd_send(
GET_WMI_HDL_FROM_PDEV(pdev), &sparam);
}
/**
* target_if_send_vdev_spectral_enable_cmd() - Send WMI command to
* enable/disable Spectral
* @spectral: Pointer to Spectral target_if internal private data
* @smode: Spectral scan mode
* @is_spectral_active_valid: Flag to indicate if spectral activate (trigger) is
* valid
* @is_spectral_active: Value of spectral activate
* @is_spectral_enabled_valid: Flag to indicate if spectral enable is valid
* @is_spectral_enabled: Value of spectral enable
*
* Return: QDF_STATUS_SUCCESS on success, negative error code on failure
*/
static int
target_if_send_vdev_spectral_enable_cmd(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
uint8_t is_spectral_active_valid,
uint8_t is_spectral_active,
uint8_t is_spectral_enabled_valid,
uint8_t is_spectral_enabled)
{
struct vdev_spectral_enable_params param;
struct wlan_objmgr_psoc *psoc;
struct wlan_objmgr_pdev *pdev = NULL;
struct wlan_objmgr_vdev *vdev = NULL;
struct target_if_psoc_spectral *psoc_spectral;
if (!spectral) {
spectral_err("spectral is null");
return qdf_status_to_os_return(QDF_STATUS_E_NULL_VALUE);
}
pdev = spectral->pdev_obj;
if (!pdev) {
spectral_err("pdev is null");
return qdf_status_to_os_return(QDF_STATUS_E_NULL_VALUE);
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("psoc spectral object is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
vdev = target_if_spectral_get_vdev(spectral, smode);
if (!vdev)
return QDF_STATUS_E_NOENT;
qdf_mem_zero(&param, sizeof(param));
param.vdev_id = wlan_vdev_get_id(vdev);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
param.active_valid = is_spectral_active_valid;
param.enabled_valid = is_spectral_enabled_valid;
param.active = is_spectral_active;
param.enabled = is_spectral_enabled;
param.mode = smode;
return psoc_spectral->wmi_ops.wmi_spectral_enable_cmd_send(
GET_WMI_HDL_FROM_PDEV(pdev), &param);
}
/**
* is_spectral_arch_beryllium() - Check whether the given target Spectral
* architecture is Beryllium
* @target_tpe: Target type
*
* Return: true if the spectral architecture is Beryllium, else false
*/
static inline bool is_spectral_arch_beryllium(uint32_t target_tpe)
{
if ((target_tpe == TARGET_TYPE_QCN9224) ||
(target_tpe == TARGET_TYPE_QCA5332) ||
(target_tpe == TARGET_TYPE_QCN6432))
return true;
return false;
}
/*
* List of supported sscan BWs. Make sure to maintain the array elements in the
* same order of BWs as that of struct spectral_supported_bws bitmap.
*/
static const enum phy_ch_width supported_sscan_bw_list[] = {
CH_WIDTH_5MHZ,
CH_WIDTH_10MHZ,
CH_WIDTH_20MHZ,
CH_WIDTH_40MHZ,
CH_WIDTH_80MHZ,
CH_WIDTH_160MHZ,
CH_WIDTH_80P80MHZ,
#ifdef WLAN_FEATURE_11BE
CH_WIDTH_320MHZ,
#endif
};
#define INVALID_SSCAN_BW_POS (-1)
int get_supported_sscan_bw_pos(enum phy_ch_width sscan_bw)
{
int max_pos, pos;
max_pos = QDF_ARRAY_SIZE(supported_sscan_bw_list);
for (pos = 0; pos < max_pos; pos++) {
if (supported_sscan_bw_list[pos] == sscan_bw)
return pos;
}
return INVALID_SSCAN_BW_POS;
}
/**
* target_if_is_sscan_bw_supported() - Check whether the given sscan_bw is
* supported
* @spectral: Spectral LMAC object
* @smode: Spectral scan mode
* @sscan_bw: Spectral scan bandwidth
* @op_bw: operating bandwidth
* @is_bw_supported: Pointer to the caller variable where this function
* populates whether @sscan_bw is supported
* @is_80_80_agile: Indicates an 80+80 agile Scan request
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_is_sscan_bw_supported(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
enum phy_ch_width sscan_bw,
enum phy_ch_width op_bw,
bool *is_bw_supported,
bool is_80_80_agile)
{
struct spectral_supported_bws *supported_bws;
*is_bw_supported = false;
if (op_bw >= CH_WIDTH_INVALID) {
spectral_err("Invalid channel width %d", op_bw);
return QDF_STATUS_E_INVAL;
}
if ((is_80_80_agile && sscan_bw != CH_WIDTH_80P80MHZ) ||
(!is_80_80_agile && sscan_bw == CH_WIDTH_80P80MHZ)) {
*is_bw_supported = false;
return QDF_STATUS_SUCCESS;
}
/* Get the supported sscan bandwidths for this operating bandwidth */
supported_bws = &spectral->supported_bws[smode][op_bw];
*is_bw_supported = supported_bws->bandwidths &
(1 << get_supported_sscan_bw_pos(sscan_bw));
return QDF_STATUS_SUCCESS;
}
/**
* get_max_sscan_bw() - Get the maximum sscan bandwidth for a given operating
* bandwidth
* @spectral: Spectral LMAC object
* @smode: Spectral scan mode
* @op_bw: operating bandwidth
*
* Return: Maximum sscan bandwidth for @op_bw on success, else CH_WIDTH_INVALID
*/
static enum phy_ch_width
get_max_sscan_bw(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
enum phy_ch_width op_bw)
{
int op_bw_pos, pos;
struct spectral_supported_bws *supported_bws;
supported_bws = &spectral->supported_bws[smode][op_bw];
op_bw_pos = get_supported_sscan_bw_pos(op_bw);
/**
* Start with operating bandwidth, and keep reducing the bandwidth until
* a supported sscan BW is found.
*/
for (pos = op_bw_pos; pos >= 0; pos--) {
if (supported_bws->bandwidths & (1 << pos))
return supported_sscan_bw_list[pos];
}
return CH_WIDTH_INVALID;
}
/* target_if_spectral_find_agile_width() - Given a channel width enum, find the
* corresponding translation for Agile channel width.
* @spectral: pointer to Spectral object
* @op_width: operating channel width
* @is_80_80_agile: Indicates an 80+80 agile Scan request
*
* Return: The translated channel width enum.
*/
static enum phy_ch_width
target_if_spectral_find_agile_width(struct target_if_spectral *spectral,
enum phy_ch_width op_bw,
bool is_80_80_agile)
{
enum phy_ch_width agile_width;
struct wlan_objmgr_pdev *pdev;
struct wlan_objmgr_psoc *psoc;
if (!spectral) {
spectral_err("Spectral object is null");
return CH_WIDTH_INVALID;
}
pdev = spectral->pdev_obj;
if (!pdev) {
spectral_err("pdev is null");
return CH_WIDTH_INVALID;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return CH_WIDTH_INVALID;
}
agile_width = get_max_sscan_bw(spectral, SPECTRAL_SCAN_MODE_AGILE,
op_bw);
if (wlan_psoc_nif_fw_ext_cap_get(psoc,
WLAN_SOC_RESTRICTED_80P80_SUPPORT)) {
switch (op_bw) {
case CH_WIDTH_80P80MHZ:
if (!is_80_80_agile)
agile_width = CH_WIDTH_160MHZ;
else
agile_width = CH_WIDTH_80P80MHZ;
break;
case CH_WIDTH_160MHZ:
if (is_80_80_agile)
agile_width = CH_WIDTH_80P80MHZ;
else
agile_width = CH_WIDTH_160MHZ;
break;
default:
break;
}
}
return agile_width;
}
/**
* get_default_sscan_bw() - Get the default sscan bandwidth for a given
* operating bandwidth
* @spectral: Spectral LMAC object
* @smode: Spectral scan mode
* @is_80_80_agile: Indicates an 80+80 agile Scan request
*
* Return: Default sscan bandwidth for @op_bw on success, else CH_WIDTH_INVALID
*/
static enum phy_ch_width
get_default_sscan_bw(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
bool is_80_80_agile)
{
struct wlan_objmgr_vdev *vdev;
enum phy_ch_width vdev_ch_width, sscan_width;
vdev = target_if_spectral_get_vdev(spectral, smode);
if (!vdev) {
spectral_err("vdev is null");
return CH_WIDTH_INVALID;
}
vdev_ch_width = target_if_vdev_get_ch_width(vdev);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
if (vdev_ch_width >= CH_WIDTH_INVALID) {
spectral_err("Invalid vdev channel width %d", vdev_ch_width);
return CH_WIDTH_INVALID;
}
switch (smode) {
case SPECTRAL_SCAN_MODE_NORMAL:
sscan_width = get_max_sscan_bw(spectral, smode, vdev_ch_width);
break;
case SPECTRAL_SCAN_MODE_AGILE:
sscan_width = target_if_spectral_find_agile_width(
spectral, vdev_ch_width, is_80_80_agile);
break;
default:
sscan_width = CH_WIDTH_INVALID;
break;
}
return sscan_width;
}
/**
* target_if_spectral_info_init_defaults() - Helper function to load defaults
* for Spectral information (parameters and state) into cache.
* @spectral: Pointer to Spectral target_if internal private data
* @smode: Spectral scan mode
*
* It is assumed that the caller has obtained the requisite lock if applicable.
* Note that this is currently treated as a temporary function. Ideally, we
* would like to get defaults from the firmware.
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE on failure
*/
static QDF_STATUS
target_if_spectral_info_init_defaults(struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct target_if_spectral_param_state_info *info;
struct wlan_objmgr_vdev *vdev = NULL;
enum phy_ch_width sscan_bw;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return QDF_STATUS_E_FAILURE;
}
info = &spectral->param_info[smode];
/* State */
info->osps_cache.osc_spectral_active = SPECTRAL_SCAN_ACTIVE_DEFAULT;
info->osps_cache.osc_spectral_enabled = SPECTRAL_SCAN_ENABLE_DEFAULT;
/* Parameters */
info->osps_cache.osc_params.ss_count = SPECTRAL_SCAN_COUNT_DEFAULT;
if (spectral->spectral_gen == SPECTRAL_GEN3)
info->osps_cache.osc_params.ss_period =
SPECTRAL_SCAN_PERIOD_GEN_III_DEFAULT;
else
info->osps_cache.osc_params.ss_period =
SPECTRAL_SCAN_PERIOD_GEN_II_DEFAULT;
info->osps_cache.osc_params.ss_recapture =
SPECTRAL_FFT_RECAPTURE_DEFAULT;
info->osps_cache.osc_params.ss_spectral_pri =
SPECTRAL_SCAN_PRIORITY_DEFAULT;
info->osps_cache.osc_params.ss_fft_size =
SPECTRAL_SCAN_FFT_SIZE_DEFAULT;
info->osps_cache.osc_params.ss_gc_ena = SPECTRAL_SCAN_GC_ENA_DEFAULT;
info->osps_cache.osc_params.ss_restart_ena =
SPECTRAL_SCAN_RESTART_ENA_DEFAULT;
info->osps_cache.osc_params.ss_noise_floor_ref =
SPECTRAL_SCAN_NOISE_FLOOR_REF_DEFAULT;
info->osps_cache.osc_params.ss_init_delay =
SPECTRAL_SCAN_INIT_DELAY_DEFAULT;
info->osps_cache.osc_params.ss_nb_tone_thr =
SPECTRAL_SCAN_NB_TONE_THR_DEFAULT;
info->osps_cache.osc_params.ss_str_bin_thr =
SPECTRAL_SCAN_STR_BIN_THR_DEFAULT;
info->osps_cache.osc_params.ss_wb_rpt_mode =
SPECTRAL_SCAN_WB_RPT_MODE_DEFAULT;
info->osps_cache.osc_params.ss_rssi_rpt_mode =
SPECTRAL_SCAN_RSSI_RPT_MODE_DEFAULT;
info->osps_cache.osc_params.ss_rssi_thr =
SPECTRAL_SCAN_RSSI_THR_DEFAULT;
info->osps_cache.osc_params.ss_pwr_format =
SPECTRAL_SCAN_PWR_FORMAT_DEFAULT;
info->osps_cache.osc_params.ss_rpt_mode =
SPECTRAL_SCAN_RPT_MODE_DEFAULT;
info->osps_cache.osc_params.ss_bin_scale =
SPECTRAL_SCAN_BIN_SCALE_DEFAULT;
info->osps_cache.osc_params.ss_dbm_adj = SPECTRAL_SCAN_DBM_ADJ_DEFAULT;
vdev = target_if_spectral_get_vdev(spectral, smode);
if (!vdev)
return QDF_STATUS_E_NOENT;
info->osps_cache.osc_params.ss_chn_mask =
wlan_vdev_mlme_get_rxchainmask(vdev);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
info->osps_cache.osc_params.ss_short_report =
SPECTRAL_SCAN_SHORT_REPORT_DEFAULT;
info->osps_cache.osc_params.ss_fft_period =
SPECTRAL_SCAN_FFT_PERIOD_DEFAULT;
info->osps_cache.osc_params.ss_frequency.cfreq1 =
SPECTRAL_SCAN_FREQUENCY_DEFAULT;
info->osps_cache.osc_params.ss_frequency.cfreq2 =
SPECTRAL_SCAN_FREQUENCY_DEFAULT;
sscan_bw = get_default_sscan_bw(spectral, smode, false);
if (sscan_bw >= CH_WIDTH_INVALID) {
spectral_err("Invalid sscan BW %u", sscan_bw);
return QDF_STATUS_E_FAILURE;
}
info->osps_cache.osc_params.ss_bandwidth = sscan_bw;
/* The cache is now valid */
info->osps_cache.osc_is_valid = 1;
return QDF_STATUS_SUCCESS;
}
/**
* target_if_log_read_spectral_active() - Helper function to log whether
* spectral is active after reading cache
* @function_name: Function name
* @output: whether spectral is active or not
*
* Helper function to log whether spectral is active after reading cache
*
* Return: none
*/
static void
target_if_log_read_spectral_active(
const char *function_name,
unsigned char output)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_ACTIVE. Returning val=%u",
function_name, output);
}
/**
* target_if_log_read_spectral_enabled() - Helper function to log whether
* spectral is enabled after reading cache
* @function_name: Function name
* @output: whether spectral is enabled or not
*
* Helper function to log whether spectral is enabled after reading cache
*
* Return: none
*/
static void
target_if_log_read_spectral_enabled(
const char *function_name,
unsigned char output)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_ENABLED. Returning val=%u",
function_name, output);
}
/**
* target_if_log_read_spectral_params() - log spectral parameters
* @function_name: Function name
* @pparam: Spectral parameters
*
* Helper function to log spectral parameters after reading cache
*
* Return: none
*/
static void
target_if_log_read_spectral_params(
const char *function_name,
struct spectral_config *pparam)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_PARAMS. Returning following params:\nss_count = %u\nss_period = %u\nss_recapture = %u\nss_spectral_pri = %u\nss_fft_size = %u\nss_gc_ena = %u\nss_restart_ena = %u\nss_noise_floor_ref = %d\nss_init_delay = %u\nss_nb_tone_thr = %u\nss_str_bin_thr = %u\nss_wb_rpt_mode = %u\nss_rssi_rpt_mode = %u\nss_rssi_thr = %d\nss_pwr_format = %u\nss_rpt_mode = %u\nss_bin_scale = %u\nss_dbm_adj = %u\nss_chn_mask = %u\nss_frequency1=%u\nss_frequency2=%u\n",
function_name,
pparam->ss_count,
pparam->ss_period,
pparam->ss_recapture,
pparam->ss_spectral_pri,
pparam->ss_fft_size,
pparam->ss_gc_ena,
pparam->ss_restart_ena,
(int8_t)pparam->ss_noise_floor_ref,
pparam->ss_init_delay,
pparam->ss_nb_tone_thr,
pparam->ss_str_bin_thr,
pparam->ss_wb_rpt_mode,
pparam->ss_rssi_rpt_mode,
(int8_t)pparam->ss_rssi_thr,
pparam->ss_pwr_format,
pparam->ss_rpt_mode,
pparam->ss_bin_scale,
pparam->ss_dbm_adj,
pparam->ss_chn_mask,
pparam->ss_frequency.cfreq1,
pparam->ss_frequency.cfreq2);
}
/**
* target_if_log_read_spectral_active_catch_validate() - Helper function to
* log whether spectral is active after initializing the cache
* @function_name: Function name
* @output: whether spectral is active or not
*
* Helper function to log whether spectral is active after initializing cache
*
* Return: none
*/
static void
target_if_log_read_spectral_active_catch_validate(
const char *function_name,
unsigned char output)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_ACTIVE on initial cache validation\nReturning val=%u",
function_name, output);
}
/**
* target_if_log_read_spectral_enabled_catch_validate() - Helper function to
* log whether spectral is enabled after initializing the cache
* @function_name: Function name
* @output: whether spectral is enabled or not
*
* Helper function to log whether spectral is enabled after initializing cache
*
* Return: none
*/
static void
target_if_log_read_spectral_enabled_catch_validate(
const char *function_name,
unsigned char output)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_ENABLED on initial cache validation\nReturning val=%u\n",
function_name, output);
}
/**
* target_if_log_read_spectral_params_catch_validate() - Helper function to
* log spectral parameters after initializing the cache
* @function_name: Function name
* @pparam: Spectral parameters
*
* Helper function to log spectral parameters after initializing the cache
*
* Return: none
*/
static void
target_if_log_read_spectral_params_catch_validate(
const char *function_name,
struct spectral_config *pparam)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_PARAMS on initial cache validation\nReturning following params:\nss_count = %u\nss_period = %u\nss_recapture = %u\nss_spectral_pri = %u\nss_fft_size = %u\nss_gc_ena = %u\nss_restart_ena = %u\nss_noise_floor_ref = %d\nss_init_delay = %u\nss_nb_tone_thr = %u\nss_str_bin_thr = %u\nss_wb_rpt_mode = %u\nss_rssi_rpt_mode = %u\nss_rssi_thr = %d\nss_pwr_format = %u\nss_rpt_mode = %u\nss_bin_scale = %u\nss_dbm_adj = %u\nss_chn_mask = %u",
function_name,
pparam->ss_count,
pparam->ss_period,
pparam->ss_recapture,
pparam->ss_spectral_pri,
pparam->ss_fft_size,
pparam->ss_gc_ena,
pparam->ss_restart_ena,
(int8_t)pparam->ss_noise_floor_ref,
pparam->ss_init_delay,
pparam->ss_nb_tone_thr,
pparam->ss_str_bin_thr,
pparam->ss_wb_rpt_mode,
pparam->ss_rssi_rpt_mode,
(int8_t)pparam->ss_rssi_thr,
pparam->ss_pwr_format,
pparam->ss_rpt_mode,
pparam->ss_bin_scale,
pparam->ss_dbm_adj, pparam->ss_chn_mask);
}
/**
* target_if_spectral_info_read() - Read spectral information from the cache.
* @spectral: Pointer to Spectral target_if internal private data
* @smode: Spectral scan mode
* @specifier: target_if_spectral_info enumeration specifying which
* information is required
* @output: Void output pointer into which the information will be read
* @output_len: size of object pointed to by output pointer
*
* Read spectral parameters or the desired state information from the cache.
*
* Return: 0 on success, negative error code on failure
*/
static int
target_if_spectral_info_read(
struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
enum target_if_spectral_info specifier,
void *output, int output_len)
{
/*
* Note: This function is designed to be able to accommodate
* WMI reads for defaults, non-cacheable information, etc
* if required.
*/
struct target_if_spectral_param_state_info *info;
int is_cacheable = 0;
int init_def_retval = 0;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return -EINVAL;
}
info = &spectral->param_info[smode];
if (!output)
return -EINVAL;
switch (specifier) {
case TARGET_IF_SPECTRAL_INFO_ACTIVE:
if (output_len != sizeof(info->osps_cache.osc_spectral_active))
return -EINVAL;
is_cacheable = 1;
break;
case TARGET_IF_SPECTRAL_INFO_ENABLED:
if (output_len != sizeof(info->osps_cache.osc_spectral_enabled))
return -EINVAL;
is_cacheable = 1;
break;
case TARGET_IF_SPECTRAL_INFO_PARAMS:
if (output_len != sizeof(info->osps_cache.osc_params))
return -EINVAL;
is_cacheable = 1;
break;
default:
spectral_err("Unknown target_if_spectral_info specifier");
return -EINVAL;
}
qdf_spin_lock_bh(&info->osps_lock);
if (is_cacheable) {
if (info->osps_cache.osc_is_valid) {
switch (specifier) {
case TARGET_IF_SPECTRAL_INFO_ACTIVE:
qdf_mem_copy(
output,
&info->osps_cache.osc_spectral_active,
sizeof(info->osps_cache.osc_spectral_active));
target_if_log_read_spectral_active(
__func__,
*((unsigned char *)output));
break;
case TARGET_IF_SPECTRAL_INFO_ENABLED:
qdf_mem_copy(
output,
&info->osps_cache.osc_spectral_enabled,
sizeof(
info->osps_cache.osc_spectral_enabled));
target_if_log_read_spectral_enabled(
__func__,
*((unsigned char *)output));
break;
case TARGET_IF_SPECTRAL_INFO_PARAMS:
qdf_mem_copy(
output,
&info->osps_cache.osc_params,
sizeof(info->osps_cache.osc_params));
target_if_log_read_spectral_params(
__func__,
(struct spectral_config *)output);
break;
default:
/* We can't reach this point */
break;
}
qdf_spin_unlock_bh(&info->osps_lock);
return 0;
}
}
/* Cache is invalid */
/*
* If WMI Reads are implemented to fetch defaults/non-cacheable info,
* then the below implementation will change
*/
init_def_retval =
target_if_spectral_info_init_defaults(spectral, smode);
if (init_def_retval != QDF_STATUS_SUCCESS) {
qdf_spin_unlock_bh(&info->osps_lock);
if (init_def_retval == QDF_STATUS_E_NOENT)
return -ENOENT;
else
return -EINVAL;
}
/* target_if_spectral_info_init_defaults() has set cache to valid */
switch (specifier) {
case TARGET_IF_SPECTRAL_INFO_ACTIVE:
qdf_mem_copy(output,
&info->osps_cache.osc_spectral_active,
sizeof(info->osps_cache.osc_spectral_active));
target_if_log_read_spectral_active_catch_validate(
__func__,
*((unsigned char *)output));
break;
case TARGET_IF_SPECTRAL_INFO_ENABLED:
qdf_mem_copy(output,
&info->osps_cache.osc_spectral_enabled,
sizeof(info->osps_cache.osc_spectral_enabled));
target_if_log_read_spectral_enabled_catch_validate(
__func__,
*((unsigned char *)output));
break;
case TARGET_IF_SPECTRAL_INFO_PARAMS:
qdf_mem_copy(output,
&info->osps_cache.osc_params,
sizeof(info->osps_cache.osc_params));
target_if_log_read_spectral_params_catch_validate(
__func__,
(struct spectral_config *)output);
break;
default:
/* We can't reach this point */
break;
}
qdf_spin_unlock_bh(&info->osps_lock);
return 0;
}
/**
* target_if_log_write_spectral_active() - Helper function to log inputs and
* return value of call to configure the Spectral 'active' configuration,
* TARGET_IF_SPECTRAL_INFO_ACTIVE into firmware
* @function_name: Function name in which this is called
* @pval: whether spectral is active or not
* @ret: return value of the firmware write function
*
* Return: none
*/
static void
target_if_log_write_spectral_active(
const char *function_name,
uint8_t pval,
int ret)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_ACTIVE with val=%u status=%d",
function_name, pval, ret);
}
/**
* target_if_log_write_spectral_enabled() - Helper function to log inputs and
* return value of call to configure the Spectral 'enabled' configuration,
* TARGET_IF_SPECTRAL_INFO_ENABLED into firmware
* @function_name: Function name in which this is called
* @pval: whether spectral is enabled or not
* @ret: return value of the firmware write function
*
* Return: none
*/
static void
target_if_log_write_spectral_enabled(
const char *function_name,
uint8_t pval,
int ret)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_ENABLED with val=%u status=%d",
function_name, pval, ret);
}
/**
* target_if_log_write_spectral_params() - Helper function to log inputs and
* return value of call to configure Spectral parameters,
* TARGET_IF_SPECTRAL_INFO_PARAMS into firmware
* @param: Spectral parameters
* @function_name: Function name in which this is called
* @ret: return value of the firmware write function
*
* Return: none
*/
static void
target_if_log_write_spectral_params(
struct spectral_config *param,
const char *function_name,
int ret)
{
spectral_debug("%s: TARGET_IF_SPECTRAL_INFO_PARAMS. Params:\nss_count = %u\nss_period = %u\nss_recapture = %u\nss_spectral_pri = %u\nss_fft_size = %u\nss_gc_ena = %u\nss_restart_ena = %u\nss_noise_floor_ref = %d\nss_init_delay = %u\nss_nb_tone_thr = %u\nss_str_bin_thr = %u\nss_wb_rpt_mode = %u\nss_rssi_rpt_mode = %u\nss_rssi_thr = %d\nss_pwr_format = %u\nss_rpt_mode = %u\nss_bin_scale = %u\nss_dbm_adj = %u\nss_chn_mask = %u\nss_frequency1=%u\nss_frequency2=%u\nstatus = %d",
function_name,
param->ss_count,
param->ss_period,
param->ss_recapture,
param->ss_spectral_pri,
param->ss_fft_size,
param->ss_gc_ena,
param->ss_restart_ena,
(int8_t)param->ss_noise_floor_ref,
param->ss_init_delay,
param->ss_nb_tone_thr,
param->ss_str_bin_thr,
param->ss_wb_rpt_mode,
param->ss_rssi_rpt_mode,
(int8_t)param->ss_rssi_thr,
param->ss_pwr_format,
param->ss_rpt_mode,
param->ss_bin_scale,
param->ss_dbm_adj,
param->ss_chn_mask,
param->ss_frequency.cfreq1,
param->ss_frequency.cfreq2,
ret);
}
/**
* target_if_spectral_info_write() - Write Spectral information to the
* firmware, and update cache
* @spectral: Pointer to Spectral target_if internal private data
* @smode: Spectral scan mode
* @specifier: target_if_spectral_info enumeration specifying which
* information is involved
* @input: void input pointer containing the information to be written
* @input_len: size of object pointed to by input pointer
*
* Write Spectral parameters or the desired state information to
* the firmware, and update cache
*
* Return: 0 on success, negative error code on failure
*/
static int
target_if_spectral_info_write(
struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
enum target_if_spectral_info specifier,
void *input, int input_len)
{
struct target_if_spectral_param_state_info *info;
int ret;
uint8_t *pval = NULL;
struct spectral_config *param = NULL;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return -EINVAL;
}
info = &spectral->param_info[smode];
if (!input)
return -EINVAL;
switch (specifier) {
case TARGET_IF_SPECTRAL_INFO_ACTIVE:
if (input_len != sizeof(info->osps_cache.osc_spectral_active))
return -EINVAL;
pval = (uint8_t *)input;
qdf_spin_lock_bh(&info->osps_lock);
ret = target_if_send_vdev_spectral_enable_cmd(spectral, smode,
1, *pval, 0, 0);
target_if_log_write_spectral_active(
__func__,
*pval,
ret);
if (ret < 0) {
spectral_err("target_if_send_vdev_spectral_enable_cmd failed with error=%d",
ret);
qdf_spin_unlock_bh(&info->osps_lock);
return ret;
}
info->osps_cache.osc_spectral_active = *pval;
/* The cache is now valid */
info->osps_cache.osc_is_valid = 1;
qdf_spin_unlock_bh(&info->osps_lock);
break;
case TARGET_IF_SPECTRAL_INFO_ENABLED:
if (input_len != sizeof(info->osps_cache.osc_spectral_enabled))
return -EINVAL;
pval = (uint8_t *)input;
qdf_spin_lock_bh(&info->osps_lock);
ret = target_if_send_vdev_spectral_enable_cmd(spectral, smode,
0, 0, 1, *pval);
target_if_log_write_spectral_enabled(
__func__,
*pval,
ret);
if (ret < 0) {
spectral_err("target_if_send_vdev_spectral_enable_cmd failed with error=%d",
ret);
qdf_spin_unlock_bh(&info->osps_lock);
return ret;
}
info->osps_cache.osc_spectral_enabled = *pval;
/* The cache is now valid */
info->osps_cache.osc_is_valid = 1;
qdf_spin_unlock_bh(&info->osps_lock);
break;
case TARGET_IF_SPECTRAL_INFO_PARAMS:
if (input_len != sizeof(info->osps_cache.osc_params))
return -EINVAL;
param = (struct spectral_config *)input;
qdf_spin_lock_bh(&info->osps_lock);
ret = target_if_send_vdev_spectral_configure_cmd(spectral,
smode, param);
target_if_log_write_spectral_params(
param,
__func__,
ret);
if (ret < 0) {
spectral_err("target_if_send_vdev_spectral_configure_cmd failed with error=%d",
ret);
qdf_spin_unlock_bh(&info->osps_lock);
return ret;
}
qdf_mem_copy(&info->osps_cache.osc_params,
param, sizeof(info->osps_cache.osc_params));
/* The cache is now valid */
info->osps_cache.osc_is_valid = 1;
qdf_spin_unlock_bh(&info->osps_lock);
break;
default:
spectral_err("Unknown target_if_spectral_info specifier");
return -EINVAL;
}
return 0;
}
/**
* target_if_spectral_get_tsf64() - Function to get the TSF value
* @arg: Pointer to handle for Spectral target_if internal private data
*
* Get the last TSF received in WMI buffer
*
* Return: TSF value
*/
static uint64_t
target_if_spectral_get_tsf64(void *arg)
{
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
return spectral->tsf64;
}
/**
* target_if_spectral_get_capability() - Function to get whether a
* given Spectral hardware capability is available
* @arg: Pointer to handle for Spectral target_if internal private data
* @type: Spectral hardware capability type
*
* Get whether a given Spectral hardware capability is available
*
* Return: True if the capability is available, false if the capability is not
* available
*/
uint32_t
target_if_spectral_get_capability(void *arg, enum spectral_capability_type type)
{
int status = STATUS_FAIL;
switch (type) {
case SPECTRAL_CAP_PHYDIAG:
case SPECTRAL_CAP_RADAR:
case SPECTRAL_CAP_SPECTRAL_SCAN:
case SPECTRAL_CAP_ADVNCD_SPECTRAL_SCAN:
status = STATUS_PASS;
break;
default:
status = STATUS_FAIL;
}
return status;
}
/**
* target_if_spectral_set_rxfilter() - Set the RX Filter before Spectral start
* @arg: Pointer to handle for Spectral target_if internal private data
* @rxfilter: Rx filter to be used
*
* Note: This is only a placeholder function. It is not currently required since
* FW should be taking care of setting the required filters.
*
* Return: 0
*/
uint32_t
target_if_spectral_set_rxfilter(void *arg, int rxfilter)
{
/*
* Will not be required since enabling of spectral in firmware
* will take care of this
*/
return 0;
}
/**
* target_if_spectral_get_rxfilter() - Get the current RX Filter settings
* @arg: Pointer to handle for Spectral target_if internal private data
*
* Note: This is only a placeholder function. It is not currently required since
* FW should be taking care of setting the required filters.
*
* Return: 0
*/
uint32_t
target_if_spectral_get_rxfilter(void *arg)
{
/*
* Will not be required since enabling of spectral in firmware
* will take care of this
*/
return 0;
}
/**
* target_if_sops_is_spectral_active() - Get whether Spectral is active
* @arg: Pointer to handle for Spectral target_if internal private data
* @smode: Spectral scan mode
*
* Function to check whether Spectral is active
*
* Return: True if Spectral is active, false if Spectral is not active
*/
uint32_t
target_if_sops_is_spectral_active(void *arg, enum spectral_scan_mode smode)
{
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
uint8_t val = 0;
int ret;
ret = target_if_spectral_info_read(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ACTIVE,
&val, sizeof(val));
if (ret != 0) {
/*
* Could not determine if Spectral is active.
* Return false as a safe value.
* XXX: Consider changing the function prototype
* to be able to indicate failure to fetch value.
*/
return 0;
}
return val;
}
/**
* target_if_sops_is_spectral_enabled() - Get whether Spectral is enabled
* @arg: Pointer to handle for Spectral target_if internal private data
* @smode: Spectral scan mode
*
* Function to check whether Spectral is enabled
*
* Return: True if Spectral is enabled, false if Spectral is not enabled
*/
uint32_t
target_if_sops_is_spectral_enabled(void *arg, enum spectral_scan_mode smode)
{
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
uint8_t val = 0;
int ret;
ret = target_if_spectral_info_read(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ENABLED,
&val, sizeof(val));
if (ret != 0) {
/*
* Could not determine if Spectral is enabled.
* Return false as a safe value.
* XXX: Consider changing the function prototype
* to be able to indicate failure to fetch value.
*/
return 0;
}
return val;
}
/**
* target_if_sops_start_spectral_scan() - Start Spectral scan
* @arg: Pointer to handle for Spectral target_if internal private data
* @smode: Spectral scan mode
* @err: Spectral error code
*
* Function to start spectral scan
*
* Return: 0 on success else failure
*/
uint32_t
target_if_sops_start_spectral_scan(void *arg, enum spectral_scan_mode smode,
enum spectral_cp_error_code *err)
{
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
uint8_t val = 1;
uint8_t enabled = 0;
int ret;
ret = target_if_spectral_info_read(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ENABLED,
&enabled, sizeof(enabled));
if (ret != 0) {
/*
* Could not determine if Spectral is enabled. Assume we need
* to enable it
*/
enabled = 0;
}
if (!enabled) {
ret = target_if_spectral_info_write(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ENABLED,
&val, sizeof(val));
if (ret != 0)
return ret;
}
ret = target_if_spectral_info_write(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ACTIVE,
&val, sizeof(val));
if (ret != 0)
return ret;
return 0;
}
/**
* target_if_sops_stop_spectral_scan() - Stop Spectral scan
* @arg: Pointer to handle for Spectral target_if internal private data
* @smode: Spectral scan mode
*
* Function to stop spectral scan
*
* Return: 0 on success else failure
*/
uint32_t
target_if_sops_stop_spectral_scan(void *arg, enum spectral_scan_mode smode)
{
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
uint8_t val = 0;
int tempret, ret = 0;
uint8_t enabled = 0;
tempret = target_if_spectral_info_read(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ENABLED,
&enabled, sizeof(enabled));
if (tempret)
/*
* Could not determine if Spectral is enabled. Assume scan is
* not in progress
*/
enabled = 0;
/* if scan is not enabled, no need to send stop to FW */
if (!enabled)
return -EPERM;
tempret = target_if_spectral_info_write(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ACTIVE,
&val, sizeof(val));
if (tempret != 0)
ret = tempret;
tempret = target_if_spectral_info_write(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_ENABLED,
&val, sizeof(val));
if (tempret != 0)
ret = tempret;
if (ret == 0 && smode == SPECTRAL_SCAN_MODE_AGILE) {
struct target_if_spectral_ops *p_sops;
struct spectral_config *sparams;
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
sparams = &spectral->params[smode];
sparams->ss_frequency.cfreq1 = 0;
sparams->ss_frequency.cfreq2 = 0;
p_sops->configure_spectral(spectral, sparams, smode);
}
return ret;
}
/**
* target_if_spectral_get_extension_channel() - Get the Extension channel
* @arg: Pointer to handle for Spectral target_if internal private data
* @smode: Spectral scan mode
*
* Function to get the current Extension channel (in MHz)
*
* Return: Current Extension channel (in MHz) on success, 0 on failure or if
* extension channel is not present.
*/
uint32_t
target_if_spectral_get_extension_channel(void *arg,
enum spectral_scan_mode smode)
{
/*
* XXX: Once we expand to use cases where Spectral could be activated
* without a channel being set to VDEV, we need to consider returning a
* negative value in case of failure and having all callers handle this.
*/
struct target_if_spectral *spectral = NULL;
struct wlan_objmgr_vdev *vdev = NULL;
uint16_t sec20chan_freq = 0;
if (!arg) {
spectral_err("Null argument.");
return 0;
}
spectral = (struct target_if_spectral *)arg;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return 0;
}
vdev = target_if_spectral_get_vdev(spectral, smode);
if (!vdev)
return 0;
if (target_if_vdev_get_sec20chan_freq_mhz(vdev, &sec20chan_freq) < 0) {
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
return 0;
}
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
return sec20chan_freq;
}
/**
* target_if_spectral_get_current_channel() - Get the current channel
* @arg: Pointer to handle for Spectral target_if internal private data
* @smode: Spectral scan mode
*
* Function to get the current channel (in MHz)
*
* Return: Current channel (in MHz) on success, 0 on failure
*/
uint32_t
target_if_spectral_get_current_channel(void *arg, enum spectral_scan_mode smode)
{
/*
* XXX: Once we expand to use cases where Spectral could be activated
* without a channel being set to VDEV, we need to consider returning a
* negative value in case of failure and having all callers handle this.
*/
struct target_if_spectral *spectral = NULL;
int16_t chan_freq = 0;
struct wlan_objmgr_vdev *vdev = NULL;
if (!arg) {
spectral_err("Null argument.");
return 0;
}
spectral = (struct target_if_spectral *)arg;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return 0;
}
vdev = target_if_spectral_get_vdev(spectral, smode);
if (!vdev)
return 0;
chan_freq = target_if_vdev_get_chan_freq(vdev);
if (chan_freq < 0) {
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
return 0;
}
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
return chan_freq;
}
/**
* target_if_spectral_reset_hw() - Reset the hardware
* @arg: Pointer to handle for Spectral target_if internal private data
*
* This is only a placeholder since it is not currently required in the offload
* case.
*
* Return: 0
*/
uint32_t
target_if_spectral_reset_hw(void *arg)
{
not_yet_implemented();
return 0;
}
/**
* target_if_spectral_get_chain_noise_floor() - Get the Chain noise floor from
* Noisefloor history buffer
* @arg: Pointer to handle for Spectral target_if internal private data
* @nf_buf: Pointer to buffer into which chain Noise Floor data should be copied
*
* This is only a placeholder since it is not currently required in the offload
* case.
*
* Return: 0
*/
uint32_t
target_if_spectral_get_chain_noise_floor(void *arg, int16_t *nf_buf)
{
not_yet_implemented();
return 0;
}
/**
* target_if_spectral_get_ext_noisefloor() - Get the extension channel
* noisefloor
* @arg: Pointer to handle for Spectral target_if internal private data
*
* This is only a placeholder since it is not currently required in the offload
* case.
*
* Return: 0
*/
int8_t
target_if_spectral_get_ext_noisefloor(void *arg)
{
not_yet_implemented();
return 0;
}
/**
* target_if_spectral_get_ctl_noisefloor() - Get the control channel noisefloor
* @arg: Pointer to handle for Spectral target_if internal private data
*
* This is only a placeholder since it is not currently required in the offload
* case.
*
* Return: 0
*/
int8_t
target_if_spectral_get_ctl_noisefloor(void *arg)
{
not_yet_implemented();
return 0;
}
/**
* target_if_spectral_sops_configure_params() - Configure user supplied Spectral
* parameters
* @arg: Pointer to handle for Spectral target_if internal private data
* @params: Spectral parameters
* @smode: Spectral scan mode
*
* Function to configure spectral parameters
*
* Return: 0 on success else failure
*/
uint32_t
target_if_spectral_sops_configure_params(
void *arg, struct spectral_config *params,
enum spectral_scan_mode smode)
{
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
return target_if_spectral_info_write(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_PARAMS,
params, sizeof(*params));
}
/**
* target_if_spectral_sops_get_params() - Get user configured Spectral
* parameters
* @arg: Pointer to handle for Spectral target_if internal private data
* @params: Pointer to buffer into which Spectral parameters should be copied
* @smode: Spectral scan mode
*
* Function to get the configured spectral parameters
*
* Return: 0 on success else failure
*/
uint32_t
target_if_spectral_sops_get_params(void *arg, struct spectral_config *params,
enum spectral_scan_mode smode)
{
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
return target_if_spectral_info_read(
spectral,
smode,
TARGET_IF_SPECTRAL_INFO_PARAMS,
params, sizeof(*params));
}
/**
* target_if_spectral_get_ent_mask() - Get enterprise mask
* @arg: Pointer to handle for Spectral target_if internal private data
*
* This is only a placeholder since it is not currently required in the offload
* case.
*
* Return: 0
*/
static uint32_t
target_if_spectral_get_ent_mask(void *arg)
{
not_yet_implemented();
return 0;
}
/**
* target_if_spectral_get_macaddr() - Get radio MAC address
* @arg: Pointer to handle for Spectral target_if internal private data
* @addr: Pointer to buffer into which MAC address should be copied
*
* Function to get the MAC address of the pdev
*
* Return: 0 on success, -1 on failure
*/
static uint32_t
target_if_spectral_get_macaddr(void *arg, char *addr)
{
uint8_t *myaddr = NULL;
struct target_if_spectral *spectral = (struct target_if_spectral *)arg;
struct wlan_objmgr_pdev *pdev = NULL;
pdev = spectral->pdev_obj;
wlan_pdev_obj_lock(pdev);
myaddr = wlan_pdev_get_hw_macaddr(pdev);
wlan_pdev_obj_unlock(pdev);
qdf_mem_copy(addr, myaddr, QDF_MAC_ADDR_SIZE);
return 0;
}
/**
* target_if_init_spectral_param_min_max_be() - Initialize Spectral parameter
* min and max values for beryllium chipsets
*
* @spectral: Spectral LMAC object
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_init_spectral_param_min_max_be(struct target_if_spectral *spectral)
{
struct spectral_param_min_max *param_min_max;
enum phy_ch_width op_bw;
QDF_STATUS status;
param_min_max = &spectral->param_min_max;
param_min_max->fft_size_min = SPECTRAL_PARAM_FFT_SIZE_MIN_GEN3_BE;
param_min_max->scan_count_max = SPECTRAL_PARAM_SCAN_COUNT_MAX_GEN3_BE;
for (op_bw = CH_WIDTH_20MHZ; op_bw < CH_WIDTH_MAX; op_bw++) {
bool is_supported;
status = wlan_reg_is_chwidth_supported(spectral->pdev_obj,
op_bw, &is_supported);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to check if ch_width(%d) is supported",
op_bw);
return QDF_STATUS_E_FAILURE;
}
if (!is_supported) {
param_min_max->fft_size_max[op_bw] = INVALID_FFT_SIZE;
continue;
}
switch (op_bw) {
case CH_WIDTH_20MHZ:
param_min_max->fft_size_max[op_bw] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE_20MHZ;
break;
case CH_WIDTH_40MHZ:
param_min_max->fft_size_max[op_bw] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE_40MHZ;
break;
default:
param_min_max->fft_size_max[op_bw] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_init_spectral_param_min_max() - Initialize Spectral parameter
* min and max values
*
* @spectral: Spectral LMAC object
* @gen: Spectral HW generation
* @target_type: Target type
*
* Initialize Spectral parameter min and max values
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_init_spectral_param_min_max(
struct target_if_spectral *spectral,
enum spectral_gen gen, uint32_t target_type)
{
struct spectral_param_min_max *param_min_max;
if (!spectral) {
spectral_err("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (is_spectral_arch_beryllium(target_type))
return target_if_init_spectral_param_min_max_be(spectral);
param_min_max = &spectral->param_min_max;
switch (gen) {
case SPECTRAL_GEN3:
param_min_max->fft_size_min = SPECTRAL_PARAM_FFT_SIZE_MIN_GEN3;
param_min_max->fft_size_max[CH_WIDTH_20MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_DEFAULT;
param_min_max->scan_count_max =
SPECTRAL_PARAM_SCAN_COUNT_MAX_GEN3;
if (target_type == TARGET_TYPE_QCN9000 ||
target_type == TARGET_TYPE_QCN6122 ||
target_type == TARGET_TYPE_QCN9160 ||
target_type == TARGET_TYPE_QCA5018 ||
target_type == TARGET_TYPE_QCA6490 ||
target_type == TARGET_TYPE_KIWI ||
target_type == TARGET_TYPE_MANGO ||
target_type == TARGET_TYPE_PEACH) {
param_min_max->fft_size_max[CH_WIDTH_40MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_QCN9000;
param_min_max->fft_size_max[CH_WIDTH_80MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_QCN9000;
param_min_max->fft_size_max[CH_WIDTH_160MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_QCN9000;
param_min_max->fft_size_max[CH_WIDTH_80P80MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_QCN9000;
} else {
param_min_max->fft_size_max[CH_WIDTH_40MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_DEFAULT;
param_min_max->fft_size_max[CH_WIDTH_80MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_DEFAULT;
param_min_max->fft_size_max[CH_WIDTH_160MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_DEFAULT;
param_min_max->fft_size_max[CH_WIDTH_80P80MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_DEFAULT;
}
break;
case SPECTRAL_GEN2:
param_min_max->fft_size_min = SPECTRAL_PARAM_FFT_SIZE_MIN_GEN2;
param_min_max->fft_size_max[CH_WIDTH_20MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN2;
param_min_max->fft_size_max[CH_WIDTH_40MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN2;
param_min_max->fft_size_max[CH_WIDTH_80MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN2;
param_min_max->fft_size_max[CH_WIDTH_80P80MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN2;
param_min_max->fft_size_max[CH_WIDTH_160MHZ] =
SPECTRAL_PARAM_FFT_SIZE_MAX_GEN2;
break;
default:
spectral_err("Invalid spectral generation %d", gen);
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_init_spectral_param_properties() - Initialize Spectral parameter
* properties
* @spectral: Pointer to Spectral target_if internal private data
*
* Initialize Spectral parameter properties
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_init_spectral_param_properties(struct target_if_spectral *spectral)
{
enum spectral_scan_mode smode = SPECTRAL_SCAN_MODE_NORMAL;
int param;
/* Initialize default values for properties.
* Default values are supported for all the parameters for all modes
* and allows different values for each mode for all the parameters .
*/
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++) {
for (param = 0; param < SPECTRAL_PARAM_MAX; param++) {
spectral->properties[smode][param].supported = true;
spectral->properties[smode][param].common_all_modes =
false;
}
}
/* Once FW advertisement is in place remove this hard coding */
smode = SPECTRAL_SCAN_MODE_NORMAL;
spectral->properties[SPECTRAL_SCAN_MODE_NORMAL]
[SPECTRAL_PARAM_FREQUENCY].supported = false;
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++) {
spectral->properties[smode]
[SPECTRAL_PARAM_SPECT_PRI].common_all_modes = true;
spectral->properties[smode]
[SPECTRAL_PARAM_SCAN_PERIOD].common_all_modes = true;
spectral->properties[smode]
[SPECTRAL_PARAM_INIT_DELAY].common_all_modes = true;
}
return QDF_STATUS_SUCCESS;
}
/* Bandwidth to half bandwidth mapping */
static const enum phy_ch_width half_bw_map[] = {
#ifdef WLAN_FEATURE_11BE
[CH_WIDTH_320MHZ] = CH_WIDTH_160MHZ,
#endif
[CH_WIDTH_80P80MHZ] = CH_WIDTH_80MHZ,
[CH_WIDTH_160MHZ] = CH_WIDTH_80MHZ,
[CH_WIDTH_80MHZ] = CH_WIDTH_40MHZ,
[CH_WIDTH_40MHZ] = CH_WIDTH_20MHZ,
[CH_WIDTH_20MHZ] = CH_WIDTH_10MHZ,
[CH_WIDTH_10MHZ] = CH_WIDTH_5MHZ,
[CH_WIDTH_5MHZ] = CH_WIDTH_INVALID
};
/**
* target_if_get_half_bandwidth() - Get half bandwidth for a given bandwidth
* @bw: bandwidth
*
* Return: Half bandwidth of @bw
*/
static enum phy_ch_width target_if_get_half_bandwidth(enum phy_ch_width bw)
{
if (bw >= CH_WIDTH_INVALID)
return CH_WIDTH_INVALID;
return half_bw_map[bw];
}
/**
* target_if_populate_supported_sscan_bws_be() - Populate supported spectral
* scan bandwidths for beryllium chipsets
* @spectral: Spectral LMAC object
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_populate_supported_sscan_bws_be(struct target_if_spectral *spectral)
{
enum phy_ch_width op_bw;
struct spectral_supported_bws *supported_bws;
QDF_STATUS status;
if (!spectral) {
spectral_err("spectral variable is null");
return QDF_STATUS_E_NULL_VALUE;
}
/* 20MHz */
op_bw = CH_WIDTH_20MHZ;
supported_bws = &spectral->supported_bws
[SPECTRAL_SCAN_MODE_NORMAL][op_bw];
supported_bws->bandwidths |= 1 << get_supported_sscan_bw_pos(op_bw);
spectral->supported_sscan_bw_list
[SPECTRAL_SCAN_MODE_NORMAL][op_bw] = true;
supported_bws = &spectral->supported_bws
[SPECTRAL_SCAN_MODE_AGILE][op_bw];
supported_bws->bandwidths |= 1 << get_supported_sscan_bw_pos(op_bw);
spectral->supported_sscan_bw_list
[SPECTRAL_SCAN_MODE_AGILE][op_bw] = true;
for (op_bw = CH_WIDTH_40MHZ; op_bw < CH_WIDTH_MAX; op_bw++) {
bool is_supported;
enum phy_ch_width half_op_bw;
status = wlan_reg_is_chwidth_supported(spectral->pdev_obj,
op_bw, &is_supported);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to check if ch_width(%d) is supported",
op_bw);
return QDF_STATUS_E_FAILURE;
}
if (!is_supported)
continue;
spectral_debug("Updating supported bw for op_bw: %d", op_bw);
/* Normal mode */
supported_bws = &spectral->supported_bws
[SPECTRAL_SCAN_MODE_NORMAL][op_bw];
supported_bws->bandwidths |=
1 << get_supported_sscan_bw_pos(op_bw);
spectral->supported_sscan_bw_list
[SPECTRAL_SCAN_MODE_NORMAL][op_bw] = true;
/* Agile mode */
supported_bws = &spectral->supported_bws
[SPECTRAL_SCAN_MODE_AGILE][op_bw];
supported_bws->bandwidths |=
1 << get_supported_sscan_bw_pos(op_bw);
spectral->supported_sscan_bw_list
[SPECTRAL_SCAN_MODE_AGILE][op_bw] = true;
half_op_bw = target_if_get_half_bandwidth(op_bw);
if (half_op_bw != CH_WIDTH_INVALID) {
supported_bws->bandwidths |=
1 << get_supported_sscan_bw_pos(half_op_bw);
spectral->supported_sscan_bw_list
[SPECTRAL_SCAN_MODE_AGILE][half_op_bw] = true;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_populate_supported_sscan_bws() - Populate supported spectral
* scan bandwidths
* @spectral: Spectral LMAC object
* @target_type: Target type
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_populate_supported_sscan_bws(struct target_if_spectral *spectral,
uint32_t target_type)
{
enum spectral_scan_mode smode;
enum phy_ch_width op_bw;
struct spectral_supported_bws *supported_bws;
struct wlan_objmgr_psoc *psoc;
QDF_STATUS status;
if (!spectral) {
spectral_err("spectral is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (is_spectral_arch_beryllium(target_type))
return target_if_populate_supported_sscan_bws_be(spectral);
psoc = wlan_pdev_get_psoc(spectral->pdev_obj);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_NULL_VALUE;
}
for (op_bw = CH_WIDTH_20MHZ; op_bw < CH_WIDTH_MAX; op_bw++) {
bool is_supported;
status = wlan_reg_is_chwidth_supported(spectral->pdev_obj,
op_bw, &is_supported);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to check if ch_width(%d) is supported",
op_bw);
return QDF_STATUS_E_FAILURE;
}
if (!is_supported)
continue;
spectral_debug("Updating supported bw for op_bw: %d", op_bw);
smode = SPECTRAL_SCAN_MODE_NORMAL;
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++) {
supported_bws = &spectral->supported_bws[smode][op_bw];
if (is_ch_width_160_or_80p80(op_bw) &&
smode == SPECTRAL_SCAN_MODE_AGILE) {
/**
* If fragmentation is supported, then only 80Hz
* agile width is supported
*/
if (spectral->rparams.
fragmentation_160[smode]) {
supported_bws->bandwidths |=
1 << get_supported_sscan_bw_pos(
CH_WIDTH_80MHZ);
spectral->supported_sscan_bw_list
[smode][CH_WIDTH_80MHZ] = true;
}
/**
* If restricted 80p80 is supported, then both
* 160 and 80p80 agile widths are supported for
* 160MHz, and only 160MHz agile width is
* supported for 80p80
*/
if (wlan_psoc_nif_fw_ext_cap_get(
psoc, WLAN_SOC_RESTRICTED_80P80_SUPPORT)) {
supported_bws->bandwidths |=
1 << get_supported_sscan_bw_pos(
CH_WIDTH_160MHZ);
spectral->supported_sscan_bw_list
[smode][CH_WIDTH_160MHZ] = true;
if (op_bw == CH_WIDTH_160MHZ) {
supported_bws->bandwidths |=
1 << get_supported_sscan_bw_pos(
CH_WIDTH_80P80MHZ);
spectral->supported_sscan_bw_list
[smode][CH_WIDTH_80P80MHZ] = true;
}
}
} else {
supported_bws->bandwidths |=
1 << get_supported_sscan_bw_pos(
op_bw);
spectral->supported_sscan_bw_list
[smode][op_bw] = true;
}
}
}
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
target_if_init_spectral_capability(struct target_if_spectral *spectral,
uint32_t target_type)
{
struct wlan_objmgr_psoc *psoc;
struct wlan_objmgr_pdev *pdev;
struct wlan_psoc_host_spectral_scaling_params *scaling_params;
uint8_t num_bin_scaling_params, param_idx, pdev_id;
struct target_psoc_info *tgt_psoc_info;
struct wlan_psoc_host_service_ext_param *ext_svc_param;
struct spectral_caps *pcap = &spectral->capability;
QDF_STATUS status;
pdev = spectral->pdev_obj;
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_FAILURE;
}
tgt_psoc_info = wlan_psoc_get_tgt_if_handle(psoc);
if (!tgt_psoc_info) {
spectral_err("target_psoc_info is null");
return QDF_STATUS_E_FAILURE;
}
ext_svc_param = target_psoc_get_service_ext_param(tgt_psoc_info);
num_bin_scaling_params = ext_svc_param->num_bin_scaling_params;
scaling_params = target_psoc_get_spectral_scaling_params(tgt_psoc_info);
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
/* XXX : Workaround: Set Spectral capability */
pcap = &spectral->capability;
pcap->phydiag_cap = 1;
pcap->radar_cap = 1;
pcap->spectral_cap = wlan_pdev_nif_feat_ext_cap_get(
pdev, WLAN_PDEV_FEXT_NORMAL_SPECTRAL_SCAN_DIS);
pcap->advncd_spectral_cap = pcap->spectral_cap;
pcap->hw_gen = spectral->spectral_gen;
pcap->agile_spectral_cap = !wlan_pdev_nif_feat_ext_cap_get(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_DIS);
pcap->agile_spectral_cap_160 = !wlan_pdev_nif_feat_ext_cap_get(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_160_DIS);
pcap->agile_spectral_cap_80p80 = !wlan_pdev_nif_feat_ext_cap_get(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_80P80_DIS);
pcap->agile_spectral_cap_320 = !wlan_pdev_nif_feat_ext_cap_get(
pdev, WLAN_PDEV_FEXT_AGILE_SPECTRAL_SCAN_320_DIS);
if (scaling_params) {
for (param_idx = 0; param_idx < num_bin_scaling_params;
param_idx++) {
if (scaling_params[param_idx].pdev_id == pdev_id) {
pcap->is_scaling_params_populated = true;
pcap->formula_id =
scaling_params[param_idx].formula_id;
pcap->low_level_offset =
scaling_params[param_idx].low_level_offset;
pcap->high_level_offset =
scaling_params[param_idx].high_level_offset;
pcap->rssi_thr =
scaling_params[param_idx].rssi_thr;
pcap->default_agc_max_gain =
scaling_params[param_idx].default_agc_max_gain;
break;
}
}
}
pcap->num_detectors_20mhz = 1;
pcap->num_detectors_40mhz = 1;
pcap->num_detectors_80mhz = 1;
if (target_type == TARGET_TYPE_QCN9000 ||
target_type == TARGET_TYPE_QCN6122 ||
target_type == TARGET_TYPE_QCN9160 ||
target_type == TARGET_TYPE_QCA6490 ||
target_type == TARGET_TYPE_KIWI ||
target_type == TARGET_TYPE_MANGO ||
target_type == TARGET_TYPE_PEACH) {
pcap->num_detectors_160mhz = 1;
pcap->num_detectors_80p80mhz = 1;
pcap->num_detectors_320mhz = 0;
} else if (is_spectral_arch_beryllium(target_type)) {
pcap->num_detectors_160mhz = 1;
pcap->num_detectors_80p80mhz = 0;
pcap->num_detectors_320mhz = 1;
} else {
pcap->num_detectors_160mhz = 2;
pcap->num_detectors_80p80mhz = 2;
pcap->num_detectors_320mhz = 0;
}
status = target_if_populate_supported_sscan_bws(spectral, target_type);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to populate supported sscan BWs");
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_SUPPORT_SPECTRAL_SIMULATION
/**
* target_if_init_spectral_simulation_ops() - Initialize spectral target_if
* internal operations with functions related to spectral simulation
* @p_sops: spectral low level ops table
*
* Initialize spectral target_if internal operations with functions
* related to spectral simulation
*
* Return: None
*/
static void
target_if_init_spectral_simulation_ops(struct target_if_spectral_ops *p_sops)
{
/*
* Spectral simulation is currently intended for platform transitions
* where underlying HW support may not be available for some time.
* Hence, we do not currently provide a runtime switch to turn the
* simulation on or off.
* In case of future requirements where runtime switches are required,
* this can be added. But it is suggested to use application layer
* simulation as far as possible in such cases, since the main
* use of record and replay of samples would concern higher
* level sample processing rather than lower level delivery.
*/
p_sops->is_spectral_enabled = target_if_spectral_sops_sim_is_enabled;
p_sops->is_spectral_active = target_if_spectral_sops_sim_is_active;
p_sops->start_spectral_scan = target_if_spectral_sops_sim_start_scan;
p_sops->stop_spectral_scan = target_if_spectral_sops_sim_stop_scan;
p_sops->configure_spectral =
target_if_spectral_sops_sim_configure_params;
p_sops->get_spectral_config = target_if_spectral_sops_sim_get_params;
}
#else
/**
* target_if_init_spectral_simulation_ops() - Initialize spectral target_if
* internal operations
* @p_sops: spectral low level ops table
*
* Return: None
*/
static void
target_if_init_spectral_simulation_ops(struct target_if_spectral_ops *p_sops)
{
p_sops->is_spectral_enabled = target_if_sops_is_spectral_enabled;
p_sops->is_spectral_active = target_if_sops_is_spectral_active;
p_sops->start_spectral_scan = target_if_sops_start_spectral_scan;
p_sops->stop_spectral_scan = target_if_sops_stop_spectral_scan;
p_sops->configure_spectral = target_if_spectral_sops_configure_params;
p_sops->get_spectral_config = target_if_spectral_sops_get_params;
}
#endif
/**
* target_if_init_spectral_ops_common() - Initialize Spectral target_if internal
* operations common to all Spectral chipset generations
*
* Initializes target_if_spectral_ops common to all chipset generations
*
* Return: None
*/
static void
target_if_init_spectral_ops_common(void)
{
struct target_if_spectral_ops *p_sops = &spectral_ops;
p_sops->get_tsf64 = target_if_spectral_get_tsf64;
p_sops->get_capability = target_if_spectral_get_capability;
p_sops->set_rxfilter = target_if_spectral_set_rxfilter;
p_sops->get_rxfilter = target_if_spectral_get_rxfilter;
target_if_init_spectral_simulation_ops(p_sops);
p_sops->get_extension_channel =
target_if_spectral_get_extension_channel;
p_sops->get_ctl_noisefloor = target_if_spectral_get_ctl_noisefloor;
p_sops->get_ext_noisefloor = target_if_spectral_get_ext_noisefloor;
p_sops->get_ent_spectral_mask = target_if_spectral_get_ent_mask;
p_sops->get_mac_address = target_if_spectral_get_macaddr;
p_sops->get_current_channel = target_if_spectral_get_current_channel;
p_sops->reset_hw = target_if_spectral_reset_hw;
p_sops->get_chain_noise_floor =
target_if_spectral_get_chain_noise_floor;
}
/**
* target_if_init_spectral_ops_gen2() - Initialize Spectral target_if internal
* operations specific to Spectral chipset generation 2.
*
* Initializes target_if_spectral_ops specific to Spectral chipset generation 2.
*
* Return: None
*/
static void
target_if_init_spectral_ops_gen2(void)
{
struct target_if_spectral_ops *p_sops = &spectral_ops;
p_sops->spectral_process_phyerr = target_if_process_phyerr_gen2;
}
#ifdef BIG_ENDIAN_HOST
/**
* spectral_is_host_byte_swap_required() - Check if byte swap has to be done
* on the Host
* @pdev: pdev pointer
* @is_swap_required: Pointer to caller variable
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
spectral_is_host_byte_swap_required(struct wlan_objmgr_pdev *pdev,
bool *is_swap_required)
{
struct wlan_objmgr_psoc *psoc;
struct wmi_unified *wmi_handle;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = get_wmi_unified_hdl_from_psoc(psoc);
if (!wmi_handle) {
spectral_err("wmi handle is null");
return QDF_STATUS_E_INVAL;
}
/**
* If a chipset supports byte-swap inside the target itself, then no
* need to apply byte swap on the Host.
*/
*is_swap_required = !target_if_spectral_wmi_service_enabled(
psoc, wmi_handle,
wmi_service_phy_dma_byte_swap_support);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_init_byte_swap_funcs_gen3() - Initialize byte-swap
* operations for Spectral chipset generation 3.
* @spectral: Spectral LMAC object
* @p_sops: Spectral function pointer table
*
* Return: None
*/
static void
target_if_spectral_init_byte_swap_funcs_gen3(
struct target_if_spectral *spectral,
struct target_if_spectral_ops *p_sops)
{
bool is_swap_required;
QDF_STATUS status;
if (!spectral) {
spectral_err("spectral variable is null");
return;
}
if (!p_sops) {
spectral_err("spectral ops variable is null");
return;
}
status = spectral_is_host_byte_swap_required(spectral->pdev_obj,
&is_swap_required);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to check whether byte swap is required");
return;
}
if (is_swap_required) {
p_sops->byte_swap_headers =
target_if_byte_swap_spectral_headers_gen3;
p_sops->byte_swap_fft_bins =
target_if_byte_swap_spectral_fft_bins_gen3;
} else {
p_sops->byte_swap_headers = NULL;
p_sops->byte_swap_fft_bins = NULL;
}
}
#else
static void
target_if_spectral_init_byte_swap_funcs_gen3(
struct target_if_spectral *spectral,
struct target_if_spectral_ops *p_sops)
{
if (!p_sops) {
spectral_err("spectral ops variable is null");
return;
}
/* Byte-swap is not required for little-endian Hosts */
p_sops->byte_swap_headers = NULL;
p_sops->byte_swap_fft_bins = NULL;
}
#endif /* BIG_ENDIAN_HOST */
/**
* target_if_init_spectral_ops_gen3() - Initialize Spectral target_if internal
* operations specific to Spectral chipset generation 3.
* @spectral: Spectral LMAC object
*
* Initializes target_if_spectral_ops specific to Spectral chipset generation 3.
*
* Return: None
*/
static void
target_if_init_spectral_ops_gen3(struct target_if_spectral *spectral)
{
struct target_if_spectral_ops *p_sops = &spectral_ops;
p_sops->process_spectral_report =
target_if_spectral_process_report_gen3;
target_if_spectral_init_byte_swap_funcs_gen3(spectral, p_sops);
}
/**
* target_if_init_spectral_ops() - Initialize target_if internal Spectral
* operations.
* @spectral: Pointer to Spectral target_if internal private data
*
* Initializes all function pointers in target_if_spectral_ops for
* all generations
*
* Return: None
*/
static void
target_if_init_spectral_ops(struct target_if_spectral *spectral)
{
target_if_init_spectral_ops_common();
if (spectral->spectral_gen == SPECTRAL_GEN2)
target_if_init_spectral_ops_gen2();
else if (spectral->spectral_gen == SPECTRAL_GEN3)
target_if_init_spectral_ops_gen3(spectral);
else
spectral_err("Invalid Spectral generation");
}
/*
* Dummy Functions:
* These functions are initially registered to avoid any crashes due to
* invocation of spectral functions before they are registered.
*/
static uint64_t
null_get_tsf64(void *arg)
{
spectral_ops_not_registered("get_tsf64");
return 0;
}
static uint32_t
null_get_capability(void *arg, enum spectral_capability_type type)
{
/*
* TODO : We should have conditional compilation to get the capability
* : We have not yet attahced ATH layer here, so there is no
* : way to check the HAL capbalities
*/
spectral_ops_not_registered("get_capability");
/* TODO : For the time being, we are returning TRUE */
return true;
}
static uint32_t
null_set_rxfilter(void *arg, int rxfilter)
{
spectral_ops_not_registered("set_rxfilter");
return 1;
}
static uint32_t
null_get_rxfilter(void *arg)
{
spectral_ops_not_registered("get_rxfilter");
return 0;
}
static uint32_t
null_is_spectral_active(void *arg, enum spectral_scan_mode smode)
{
spectral_ops_not_registered("is_spectral_active");
return 1;
}
static uint32_t
null_is_spectral_enabled(void *arg, enum spectral_scan_mode smode)
{
spectral_ops_not_registered("is_spectral_enabled");
return 1;
}
static uint32_t
null_start_spectral_scan(void *arg, enum spectral_scan_mode smode,
enum spectral_cp_error_code *err)
{
spectral_ops_not_registered("start_spectral_scan");
return 1;
}
static uint32_t
null_stop_spectral_scan(void *arg, enum spectral_scan_mode smode)
{
spectral_ops_not_registered("stop_spectral_scan");
return 1;
}
static uint32_t
null_get_extension_channel(void *arg, enum spectral_scan_mode smode)
{
spectral_ops_not_registered("get_extension_channel");
return 1;
}
static int8_t
null_get_ctl_noisefloor(void *arg)
{
spectral_ops_not_registered("get_ctl_noisefloor");
return 1;
}
static int8_t
null_get_ext_noisefloor(void *arg)
{
spectral_ops_not_registered("get_ext_noisefloor");
return 0;
}
static uint32_t
null_configure_spectral(void *arg, struct spectral_config *params,
enum spectral_scan_mode smode)
{
spectral_ops_not_registered("configure_spectral");
return 0;
}
static uint32_t
null_get_spectral_config(void *arg, struct spectral_config *params,
enum spectral_scan_mode smode)
{
spectral_ops_not_registered("get_spectral_config");
return 0;
}
static uint32_t
null_get_ent_spectral_mask(void *arg)
{
spectral_ops_not_registered("get_ent_spectral_mask");
return 0;
}
static uint32_t
null_get_mac_address(void *arg, char *addr)
{
spectral_ops_not_registered("get_mac_address");
return 0;
}
static uint32_t
null_get_current_channel(void *arg, enum spectral_scan_mode smode)
{
spectral_ops_not_registered("get_current_channel");
return 0;
}
static uint32_t
null_reset_hw(void *arg)
{
spectral_ops_not_registered("get_current_channel");
return 0;
}
static uint32_t
null_get_chain_noise_floor(void *arg, int16_t *nf_buf)
{
spectral_ops_not_registered("get_chain_noise_floor");
return 0;
}
static int
null_spectral_process_phyerr(struct target_if_spectral *spectral,
uint8_t *data,
uint32_t datalen,
struct target_if_spectral_rfqual_info *p_rfqual,
struct target_if_spectral_chan_info *p_chaninfo,
uint64_t tsf64,
struct target_if_spectral_acs_stats *acs_stats)
{
spectral_ops_not_registered("spectral_process_phyerr");
return 0;
}
static int
null_process_spectral_report(struct wlan_objmgr_pdev *pdev,
void *payload)
{
spectral_ops_not_registered("process_spectral_report");
return 0;
}
/**
* target_if_spectral_init_dummy_function_table() -
* Initialize target_if internal
* Spectral operations to dummy functions
* @ps: Pointer to Spectral target_if internal private data
*
* Initialize all the function pointers in target_if_spectral_ops with
* dummy functions.
*
* Return: None
*/
static void
target_if_spectral_init_dummy_function_table(struct target_if_spectral *ps)
{
struct target_if_spectral_ops *p_sops = GET_TARGET_IF_SPECTRAL_OPS(ps);
p_sops->get_tsf64 = null_get_tsf64;
p_sops->get_capability = null_get_capability;
p_sops->set_rxfilter = null_set_rxfilter;
p_sops->get_rxfilter = null_get_rxfilter;
p_sops->is_spectral_enabled = null_is_spectral_enabled;
p_sops->is_spectral_active = null_is_spectral_active;
p_sops->start_spectral_scan = null_start_spectral_scan;
p_sops->stop_spectral_scan = null_stop_spectral_scan;
p_sops->get_extension_channel = null_get_extension_channel;
p_sops->get_ctl_noisefloor = null_get_ctl_noisefloor;
p_sops->get_ext_noisefloor = null_get_ext_noisefloor;
p_sops->configure_spectral = null_configure_spectral;
p_sops->get_spectral_config = null_get_spectral_config;
p_sops->get_ent_spectral_mask = null_get_ent_spectral_mask;
p_sops->get_mac_address = null_get_mac_address;
p_sops->get_current_channel = null_get_current_channel;
p_sops->reset_hw = null_reset_hw;
p_sops->get_chain_noise_floor = null_get_chain_noise_floor;
p_sops->spectral_process_phyerr = null_spectral_process_phyerr;
p_sops->process_spectral_report = null_process_spectral_report;
}
/**
* target_if_spectral_register_funcs() - Initialize target_if internal Spectral
* operations
* @spectral: Pointer to Spectral target_if internal private data
* @p: Pointer to Spectral function table
*
* Return: None
*/
static void
target_if_spectral_register_funcs(struct target_if_spectral *spectral,
struct target_if_spectral_ops *p)
{
struct target_if_spectral_ops *p_sops =
GET_TARGET_IF_SPECTRAL_OPS(spectral);
*p_sops = *p;
}
/**
* target_if_spectral_clear_stats() - Clear Spectral stats
* @spectral: Pointer to Spectral target_if internal private data
*
* Function to clear spectral stats
*
* Return: None
*/
static void
target_if_spectral_clear_stats(struct target_if_spectral *spectral)
{
struct target_if_spectral_ops *p_sops =
GET_TARGET_IF_SPECTRAL_OPS(spectral);
qdf_mem_zero(&spectral->spectral_stats,
sizeof(struct target_if_spectral_stats));
spectral->spectral_stats.last_reset_tstamp =
p_sops->get_tsf64(spectral);
}
/**
* target_if_spectral_check_hw_capability() - Check whether HW supports spectral
* @spectral: Pointer to Spectral target_if internal private data
*
* Function to check whether hardware supports spectral
*
* Return: True if HW supports Spectral, false if HW does not support Spectral
*/
static int
target_if_spectral_check_hw_capability(struct target_if_spectral *spectral)
{
struct target_if_spectral_ops *p_sops = NULL;
struct spectral_caps *pcap = NULL;
int is_spectral_supported = true;
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
pcap = &spectral->capability;
if (p_sops->get_capability(spectral, SPECTRAL_CAP_PHYDIAG) == false) {
is_spectral_supported = false;
spectral_info("SPECTRAL : No PHYDIAG support");
return is_spectral_supported;
}
pcap->phydiag_cap = 1;
if (p_sops->get_capability(spectral, SPECTRAL_CAP_RADAR) == false) {
is_spectral_supported = false;
spectral_info("SPECTRAL : No RADAR support");
return is_spectral_supported;
}
pcap->radar_cap = 1;
if (p_sops->get_capability(spectral,
SPECTRAL_CAP_SPECTRAL_SCAN) == false) {
is_spectral_supported = false;
spectral_info("SPECTRAL : No SPECTRAL SUPPORT");
return is_spectral_supported;
}
pcap->spectral_cap = 1;
if (p_sops->get_capability(spectral, SPECTRAL_CAP_ADVNCD_SPECTRAL_SCAN)
== false) {
spectral_info("SPECTRAL : No ADVANCED SPECTRAL SUPPORT");
} else {
pcap->advncd_spectral_cap = 1;
}
return is_spectral_supported;
}
#ifdef QCA_SUPPORT_SPECTRAL_SIMULATION
/**
* target_if_spectral_detach_simulation() - De-initialize Spectral
* Simulation functionality
* @spectral: Pointer to Spectral target_if internal private data
*
* Function to de-initialize Spectral Simulation functionality
*
* Return: None
*/
static void
target_if_spectral_detach_simulation(struct target_if_spectral *spectral)
{
target_if_spectral_sim_detach(spectral);
}
#else
static void
target_if_spectral_detach_simulation(struct target_if_spectral *spectral)
{
}
#endif
/**
* target_if_spectral_detach() - De-initialize target_if Spectral
* @spectral: Pointer to Spectral target_if internal private data
*
* Function to detach target_if spectral
*
* Return: None
*/
static void
target_if_spectral_detach(struct target_if_spectral *spectral)
{
enum spectral_scan_mode smode = SPECTRAL_SCAN_MODE_NORMAL;
spectral_info("spectral detach");
if (spectral) {
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++)
qdf_spinlock_destroy
(&spectral->param_info[smode].osps_lock);
target_if_spectral_detach_simulation(spectral);
qdf_spinlock_destroy(&spectral->spectral_lock);
qdf_spinlock_destroy(&spectral->noise_pwr_reports_lock);
qdf_spinlock_destroy(&spectral->detector_list_lock);
qdf_spinlock_destroy(&spectral->session_report_info_lock);
qdf_spinlock_destroy(&spectral->session_det_map_lock);
qdf_mem_free(spectral);
spectral = NULL;
}
}
#ifdef QCA_SUPPORT_SPECTRAL_SIMULATION
/**
* target_if_spectral_attach_simulation() - Initialize Spectral Simulation
* functionality
* @spectral: Pointer to Spectral target_if internal private data
*
* Function to initialize spectral simulation functionality
*
* Return: 0 on success, negative error code on failure
*/
static int
target_if_spectral_attach_simulation(struct target_if_spectral *spectral)
{
if (target_if_spectral_sim_attach(spectral)) {
qdf_mem_free(spectral);
return -EPERM;
}
return 0;
}
#else
static int
target_if_spectral_attach_simulation(struct target_if_spectral *spectral)
{
return 0;
}
#endif
/**
* target_if_spectral_len_adj_swar_init() - Initialize FFT bin length adjustment
* related info
* @swar: Pointer to Spectral FFT bin length adjustment SWAR params
* @rparams: Pointer to Spectral report parameter object
* @target_type: Target type
*
* Function to Initialize parameters related to Spectral FFT bin
* length adjustment SWARs.
*
* Return: void
*/
static void
target_if_spectral_len_adj_swar_init(struct spectral_fft_bin_len_adj_swar *swar,
struct spectral_report_params *rparams,
uint32_t target_type)
{
if (target_type == TARGET_TYPE_QCA8074V2 ||
target_type == TARGET_TYPE_QCA9574 ||
target_type == TARGET_TYPE_QCN9000 ||
target_type == TARGET_TYPE_QCN6122 ||
target_type == TARGET_TYPE_QCN9160 ||
target_type == TARGET_TYPE_QCA5018 ||
target_type == TARGET_TYPE_QCA6750 ||
target_type == TARGET_TYPE_QCA6490 ||
target_type == TARGET_TYPE_KIWI ||
target_type == TARGET_TYPE_MANGO ||
target_type == TARGET_TYPE_PEACH) {
swar->fftbin_size_war = SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE;
rparams->hw_fft_bin_width = 2;
} else if (target_type == TARGET_TYPE_QCA8074 ||
target_type == TARGET_TYPE_QCA6018 ||
target_type == TARGET_TYPE_QCA6390) {
swar->fftbin_size_war = SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE;
rparams->hw_fft_bin_width = 4;
} else {
swar->fftbin_size_war = SPECTRAL_FFTBIN_SIZE_NO_WAR;
rparams->hw_fft_bin_width = 1;
}
if (target_type == TARGET_TYPE_QCA8074 ||
target_type == TARGET_TYPE_QCA8074V2 ||
target_type == TARGET_TYPE_QCA9574 ||
target_type == TARGET_TYPE_QCA6018 ||
target_type == TARGET_TYPE_QCN6122 ||
target_type == TARGET_TYPE_QCN9160 ||
target_type == TARGET_TYPE_QCN6432 ||
target_type == TARGET_TYPE_QCA5332 ||
target_type == TARGET_TYPE_QCA5018 ||
target_type == TARGET_TYPE_QCN9000 ||
target_type == TARGET_TYPE_QCA6490 ||
target_type == TARGET_TYPE_QCN9224 ||
target_type == TARGET_TYPE_KIWI ||
target_type == TARGET_TYPE_MANGO ||
target_type == TARGET_TYPE_PEACH) {
swar->inband_fftbin_size_adj = 1;
swar->null_fftbin_adj = 1;
} else {
swar->inband_fftbin_size_adj = 0;
swar->null_fftbin_adj = 0;
}
if (target_type == TARGET_TYPE_QCA8074V2)
swar->packmode_fftbin_size_adj = 1;
else
swar->packmode_fftbin_size_adj = 0;
}
/**
* target_if_spectral_report_params_init() - Initialize parameters which
* describes the structure of Spectral reports
*
* @rparams: Pointer to Spectral report parameter object
* @target_type: target type
*
* Function to Initialize parameters related to the structure of Spectral
* reports.
*
* Return: void
*/
static void
target_if_spectral_report_params_init(
struct spectral_report_params *rparams,
uint32_t target_type)
{
enum spectral_scan_mode smode;
/* This entries are currently used by gen3 chipsets only. Hence
* initialization is done for gen3 alone. In future if other generations
* needs to use them they have to add proper initial values.
*/
if (target_type == TARGET_TYPE_QCN9000 ||
target_type == TARGET_TYPE_QCN6122 ||
target_type == TARGET_TYPE_QCN9160 ||
target_type == TARGET_TYPE_QCN6432 ||
target_type == TARGET_TYPE_QCA5018 ||
target_type == TARGET_TYPE_QCA6750 ||
target_type == TARGET_TYPE_QCA6490 ||
target_type == TARGET_TYPE_QCA5332 ||
target_type == TARGET_TYPE_QCN9224 ||
target_type == TARGET_TYPE_KIWI ||
target_type == TARGET_TYPE_MANGO ||
target_type == TARGET_TYPE_PEACH) {
rparams->version = SPECTRAL_REPORT_FORMAT_VERSION_2;
rparams->num_spectral_detectors =
NUM_SPECTRAL_DETECTORS_GEN3_V2;
smode = SPECTRAL_SCAN_MODE_NORMAL;
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++)
rparams->fragmentation_160[smode] = false;
} else {
rparams->version = SPECTRAL_REPORT_FORMAT_VERSION_1;
rparams->num_spectral_detectors =
NUM_SPECTRAL_DETECTORS_GEN3_V1;
smode = SPECTRAL_SCAN_MODE_NORMAL;
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++)
rparams->fragmentation_160[smode] = true;
}
switch (rparams->version) {
case SPECTRAL_REPORT_FORMAT_VERSION_1:
rparams->ssummary_padding_bytes =
NUM_PADDING_BYTES_SSCAN_SUMARY_REPORT_GEN3_V1;
rparams->fft_report_hdr_len =
FFT_REPORT_HEADER_LENGTH_GEN3_V1;
break;
case SPECTRAL_REPORT_FORMAT_VERSION_2:
rparams->ssummary_padding_bytes =
NUM_PADDING_BYTES_SSCAN_SUMARY_REPORT_GEN3_V2;
rparams->fft_report_hdr_len =
FFT_REPORT_HEADER_LENGTH_GEN3_V2;
break;
}
rparams->detid_mode_table[SPECTRAL_DETECTOR_ID_0] =
SPECTRAL_SCAN_MODE_NORMAL;
if (target_type == TARGET_TYPE_QCN9000 ||
target_type == TARGET_TYPE_QCN6122 ||
target_type == TARGET_TYPE_QCN9224 ||
target_type == TARGET_TYPE_QCN6432 ||
target_type == TARGET_TYPE_QCN9160 ||
target_type == TARGET_TYPE_QCA6490 ||
target_type == TARGET_TYPE_KIWI ||
target_type == TARGET_TYPE_MANGO ||
target_type == TARGET_TYPE_PEACH) {
rparams->detid_mode_table[SPECTRAL_DETECTOR_ID_1] =
SPECTRAL_SCAN_MODE_AGILE;
rparams->detid_mode_table[SPECTRAL_DETECTOR_ID_2] =
SPECTRAL_SCAN_MODE_INVALID;
} else if (target_type == TARGET_TYPE_QCA5332) {
rparams->detid_mode_table[SPECTRAL_DETECTOR_ID_1] =
SPECTRAL_SCAN_MODE_INVALID;
rparams->detid_mode_table[SPECTRAL_DETECTOR_ID_2] =
SPECTRAL_SCAN_MODE_INVALID;
} else {
rparams->detid_mode_table[SPECTRAL_DETECTOR_ID_1] =
SPECTRAL_SCAN_MODE_NORMAL;
rparams->detid_mode_table[SPECTRAL_DETECTOR_ID_2] =
SPECTRAL_SCAN_MODE_AGILE;
}
}
/**
* target_if_spectral_timestamp_war_init() - Initialize Spectral timestamp WAR
* related info
* @twar: Pointer to Spectral timstamp WAR related info
*
* Function to Initialize parameters related to Spectral timestamp WAR
*
* Return: void
*/
static void
target_if_spectral_timestamp_war_init(struct spectral_timestamp_war *twar)
{
enum spectral_scan_mode smode;
smode = SPECTRAL_SCAN_MODE_NORMAL;
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++) {
twar->last_fft_timestamp[smode] = 0;
twar->timestamp_war_offset[smode] = 0;
}
twar->target_reset_count = 0;
}
#ifdef OPTIMIZED_SAMP_MESSAGE
/**
* target_if_spectral_is_hw_mode_sbs() - Check if the given pdev is in SBS mode
* @pdev: pdev pointer
* @is_hw_mode_sbs: Pointer to the variable where this function should write
* whether the given pdev is in SBS mode
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_spectral_is_hw_mode_sbs(struct wlan_objmgr_pdev *pdev,
bool *is_hw_mode_sbs)
{
struct wlan_objmgr_psoc *psoc;
struct target_psoc_info *tgt_hdl;
enum wmi_host_hw_mode_config_type mode;
if (!is_hw_mode_sbs) {
spectral_err("is_hw_mode_sbs pointer is null.");
return QDF_STATUS_E_NULL_VALUE;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_NULL_VALUE;
}
tgt_hdl = wlan_psoc_get_tgt_if_handle(psoc);
if (!tgt_hdl) {
spectral_err("target_psoc_info is null");
return QDF_STATUS_E_NULL_VALUE;
}
mode = target_psoc_get_preferred_hw_mode(tgt_hdl);
switch (mode) {
case WMI_HOST_HW_MODE_SBS_PASSIVE:
case WMI_HOST_HW_MODE_SBS:
case WMI_HOST_HW_MODE_DBS_SBS:
case WMI_HOST_HW_MODE_DBS_OR_SBS:
*is_hw_mode_sbs = true;
break;
default:
*is_hw_mode_sbs = false;
break;
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_get_pdev_mac_phy_caps() - Get the MAC_PHY capabilities of a pdev
* @pdev: pdev pointer
*
* Return: On success, pointer to MAC_PHY capabilities of @pdev.
* On failure, NULL
*/
static struct wlan_psoc_host_mac_phy_caps *
target_if_get_pdev_mac_phy_caps(struct wlan_objmgr_pdev *pdev)
{
struct wlan_objmgr_psoc *psoc;
struct wlan_psoc_host_mac_phy_caps *mac_phy_cap_arr;
struct target_psoc_info *tgt_psoc_info;
uint8_t pdev_id;
if (!pdev) {
spectral_err("pdev is NULL");
return NULL;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return NULL;
}
tgt_psoc_info = wlan_psoc_get_tgt_if_handle(psoc);
if (!tgt_psoc_info) {
spectral_err("target_psoc_info is null");
return NULL;
}
mac_phy_cap_arr = target_psoc_get_mac_phy_cap(tgt_psoc_info);
if (!mac_phy_cap_arr) {
spectral_err("mac phy cap array is null");
return NULL;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
return &mac_phy_cap_arr[pdev_id];
}
/**
* struct target_if_sscan_pdev_phy_info - PHY information of the pdev on
* which sscan is done. A pointer to an instance of this structure is passed
* as an argument to the iterator function target_if_find_sscan_pdev_phya1()
* @phy_id: PHY ID of this pdev
* @is_using_phya1: Pointer to the variable where the iterator function should
* populate whether the given pdev is using PHYA1
*/
struct target_if_sscan_pdev_phy_info {
uint8_t phy_id;
bool *is_using_phya1;
};
/**
* target_if_find_sscan_pdev_phya1() - This is an iterator function to
* wlan_objmgr_iterate_obj_list(). It checks whether a given sscan_pdev (pdev on
* which sscan is currently issued) is using PHYA1 by comparing against the pdev
* argument given by the wlan_objmgr_iterate_obj_list()
* @psoc: Pointer to psoc
* @object: Pointer to pdev
* @arg: Pointer to target_if_sscan_pdev_phy_info of the sscan_pdev for which
* we want to check if it uses PHYA1
*
* Return: None
*/
static void
target_if_find_sscan_pdev_phya1(struct wlan_objmgr_psoc *psoc,
void *object, void *arg)
{
struct target_if_sscan_pdev_phy_info *sscan_pdev_phy_info = arg;
struct wlan_objmgr_pdev *cur_pdev = object;
struct wlan_psoc_host_mac_phy_caps *cur_mac_phy_caps;
cur_mac_phy_caps = target_if_get_pdev_mac_phy_caps(cur_pdev);
if (!cur_mac_phy_caps) {
spectral_err("Failed to get MAC PHY Capabilities of"
"pdev %pK", cur_pdev);
return;
}
spectral_debug("supported_bands: %0x phy_id: %d",
cur_mac_phy_caps->supported_bands,
cur_mac_phy_caps->phy_id);
/* No need to do anything if the current pdev is same as sscan_pdev */
if (sscan_pdev_phy_info->phy_id == cur_mac_phy_caps->phy_id)
return;
/**
* Compare the phy_id of both the SBS pdevs to figure out if
* the sscan_pdev using PHYA1
*/
if (sscan_pdev_phy_info->phy_id > cur_mac_phy_caps->phy_id)
*sscan_pdev_phy_info->is_using_phya1 = true;
else
*sscan_pdev_phy_info->is_using_phya1 = false;
}
/**
* target_if_spectral_detector_list_init() - Initialize Spectral detector list
* based on target type
* @spectral: Pointer to Spectral target_if
*
* Function to initialize Spectral detector list for possible combinations of
* Spectral scan mode and channel width, based on target type.
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_spectral_detector_list_init(struct target_if_spectral *spectral)
{
struct sscan_detector_list *det_list;
enum spectral_scan_mode smode;
enum phy_ch_width ch_width;
QDF_STATUS ret;
bool is_hw_mode_sbs = false, is_using_phya1 = false;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
/**
* Special handling is required for SBS mode where the detector
* list should be the following.
* For the pdev that use PHYA0:
* detector 0 for normal mode
* detector 2 for agile mode
* For the pdev that use PHYA1:
* detector 1 for normal mode
* detector 2 for agile mode
*
* There is no direct way of knowing which pdevs are using PHYA0 or
* PHYA1. We need to look at the phy_id of a given pdev and compare
* against other pdevs on the same psoc to figure out whether the given
* pdev is operating using PHYA1.
*/
/* First check whether this pdev is in SBS mode */
ret = target_if_spectral_is_hw_mode_sbs(spectral->pdev_obj,
&is_hw_mode_sbs);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err("Failed to check whether hw mode is SBS");
return ret;
}
if (is_hw_mode_sbs) {
struct wlan_psoc_host_mac_phy_caps *mac_phy_caps;
struct target_if_sscan_pdev_phy_info pdev_phy_info;
mac_phy_caps =
target_if_get_pdev_mac_phy_caps(spectral->pdev_obj);
if (!mac_phy_caps) {
spectral_err("Failed to get MAC PHY Capabilities of"
"pdev %pK", spectral->pdev_obj);
return QDF_STATUS_E_FAILURE;
}
spectral_debug("bands: %0x phy_id: %d",
mac_phy_caps->supported_bands,
mac_phy_caps->phy_id);
pdev_phy_info.phy_id = mac_phy_caps->phy_id;
pdev_phy_info.is_using_phya1 = &is_using_phya1;
/* Iterate over all pdevs on this psoc */
wlan_objmgr_iterate_obj_list
(wlan_pdev_get_psoc(spectral->pdev_obj),
WLAN_PDEV_OP,
target_if_find_sscan_pdev_phya1,
&pdev_phy_info, 0,
WLAN_SPECTRAL_ID);
}
/**
* We assume there are 2 detectors. The Detector ID coming first will
* always be pri80 detector, and second detector for sec80.
*/
ch_width = CH_WIDTH_20MHZ;
for (; ch_width < CH_WIDTH_MAX; ch_width++) {
/* Normal spectral scan */
smode = SPECTRAL_SCAN_MODE_NORMAL;
spectral_debug("is_hw_mode_sbs: %d is_using_phya1:%d",
is_hw_mode_sbs, is_using_phya1);
qdf_spin_lock_bh(&spectral->detector_list_lock);
if (!spectral->supported_sscan_bw_list[smode][ch_width])
goto agile_handling;
det_list = &spectral->detector_list[smode][ch_width];
det_list->num_detectors = 1;
if (is_hw_mode_sbs && is_using_phya1)
det_list->detectors[0] = SPECTRAL_DETECTOR_ID_1;
else
det_list->detectors[0] = SPECTRAL_DETECTOR_ID_0;
if (is_ch_width_160_or_80p80(ch_width) &&
spectral->rparams.fragmentation_160[smode]) {
det_list->num_detectors += 1;
det_list->detectors[1] = SPECTRAL_DETECTOR_ID_1;
}
agile_handling:
/* Agile spectral scan */
smode = SPECTRAL_SCAN_MODE_AGILE;
if (!spectral->supported_sscan_bw_list[smode][ch_width]) {
qdf_spin_unlock_bh(&spectral->detector_list_lock);
continue;
}
det_list = &spectral->detector_list[smode][ch_width];
det_list->num_detectors = 1;
if (spectral->rparams.fragmentation_160[smode])
det_list->detectors[0] = SPECTRAL_DETECTOR_ID_2;
else
det_list->detectors[0] = SPECTRAL_DETECTOR_ID_1;
qdf_spin_unlock_bh(&spectral->detector_list_lock);
}
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS
target_if_spectral_detector_list_init(struct target_if_spectral *spectral)
{
return QDF_STATUS_SUCCESS;
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
/**
* target_if_pdev_spectral_init() - Initialize target_if Spectral
* functionality for the given pdev
* @pdev: Pointer to pdev object
*
* Function to initialize pointer to spectral target_if internal private data
*
* Return: On success, pointer to Spectral target_if internal private data, on
* failure, NULL
*/
void *
target_if_pdev_spectral_init(struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral_ops *p_sops = NULL;
struct target_if_spectral *spectral = NULL;
uint32_t target_type;
uint32_t target_revision;
struct wlan_objmgr_psoc *psoc;
struct wlan_lmac_if_target_tx_ops *tgt_tx_ops;
enum spectral_scan_mode smode = SPECTRAL_SCAN_MODE_NORMAL;
QDF_STATUS status;
struct wlan_lmac_if_tx_ops *tx_ops;
if (!pdev) {
spectral_err("SPECTRAL: pdev is NULL!");
return NULL;
}
spectral = (struct target_if_spectral *)qdf_mem_malloc(
sizeof(struct target_if_spectral));
if (!spectral)
return spectral;
qdf_mem_zero(spectral, sizeof(struct target_if_spectral));
/* Store pdev in Spectral */
spectral->pdev_obj = pdev;
spectral->vdev_id[SPECTRAL_SCAN_MODE_NORMAL] = WLAN_INVALID_VDEV_ID;
spectral->vdev_id[SPECTRAL_SCAN_MODE_AGILE] = WLAN_INVALID_VDEV_ID;
psoc = wlan_pdev_get_psoc(pdev);
tx_ops = wlan_psoc_get_lmac_if_txops(psoc);
if (!tx_ops) {
spectral_err("tx_ops is NULL");
qdf_mem_free(spectral);
return NULL;
}
tgt_tx_ops = &tx_ops->target_tx_ops;
if (tgt_tx_ops->tgt_get_tgt_type) {
target_type = tgt_tx_ops->tgt_get_tgt_type(psoc);
} else {
qdf_mem_free(spectral);
return NULL;
}
if (tgt_tx_ops->tgt_get_tgt_revision) {
target_revision = tgt_tx_ops->tgt_get_tgt_revision(psoc);
} else {
qdf_mem_free(spectral);
return NULL;
}
/* init the function ptr table */
target_if_spectral_init_dummy_function_table(spectral);
/* get spectral function table */
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
/* TODO : Should this be called here of after ath_attach ? */
if (p_sops->get_capability(spectral, SPECTRAL_CAP_PHYDIAG))
spectral_info("HAL_CAP_PHYDIAG : Capable");
/* TODO: Need to fix the capability check for RADAR */
if (p_sops->get_capability(spectral, SPECTRAL_CAP_RADAR))
spectral_info("HAL_CAP_RADAR : Capable");
/* TODO : Need to fix the capability check for SPECTRAL */
/* TODO : Should this be called here of after ath_attach ? */
if (p_sops->get_capability(spectral, SPECTRAL_CAP_SPECTRAL_SCAN))
spectral_info("HAL_CAP_SPECTRAL_SCAN : Capable");
qdf_spinlock_create(&spectral->spectral_lock);
qdf_spinlock_create(&spectral->noise_pwr_reports_lock);
target_if_spectral_clear_stats(spectral);
if (target_type == TARGET_TYPE_QCA8074 ||
target_type == TARGET_TYPE_QCA8074V2 ||
target_type == TARGET_TYPE_QCA9574 ||
target_type == TARGET_TYPE_QCA5332 ||
target_type == TARGET_TYPE_QCA6018 ||
target_type == TARGET_TYPE_QCA5018 ||
target_type == TARGET_TYPE_QCA6390 ||
target_type == TARGET_TYPE_QCN6122 ||
target_type == TARGET_TYPE_QCN9160 ||
target_type == TARGET_TYPE_QCN6432 ||
target_type == TARGET_TYPE_QCA6490 ||
target_type == TARGET_TYPE_QCN9000 ||
target_type == TARGET_TYPE_QCA6750 ||
target_type == TARGET_TYPE_QCN9224 ||
target_type == TARGET_TYPE_KIWI ||
target_type == TARGET_TYPE_MANGO ||
target_type == TARGET_TYPE_PEACH)
spectral->direct_dma_support = true;
target_if_spectral_report_params_init(&spectral->rparams,
target_type);
target_if_spectral_len_adj_swar_init(&spectral->len_adj_swar,
&spectral->rparams,
target_type);
if ((target_type == TARGET_TYPE_QCA8074) ||
(target_type == TARGET_TYPE_QCA8074V2) ||
(target_type == TARGET_TYPE_QCA9574) ||
(target_type == TARGET_TYPE_QCA6018) ||
(target_type == TARGET_TYPE_QCA5018) ||
(target_type == TARGET_TYPE_QCA5332) ||
(target_type == TARGET_TYPE_QCN6122) ||
(target_type == TARGET_TYPE_QCN9160) ||
(target_type == TARGET_TYPE_QCN6432) ||
(target_type == TARGET_TYPE_QCN9000) ||
(target_type == TARGET_TYPE_QCA6290) ||
(target_type == TARGET_TYPE_QCA6390) ||
(target_type == TARGET_TYPE_QCA6490) ||
(target_type == TARGET_TYPE_QCN9224) ||
(target_type == TARGET_TYPE_QCA6750) ||
(target_type == TARGET_TYPE_KIWI) ||
(target_type == TARGET_TYPE_MANGO) ||
(target_type == TARGET_TYPE_PEACH)) {
spectral->spectral_gen = SPECTRAL_GEN3;
spectral->hdr_sig_exp = SPECTRAL_PHYERR_SIGNATURE_GEN3;
spectral->tag_sscan_summary_exp =
TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN3;
spectral->tag_sscan_fft_exp = TLV_TAG_SEARCH_FFT_REPORT_GEN3;
spectral->tlvhdr_size = SPECTRAL_PHYERR_TLVSIZE_GEN3;
} else {
spectral->spectral_gen = SPECTRAL_GEN2;
spectral->hdr_sig_exp = SPECTRAL_PHYERR_SIGNATURE_GEN2;
spectral->tag_sscan_summary_exp =
TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN2;
spectral->tag_sscan_fft_exp = TLV_TAG_SEARCH_FFT_REPORT_GEN2;
spectral->tlvhdr_size = sizeof(struct spectral_phyerr_tlv_gen2);
}
status = target_if_init_spectral_param_min_max(
spectral,
spectral->spectral_gen, target_type);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to initialize parameter min max values");
goto fail;
}
target_if_init_spectral_param_properties(spectral);
/* Init spectral capability */
if (target_if_init_spectral_capability(spectral, target_type) !=
QDF_STATUS_SUCCESS) {
qdf_mem_free(spectral);
return NULL;
}
if (target_if_spectral_attach_simulation(spectral) < 0)
return NULL;
target_if_init_spectral_ops(spectral);
target_if_spectral_timestamp_war_init(&spectral->timestamp_war);
/* Spectral mode specific init */
for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++) {
spectral->params_valid[smode] = false;
qdf_spinlock_create(&spectral->param_info[smode].osps_lock);
spectral->param_info[smode].osps_cache.osc_is_valid = 0;
}
target_if_spectral_register_funcs(spectral, &spectral_ops);
if (target_if_spectral_check_hw_capability(spectral) == false) {
goto fail;
} else {
/*
* TODO: Once the driver architecture transitions to chipset
* versioning based checks, reflect this here.
*/
spectral->is_160_format = false;
spectral->is_lb_edge_extrabins_format = false;
spectral->is_rb_edge_extrabins_format = false;
if (target_type == TARGET_TYPE_QCA9984 ||
target_type == TARGET_TYPE_QCA9888) {
spectral->is_160_format = true;
spectral->is_lb_edge_extrabins_format = true;
spectral->is_rb_edge_extrabins_format = true;
} else if ((target_type == TARGET_TYPE_AR900B) &&
(target_revision == AR900B_REV_2)) {
spectral->is_rb_edge_extrabins_format = true;
}
if (target_type == TARGET_TYPE_QCA9984 ||
target_type == TARGET_TYPE_QCA9888)
spectral->is_sec80_rssi_war_required = true;
spectral->use_nl_bcast = SPECTRAL_USE_NL_BCAST;
if (spectral->spectral_gen == SPECTRAL_GEN3)
init_160mhz_delivery_state_machine(spectral);
}
qdf_spinlock_create(&spectral->detector_list_lock);
qdf_spinlock_create(&spectral->session_report_info_lock);
qdf_spinlock_create(&spectral->session_det_map_lock);
return spectral;
fail:
target_if_spectral_detach(spectral);
return NULL;
}
/**
* target_if_pdev_spectral_deinit() - De-initialize target_if Spectral
* functionality for the given pdev
* @pdev: Pointer to pdev object
*
* Function to de-initialize pointer to spectral target_if internal private data
*
* Return: None
*/
void
target_if_pdev_spectral_deinit(struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return;
}
target_if_spectral_detach(spectral);
return;
}
/**
* target_if_psoc_spectral_deinit() - De-initialize target_if Spectral
* functionality for the given psoc
* @psoc: Pointer to psoc object
*
* Function to de-initialize pointer to psoc spectral target_if internal
* private data
*
* Return: None
*/
static void
target_if_psoc_spectral_deinit(struct wlan_objmgr_psoc *psoc)
{
struct target_if_psoc_spectral *psoc_spectral;
if (!psoc) {
spectral_err("psoc is null");
return;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("Spectral target_if psoc object is null");
return;
}
qdf_mem_free(psoc_spectral);
}
/**
* target_if_psoc_spectral_init() - Initialize target_if Spectral
* functionality for the given psoc
* @psoc: Pointer to psoc object
*
* Function to initialize pointer to psoc spectral target_if internal
* private data
*
* Return: On success, pointer to Spectral psoc target_if internal
* private data, on failure, NULL
*/
static void *
target_if_psoc_spectral_init(struct wlan_objmgr_psoc *psoc)
{
struct target_if_psoc_spectral *psoc_spectral = NULL;
if (!psoc) {
spectral_err("psoc is null");
goto fail;
}
psoc_spectral = (struct target_if_psoc_spectral *)qdf_mem_malloc(
sizeof(struct target_if_psoc_spectral));
if (!psoc_spectral) {
spectral_err("Spectral lmac psoc object allocation failed");
goto fail;
}
psoc_spectral->psoc_obj = psoc;
return psoc_spectral;
fail:
if (psoc_spectral)
target_if_psoc_spectral_deinit(psoc);
return psoc_spectral;
}
/**
* target_if_is_center_freq_of_any_chan() - Check for center frequency
* @pdev: Pointer to pdev object
* @chan_freq: Center frequency of a WLAN channel
* @is_valid: Indicates whether given frequency is valid
*
* Helper routine to check whether given frequency is center frequency
* of a WLAN channel
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_is_center_freq_of_any_chan(struct wlan_objmgr_pdev *pdev,
uint32_t chan_freq,
bool *is_valid)
{
struct regulatory_channel *cur_chan_list;
int i;
if (!pdev) {
spectral_err("pdev object is null");
return QDF_STATUS_E_FAILURE;
}
if (!is_valid) {
spectral_err("is valid argument is null");
return QDF_STATUS_E_FAILURE;
}
cur_chan_list = qdf_mem_malloc(NUM_CHANNELS * sizeof(*cur_chan_list));
if (!cur_chan_list)
return QDF_STATUS_E_FAILURE;
if (wlan_reg_get_current_chan_list(
pdev, cur_chan_list) != QDF_STATUS_SUCCESS) {
spectral_err("Failed to get cur_chan list");
qdf_mem_free(cur_chan_list);
return QDF_STATUS_E_FAILURE;
}
*is_valid = false;
for (i = 0; i < NUM_CHANNELS; i++) {
uint32_t flags;
uint32_t center_freq;
flags = cur_chan_list[i].chan_flags;
center_freq = cur_chan_list[i].center_freq;
if (!(flags & REGULATORY_CHAN_DISABLED) &&
(center_freq == chan_freq)) {
*is_valid = true;
break;
}
}
qdf_mem_free(cur_chan_list);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_calculate_center_freq() - find center frequency of agile span
* @spectral: Pointer to Spectral object
* @ch_width: Channel width array
* @chan_freq: Center frequency of a WLAN channel
* @center_freq: Pointer to center frequency
*
* Helper routine to find the center frequency of the agile span from
* a WLAN channel center frequency
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_calculate_center_freq(struct target_if_spectral *spectral,
enum phy_ch_width *ch_width,
uint16_t chan_freq,
uint16_t *center_freq)
{
enum phy_ch_width agile_ch_width;
if (!spectral) {
spectral_err("spectral target if object is null");
return QDF_STATUS_E_FAILURE;
}
if (!ch_width) {
spectral_err("Channel width array is null");
return QDF_STATUS_E_INVAL;
}
agile_ch_width = ch_width[SPECTRAL_SCAN_MODE_AGILE];
if (!center_freq) {
spectral_err("center_freq argument is null");
return QDF_STATUS_E_FAILURE;
}
if (agile_ch_width == CH_WIDTH_20MHZ) {
*center_freq = chan_freq;
} else {
uint16_t start_freq;
uint16_t end_freq;
const struct bonded_channel_freq *bonded_chan_ptr = NULL;
enum channel_state state;
state = wlan_reg_get_5g_bonded_channel_and_state_for_pwrmode
(spectral->pdev_obj, chan_freq, agile_ch_width,
&bonded_chan_ptr, REG_CURRENT_PWR_MODE,
NO_SCHANS_PUNC);
if (state == CHANNEL_STATE_DISABLE ||
state == CHANNEL_STATE_INVALID) {
spectral_err("Channel state is disable or invalid");
return QDF_STATUS_E_FAILURE;
}
if (!bonded_chan_ptr) {
spectral_err("Bonded channel is not found");
return QDF_STATUS_E_FAILURE;
}
start_freq = bonded_chan_ptr->start_freq;
end_freq = bonded_chan_ptr->end_freq;
*center_freq = (start_freq + end_freq) >> 1;
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_validate_center_freq() - validate agile center frequency
* @spectral: Pointer to Spectral object
* @ch_width: Channel width array
* @center_freq: User provided agile span center frequency
* @is_valid: Indicates whether agile span center frequency is valid
*
* Helper routine to validate user provided agile center frequency
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_validate_center_freq(struct target_if_spectral *spectral,
enum phy_ch_width *ch_width,
uint16_t center_freq,
bool *is_valid)
{
enum phy_ch_width agile_ch_width;
struct wlan_objmgr_pdev *pdev;
QDF_STATUS status;
if (!spectral) {
spectral_err("spectral target if object is null");
return QDF_STATUS_E_FAILURE;
}
if (!ch_width) {
spectral_err("channel width array is null");
return QDF_STATUS_E_INVAL;
}
agile_ch_width = ch_width[SPECTRAL_SCAN_MODE_AGILE];
if (!is_valid) {
spectral_err("is_valid argument is null");
return QDF_STATUS_E_FAILURE;
}
pdev = spectral->pdev_obj;
if (agile_ch_width == CH_WIDTH_20MHZ) {
status = target_if_is_center_freq_of_any_chan
(pdev, center_freq, is_valid);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
} else {
uint16_t start_freq;
uint16_t end_freq;
const struct bonded_channel_freq *bonded_chan_ptr = NULL;
bool is_chan;
status = target_if_is_center_freq_of_any_chan
(pdev, center_freq + FREQ_OFFSET_10MHZ,
&is_chan);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
if (is_chan) {
uint32_t calulated_center_freq;
enum channel_state st;
st =
wlan_reg_get_5g_bonded_channel_and_state_for_pwrmode
(pdev, center_freq + FREQ_OFFSET_10MHZ,
agile_ch_width,
&bonded_chan_ptr,
REG_CURRENT_PWR_MODE,
NO_SCHANS_PUNC);
if (st == CHANNEL_STATE_DISABLE ||
st == CHANNEL_STATE_INVALID) {
spectral_err("Channel state disable/invalid");
return QDF_STATUS_E_FAILURE;
}
if (!bonded_chan_ptr) {
spectral_err("Bonded channel is not found");
return QDF_STATUS_E_FAILURE;
}
start_freq = bonded_chan_ptr->start_freq;
end_freq = bonded_chan_ptr->end_freq;
calulated_center_freq = (start_freq + end_freq) >> 1;
*is_valid = (center_freq == calulated_center_freq);
} else {
*is_valid = false;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_is_agile_span_overlap_with_operating_span() - Helper routine to
* check whether agile span overlaps with current operating band.
*
* @spectral: Pointer to Spectral object
* @ch_width: Channel width array
* @center_freq: Agile span center frequency
* @is_overlapping: Indicates whether Agile span overlaps with operating span
*
* Helper routine to check whether agile span overlaps with current
* operating band.
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_is_agile_span_overlap_with_operating_span
(struct target_if_spectral *spectral,
enum phy_ch_width *ch_width,
struct spectral_config_frequency *center_freq,
bool *is_overlapping)
{
enum phy_ch_width op_ch_width;
enum phy_ch_width agile_ch_width;
const struct bonded_channel_freq *bonded_chan_ptr = NULL;
struct wlan_objmgr_vdev *vdev;
struct wlan_objmgr_pdev *pdev;
int16_t chan_freq;
uint32_t op_start_freq;
uint32_t op_end_freq;
uint32_t agile_start_freq;
uint32_t agile_end_freq;
uint32_t cfreq2;
if (!spectral) {
spectral_err("spectral object is NULL");
return QDF_STATUS_E_FAILURE;
}
pdev = spectral->pdev_obj;
if (!pdev) {
spectral_err("pdev object is NULL");
return QDF_STATUS_E_FAILURE;
}
if (!ch_width) {
spectral_err("channel width array is null");
return QDF_STATUS_E_FAILURE;
}
op_ch_width = ch_width[SPECTRAL_SCAN_MODE_NORMAL];
if (op_ch_width == CH_WIDTH_INVALID) {
spectral_err("Invalid channel width");
return QDF_STATUS_E_INVAL;
}
agile_ch_width = ch_width[SPECTRAL_SCAN_MODE_AGILE];
if (agile_ch_width == CH_WIDTH_INVALID) {
spectral_err("Invalid channel width");
return QDF_STATUS_E_INVAL;
}
if (!is_overlapping) {
spectral_err("Argument(is_overlapping) is NULL");
return QDF_STATUS_E_FAILURE;
}
*is_overlapping = false;
vdev = target_if_spectral_get_vdev(spectral, SPECTRAL_SCAN_MODE_AGILE);
if (!vdev) {
spectral_err("vdev is NULL");
return QDF_STATUS_E_FAILURE;
}
chan_freq = target_if_vdev_get_chan_freq(vdev);
cfreq2 = target_if_vdev_get_chan_freq_seg2(vdev);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
if (cfreq2 < 0) {
spectral_err("cfreq2 is invalid");
return QDF_STATUS_E_FAILURE;
}
if (op_ch_width == CH_WIDTH_20MHZ) {
op_start_freq = chan_freq - FREQ_OFFSET_10MHZ;
op_end_freq = chan_freq + FREQ_OFFSET_10MHZ;
} else {
enum channel_state state;
state = wlan_reg_get_5g_bonded_channel_and_state_for_pwrmode
(pdev, chan_freq, op_ch_width, &bonded_chan_ptr,
REG_CURRENT_PWR_MODE, NO_SCHANS_PUNC);
if (state == CHANNEL_STATE_DISABLE ||
state == CHANNEL_STATE_INVALID) {
spectral_err("Channel state is disable or invalid");
return QDF_STATUS_E_FAILURE;
}
if (!bonded_chan_ptr) {
spectral_err("Bonded channel is not found");
return QDF_STATUS_E_FAILURE;
}
op_start_freq = bonded_chan_ptr->start_freq - FREQ_OFFSET_10MHZ;
op_end_freq = bonded_chan_ptr->end_freq - FREQ_OFFSET_10MHZ;
}
if (agile_ch_width == CH_WIDTH_80P80MHZ) {
agile_start_freq = center_freq->cfreq1 - FREQ_OFFSET_40MHZ;
agile_end_freq = center_freq->cfreq1 + FREQ_OFFSET_40MHZ;
if (agile_end_freq > op_start_freq &&
op_end_freq > agile_start_freq)
*is_overlapping = true;
agile_start_freq = center_freq->cfreq2 - FREQ_OFFSET_40MHZ;
agile_end_freq = center_freq->cfreq2 + FREQ_OFFSET_40MHZ;
if (agile_end_freq > op_start_freq &&
op_end_freq > agile_start_freq)
*is_overlapping = true;
} else {
agile_start_freq = center_freq->cfreq1 -
(wlan_reg_get_bw_value(agile_ch_width) >> 1);
agile_end_freq = center_freq->cfreq1 +
(wlan_reg_get_bw_value(agile_ch_width) >> 1);
if (agile_end_freq > op_start_freq &&
op_end_freq > agile_start_freq)
*is_overlapping = true;
}
if (op_ch_width == CH_WIDTH_80P80MHZ) {
uint32_t sec80_start_feq;
uint32_t sec80_end_freq;
sec80_start_feq = cfreq2 - FREQ_OFFSET_40MHZ;
sec80_end_freq = cfreq2 + FREQ_OFFSET_40MHZ;
if (agile_ch_width == CH_WIDTH_80P80MHZ) {
agile_start_freq =
center_freq->cfreq1 - FREQ_OFFSET_40MHZ;
agile_end_freq =
center_freq->cfreq1 + FREQ_OFFSET_40MHZ;
if (agile_end_freq > sec80_start_feq &&
sec80_end_freq > agile_start_freq)
*is_overlapping = true;
agile_start_freq =
center_freq->cfreq2 - FREQ_OFFSET_40MHZ;
agile_end_freq =
center_freq->cfreq2 + FREQ_OFFSET_40MHZ;
if (agile_end_freq > sec80_start_feq &&
sec80_end_freq > agile_start_freq)
*is_overlapping = true;
} else {
agile_start_freq = center_freq->cfreq1 -
(wlan_reg_get_bw_value(agile_ch_width) >> 1);
agile_end_freq = center_freq->cfreq1 +
(wlan_reg_get_bw_value(agile_ch_width) >> 1);
if (agile_end_freq > sec80_start_feq &&
sec80_end_freq > agile_start_freq)
*is_overlapping = true;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_populate_chwidth() - Helper routine to
* populate channel width for different Spectral modes
*
* @spectral: Pointer to Spectral object
* @ch_width: Channel width array
* @is_80_80_agile: Indicates whether 80+80 agile scan is requested
*
* Helper routine to populate channel width for different Spectral modes
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_spectral_populate_chwidth(struct target_if_spectral *spectral,
enum phy_ch_width *ch_width,
bool is_80_80_agile)
{
enum spectral_scan_mode smode;
if (!spectral) {
spectral_err("Spectral variable is null");
return QDF_STATUS_E_NULL_VALUE;
}
smode = SPECTRAL_SCAN_MODE_NORMAL;
for (; smode < SPECTRAL_SCAN_MODE_MAX; ++smode) {
/* If user has configured sscan bandwidth, use it */
if (spectral->sscan_width_configured[smode]) {
ch_width[smode] = spectral->params[smode].ss_bandwidth;
} else {
/* Otherwise, derive the default sscan bandwidth */
ch_width[smode] = get_default_sscan_bw(spectral, smode,
is_80_80_agile);
if (ch_width[smode] >= CH_WIDTH_INVALID) {
spectral_err("Invalid sscan BW %u",
ch_width[smode]);
return QDF_STATUS_E_FAILURE;
}
spectral->params[smode].ss_bandwidth = ch_width[smode];
}
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_is_valid_80p80_freq() - API to check whether given
* (cfreq1, cfreq2) pair forms a valid 80+80 combination
* @pdev: pointer to pdev
* @cfreq1: center frequency 1
* @cfreq2: center frequency 2
* @is_valid: Indicates weather the frequency is valid
*
* API to check whether given (cfreq1, cfreq2) pair forms a valid 80+80
* combination
*
* Return: QDF_Status
*/
static QDF_STATUS
target_if_spectral_is_valid_80p80_freq(struct wlan_objmgr_pdev *pdev,
uint32_t cfreq1, uint32_t cfreq2,
bool *is_valid)
{
struct ch_params ch_params = {0};
enum channel_state chan_state1;
enum channel_state chan_state2;
struct wlan_objmgr_psoc *psoc;
struct ch_params temp_params = {0};
if (!is_valid) {
spectral_err("Argument(is_valid) is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!pdev) {
spectral_err("pdev is null.");
return QDF_STATUS_E_NULL_VALUE;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null.");
return QDF_STATUS_E_NULL_VALUE;
}
/* In restricted 80P80 MHz enabled, only one 80+80 MHz
* channel is supported with cfreq=5690 and cfreq=5775.
*/
if (wlan_psoc_nif_fw_ext_cap_get(
psoc, WLAN_SOC_RESTRICTED_80P80_SUPPORT)) {
*is_valid = CHAN_WITHIN_RESTRICTED_80P80(cfreq1, cfreq2);
return QDF_STATUS_SUCCESS;
}
ch_params.center_freq_seg1 = wlan_reg_freq_to_chan(pdev, cfreq2);
ch_params.mhz_freq_seg1 = cfreq2;
ch_params.ch_width = CH_WIDTH_80P80MHZ;
wlan_reg_set_channel_params_for_pwrmode(
pdev,
cfreq1 - FREQ_OFFSET_10MHZ,
0,
&ch_params,
REG_CURRENT_PWR_MODE);
if (ch_params.ch_width != CH_WIDTH_80P80MHZ) {
*is_valid = false;
return QDF_STATUS_SUCCESS;
}
if (ch_params.mhz_freq_seg0 != cfreq1 ||
ch_params.mhz_freq_seg1 != cfreq2) {
*is_valid = false;
return QDF_STATUS_SUCCESS;
}
temp_params.ch_width = CH_WIDTH_80MHZ;
chan_state1 = wlan_reg_get_5g_bonded_channel_state_for_pwrmode(
pdev,
ch_params.mhz_freq_seg0 - FREQ_OFFSET_10MHZ,
&temp_params,
REG_CURRENT_PWR_MODE);
if ((chan_state1 == CHANNEL_STATE_DISABLE) ||
(chan_state1 == CHANNEL_STATE_INVALID)) {
*is_valid = false;
return QDF_STATUS_SUCCESS;
}
temp_params.ch_width = CH_WIDTH_80MHZ;
chan_state2 = wlan_reg_get_5g_bonded_channel_state_for_pwrmode(
pdev,
ch_params.mhz_freq_seg1 - FREQ_OFFSET_10MHZ,
&temp_params,
REG_CURRENT_PWR_MODE);
if ((chan_state2 == CHANNEL_STATE_DISABLE) ||
(chan_state2 == CHANNEL_STATE_INVALID)) {
*is_valid = false;
return QDF_STATUS_SUCCESS;
}
if (abs(ch_params.mhz_freq_seg0 - ch_params.mhz_freq_seg1) <=
FREQ_OFFSET_80MHZ) {
*is_valid = false;
return QDF_STATUS_SUCCESS;
}
*is_valid = true;
return QDF_STATUS_SUCCESS;
}
/**
* _target_if_set_spectral_config() - Set spectral config
* @spectral: Pointer to spectral object
* @param: Spectral parameter id and value
* @smode: Spectral scan mode
* @err: Spectral error code
*
* API to set spectral configurations
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE on failure
*/
static QDF_STATUS
_target_if_set_spectral_config(struct target_if_spectral *spectral,
const struct spectral_cp_param *param,
const enum spectral_scan_mode smode,
enum spectral_cp_error_code *err)
{
struct spectral_config params;
struct target_if_spectral_ops *p_sops;
struct spectral_config *sparams;
QDF_STATUS status;
bool is_overlapping;
uint16_t agile_cfreq;
bool is_valid_chan;
struct spectral_param_min_max *param_min_max;
enum phy_ch_width ch_width[SPECTRAL_SCAN_MODE_MAX];
enum spectral_scan_mode m;
struct spectral_config_frequency center_freq = {0};
bool is_bw_supported;
struct wlan_objmgr_vdev *vdev;
enum phy_ch_width op_bw;
if (!err) {
spectral_err("Error code argument is null");
return QDF_STATUS_E_NULL_VALUE;
}
*err = SPECTRAL_SCAN_ERR_INVALID;
if (!param) {
spectral_err("Parameter object is null");
return QDF_STATUS_E_FAILURE;
}
if (!spectral) {
spectral_err("spectral object is NULL");
return QDF_STATUS_E_FAILURE;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
param_min_max = &spectral->param_min_max;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
sparams = &spectral->params[smode];
m = SPECTRAL_SCAN_MODE_NORMAL;
for (; m < SPECTRAL_SCAN_MODE_MAX; m++)
ch_width[m] = CH_WIDTH_INVALID;
if (!spectral->params_valid[smode]) {
target_if_spectral_info_read(spectral,
smode,
TARGET_IF_SPECTRAL_INFO_PARAMS,
&spectral->params[smode],
sizeof(spectral->params[smode]));
spectral->params_valid[smode] = true;
}
switch (param->id) {
case SPECTRAL_PARAM_FFT_PERIOD:
sparams->ss_fft_period = param->value;
break;
case SPECTRAL_PARAM_SCAN_PERIOD:
sparams->ss_period = param->value;
if (sparams->ss_recapture && ((sparams->ss_period <
SPECTRAL_RECAPTURE_SCAN_PERIOD_THRESHOLD) ||
(smode == SPECTRAL_SCAN_MODE_AGILE))) {
sparams->ss_recapture = false;
spectral_err("FFT recapture cannot be enabled due to scan period: %d us or spectral scan mode: %d",
sparams->ss_period, smode);
}
break;
case SPECTRAL_PARAM_FFT_RECAPTURE:
if (param->value) {
if (sparams->ss_period >=
SPECTRAL_RECAPTURE_SCAN_PERIOD_THRESHOLD &&
smode == SPECTRAL_SCAN_MODE_NORMAL) {
sparams->ss_recapture = true;
} else {
spectral_err("FFT recapture cannot be enabled due to scan period: %d us or spectral scan mode: %d",
sparams->ss_period, smode);
sparams->ss_recapture = false;
}
} else {
sparams->ss_recapture = false;
}
break;
case SPECTRAL_PARAM_SCAN_COUNT:
if (param->value > param_min_max->scan_count_max) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
sparams->ss_count = param->value;
break;
case SPECTRAL_PARAM_SHORT_REPORT:
sparams->ss_short_report = (!!param->value) ? true : false;
break;
case SPECTRAL_PARAM_SPECT_PRI:
sparams->ss_spectral_pri = (!!param->value) ? true : false;
break;
case SPECTRAL_PARAM_FFT_SIZE:
status = target_if_spectral_populate_chwidth
(spectral, ch_width, spectral->params
[SPECTRAL_SCAN_MODE_AGILE].ss_frequency.cfreq2 > 0);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
if ((param->value < param_min_max->fft_size_min) ||
(param->value > param_min_max->fft_size_max
[ch_width[smode]])) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
sparams->ss_fft_size = param->value;
break;
case SPECTRAL_PARAM_GC_ENA:
sparams->ss_gc_ena = !!param->value;
break;
case SPECTRAL_PARAM_RESTART_ENA:
sparams->ss_restart_ena = !!param->value;
break;
case SPECTRAL_PARAM_NOISE_FLOOR_REF:
sparams->ss_noise_floor_ref = param->value;
break;
case SPECTRAL_PARAM_INIT_DELAY:
sparams->ss_init_delay = param->value;
break;
case SPECTRAL_PARAM_NB_TONE_THR:
sparams->ss_nb_tone_thr = param->value;
break;
case SPECTRAL_PARAM_STR_BIN_THR:
sparams->ss_str_bin_thr = param->value;
break;
case SPECTRAL_PARAM_WB_RPT_MODE:
sparams->ss_wb_rpt_mode = !!param->value;
break;
case SPECTRAL_PARAM_RSSI_RPT_MODE:
sparams->ss_rssi_rpt_mode = !!param->value;
break;
case SPECTRAL_PARAM_RSSI_THR:
sparams->ss_rssi_thr = param->value;
break;
case SPECTRAL_PARAM_PWR_FORMAT:
sparams->ss_pwr_format = !!param->value;
break;
case SPECTRAL_PARAM_RPT_MODE:
if ((param->value < SPECTRAL_PARAM_RPT_MODE_MIN) ||
(param->value > SPECTRAL_PARAM_RPT_MODE_MAX)) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
sparams->ss_rpt_mode = param->value;
break;
case SPECTRAL_PARAM_BIN_SCALE:
sparams->ss_bin_scale = param->value;
break;
case SPECTRAL_PARAM_DBM_ADJ:
sparams->ss_dbm_adj = !!param->value;
break;
case SPECTRAL_PARAM_CHN_MASK:
sparams->ss_chn_mask = param->value;
break;
case SPECTRAL_PARAM_FREQUENCY:
status = target_if_spectral_populate_chwidth(
spectral, ch_width, param->freq.cfreq2 > 0);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to populate channel width");
return QDF_STATUS_E_FAILURE;
}
if (ch_width[smode] != CH_WIDTH_80P80MHZ &&
param->freq.cfreq2) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
spectral_err("Non zero cfreq2 expected for 80p80 only");
return QDF_STATUS_E_INVAL;
}
if (ch_width[smode] == CH_WIDTH_80P80MHZ &&
!param->freq.cfreq2) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
spectral_err("Non zero cfreq2 expected for 80p80");
return QDF_STATUS_E_INVAL;
}
status = target_if_is_center_freq_of_any_chan
(spectral->pdev_obj, param->freq.cfreq1,
&is_valid_chan);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
if (is_valid_chan) {
status = target_if_calculate_center_freq(
spectral, ch_width,
param->freq.cfreq1,
&agile_cfreq);
if (QDF_IS_STATUS_ERROR(status)) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
} else {
bool is_valid_agile_cfreq;
status = target_if_validate_center_freq
(spectral, ch_width, param->freq.cfreq1,
&is_valid_agile_cfreq);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
if (!is_valid_agile_cfreq) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
spectral_err("Invalid agile center frequency");
return QDF_STATUS_E_FAILURE;
}
agile_cfreq = param->freq.cfreq1;
}
center_freq.cfreq1 = agile_cfreq;
if (ch_width[smode] == CH_WIDTH_80P80MHZ) {
status = target_if_is_center_freq_of_any_chan
(spectral->pdev_obj, param->freq.cfreq2,
&is_valid_chan);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
if (is_valid_chan) {
status = target_if_calculate_center_freq(
spectral, ch_width,
param->freq.cfreq2,
&agile_cfreq);
if (QDF_IS_STATUS_ERROR(status)) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
} else {
bool is_valid_agile_cfreq;
status = target_if_validate_center_freq
(spectral, ch_width, param->freq.cfreq2,
&is_valid_agile_cfreq);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
if (!is_valid_agile_cfreq) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
spectral_err("Invalid agile center frequency");
return QDF_STATUS_E_FAILURE;
}
agile_cfreq = param->freq.cfreq2;
}
center_freq.cfreq2 = agile_cfreq;
}
status = target_if_is_agile_span_overlap_with_operating_span
(spectral, ch_width,
&center_freq, &is_overlapping);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
if (is_overlapping) {
spectral_err("Agile freq %u, %u overlaps with operating span",
center_freq.cfreq1, center_freq.cfreq2);
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
if (ch_width[smode] == CH_WIDTH_80P80MHZ) {
bool is_valid_80p80;
status = target_if_spectral_is_valid_80p80_freq(
spectral->pdev_obj,
center_freq.cfreq1,
center_freq.cfreq2,
&is_valid_80p80);
if (QDF_IS_STATUS_ERROR(status))
return status;
if (!is_valid_80p80) {
spectral_err("Agile freq %u, %u is invalid 80+80 combination",
center_freq.cfreq1,
center_freq.cfreq2);
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
}
sparams->ss_frequency.cfreq1 = center_freq.cfreq1;
sparams->ss_frequency.cfreq2 = center_freq.cfreq2;
break;
case SPECTRAL_PARAM_CHAN_WIDTH:
if (param->value >= CH_WIDTH_INVALID) {
spectral_err("invalid sscan width: %u", param->value);
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
vdev = target_if_spectral_get_vdev(spectral, smode);
if (!vdev) {
spectral_err("vdev is null");
return QDF_STATUS_E_NULL_VALUE;
}
op_bw = target_if_vdev_get_ch_width(vdev);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
/* Validate the bandwidth */
status = target_if_is_sscan_bw_supported(
spectral, smode,
param->value, op_bw, &is_bw_supported,
spectral->params[SPECTRAL_SCAN_MODE_AGILE].
ss_frequency.cfreq2 > 0);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to check if given sscan_bw is supported");
return QDF_STATUS_E_FAILURE;
}
if (!is_bw_supported) {
spectral_err("sscan bw(%u) is not supported for the current operating width(%u) and sscan mode(%u)",
param->value, op_bw, smode);
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
return QDF_STATUS_E_FAILURE;
}
sparams->ss_bandwidth = param->value;
spectral->sscan_width_configured[smode] = true;
break;
}
p_sops->configure_spectral(spectral, sparams, smode);
/* only to validate the writes */
p_sops->get_spectral_config(spectral, &params, smode);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
target_if_set_spectral_config(struct wlan_objmgr_pdev *pdev,
const struct spectral_cp_param *param,
const enum spectral_scan_mode smode,
enum spectral_cp_error_code *err)
{
enum spectral_scan_mode mode = SPECTRAL_SCAN_MODE_NORMAL;
struct target_if_spectral *spectral;
QDF_STATUS status;
if (!err) {
spectral_err("Error code argument is null");
return QDF_STATUS_E_NULL_VALUE;
}
*err = SPECTRAL_SCAN_ERR_INVALID;
if (!pdev) {
spectral_err("pdev object is NULL");
return QDF_STATUS_E_FAILURE;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("spectral object is NULL");
return QDF_STATUS_E_FAILURE;
}
if (!param) {
spectral_err("parameter object is NULL");
return QDF_STATUS_E_FAILURE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
if (!spectral->properties[smode][param->id].supported) {
spectral_err("Spectral parameter(%u) unsupported for mode %u",
param->id, smode);
*err = SPECTRAL_SCAN_ERR_PARAM_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
if (spectral->properties[smode][param->id].common_all_modes) {
spectral_warn("Setting Spectral parameter %u for all modes",
param->id);
for (; mode < SPECTRAL_SCAN_MODE_MAX; mode++) {
status = _target_if_set_spectral_config
(spectral, param, mode, err);
if (QDF_IS_STATUS_ERROR(status))
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
return _target_if_set_spectral_config(spectral, param, smode, err);
}
/**
* target_if_get_fft_bin_count() - Get fft bin count for a given fft length
* @fft_len: FFT length
*
* API to get fft bin count for a given fft length
*
* Return: FFt bin count
*/
static int
target_if_get_fft_bin_count(int fft_len)
{
int bin_count = 0;
switch (fft_len) {
case 5:
bin_count = 16;
break;
case 6:
bin_count = 32;
break;
case 7:
bin_count = 64;
break;
case 8:
bin_count = 128;
break;
case 9:
bin_count = 256;
break;
default:
break;
}
return bin_count;
}
/**
* target_if_init_upper_lower_flags() - Initializes control and extension
* segment flags
* @spectral: pointer to target if spectral object
* @smode: Spectral scan mode
*
* API to initialize the control and extension flags with the lower/upper
* segment based on the HT mode
*
* Return: FFt bin count
*/
static void
target_if_init_upper_lower_flags(struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
int current_channel = 0;
int ext_channel = 0;
struct target_if_spectral_ops *p_sops =
GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return;
}
current_channel = p_sops->get_current_channel(spectral, smode);
ext_channel = p_sops->get_extension_channel(spectral, smode);
if ((current_channel == 0) || (ext_channel == 0))
return;
if (spectral->sc_spectral_20_40_mode) {
/* HT40 mode */
if (ext_channel < current_channel) {
spectral->lower_is_extension = 1;
spectral->upper_is_control = 1;
spectral->lower_is_control = 0;
spectral->upper_is_extension = 0;
} else {
spectral->lower_is_extension = 0;
spectral->upper_is_control = 0;
spectral->lower_is_control = 1;
spectral->upper_is_extension = 1;
}
} else {
/* HT20 mode, lower is always control */
spectral->lower_is_extension = 0;
spectral->upper_is_control = 0;
spectral->lower_is_control = 1;
spectral->upper_is_extension = 0;
}
}
/**
* target_if_get_spectral_config() - Get spectral configuration
* @pdev: Pointer to pdev object
* @param: Pointer to spectral_config structure in which the configuration
* should be returned
* @smode: Spectral scan mode
*
* API to get the current spectral configuration
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE on failure
*/
QDF_STATUS
target_if_get_spectral_config(struct wlan_objmgr_pdev *pdev,
struct spectral_config *param,
enum spectral_scan_mode smode)
{
struct target_if_spectral_ops *p_sops = NULL;
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return QDF_STATUS_E_FAILURE;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (!p_sops) {
spectral_err("p_sops is null");
return QDF_STATUS_E_FAILURE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return QDF_STATUS_E_FAILURE;
}
qdf_mem_zero(param, sizeof(struct spectral_config));
p_sops->get_spectral_config(spectral, param, smode);
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_FEATURE_11BE
/**
* target_if_spectral_get_num_detectors_for_higher_bws() - Get number of
* Spectral detectors for higher bandwidths
* @spectral: Pointer to target if Spectral object
* @ch_width: channel width
* @num_detectors: Pointer to the variable to store number of Spectral detectors
*
* API to get number of Spectral detectors used for scan in the given channel
* width.
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_INVAL on failure
*/
static QDF_STATUS
target_if_spectral_get_num_detectors_for_higher_bws(
struct target_if_spectral *spectral,
enum phy_ch_width ch_width,
uint32_t *num_detectors)
{
switch (ch_width) {
case CH_WIDTH_320MHZ:
*num_detectors = spectral->capability.num_detectors_320mhz;
break;
default:
spectral_err("Unsupported channel width %d", ch_width);
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS
target_if_spectral_get_num_detectors_for_higher_bws(
struct target_if_spectral *spectral,
enum phy_ch_width ch_width,
uint32_t *num_detectors)
{
spectral_err("Unsupported channel width %d", ch_width);
return QDF_STATUS_E_INVAL;
}
#endif
/**
* target_if_spectral_get_num_detectors() - Get number of Spectral detectors
* @spectral: Pointer to target if Spectral object
* @ch_width: channel width
* @num_detectors: Pointer to the variable to store number of Spectral detectors
*
* API to get number of Spectral detectors used for scan in the given channel
* width.
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_INVAL on failure
*/
static QDF_STATUS
target_if_spectral_get_num_detectors(struct target_if_spectral *spectral,
enum phy_ch_width ch_width,
uint32_t *num_detectors)
{
if (!spectral) {
spectral_err("target if spectral object is null");
return QDF_STATUS_E_INVAL;
}
if (ch_width >= CH_WIDTH_INVALID) {
spectral_err("Invalid channel width %d", ch_width);
return QDF_STATUS_E_INVAL;
}
if (!num_detectors) {
spectral_err("Invalid argument, number of detectors");
return QDF_STATUS_E_INVAL;
}
switch (ch_width) {
case CH_WIDTH_20MHZ:
*num_detectors = spectral->capability.num_detectors_20mhz;
break;
case CH_WIDTH_40MHZ:
*num_detectors = spectral->capability.num_detectors_40mhz;
break;
case CH_WIDTH_80MHZ:
*num_detectors = spectral->capability.num_detectors_80mhz;
break;
case CH_WIDTH_160MHZ:
*num_detectors = spectral->capability.num_detectors_160mhz;
break;
case CH_WIDTH_80P80MHZ:
*num_detectors = spectral->capability.num_detectors_80p80mhz;
break;
default:
return target_if_spectral_get_num_detectors_for_higher_bws(
spectral, ch_width, num_detectors);
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_finite_scan_init() - Initializations required for finite
* Spectral scan
* @spectral: Pointer to target of Spctral object
* @smode: Spectral scan mode
*
* This routine initializes the finite Spectral scan. Finite Spectral scan is
* triggered by configuring a non zero scan count.
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS
target_if_spectral_finite_scan_init(struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct target_if_finite_spectral_scan_params *finite_scan;
enum phy_ch_width ch_width;
uint32_t num_detectors;
QDF_STATUS status;
uint16_t sscan_count;
if (!spectral) {
spectral_err("target if spectral object is null");
return QDF_STATUS_E_INVAL;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode");
return QDF_STATUS_E_INVAL;
}
ch_width = spectral->ch_width[smode];
status = target_if_spectral_get_num_detectors(spectral, ch_width,
&num_detectors);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to get number of detectors");
return QDF_STATUS_E_FAILURE;
}
finite_scan = &spectral->finite_scan[smode];
sscan_count = spectral->params[smode].ss_count;
finite_scan->finite_spectral_scan = true;
finite_scan->num_reports_expected = num_detectors * sscan_count;
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_scan_enable_params() - Enable use of desired Spectral
* parameters
* @spectral: Pointer to Spectral target_if internal private data
* @spectral_params: Pointer to Spectral parameters
* @smode: Spectral scan mode
* @err: Spectral error code
*
* Enable use of desired Spectral parameters by configuring them into HW, and
* starting Spectral scan
*
* Return: 0 on success, 1 on failure
*/
int
target_if_spectral_scan_enable_params(struct target_if_spectral *spectral,
struct spectral_config *spectral_params,
enum spectral_scan_mode smode,
enum spectral_cp_error_code *err)
{
int extension_channel = 0;
int current_channel = 0;
struct target_if_spectral_ops *p_sops = NULL;
QDF_STATUS status;
struct wlan_objmgr_pdev *pdev;
struct wlan_objmgr_psoc *psoc;
if (!spectral) {
spectral_err("Spectral LMAC object is NULL");
return 1;
}
pdev = spectral->pdev_obj;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return 1;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (!p_sops) {
spectral_err("p_sops is NULL");
return 1;
}
spectral->sc_spectral_noise_pwr_cal =
spectral_params->ss_spectral_pri ? 1 : 0;
/* check if extension channel is present */
extension_channel = p_sops->get_extension_channel(spectral, smode);
current_channel = p_sops->get_current_channel(spectral, smode);
if (spectral->capability.advncd_spectral_cap) {
spectral->lb_edge_extrabins = 0;
spectral->rb_edge_extrabins = 0;
if (spectral->is_lb_edge_extrabins_format &&
spectral->params[smode].ss_rpt_mode == 2) {
spectral->lb_edge_extrabins = 4;
}
if (spectral->is_rb_edge_extrabins_format &&
spectral->params[smode].ss_rpt_mode == 2) {
spectral->rb_edge_extrabins = 4;
}
if (spectral->ch_width[smode] == CH_WIDTH_20MHZ) {
spectral->sc_spectral_20_40_mode = 0;
spectral->spectral_numbins =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_fft_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_data_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
/*
* Initialize classifier params to be sent to user
* space classifier
*/
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz = 0;
} else if (spectral->ch_width[smode] == CH_WIDTH_40MHZ) {
/* TODO : Remove this variable */
spectral->sc_spectral_20_40_mode = 1;
spectral->spectral_numbins =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_fft_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_data_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
/*
* Initialize classifier params to be sent to user
* space classifier
*/
if (extension_channel < current_channel) {
spectral->classifier_params.lower_chan_in_mhz =
extension_channel;
spectral->classifier_params.upper_chan_in_mhz =
current_channel;
} else {
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz =
extension_channel;
}
} else if (spectral->ch_width[smode] == CH_WIDTH_80MHZ) {
/* Set the FFT Size */
/* TODO : Remove this variable */
spectral->sc_spectral_20_40_mode = 0;
spectral->spectral_numbins =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_fft_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_data_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
/*
* Initialize classifier params to be sent to user
* space classifier
*/
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz = 0;
/*
* Initialize classifier params to be sent to user
* space classifier
*/
if (extension_channel < current_channel) {
spectral->classifier_params.lower_chan_in_mhz =
extension_channel;
spectral->classifier_params.upper_chan_in_mhz =
current_channel;
} else {
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz =
extension_channel;
}
} else if (is_ch_width_160_or_80p80(
spectral->ch_width[smode])) {
/* Set the FFT Size */
/* The below applies to both 160 and 80+80 cases */
/* TODO : Remove this variable */
spectral->sc_spectral_20_40_mode = 0;
spectral->spectral_numbins =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_fft_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
spectral->spectral_data_len =
target_if_get_fft_bin_count(
spectral->params[smode].ss_fft_size);
/*
* Initialize classifier params to be sent to user
* space classifier
*/
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz = 0;
/*
* Initialize classifier params to be sent to user
* space classifier
*/
if (extension_channel < current_channel) {
spectral->classifier_params.lower_chan_in_mhz =
extension_channel;
spectral->classifier_params.upper_chan_in_mhz =
current_channel;
} else {
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz =
extension_channel;
}
}
if (spectral->spectral_numbins) {
spectral->spectral_numbins +=
spectral->lb_edge_extrabins;
spectral->spectral_numbins +=
spectral->rb_edge_extrabins;
}
if (spectral->spectral_fft_len) {
spectral->spectral_fft_len +=
spectral->lb_edge_extrabins;
spectral->spectral_fft_len +=
spectral->rb_edge_extrabins;
}
if (spectral->spectral_data_len) {
spectral->spectral_data_len +=
spectral->lb_edge_extrabins;
spectral->spectral_data_len +=
spectral->rb_edge_extrabins;
}
} else {
/*
* The decision to find 20/40 mode is found based on the
* presence of extension channel
* instead of channel width, as the channel width can
* dynamically change
*/
if (extension_channel == 0) {
spectral->spectral_numbins = SPECTRAL_HT20_NUM_BINS;
spectral->spectral_dc_index = SPECTRAL_HT20_DC_INDEX;
spectral->spectral_fft_len = SPECTRAL_HT20_FFT_LEN;
spectral->spectral_data_len =
SPECTRAL_HT20_TOTAL_DATA_LEN;
/* only valid in 20-40 mode */
spectral->spectral_lower_max_index_offset = -1;
/* only valid in 20-40 mode */
spectral->spectral_upper_max_index_offset = -1;
spectral->spectral_max_index_offset =
spectral->spectral_fft_len + 2;
spectral->sc_spectral_20_40_mode = 0;
/*
* Initialize classifier params to be sent to user
* space classifier
*/
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz = 0;
} else {
spectral->spectral_numbins =
SPECTRAL_HT40_TOTAL_NUM_BINS;
spectral->spectral_fft_len = SPECTRAL_HT40_FFT_LEN;
spectral->spectral_data_len =
SPECTRAL_HT40_TOTAL_DATA_LEN;
spectral->spectral_dc_index = SPECTRAL_HT40_DC_INDEX;
/* only valid in 20 mode */
spectral->spectral_max_index_offset = -1;
spectral->spectral_lower_max_index_offset =
spectral->spectral_fft_len + 2;
spectral->spectral_upper_max_index_offset =
spectral->spectral_fft_len + 5;
spectral->sc_spectral_20_40_mode = 1;
/*
* Initialize classifier params to be sent to user
* space classifier
*/
if (extension_channel < current_channel) {
spectral->classifier_params.lower_chan_in_mhz =
extension_channel;
spectral->classifier_params.upper_chan_in_mhz =
current_channel;
} else {
spectral->classifier_params.lower_chan_in_mhz =
current_channel;
spectral->classifier_params.upper_chan_in_mhz =
extension_channel;
}
}
}
spectral->send_single_packet = 0;
spectral->classifier_params.spectral_20_40_mode =
spectral->sc_spectral_20_40_mode;
spectral->classifier_params.spectral_dc_index =
spectral->spectral_dc_index;
spectral->spectral_sent_msg = 0;
spectral->classify_scan = 0;
spectral->num_spectral_data = 0;
if (!p_sops->is_spectral_active(spectral, smode)) {
p_sops->configure_spectral(spectral, spectral_params, smode);
spectral->rparams.marker[smode].is_valid = false;
if (spectral->params[smode].ss_count) {
status = target_if_spectral_finite_scan_init(spectral,
smode);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to init finite scan");
return 1;
}
}
p_sops->start_spectral_scan(spectral, smode, err);
spectral->timestamp_war.timestamp_war_offset[smode] = 0;
spectral->timestamp_war.last_fft_timestamp[smode] = 0;
}
/* get current spectral configuration */
p_sops->get_spectral_config(spectral, &spectral->params[smode], smode);
target_if_init_upper_lower_flags(spectral, smode);
return 0;
}
/**
* target_if_is_aspectral_prohibited_by_adfs() - Is Agile Spectral prohibited by
* Agile DFS
* @psoc: Pointer to psoc
* @object: Pointer to pdev
* @arg: Pointer to flag which indicates whether Agile Spectral is prohibited
*
* This API checks whether Agile DFS is running on any of the pdevs. If so, it
* indicates that Agile Spectral scan is prohibited by Agile DFS.
*
* Return: void
*/
static void
target_if_is_aspectral_prohibited_by_adfs(struct wlan_objmgr_psoc *psoc,
void *object, void *arg)
{
bool *is_aspectral_prohibited = arg;
struct wlan_objmgr_pdev *cur_pdev = object;
bool is_agile_precac_enabled_cur_pdev = false;
bool is_agile_rcac_enabled_cur_pdev = false;
QDF_STATUS status;
if (!is_aspectral_prohibited) {
spectral_err("Arg(Indication flag for agile spectral prohibition) is null.");
return;
}
if (*is_aspectral_prohibited)
return;
if (!psoc) {
spectral_err("psoc is null.");
*is_aspectral_prohibited = true;
return;
}
if (!cur_pdev) {
spectral_err("Current pdev is null.");
*is_aspectral_prohibited = true;
return;
}
status = ucfg_dfs_get_agile_precac_enable
(cur_pdev,
&is_agile_precac_enabled_cur_pdev);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Get agile precac failed, prohibiting aSpectral");
*is_aspectral_prohibited = true;
return;
}
status = ucfg_dfs_get_rcac_enable(cur_pdev,
&is_agile_rcac_enabled_cur_pdev);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Get agile RCAC failed, prohibiting aSpectral");
*is_aspectral_prohibited = true;
return;
}
if (is_agile_precac_enabled_cur_pdev) {
spectral_err("aDFS preCAC is in progress on one of the pdevs");
*is_aspectral_prohibited = true;
} else if (is_agile_rcac_enabled_cur_pdev) {
spectral_err("aDFS RCAC is in progress on one of the pdevs");
*is_aspectral_prohibited = true;
}
}
/**
* target_if_get_curr_band() - Get current operating band of pdev
* @pdev: pointer to pdev object
* @vdev_id: id of vdev
*
* API to get current operating band of a given pdev.
*
* Return: if success enum reg_wifi_band, REG_BAND_UNKNOWN in case of failure
*/
static enum reg_wifi_band
target_if_get_curr_band(struct wlan_objmgr_pdev *pdev, uint8_t vdev_id)
{
struct wlan_objmgr_vdev *vdev;
int16_t chan_freq;
enum reg_wifi_band cur_band;
if (!pdev) {
spectral_err("pdev is NULL");
return REG_BAND_UNKNOWN;
}
if (vdev_id == WLAN_INVALID_VDEV_ID)
vdev = wlan_objmgr_pdev_get_first_vdev(pdev, WLAN_SPECTRAL_ID);
else
vdev = wlan_objmgr_get_vdev_by_id_from_pdev(pdev, vdev_id,
WLAN_SPECTRAL_ID);
if (!vdev) {
spectral_debug("vdev is NULL");
return REG_BAND_UNKNOWN;
}
chan_freq = target_if_vdev_get_chan_freq(vdev);
cur_band = wlan_reg_freq_to_band(chan_freq);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
return cur_band;
}
/**
* target_if_is_agile_scan_active_in_5g() - Is Agile Spectral scan active on
* any of the 5G pdevs
* @psoc: Pointer to psoc
* @object: Pointer to pdev
* @arg: Pointer to flag which indicates whether Agile Spectral scan is in
* progress in any 5G pdevs
*
* Return: void
*/
static void
target_if_is_agile_scan_active_in_5g(struct wlan_objmgr_psoc *psoc,
void *object, void *arg)
{
enum reg_wifi_band band;
bool *is_agile_scan_inprog_5g_pdev = arg;
struct target_if_spectral *spectral;
struct wlan_objmgr_pdev *cur_pdev = object;
struct target_if_spectral_ops *p_sops;
if (*is_agile_scan_inprog_5g_pdev)
return;
spectral = get_target_if_spectral_handle_from_pdev(cur_pdev);
if (!spectral) {
spectral_err("target if spectral handle is NULL");
return;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
band = target_if_get_curr_band(
cur_pdev, spectral->vdev_id[SPECTRAL_SCAN_MODE_AGILE]);
if (band == REG_BAND_UNKNOWN) {
spectral_debug("Failed to get current band");
return;
}
if (band == REG_BAND_5G &&
p_sops->is_spectral_active(spectral, SPECTRAL_SCAN_MODE_AGILE))
*is_agile_scan_inprog_5g_pdev = true;
}
/**
* target_if_is_agile_supported_cur_chmask() - Is Agile Spectral scan supported
* for current vdev rx chainmask.
*
* @spectral: Pointer to Spectral object
* @is_supported: Pointer to is_supported
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE on failure
*/
static QDF_STATUS
target_if_is_agile_supported_cur_chmask(struct target_if_spectral *spectral,
bool *is_supported)
{
struct wlan_objmgr_vdev *vdev;
uint8_t vdev_rxchainmask;
struct wlan_objmgr_psoc *psoc;
struct wlan_objmgr_pdev *pdev;
struct target_psoc_info *tgt_psoc_info;
struct wlan_psoc_host_service_ext_param *ext_svc_param;
struct wlan_psoc_host_mac_phy_caps *mac_phy_cap_arr = NULL;
struct wlan_psoc_host_mac_phy_caps *mac_phy_cap = NULL;
struct wlan_psoc_host_chainmask_table *table;
int j;
uint32_t table_id;
enum phy_ch_width ch_width;
uint8_t pdev_id;
if (!spectral) {
spectral_err("spectral target if object is null");
return QDF_STATUS_E_FAILURE;
}
if (!is_supported) {
spectral_err("is supported argument is null");
return QDF_STATUS_E_FAILURE;
}
if (spectral->spectral_gen <= SPECTRAL_GEN2) {
spectral_err("HW Agile mode is not supported up to gen 2");
return QDF_STATUS_E_FAILURE;
}
pdev = spectral->pdev_obj;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_FAILURE;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_FAILURE;
}
vdev = target_if_spectral_get_vdev(spectral, SPECTRAL_SCAN_MODE_AGILE);
if (!vdev) {
spectral_err("First vdev is NULL");
return QDF_STATUS_E_FAILURE;
}
vdev_rxchainmask = wlan_vdev_mlme_get_rxchainmask(vdev);
if (!vdev_rxchainmask) {
spectral_err("vdev rx chainmask is zero");
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
return QDF_STATUS_E_FAILURE;
}
ch_width = target_if_vdev_get_ch_width(vdev);
if (ch_width == CH_WIDTH_INVALID) {
spectral_err("Invalid channel width");
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
return QDF_STATUS_E_FAILURE;
}
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
tgt_psoc_info = wlan_psoc_get_tgt_if_handle(psoc);
if (!tgt_psoc_info) {
spectral_err("target_psoc_info is null");
return QDF_STATUS_E_FAILURE;
}
ext_svc_param = target_psoc_get_service_ext_param(tgt_psoc_info);
if (!ext_svc_param) {
spectral_err("Extended service ready param null");
return QDF_STATUS_E_FAILURE;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
mac_phy_cap_arr = target_psoc_get_mac_phy_cap(tgt_psoc_info);
if (!mac_phy_cap_arr) {
spectral_err("mac phy cap array is null");
return QDF_STATUS_E_FAILURE;
}
mac_phy_cap = &mac_phy_cap_arr[pdev_id];
if (!mac_phy_cap) {
spectral_err("mac phy cap is null");
return QDF_STATUS_E_FAILURE;
}
table_id = mac_phy_cap->chainmask_table_id;
table = &ext_svc_param->chainmask_table[table_id];
if (!table) {
spectral_err("chainmask table not found");
return QDF_STATUS_E_FAILURE;
}
for (j = 0; j < table->num_valid_chainmasks; j++) {
if (table->cap_list[j].chainmask == vdev_rxchainmask) {
if (ch_width <= CH_WIDTH_80MHZ)
*is_supported =
table->cap_list[j].supports_aSpectral;
else
*is_supported =
table->cap_list[j].supports_aSpectral_160;
break;
}
}
if (j == table->num_valid_chainmasks) {
spectral_err("vdev rx chainmask %u not found in table id = %u",
vdev_rxchainmask, table_id);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
#define INVALID_SPAN_NUM (-1)
/**
* target_if_spectral_get_num_spans() - Get number of spans for a given sscan_bw
* @pdev: Pointer to pdev object
* @sscan_bw: Spectral scan bandwidth
*
* Return: Number of spans on success, INVALID_SPAN_NUM on failure
*/
static int
target_if_spectral_get_num_spans(
struct wlan_objmgr_pdev *pdev,
enum phy_ch_width sscan_bw)
{
struct wlan_objmgr_psoc *psoc;
int num_spans;
if (!pdev) {
spectral_err_rl("pdev is null");
return INVALID_SPAN_NUM;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err_rl("psoc is null");
return INVALID_SPAN_NUM;
}
if (sscan_bw == CH_WIDTH_80P80MHZ) {
num_spans = 2;
if (wlan_psoc_nif_fw_ext_cap_get(
psoc, WLAN_SOC_RESTRICTED_80P80_SUPPORT))
/* 5 MHz frequency span in restricted 80p80 case */
num_spans += 1;
} else {
num_spans = 1;
}
return num_spans;
}
#ifdef OPTIMIZED_SAMP_MESSAGE
/**
* target_if_spectral_populate_session_report_info() - Populate per-session
* report level information.
*
* @spectral: Pointer to Spectral object
* @smode: Spectral scan mode
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_spectral_populate_session_report_info(
struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct per_session_report_info *rpt_info;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral scan mode");
return QDF_STATUS_E_FAILURE;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
/* Fill per-session report information, based on the spectral mode */
rpt_info = &spectral->report_info[smode];
rpt_info->operating_bw = spectral->ch_width[SPECTRAL_SCAN_MODE_NORMAL];
rpt_info->sscan_bw = spectral->ch_width[smode];
rpt_info->sscan_cfreq1 = spectral->params[smode].ss_frequency.cfreq1;
rpt_info->sscan_cfreq2 = spectral->params[smode].ss_frequency.cfreq2;
rpt_info->num_spans = target_if_spectral_get_num_spans(
spectral->pdev_obj,
rpt_info->sscan_bw);
if (rpt_info->num_spans == INVALID_SPAN_NUM) {
spectral_err_rl("Invalid number of spans: %u",
rpt_info->num_spans);
return QDF_STATUS_E_INVAL;
}
rpt_info->valid = true;
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_populate_session_det_host_info() - Populate per-session
* detector level information that is known to the Host
*
* @spectral: Pointer to Spectral object
* @smode: Spectral scan mode
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_spectral_populate_session_det_host_info(
struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct per_session_report_info *rpt_info;
struct sscan_detector_list *detector_list;
struct wlan_objmgr_psoc *psoc;
uint16_t dest_det_idx = 0;
uint16_t dest_span_idx = 0;
bool is_sec80 = false;
uint8_t det, dest_det;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral scan mode");
return QDF_STATUS_E_FAILURE;
}
if (!spectral->pdev_obj) {
spectral_err_rl("Spectral PDEV is null");
return QDF_STATUS_E_NULL_VALUE;
}
psoc = wlan_pdev_get_psoc(spectral->pdev_obj);
if (!psoc) {
spectral_err_rl("psoc is null");
return QDF_STATUS_E_NULL_VALUE;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
rpt_info = &spectral->report_info[smode];
qdf_spin_lock_bh(&spectral->detector_list_lock);
/* Fill per-sesion detector-level information */
detector_list = &spectral->detector_list[smode][rpt_info->sscan_bw];
for (det = 0; det < detector_list->num_detectors; det++) {
struct per_session_det_map *det_map;
qdf_spin_lock_bh(&spectral->session_det_map_lock);
det_map = &spectral->det_map[detector_list->detectors[det]];
if (detector_list->num_detectors > 1) {
if (det == 0) {
det_map->buf_type = SPECTRAL_MSG_BUF_NEW;
det_map->send_to_upper_layers = false;
} else if (det == detector_list->num_detectors - 1) {
det_map->buf_type = SPECTRAL_MSG_BUF_SAVED;
det_map->send_to_upper_layers = true;
} else {
/* middle fragments */
det_map->buf_type = SPECTRAL_MSG_BUF_SAVED;
det_map->send_to_upper_layers = false;
}
} else {
det_map->buf_type = SPECTRAL_MSG_BUF_NEW;
det_map->send_to_upper_layers = true;
}
det_map->num_dest_det_info = 1;
if (rpt_info->sscan_bw == CH_WIDTH_80P80MHZ &&
wlan_psoc_nif_fw_ext_cap_get(
psoc, WLAN_SOC_RESTRICTED_80P80_SUPPORT)) {
/**
* In 165MHz case, 1 Spectral HW detector maps to 3
* detectors in SAMP msg.
*/
det_map->num_dest_det_info += 2;
}
for (dest_det = 0; dest_det < det_map->num_dest_det_info;
dest_det++) {
struct per_session_dest_det_info *map_det_info;
map_det_info = &det_map->dest_det_info[dest_det];
map_det_info->freq_span_id = dest_span_idx;
map_det_info->det_id = dest_det_idx;
map_det_info->is_sec80 = is_sec80;
if (rpt_info->sscan_bw == CH_WIDTH_80P80MHZ) {
/* Increment span ID for non-contiguous modes */
dest_det_idx = 0;
dest_span_idx++;
} else {
/* Increment detector ID for contiguous modes */
dest_det_idx++;
}
is_sec80 = !is_sec80;
}
det_map->det_map_valid[smode] = true;
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
}
qdf_spin_unlock_bh(&spectral->detector_list_lock);
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS
target_if_spectral_populate_session_report_info(
struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
target_if_spectral_populate_session_det_host_info(
struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
return QDF_STATUS_SUCCESS;
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
QDF_STATUS
spectral_is_session_info_expected_from_target(struct wlan_objmgr_pdev *pdev,
bool *is_session_info_expected)
{
struct wlan_objmgr_psoc *psoc;
struct wmi_unified *wmi_handle;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_NULL_VALUE;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_NULL_VALUE;
}
wmi_handle = get_wmi_unified_hdl_from_psoc(psoc);
if (!wmi_handle) {
spectral_err("wmi handle is null");
return QDF_STATUS_E_NULL_VALUE;
}
*is_session_info_expected = target_if_spectral_wmi_service_enabled(
psoc, wmi_handle,
wmi_service_spectral_session_info_support);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
target_if_start_spectral_scan(struct wlan_objmgr_pdev *pdev,
uint8_t vdev_id,
const enum spectral_scan_mode smode,
enum spectral_cp_error_code *err)
{
struct target_if_spectral_ops *p_sops;
struct target_if_spectral *spectral;
struct wlan_objmgr_psoc *psoc;
enum reg_wifi_band band;
QDF_STATUS ret;
bool is_session_info_expected;
if (!err) {
spectral_err("Error code argument is null");
return QDF_STATUS_E_NULL_VALUE;
}
*err = SPECTRAL_SCAN_ERR_INVALID;
if (!pdev) {
spectral_err("pdev object is NUll");
return QDF_STATUS_E_FAILURE;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_FAILURE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
spectral_err("Invalid Spectral mode %u", smode);
return QDF_STATUS_E_FAILURE;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectral LMAC object is NUll");
return QDF_STATUS_E_FAILURE;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (!p_sops) {
spectral_err("p_sops is null");
return QDF_STATUS_E_FAILURE;
}
if (p_sops->is_spectral_active(spectral, smode)) {
spectral_err("spectral in progress in current pdev, mode %d",
smode);
return QDF_STATUS_E_FAILURE;
}
spectral->vdev_id[smode] = vdev_id;
if (smode == SPECTRAL_SCAN_MODE_AGILE) {
QDF_STATUS status;
bool is_supported = false;
status = target_if_is_agile_supported_cur_chmask(spectral,
&is_supported);
if (QDF_IS_STATUS_ERROR(status)) {
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
if (!is_supported) {
spectral_err("aSpectral unsupported for cur chainmask");
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
}
band = target_if_get_curr_band(spectral->pdev_obj, vdev_id);
if (band == REG_BAND_UNKNOWN) {
spectral_err("Failed to get current band");
return QDF_STATUS_E_FAILURE;
}
if ((band == REG_BAND_5G) && (smode == SPECTRAL_SCAN_MODE_AGILE)) {
struct target_psoc_info *tgt_hdl;
enum wmi_host_hw_mode_config_type mode;
bool is_agile_scan_inprog_5g_pdev;
tgt_hdl = wlan_psoc_get_tgt_if_handle(psoc);
if (!tgt_hdl) {
target_if_err("target_psoc_info is null");
return QDF_STATUS_E_FAILURE;
}
mode = target_psoc_get_preferred_hw_mode(tgt_hdl);
switch (mode) {
case WMI_HOST_HW_MODE_SBS_PASSIVE:
case WMI_HOST_HW_MODE_SBS:
case WMI_HOST_HW_MODE_DBS_SBS:
case WMI_HOST_HW_MODE_DBS_OR_SBS:
is_agile_scan_inprog_5g_pdev = false;
wlan_objmgr_iterate_obj_list
(psoc, WLAN_PDEV_OP,
target_if_is_agile_scan_active_in_5g,
&is_agile_scan_inprog_5g_pdev, 0,
WLAN_SPECTRAL_ID);
break;
default:
is_agile_scan_inprog_5g_pdev = false;
break;
}
if (is_agile_scan_inprog_5g_pdev) {
spectral_err("Agile Scan in progress in one of the SBS 5G pdev");
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
}
if (smode == SPECTRAL_SCAN_MODE_AGILE) {
bool is_aspectral_prohibited = false;
QDF_STATUS status;
status = wlan_objmgr_iterate_obj_list
(psoc, WLAN_PDEV_OP,
target_if_is_aspectral_prohibited_by_adfs,
&is_aspectral_prohibited, 0,
WLAN_SPECTRAL_ID);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to iterate over pdevs");
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
if (is_aspectral_prohibited) {
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
return QDF_STATUS_E_FAILURE;
}
}
if (!spectral->params_valid[smode]) {
target_if_spectral_info_read(spectral,
smode,
TARGET_IF_SPECTRAL_INFO_PARAMS,
&spectral->params[smode],
sizeof(spectral->params[smode]));
spectral->params_valid[smode] = true;
}
qdf_spin_lock_bh(&spectral->spectral_lock);
if (smode == SPECTRAL_SCAN_MODE_AGILE) {
QDF_STATUS status;
bool is_overlapping;
enum phy_ch_width ch_width[SPECTRAL_SCAN_MODE_MAX];
enum spectral_scan_mode m;
enum phy_ch_width agile_ch_width;
m = SPECTRAL_SCAN_MODE_NORMAL;
for (; m < SPECTRAL_SCAN_MODE_MAX; m++)
ch_width[m] = CH_WIDTH_INVALID;
status = target_if_spectral_populate_chwidth
(spectral, ch_width, spectral->params
[SPECTRAL_SCAN_MODE_AGILE].ss_frequency.cfreq2 > 0);
if (QDF_IS_STATUS_ERROR(status)) {
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Failed to populate channel width");
return QDF_STATUS_E_FAILURE;
}
agile_ch_width = ch_width[SPECTRAL_SCAN_MODE_AGILE];
if (!spectral->params[smode].ss_frequency.cfreq1) {
*err = SPECTRAL_SCAN_ERR_PARAM_NOT_INITIALIZED;
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Agile Spectral cfreq1 is 0");
return QDF_STATUS_E_FAILURE;
} else if (agile_ch_width == CH_WIDTH_80P80MHZ &&
!spectral->params[smode].ss_frequency.cfreq2) {
*err = SPECTRAL_SCAN_ERR_PARAM_NOT_INITIALIZED;
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Agile Spectral cfreq2 is 0");
return QDF_STATUS_E_FAILURE;
}
status = target_if_is_agile_span_overlap_with_operating_span
(spectral, ch_width,
&spectral->params[smode].ss_frequency,
&is_overlapping);
if (QDF_IS_STATUS_ERROR(status)) {
qdf_spin_unlock_bh(&spectral->spectral_lock);
return QDF_STATUS_E_FAILURE;
}
if (is_overlapping) {
*err = SPECTRAL_SCAN_ERR_PARAM_INVALID_VALUE;
qdf_spin_unlock_bh(&spectral->spectral_lock);
return QDF_STATUS_E_FAILURE;
}
}
/* Populate detectot list first */
ret = target_if_spectral_detector_list_init(spectral);
if (QDF_IS_STATUS_ERROR(ret)) {
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Failed to initialize detector list");
return ret;
}
ret = target_if_spectral_populate_chwidth(
spectral, spectral->ch_width,
spectral->params[SPECTRAL_SCAN_MODE_AGILE].
ss_frequency.cfreq2 > 0);
if (QDF_IS_STATUS_ERROR(ret)) {
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Failed to get channel widths");
return ret;
}
ret = spectral_is_session_info_expected_from_target(
spectral->pdev_obj,
&is_session_info_expected);
if (QDF_IS_STATUS_ERROR(ret)) {
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Failed to check if session info is expected");
return ret;
}
/* If FW doesn't send session info, populate it */
if (!is_session_info_expected) {
ret = target_if_spectral_populate_session_report_info(spectral,
smode);
if (QDF_IS_STATUS_ERROR(ret)) {
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Failed to populate per-session report info");
return QDF_STATUS_E_FAILURE;
}
ret = target_if_spectral_populate_session_det_host_info(
spectral, smode);
if (QDF_IS_STATUS_ERROR(ret)) {
qdf_spin_unlock_bh(&spectral->spectral_lock);
spectral_err("Failed to populate per-session detector info");
return QDF_STATUS_E_FAILURE;
}
}
target_if_spectral_scan_enable_params(spectral,
&spectral->params[smode], smode,
err);
spectral->sscan_width_configured[smode] = false;
qdf_spin_unlock_bh(&spectral->spectral_lock);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
target_if_stop_spectral_scan(struct wlan_objmgr_pdev *pdev,
const enum spectral_scan_mode smode,
enum spectral_cp_error_code *err)
{
struct target_if_spectral_ops *p_sops;
struct target_if_spectral *spectral;
uint8_t det;
if (!pdev) {
spectral_err("pdev object is NULL");
return QDF_STATUS_E_INVAL;
}
if (target_if_spectral_is_feature_disabled_pdev(pdev)) {
spectral_info("Spectral feature is disabled");
return QDF_STATUS_COMP_DISABLED;
}
if (!err) {
spectral_err("Error code argument is null");
return QDF_STATUS_E_NULL_VALUE;
}
*err = SPECTRAL_SCAN_ERR_INVALID;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
*err = SPECTRAL_SCAN_ERR_MODE_UNSUPPORTED;
spectral_err("Invalid Spectral mode %u", smode);
return QDF_STATUS_E_FAILURE;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectral LMAC object is NUll ");
return QDF_STATUS_E_FAILURE;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
qdf_spin_lock_bh(&spectral->spectral_lock);
p_sops->stop_spectral_scan(spectral, smode);
if (spectral->classify_scan) {
/* TODO : Check if this logic is necessary */
spectral->detects_control_channel = 0;
spectral->detects_extension_channel = 0;
spectral->detects_above_dc = 0;
spectral->detects_below_dc = 0;
spectral->classify_scan = 0;
}
spectral->send_single_packet = 0;
spectral->sc_spectral_scan = 0;
qdf_spin_lock_bh(&spectral->session_det_map_lock);
for (det = 0; det < MAX_DETECTORS_PER_PDEV; det++)
spectral->det_map[det].det_map_valid[smode] = false;
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
/* Mark report info as invalid */
qdf_spin_lock_bh(&spectral->session_report_info_lock);
spectral->report_info[smode].valid = false;
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
qdf_spin_unlock_bh(&spectral->spectral_lock);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_is_spectral_active() - Get whether Spectral is active
* @pdev: Pointer to pdev object
* @smode: Spectral scan mode
*
* API to get whether Spectral is active
*
* Return: True if Spectral is active, false if Spectral is not active
*/
bool
target_if_is_spectral_active(struct wlan_objmgr_pdev *pdev,
const enum spectral_scan_mode smode)
{
struct target_if_spectral *spectral = NULL;
struct target_if_spectral_ops *p_sops = NULL;
if (!pdev) {
spectral_err("pdev is null");
return false;
}
if (target_if_spectral_is_feature_disabled_pdev(pdev)) {
spectral_info("Spectral feature is disabled");
return false;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return false;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (!p_sops) {
spectral_err("p_sops is null");
return false;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return false;
}
return p_sops->is_spectral_active(spectral, smode);
}
/**
* target_if_is_spectral_enabled() - Get whether Spectral is enabled
* @pdev: Pointer to pdev object
* @smode: Spectral scan mode
*
* API to get whether Spectral is enabled
*
* Return: True if Spectral is enabled, false if Spectral is not enabled
*/
bool
target_if_is_spectral_enabled(struct wlan_objmgr_pdev *pdev,
enum spectral_scan_mode smode)
{
struct target_if_spectral *spectral = NULL;
struct target_if_spectral_ops *p_sops = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return false;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (!p_sops) {
spectral_err("p_sops is null");
return false;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err("Invalid Spectral mode %u", smode);
return false;
}
return p_sops->is_spectral_enabled(spectral, smode);
}
#ifdef DIRECT_BUF_RX_DEBUG
/**
* target_if_spectral_do_dbr_ring_debug() - Start/Stop Spectral DMA ring debug
* @pdev: Pointer to pdev object
* @enable: Enable/Disable Spectral DMA ring debug
*
* Start/stop Spectral DMA ring debug based on @enable.
* Also save the state for future use.
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_spectral_do_dbr_ring_debug(struct wlan_objmgr_pdev *pdev, bool enable)
{
struct target_if_spectral *spectral;
struct wlan_lmac_if_tx_ops *tx_ops;
struct wlan_objmgr_psoc *psoc;
if (!pdev)
return QDF_STATUS_E_FAILURE;
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
tx_ops = wlan_psoc_get_lmac_if_txops(psoc);
if (!tx_ops) {
spectral_err("tx_ops is NULL");
return QDF_STATUS_E_INVAL;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectal LMAC object is NULL");
return QDF_STATUS_E_INVAL;
}
/* Save the state */
spectral->dbr_ring_debug = enable;
if (enable)
return tx_ops->dbr_tx_ops.direct_buf_rx_start_ring_debug(
pdev, 0, SPECTRAL_DBR_RING_DEBUG_SIZE);
else
return tx_ops->dbr_tx_ops.direct_buf_rx_stop_ring_debug(
pdev, 0);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_do_dbr_buff_debug() - Start/Stop Spectral DMA buffer debug
* @pdev: Pointer to pdev object
* @enable: Enable/Disable Spectral DMA buffer debug
*
* Start/stop Spectral DMA buffer debug based on @enable.
* Also save the state for future use.
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_spectral_do_dbr_buff_debug(struct wlan_objmgr_pdev *pdev, bool enable)
{
struct target_if_spectral *spectral;
struct wlan_lmac_if_tx_ops *tx_ops;
struct wlan_objmgr_psoc *psoc;
if (!pdev)
return QDF_STATUS_E_FAILURE;
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
tx_ops = wlan_psoc_get_lmac_if_txops(psoc);
if (!tx_ops) {
spectral_err("tx_ops is NULL");
return QDF_STATUS_E_INVAL;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectal LMAC object is NULL");
return QDF_STATUS_E_INVAL;
}
/* Save the state */
spectral->dbr_buff_debug = enable;
if (enable)
return tx_ops->dbr_tx_ops.direct_buf_rx_start_buffer_poisoning(
pdev, 0, MEM_POISON_SIGNATURE);
else
return tx_ops->dbr_tx_ops.direct_buf_rx_stop_buffer_poisoning(
pdev, 0);
}
/**
* target_if_spectral_check_and_do_dbr_buff_debug() - Start/Stop Spectral buffer
* debug based on the previous state
* @pdev: Pointer to pdev object
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_spectral_check_and_do_dbr_buff_debug(struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral *spectral;
if (!pdev) {
spectral_err("pdev is NULL!");
return QDF_STATUS_E_FAILURE;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectal LMAC object is NULL");
return QDF_STATUS_E_INVAL;
}
if (spectral->dbr_buff_debug)
return target_if_spectral_do_dbr_buff_debug(pdev, true);
else
return target_if_spectral_do_dbr_buff_debug(pdev, false);
}
/**
* target_if_spectral_check_and_do_dbr_ring_debug() - Start/Stop Spectral ring
* debug based on the previous state
* @pdev: Pointer to pdev object
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_spectral_check_and_do_dbr_ring_debug(struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral *spectral;
if (!pdev) {
spectral_err("pdev is NULL!");
return QDF_STATUS_E_FAILURE;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectal LMAC object is NULL");
return QDF_STATUS_E_INVAL;
}
if (spectral->dbr_ring_debug)
return target_if_spectral_do_dbr_ring_debug(pdev, true);
else
return target_if_spectral_do_dbr_ring_debug(pdev, false);
}
/**
* target_if_spectral_set_dma_debug() - Set DMA debug for Spectral
* @pdev: Pointer to pdev object
* @dma_debug_type: Type of Spectral DMA debug i.e., ring or buffer debug
* @debug_value: Value to be set for @dma_debug_type
*
* Set DMA debug for Spectral and start/stop Spectral DMA debug function
* based on @debug_value
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_spectral_set_dma_debug(
struct wlan_objmgr_pdev *pdev,
enum spectral_dma_debug dma_debug_type,
bool debug_value)
{
struct target_if_spectral_ops *p_sops;
struct wlan_objmgr_psoc *psoc;
struct wlan_lmac_if_tx_ops *tx_ops;
struct target_if_spectral *spectral;
if (!pdev)
return QDF_STATUS_E_FAILURE;
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
tx_ops = wlan_psoc_get_lmac_if_txops(psoc);
if (!tx_ops) {
spectral_err("tx_ops is NULL");
return QDF_STATUS_E_FAILURE;
}
if (!tx_ops->target_tx_ops.tgt_get_tgt_type) {
spectral_err("Unable to fetch target type");
return QDF_STATUS_E_FAILURE;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectal LMAC object is NULL");
return QDF_STATUS_E_INVAL;
}
if (spectral->direct_dma_support) {
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (p_sops->is_spectral_active(spectral,
SPECTRAL_SCAN_MODE_NORMAL) ||
p_sops->is_spectral_active(spectral,
SPECTRAL_SCAN_MODE_AGILE)) {
spectral_err("Altering DBR debug config isn't allowed during an ongoing scan");
return QDF_STATUS_E_FAILURE;
}
switch (dma_debug_type) {
case SPECTRAL_DMA_RING_DEBUG:
target_if_spectral_do_dbr_ring_debug(pdev, debug_value);
break;
case SPECTRAL_DMA_BUFFER_DEBUG:
target_if_spectral_do_dbr_buff_debug(pdev, debug_value);
break;
default:
spectral_err("Unsupported DMA debug type : %d",
dma_debug_type);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#endif /* DIRECT_BUF_RX_DEBUG */
/**
* target_if_spectral_direct_dma_support() - Get Direct-DMA support
* @pdev: Pointer to pdev object
*
* Return: Whether Direct-DMA is supported on this radio
*/
static bool
target_if_spectral_direct_dma_support(struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral *spectral;
if (!pdev) {
spectral_err("pdev is NULL!");
return false;
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectral LMAC object is NULL");
return false;
}
return spectral->direct_dma_support;
}
/**
* target_if_set_debug_level() - Set debug level for Spectral
* @pdev: Pointer to pdev object
* @debug_level: Debug level
*
* API to set the debug level for Spectral
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE on failure
*/
QDF_STATUS
target_if_set_debug_level(struct wlan_objmgr_pdev *pdev, uint32_t debug_level)
{
spectral_debug_level = (DEBUG_SPECTRAL << debug_level);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_get_debug_level() - Get debug level for Spectral
* @pdev: Pointer to pdev object
*
* API to get the debug level for Spectral
*
* Return: Current debug level
*/
uint32_t
target_if_get_debug_level(struct wlan_objmgr_pdev *pdev)
{
return spectral_debug_level;
}
/**
* target_if_get_spectral_capinfo() - Get Spectral capability information
* @pdev: Pointer to pdev object
* @scaps: Buffer into which data should be copied
*
* API to get the spectral capability information
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE on failure
*/
QDF_STATUS
target_if_get_spectral_capinfo(struct wlan_objmgr_pdev *pdev,
struct spectral_caps *scaps)
{
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_copy(scaps, &spectral->capability,
sizeof(struct spectral_caps));
return QDF_STATUS_SUCCESS;
}
/**
* target_if_get_spectral_diagstats() - Get Spectral diagnostic statistics
* @pdev: Pointer to pdev object
* @stats: Buffer into which data should be copied
*
* API to get the spectral diagnostic statistics
*
* Return: QDF_STATUS_SUCCESS on success, QDF_STATUS_E_FAILURE on failure
*/
QDF_STATUS
target_if_get_spectral_diagstats(struct wlan_objmgr_pdev *pdev,
struct spectral_diag_stats *stats)
{
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_copy(stats, &spectral->diag_stats,
sizeof(struct spectral_diag_stats));
return QDF_STATUS_SUCCESS;
}
/**
* target_if_register_spectral_wmi_ops() - Register Spectral WMI operations
* @psoc: Pointer to psoc object
* @wmi_ops: Pointer to the structure having Spectral WMI operations
*
* API for registering Spectral WMI operations in
* spectral internal data structure
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_register_spectral_wmi_ops(struct wlan_objmgr_psoc *psoc,
struct spectral_wmi_ops *wmi_ops)
{
struct target_if_psoc_spectral *psoc_spectral;
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("Spectral LMAC object is null");
return QDF_STATUS_E_INVAL;
}
psoc_spectral->wmi_ops = *wmi_ops;
return QDF_STATUS_SUCCESS;
}
/**
* target_if_register_spectral_tgt_ops() - Register Spectral target operations
* @psoc: Pointer to psoc object
* @tgt_ops: Pointer to the structure having Spectral target operations
*
* API for registering Spectral target operations in
* spectral internal data structure
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_register_spectral_tgt_ops(struct wlan_objmgr_psoc *psoc,
struct spectral_tgt_ops *tgt_ops)
{
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
ops_tgt = *tgt_ops;
return QDF_STATUS_SUCCESS;
}
/**
* target_if_register_netlink_cb() - Register Netlink callbacks
* @pdev: Pointer to pdev object
* @nl_cb: Netlink callbacks to register
*
* Return: void
*/
static void
target_if_register_netlink_cb(
struct wlan_objmgr_pdev *pdev,
struct spectral_nl_cb *nl_cb)
{
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return;
}
qdf_mem_copy(&spectral->nl_cb, nl_cb, sizeof(struct spectral_nl_cb));
if (spectral->use_nl_bcast)
spectral->send_phy_data = spectral->nl_cb.send_nl_bcast;
else
spectral->send_phy_data = spectral->nl_cb.send_nl_unicast;
}
/**
* target_if_use_nl_bcast() - Get whether to use broadcast/unicast while sending
* Netlink messages to the application layer
* @pdev: Pointer to pdev object
*
* Return: true for broadcast, false for unicast
*/
static bool
target_if_use_nl_bcast(struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return false;
}
return spectral->use_nl_bcast;
}
/**
* target_if_deregister_netlink_cb() - De-register Netlink callbacks
* @pdev: Pointer to pdev object
*
* Return: void
*/
static void
target_if_deregister_netlink_cb(struct wlan_objmgr_pdev *pdev)
{
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return;
}
qdf_mem_zero(&spectral->nl_cb, sizeof(struct spectral_nl_cb));
}
static int
target_if_process_spectral_report(struct wlan_objmgr_pdev *pdev,
void *payload)
{
struct target_if_spectral *spectral = NULL;
struct target_if_spectral_ops *p_sops = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return -EPERM;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (!p_sops) {
spectral_err("p_sops is null");
return -EPERM;
}
return p_sops->process_spectral_report(pdev, payload);
}
#ifdef DIRECT_BUF_RX_DEBUG
static inline void
target_if_sptrl_debug_register_tx_ops(struct wlan_lmac_if_tx_ops *tx_ops)
{
if (!tx_ops) {
spectral_err("tx_ops is NULL");
return;
}
tx_ops->sptrl_tx_ops.sptrlto_set_dma_debug =
target_if_spectral_set_dma_debug;
tx_ops->sptrl_tx_ops.sptrlto_check_and_do_dbr_ring_debug =
target_if_spectral_check_and_do_dbr_ring_debug;
tx_ops->sptrl_tx_ops.sptrlto_check_and_do_dbr_buff_debug =
target_if_spectral_check_and_do_dbr_buff_debug;
}
#else
static inline void
target_if_sptrl_debug_register_tx_ops(struct wlan_lmac_if_tx_ops *tx_ops)
{
}
#endif
#if defined(WLAN_CONV_SPECTRAL_ENABLE) && defined(SPECTRAL_MODULIZED_ENABLE)
/**
* target_if_spectral_wmi_unified_register_event_handler() - Wrapper function to
* register WMI event handler
* @psoc: Pointer to psoc object
* @event_id: Event id
* @handler_func: Handler function
* @rx_ctx: Context of WMI event processing
*
* Wrapper function to register WMI event handler
*
* Return: 0 for success else failure
*/
static int
target_if_spectral_wmi_unified_register_event_handler(
struct wlan_objmgr_psoc *psoc,
wmi_conv_event_id event_id,
wmi_unified_event_handler handler_func,
uint8_t rx_ctx)
{
wmi_unified_t wmi_handle;
struct target_if_psoc_spectral *psoc_spectral;
QDF_STATUS ret;
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
ret = psoc_spectral->wmi_ops.wmi_unified_register_event_handler(
wmi_handle, event_id, handler_func, rx_ctx);
return qdf_status_to_os_return(ret);
}
/**
* target_if_spectral_wmi_unified_unregister_event_handler() - Wrapper function
* to unregister WMI event handler
* @psoc: Pointer to psoc object
* @event_id: Event id
*
* Wrapper function to unregister WMI event handler
*
* Return: 0 for success else failure
*/
static int
target_if_spectral_wmi_unified_unregister_event_handler(
struct wlan_objmgr_psoc *psoc,
wmi_conv_event_id event_id)
{
wmi_unified_t wmi_handle;
struct target_if_psoc_spectral *psoc_spectral;
QDF_STATUS ret;
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
ret = psoc_spectral->wmi_ops.wmi_unified_unregister_event_handler(
wmi_handle, event_id);
return qdf_status_to_os_return(ret);
}
/**
* target_if_spectral_wmi_extract_pdev_sscan_fw_cmd_fixed_param() - Wrapper
* function to extract fixed parameters from start scan response event
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @param: Start scan response parameters
*
* Wrapper function to extract fixed parameters from start scan response event
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_spectral_wmi_extract_pdev_sscan_fw_cmd_fixed_param(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_startscan_resp_params *param)
{
wmi_unified_t wmi_handle;
struct target_if_psoc_spectral *psoc_spectral;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
if (!evt_buf) {
spectral_err("WMI event buffer is null");
return QDF_STATUS_E_INVAL;
}
if (!param) {
spectral_err("Spectral startscan response parameters is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return QDF_STATUS_E_FAILURE;
}
return psoc_spectral->wmi_ops.wmi_extract_pdev_sscan_fw_cmd_fixed_param(
wmi_handle, evt_buf, param);
}
/**
* target_if_spectral_wmi_extract_pdev_sscan_fft_bin_index() - Wrapper
* function to extract start and end indices of primary 80 MHz, 5 MHz and
* secondary 80 MHz FFT bins
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @param: FFT bin start and end indices
*
* Wrapper function to extract start and end indices of primary 80 MHz, 5 MHz
* and secondary 80 MHz FFT bins
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_spectral_wmi_extract_pdev_sscan_fft_bin_index(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_fft_bin_markers_160_165mhz *param)
{
wmi_unified_t wmi_handle;
struct target_if_psoc_spectral *psoc_spectral;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
if (!evt_buf) {
spectral_err("WMI event buffer is null");
return QDF_STATUS_E_INVAL;
}
if (!param) {
spectral_err("Spectral FFT bin markers is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return QDF_STATUS_E_FAILURE;
}
return psoc_spectral->wmi_ops.wmi_extract_pdev_sscan_fft_bin_index(
wmi_handle, evt_buf, param);
}
/**
* target_if_spectral_get_psoc_from_scn_handle() - Wrapper function to get psoc
* object from scn handle
* @scn: scn handle
*
* Wrapper function to get psoc object from scn handle
*
* Return: Pointer to psoc object
*/
static struct wlan_objmgr_psoc *
target_if_spectral_get_psoc_from_scn_handle(ol_scn_t scn)
{
if (!scn) {
spectral_err("scn is null");
return NULL;
}
return ops_tgt.tgt_get_psoc_from_scn_hdl(scn);
}
/**
* target_if_extract_pdev_spectral_session_chan_info() - Wrapper
* function to extract channel information for a spectral scan session
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @chan_info: Spectral session channel information data structure to be filled
* by this API
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_extract_pdev_spectral_session_chan_info(
struct wlan_objmgr_psoc *psoc,
void *evt_buf,
struct spectral_session_chan_info *chan_info)
{
wmi_unified_t wmi_handle;
struct target_if_psoc_spectral *psoc_spectral;
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_NULL_VALUE;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return QDF_STATUS_E_NULL_VALUE;
}
return psoc_spectral->wmi_ops.extract_pdev_spectral_session_chan_info(
wmi_handle, evt_buf, chan_info);
}
/**
* target_if_extract_pdev_spectral_session_detector_info() - Wrapper
* function to extract detector information for a spectral scan session
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @det_info: Spectral session detector information data structure to be filled
* by this API
* @det_info_idx: index in the array of spectral scan detector info TLVs
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_extract_pdev_spectral_session_detector_info(
struct wlan_objmgr_psoc *psoc, void *evt_buf,
struct spectral_session_det_info *det_info,
uint8_t det_info_idx)
{
wmi_unified_t wmi_handle;
struct target_if_psoc_spectral *psoc_spectral;
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_NULL_VALUE;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return QDF_STATUS_E_NULL_VALUE;
}
return psoc_spectral->wmi_ops.
extract_pdev_spectral_session_detector_info(
wmi_handle, evt_buf, det_info, det_info_idx);
}
/**
* target_if_wmi_extract_spectral_caps_fixed_param() - Wrapper function to
* extract fixed params from Spectral capabilities WMI event
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @param: Spectral capabilities event parameters data structure to be filled
* by this API
*
* Return: QDF_STATUS of operation
*/
QDF_STATUS
target_if_wmi_extract_spectral_caps_fixed_param(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_capabilities_event_params *param)
{
struct target_if_psoc_spectral *psoc_spectral;
wmi_unified_t wmi_handle;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_NULL_VALUE;
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_NULL_VALUE;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return QDF_STATUS_E_FAILURE;
}
return psoc_spectral->wmi_ops.extract_spectral_caps_fixed_param(
wmi_handle, evt_buf, param);
}
/**
* target_if_wmi_extract_spectral_scan_bw_caps() - Wrapper function to
* extract bandwidth capabilities from Spectral capabilities WMI event
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @bw_caps: Data structure to be filled by this API after extraction
*
* Return: QDF_STATUS of operation
*/
QDF_STATUS
target_if_wmi_extract_spectral_scan_bw_caps(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_scan_bw_capabilities *bw_caps)
{
struct target_if_psoc_spectral *psoc_spectral;
wmi_unified_t wmi_handle;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return QDF_STATUS_E_FAILURE;
}
return psoc_spectral->wmi_ops.extract_spectral_scan_bw_caps(
wmi_handle, evt_buf, bw_caps);
}
/**
* target_if_wmi_extract_spectral_fft_size_caps() - Wrapper function to
* extract fft size capabilities from Spectral capabilities WMI event
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @fft_size_caps: Data structure to be filled by this API after extraction
*
* Return: QDF_STATUS of operation
*/
QDF_STATUS
target_if_wmi_extract_spectral_fft_size_caps(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_fft_size_capabilities *fft_size_caps)
{
struct target_if_psoc_spectral *psoc_spectral;
wmi_unified_t wmi_handle;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return QDF_STATUS_E_FAILURE;
}
return psoc_spectral->wmi_ops.extract_spectral_fft_size_caps(
wmi_handle, evt_buf, fft_size_caps);
}
#else
/**
* target_if_spectral_wmi_unified_register_event_handler() - Wrapper function to
* register WMI event handler
* @psoc: Pointer to psoc object
* @event_id: Event id
* @handler_func: Handler function
* @rx_ctx: Context of WMI event processing
*
* Wrapper function to register WMI event handler
*
* Return: 0 for success else failure
*/
static int
target_if_spectral_wmi_unified_register_event_handler(
struct wlan_objmgr_psoc *psoc,
wmi_conv_event_id event_id,
wmi_unified_event_handler handler_func,
uint8_t rx_ctx)
{
wmi_unified_t wmi_handle;
QDF_STATUS ret;
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
ret = wmi_unified_register_event_handler(wmi_handle, event_id,
handler_func, rx_ctx);
return qdf_status_to_os_return(ret);
}
/**
* target_if_spectral_wmi_unified_unregister_event_handler() - Wrapper function
* to unregister WMI event handler
* @psoc: Pointer to psoc object
* @event_id: Event id
*
* Wrapper function to unregister WMI event handler
*
* Return: 0 for success else failure
*/
static int
target_if_spectral_wmi_unified_unregister_event_handler(
struct wlan_objmgr_psoc *psoc,
wmi_conv_event_id event_id)
{
wmi_unified_t wmi_handle;
QDF_STATUS ret;
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
ret = wmi_unified_unregister_event_handler(wmi_handle, event_id);
return qdf_status_to_os_return(ret);
}
/**
* target_if_spectral_wmi_extract_pdev_sscan_fw_cmd_fixed_param() - Wrapper
* function to extract fixed parameters from start scan response event
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @param: Start scan response parameters
*
* Wrapper function to extract fixed parameters from start scan response event
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_spectral_wmi_extract_pdev_sscan_fw_cmd_fixed_param(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_startscan_resp_params *param)
{
wmi_unified_t wmi_handle;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
if (!evt_buf) {
spectral_err("WMI event buffer is null");
return QDF_STATUS_E_INVAL;
}
if (!param) {
spectral_err("Spectral startscan response parameters is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
return wmi_extract_pdev_sscan_fw_cmd_fixed_param(wmi_handle, evt_buf,
param);
}
/**
* target_if_spectral_wmi_extract_pdev_sscan_fft_bin_index() - Wrapper
* function to extract start and end indices of primary 80 MHz, 5 MHz and
* secondary 80 MHz FFT bins
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @param: FFT bin start and end indices
*
* Wrapper function to extract start and end indices of primary 80 MHz, 5 MHz
* and secondary 80 MHz FFT bins
*
* Return: QDF_STATUS
*/
static QDF_STATUS
target_if_spectral_wmi_extract_pdev_sscan_fft_bin_index(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_fft_bin_markers_160_165mhz *param)
{
wmi_unified_t wmi_handle;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
if (!evt_buf) {
spectral_err("WMI event buffer is null");
return QDF_STATUS_E_INVAL;
}
if (!param) {
spectral_err("Spectral FFT bin markers is null");
return QDF_STATUS_E_INVAL;
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
return wmi_extract_pdev_sscan_fft_bin_index(wmi_handle, evt_buf, param);
}
/**
* target_if_spectral_get_psoc_from_scn_handle() - Wrapper function to get psoc
* object from scn handle
* @scn: scn handle
*
* Wrapper function to get psoc object from scn handle
*
* Return: Pointer to psoc object
*/
static struct wlan_objmgr_psoc *
target_if_spectral_get_psoc_from_scn_handle(ol_scn_t scn)
{
if (!scn) {
spectral_err("scn is null");
return NULL;
}
return target_if_get_psoc_from_scn_hdl(scn);
}
/**
* target_if_extract_pdev_spectral_session_chan_info() - Wrapper
* function to extract channel information for a spectral scan session
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @chan_info: Spectral session channel information data structure to be filled
* by this API
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_extract_pdev_spectral_session_chan_info(
struct wlan_objmgr_psoc *psoc,
void *evt_buf,
struct spectral_session_chan_info *chan_info)
{
wmi_unified_t wmi_handle;
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_NULL_VALUE;
}
return wmi_extract_pdev_spectral_session_chan_info(
wmi_handle, evt_buf, chan_info);
}
/**
* target_if_extract_pdev_spectral_session_detector_info() - Wrapper
* function to extract detector information for a spectral scan session
* @psoc: Pointer to psoc object
* @evt_buf: Event buffer
* @det_info: Spectral session detector information data structure to be filled
* by this API
* @det_info_idx: index in the array of spectral scan detector info TLVs
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_extract_pdev_spectral_session_detector_info(
struct wlan_objmgr_psoc *psoc, void *evt_buf,
struct spectral_session_det_info *det_info,
uint8_t det_info_idx)
{
wmi_unified_t wmi_handle;
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_NULL_VALUE;
}
return wmi_extract_pdev_spectral_session_detector_info(
wmi_handle, evt_buf, det_info, det_info_idx);
}
QDF_STATUS
target_if_wmi_extract_spectral_caps_fixed_param(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_capabilities_event_params *param)
{
wmi_unified_t wmi_handle;
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
return wmi_extract_spectral_caps_fixed_param(wmi_handle, evt_buf,
param);
}
QDF_STATUS
target_if_wmi_extract_spectral_scan_bw_caps(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_scan_bw_capabilities *bw_caps)
{
wmi_unified_t wmi_handle;
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
return wmi_extract_spectral_scan_bw_caps(wmi_handle, evt_buf, bw_caps);
}
QDF_STATUS
target_if_wmi_extract_spectral_fft_size_caps(
struct wlan_objmgr_psoc *psoc,
uint8_t *evt_buf,
struct spectral_fft_size_capabilities *fft_size_caps)
{
wmi_unified_t wmi_handle;
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return QDF_STATUS_E_INVAL;
}
return wmi_extract_spectral_fft_size_caps(wmi_handle, evt_buf,
fft_size_caps);
}
#endif
/**
* target_if_update_det_info_in_spectral_session() - Update detector
* information in spectral scan session
* @spectral: Spectral LMAC object
* @det_info: Pointer to spectral session detector information
* @smode: Spectral scan mode
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_update_det_info_in_spectral_session(
struct target_if_spectral *spectral,
const struct spectral_session_det_info *det_info,
enum spectral_scan_mode smode)
{
struct per_session_det_map *det_map;
struct per_session_dest_det_info *dest_det_info;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (det_info->det_id >= MAX_DETECTORS_PER_PDEV) {
spectral_err_rl("Detector Id: %u exceeding Max detectors.",
det_info->det_id);
return QDF_STATUS_E_INVAL;
}
qdf_spin_lock_bh(&spectral->session_det_map_lock);
det_map = &spectral->det_map[det_info->det_id];
dest_det_info = &det_map->dest_det_info[0];
dest_det_info->start_freq = det_info->start_freq;
dest_det_info->end_freq = det_info->end_freq;
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
/* This detector will be used for this smode throughout this session */
spectral->rparams.detid_mode_table[det_info->det_id] = smode;
return QDF_STATUS_SUCCESS;
}
/**
* target_if_update_chan_info_in_spectral_session() - Update channel information
* in spectral scan session
* @spectral: Spectral LMAC object
* @chan_info: Pointer to spectral session channel information
* @smode: Spectral scan mode
*
* Return: QDF_STATUS of operation
*/
static QDF_STATUS
target_if_update_chan_info_in_spectral_session(
struct target_if_spectral *spectral,
const struct spectral_session_chan_info *chan_info,
enum spectral_scan_mode smode)
{
struct per_session_report_info *rpt_info;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral scan mode :%u", smode);
return QDF_STATUS_E_FAILURE;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
rpt_info = &spectral->report_info[smode];
/* Update per-session report info */
rpt_info->pri20_freq = chan_info->operating_pri20_freq;
rpt_info->cfreq1 = chan_info->operating_cfreq1;
rpt_info->cfreq2 = chan_info->operating_cfreq2;
rpt_info->operating_bw = chan_info->operating_bw;
rpt_info->sscan_cfreq1 = chan_info->sscan_cfreq1;
rpt_info->sscan_cfreq2 = chan_info->sscan_cfreq2;
rpt_info->sscan_bw = chan_info->sscan_bw;
/* num_spans depends on sscan_bw, update it */
rpt_info->num_spans = target_if_spectral_get_num_spans(
spectral->pdev_obj,
rpt_info->sscan_bw);
if (rpt_info->num_spans == INVALID_SPAN_NUM) {
spectral_err_rl("Invalid number of spans: %u",
rpt_info->num_spans);
return QDF_STATUS_E_INVAL;
}
rpt_info->valid = true;
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_fw_param_event_handler() - WMI event handler to
* process start scan response event
* @scn: Pointer to scn object
* @data_buf: Pointer to event buffer
* @data_len: Length of event buffer
*
* Return: 0 for success, else failure
*/
static int
target_if_spectral_fw_param_event_handler(ol_scn_t scn, uint8_t *data_buf,
uint32_t data_len)
{
QDF_STATUS status;
struct wlan_objmgr_psoc *psoc;
struct wlan_objmgr_pdev *pdev;
struct wmi_unified *wmi_handle;
struct spectral_startscan_resp_params event_params = {0};
struct target_if_psoc_spectral *psoc_spectral;
struct target_if_spectral *spectral;
bool is_session_info_expected;
if (!scn) {
spectral_err("scn handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
if (!data_buf) {
spectral_err("WMI event buffer null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
psoc = target_if_spectral_get_psoc_from_scn_handle(scn);
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral object is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
status = target_if_spectral_wmi_extract_pdev_sscan_fw_cmd_fixed_param(
psoc, data_buf, &event_params);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("unable to extract sscan fw fixed params");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
if (event_params.smode >= SPECTRAL_SCAN_MODE_MAX ||
event_params.smode < SPECTRAL_SCAN_MODE_NORMAL) {
spectral_err("Invalid smode %d", event_params.smode);
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
pdev = wlan_objmgr_get_pdev_by_id(psoc, event_params.pdev_id,
WLAN_SPECTRAL_ID);
if (!pdev) {
spectral_err("pdev is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("spectral object is null");
status = QDF_STATUS_E_FAILURE;
goto release_pdev_ref;
}
if (event_params.num_fft_bin_index == 1) {
status =
target_if_spectral_wmi_extract_pdev_sscan_fft_bin_index(
psoc, data_buf,
&spectral->rparams.marker[event_params.smode]);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("unable to extract sscan fw fixed params");
goto release_pdev_ref;
}
} else {
spectral->rparams.marker[event_params.smode].is_valid = false;
}
status = spectral_is_session_info_expected_from_target(
pdev, &is_session_info_expected);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to check if session info is expected");
goto release_pdev_ref;
}
if (is_session_info_expected) {
struct spectral_session_chan_info chan_info;
uint8_t det_info_idx = 0;
status = target_if_extract_pdev_spectral_session_chan_info(
psoc, data_buf, &chan_info);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to extract spectral session channel info");
goto release_pdev_ref;
}
status = target_if_update_chan_info_in_spectral_session(
spectral, &chan_info, event_params.smode);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to update channel info");
goto release_pdev_ref;
}
/* FFT bins info depends upon sscan_bw, update it */
status = target_if_populate_fft_bins_info(spectral,
event_params.smode);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to populate FFT bins info");
goto release_pdev_ref;
}
/**
* per-session det info that depends on sscan_bw needs to be
* updated here
*/
status = target_if_spectral_populate_session_det_host_info(
spectral, event_params.smode);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to populate per-session det info");
goto release_pdev_ref;
}
for (; det_info_idx < event_params.num_det_info;
++det_info_idx) {
struct spectral_session_det_info det_info;
status =
target_if_extract_pdev_spectral_session_detector_info
(psoc, data_buf, &det_info, det_info_idx);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to extract spectral session detector info for %u",
det_info_idx);
goto release_pdev_ref;
}
status = target_if_update_det_info_in_spectral_session(
spectral, &det_info,
event_params.smode);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Unable to update detector info");
goto release_pdev_ref;
}
}
}
status = QDF_STATUS_SUCCESS;
release_pdev_ref:
wlan_objmgr_pdev_release_ref(pdev, WLAN_SPECTRAL_ID);
return qdf_status_to_os_return(status);
}
/**
* target_if_spectral_capabilities_event_handler() - Handler for the Spectral
* Capabilities event
* @scn: Pointer to scn object
* @data_buf: Pointer to event buffer
* @data_len: Length of event buffer
*
* Return: 0 for success, else failure
*/
static int
target_if_spectral_capabilities_event_handler(ol_scn_t scn, uint8_t *data_buf,
uint32_t data_len)
{
QDF_STATUS status;
struct wlan_objmgr_psoc *psoc;
struct wmi_unified *wmi_handle;
struct spectral_capabilities_event_params event_params = {0};
struct spectral_scan_bw_capabilities *bw_caps;
struct spectral_fft_size_capabilities *fft_size_caps;
if (!scn) {
spectral_err("scn handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
if (!data_buf) {
spectral_err("WMI event buffer null");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
psoc = target_if_spectral_get_psoc_from_scn_handle(scn);
if (!psoc) {
spectral_err("psoc is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
wmi_handle = GET_WMI_HDL_FROM_PSOC(psoc);
if (!wmi_handle) {
spectral_err("WMI handle is null");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
status = target_if_wmi_extract_spectral_caps_fixed_param(
psoc, data_buf, &event_params);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to extract fixed parameters");
return qdf_status_to_os_return(QDF_STATUS_E_FAILURE);
}
/* There should be atleast one capability */
if (!event_params.num_sscan_bw_caps) {
spectral_err("Number of spectral_scan_bw_capabilities is less than one.");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
if (!event_params.num_fft_size_caps) {
spectral_err("Number of spectral_scan_fft_size_capabilities is less than one.");
return qdf_status_to_os_return(QDF_STATUS_E_INVAL);
}
bw_caps = qdf_mem_malloc(
sizeof(*bw_caps) * event_params.num_sscan_bw_caps);
if (!bw_caps) {
spectral_err("memory allocation failed");
return qdf_status_to_os_return(QDF_STATUS_E_NOMEM);
}
status = target_if_wmi_extract_spectral_scan_bw_caps(psoc, data_buf,
bw_caps);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to extract BW caps");
status = QDF_STATUS_E_FAILURE;
goto free_bw_caps;
}
fft_size_caps = qdf_mem_malloc(
sizeof(*fft_size_caps) * event_params.num_fft_size_caps);
if (!fft_size_caps) {
spectral_err("memory allocation failed");
status = QDF_STATUS_E_NOMEM;
goto free_bw_caps;
}
status = target_if_wmi_extract_spectral_fft_size_caps(psoc, data_buf,
fft_size_caps);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err("Failed to extract fft size caps");
status = QDF_STATUS_E_FAILURE;
goto free_fft_size_caps;
}
status = QDF_STATUS_SUCCESS;
free_fft_size_caps:
qdf_mem_free(fft_size_caps);
free_bw_caps:
qdf_mem_free(bw_caps);
return qdf_status_to_os_return(status);
}
static QDF_STATUS
target_if_spectral_register_events(struct wlan_objmgr_psoc *psoc)
{
int ret;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
ret = target_if_spectral_wmi_unified_register_event_handler(
psoc,
wmi_pdev_sscan_fw_param_eventid,
target_if_spectral_fw_param_event_handler,
WMI_RX_UMAC_CTX);
if (ret)
spectral_debug("event handler not supported, ret=%d", ret);
ret = target_if_spectral_wmi_unified_register_event_handler(
psoc,
wmi_spectral_capabilities_eventid,
target_if_spectral_capabilities_event_handler,
WMI_RX_UMAC_CTX);
if (ret)
spectral_debug("event handler not supported, ret=%d", ret);
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
target_if_spectral_unregister_events(struct wlan_objmgr_psoc *psoc)
{
int ret;
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_INVAL;
}
target_if_spectral_wmi_unified_unregister_event_handler(
psoc, wmi_spectral_capabilities_eventid);
ret = target_if_spectral_wmi_unified_unregister_event_handler(
psoc, wmi_pdev_sscan_fw_param_eventid);
if (ret)
spectral_debug("Unregister WMI event handler failed, ret = %d",
ret);
return QDF_STATUS_SUCCESS;
}
void
target_if_sptrl_register_tx_ops(struct wlan_lmac_if_tx_ops *tx_ops)
{
tx_ops->sptrl_tx_ops.sptrlto_pdev_spectral_init =
target_if_pdev_spectral_init;
tx_ops->sptrl_tx_ops.sptrlto_pdev_spectral_deinit =
target_if_pdev_spectral_deinit;
tx_ops->sptrl_tx_ops.sptrlto_psoc_spectral_init =
target_if_psoc_spectral_init;
tx_ops->sptrl_tx_ops.sptrlto_psoc_spectral_deinit =
target_if_psoc_spectral_deinit;
tx_ops->sptrl_tx_ops.sptrlto_set_spectral_config =
target_if_set_spectral_config;
tx_ops->sptrl_tx_ops.sptrlto_get_spectral_config =
target_if_get_spectral_config;
tx_ops->sptrl_tx_ops.sptrlto_start_spectral_scan =
target_if_start_spectral_scan;
tx_ops->sptrl_tx_ops.sptrlto_stop_spectral_scan =
target_if_stop_spectral_scan;
tx_ops->sptrl_tx_ops.sptrlto_is_spectral_active =
target_if_is_spectral_active;
tx_ops->sptrl_tx_ops.sptrlto_is_spectral_enabled =
target_if_is_spectral_enabled;
tx_ops->sptrl_tx_ops.sptrlto_set_debug_level =
target_if_set_debug_level;
tx_ops->sptrl_tx_ops.sptrlto_get_debug_level =
target_if_get_debug_level;
tx_ops->sptrl_tx_ops.sptrlto_get_spectral_capinfo =
target_if_get_spectral_capinfo;
tx_ops->sptrl_tx_ops.sptrlto_get_spectral_diagstats =
target_if_get_spectral_diagstats;
tx_ops->sptrl_tx_ops.sptrlto_register_spectral_wmi_ops =
target_if_register_spectral_wmi_ops;
tx_ops->sptrl_tx_ops.sptrlto_register_spectral_tgt_ops =
target_if_register_spectral_tgt_ops;
tx_ops->sptrl_tx_ops.sptrlto_register_netlink_cb =
target_if_register_netlink_cb;
tx_ops->sptrl_tx_ops.sptrlto_use_nl_bcast =
target_if_use_nl_bcast;
tx_ops->sptrl_tx_ops.sptrlto_deregister_netlink_cb =
target_if_deregister_netlink_cb;
tx_ops->sptrl_tx_ops.sptrlto_process_spectral_report =
target_if_process_spectral_report;
tx_ops->sptrl_tx_ops.sptrlto_direct_dma_support =
target_if_spectral_direct_dma_support;
tx_ops->sptrl_tx_ops.sptrlto_register_events =
target_if_spectral_register_events;
tx_ops->sptrl_tx_ops.sptrlto_unregister_events =
target_if_spectral_unregister_events;
tx_ops->sptrl_tx_ops.sptrlto_init_pdev_feature_caps =
target_if_spectral_init_pdev_feature_caps;
target_if_sptrl_debug_register_tx_ops(tx_ops);
}
qdf_export_symbol(target_if_sptrl_register_tx_ops);
void
target_if_spectral_send_intf_found_msg(struct wlan_objmgr_pdev *pdev,
uint16_t cw_int, uint32_t dcs_enabled)
{
struct spectral_samp_msg *msg = NULL;
struct target_if_spectral_ops *p_sops = NULL;
struct target_if_spectral *spectral = NULL;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("SPECTRAL : Module doesn't exist");
return;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
if (!p_sops) {
spectral_err("p_sops is null");
return;
}
msg = (struct spectral_samp_msg *)spectral->nl_cb.get_sbuff(
spectral->pdev_obj,
SPECTRAL_MSG_INTERFERENCE_NOTIFICATION,
SPECTRAL_MSG_BUF_NEW);
if (msg) {
msg->int_type = cw_int ?
SPECTRAL_DCS_INT_CW : SPECTRAL_DCS_INT_WIFI;
msg->dcs_enabled = dcs_enabled;
msg->signature = SPECTRAL_SIGNATURE;
p_sops->get_mac_address(spectral, msg->macaddr);
if (spectral->send_phy_data
(pdev,
SPECTRAL_MSG_INTERFERENCE_NOTIFICATION) == 0)
spectral->spectral_sent_msg++;
}
}
qdf_export_symbol(target_if_spectral_send_intf_found_msg);
QDF_STATUS
target_if_spectral_is_finite_scan(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
bool *finite_spectral_scan)
{
struct target_if_finite_spectral_scan_params *finite_scan;
if (!spectral) {
spectral_err_rl("target if spectral object is null");
return QDF_STATUS_E_INVAL;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("invalid spectral mode %d", smode);
return QDF_STATUS_E_INVAL;
}
if (!finite_spectral_scan) {
spectral_err_rl("Invalid pointer");
return QDF_STATUS_E_INVAL;
}
finite_scan = &spectral->finite_scan[smode];
*finite_spectral_scan = finite_scan->finite_spectral_scan;
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
target_if_spectral_finite_scan_update(struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct target_if_finite_spectral_scan_params *finite_scan;
if (!spectral) {
spectral_err_rl("target if spectral object is null");
return QDF_STATUS_E_INVAL;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral mode");
return QDF_STATUS_E_INVAL;
}
finite_scan = &spectral->finite_scan[smode];
if (!finite_scan->num_reports_expected) {
spectral_err_rl("Error, No reports expected");
return QDF_STATUS_E_FAILURE;
}
finite_scan->num_reports_expected--;
if (!finite_scan->num_reports_expected) {
QDF_STATUS status;
enum spectral_cp_error_code err;
/* received expected number of reports from target, stop scan */
status = target_if_stop_spectral_scan(spectral->pdev_obj, smode,
&err);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err_rl("Failed to stop finite Spectral scan");
return QDF_STATUS_E_FAILURE;
}
finite_scan->finite_spectral_scan = false;
}
return QDF_STATUS_SUCCESS;
}