Files
android_kernel_samsung_sm86…/drivers/cam_sync/cam_sync.c
Petar Nedev f22f48c91f msm: camera: sync: Add support for synx objects
Add support to create, release, signal and import a synx object
using the existing generic fence operations. Handle signaling of
underlying synx object when a sync object is signaled & vice versa.

CRs-Fixed: 3317280
Change-Id: Ia6fac6eb732ed7091ec62f04875bdb30d88c8676
Signed-off-by: Petar Nedev <quic_pnedev@quicinc.com>
2022-10-27 17:06:36 -07:00

2826 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/irqflags.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/debugfs.h>
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX) || IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
#include <synx_api.h>
#endif
#include "cam_sync_util.h"
#include "cam_debug_util.h"
#include "cam_common_util.h"
#include "cam_compat.h"
#include "camera_main.h"
#include "cam_req_mgr_workq.h"
struct sync_device *sync_dev;
/*
* Flag to determine whether to enqueue cb of a
* signaled fence onto the workq or invoke it
* directly in the same context
*/
static bool trigger_cb_without_switch;
static void cam_sync_print_fence_table(void)
{
int idx;
for (idx = 0; idx < CAM_SYNC_MAX_OBJS; idx++) {
spin_lock_bh(&sync_dev->row_spinlocks[idx]);
CAM_INFO(CAM_SYNC,
"index[%u]: sync_id=%d, name=%s, type=%d, state=%d, ref_cnt=%d",
idx,
sync_dev->sync_table[idx].sync_id,
sync_dev->sync_table[idx].name,
sync_dev->sync_table[idx].type,
sync_dev->sync_table[idx].state,
atomic_read(&sync_dev->sync_table[idx].ref_cnt));
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
}
}
static int cam_sync_create_util(
int32_t *sync_obj, const char *name,
struct cam_dma_fence_create_sync_obj_payload *dma_sync_create_info,
struct sync_synx_obj_info *synx_obj_sync_create_info)
{
int rc;
long idx;
bool bit;
struct sync_table_row *row = NULL;
do {
idx = find_first_zero_bit(sync_dev->bitmap, CAM_SYNC_MAX_OBJS);
if (idx >= CAM_SYNC_MAX_OBJS) {
CAM_ERR(CAM_SYNC,
"Error: Unable to create sync idx = %d sync name = %s reached max!",
idx, name);
cam_sync_print_fence_table();
return -ENOMEM;
}
CAM_DBG(CAM_SYNC, "Index location available at idx: %ld", idx);
bit = test_and_set_bit(idx, sync_dev->bitmap);
} while (bit);
spin_lock_bh(&sync_dev->row_spinlocks[idx]);
rc = cam_sync_init_row(sync_dev->sync_table, idx, name,
CAM_SYNC_TYPE_INDV);
if (rc) {
CAM_ERR(CAM_SYNC, "Error: Unable to init row at idx = %ld",
idx);
clear_bit(idx, sync_dev->bitmap);
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return -EINVAL;
}
*sync_obj = idx;
/* Associate sync obj with synx if any holding sync lock */
if (synx_obj_sync_create_info) {
row = sync_dev->sync_table + idx;
row->synx_obj_info.synx_obj_row_idx =
synx_obj_sync_create_info->synx_obj_row_idx;
row->synx_obj_info.sync_created_with_synx =
synx_obj_sync_create_info->sync_created_with_synx;
row->synx_obj_info.synx_obj = synx_obj_sync_create_info->synx_obj;
set_bit(CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, &row->ext_fence_mask);
CAM_DBG(CAM_SYNC, "sync_obj: %s[%d] associated with synx_obj: %d",
name, *sync_obj, row->synx_obj_info.synx_obj);
}
/* Associate sync obj with dma fence if any holding sync lock */
if (dma_sync_create_info) {
row = sync_dev->sync_table + idx;
row->dma_fence_info.dma_fence_fd = dma_sync_create_info->fd;
row->dma_fence_info.dma_fence_row_idx = dma_sync_create_info->dma_fence_row_idx;
row->dma_fence_info.sync_created_with_dma =
dma_sync_create_info->sync_created_with_dma;
set_bit(CAM_GENERIC_FENCE_TYPE_DMA_FENCE, &row->ext_fence_mask);
/* Association refcnt for non-import cases */
if (dma_sync_create_info->sync_created_with_dma) {
rc = cam_dma_fence_get_put_ref(true, row->dma_fence_info.dma_fence_row_idx);
if (rc)
CAM_ERR(CAM_SYNC,
"Failed to getref on dma fence idx: %u fd: %d sync_obj: %d rc: %d",
row->dma_fence_info.dma_fence_row_idx,
row->dma_fence_info.dma_fence_fd,
*sync_obj, rc);
goto end;
}
CAM_DBG(CAM_SYNC, "sync_obj: %s[%d] associated with dma fence fd: %d",
name, *sync_obj, dma_sync_create_info->fd);
goto end;
}
CAM_DBG(CAM_SYNC, "sync_obj: %s[%i]", name, *sync_obj);
end:
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return rc;
}
int cam_sync_create(int32_t *sync_obj, const char *name)
{
return cam_sync_create_util(sync_obj, name, NULL, NULL);
}
int cam_sync_register_callback(sync_callback cb_func,
void *userdata, int32_t sync_obj)
{
struct sync_callback_info *sync_cb;
struct sync_table_row *row = NULL;
int status = 0;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0 || !cb_func)
return -EINVAL;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj %s[%d]",
row->name,
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -EINVAL;
}
sync_cb = kzalloc(sizeof(*sync_cb), GFP_ATOMIC);
if (!sync_cb) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -ENOMEM;
}
/* Trigger callback if sync object is already in SIGNALED state */
if (((row->state == CAM_SYNC_STATE_SIGNALED_SUCCESS) ||
(row->state == CAM_SYNC_STATE_SIGNALED_ERROR) ||
(row->state == CAM_SYNC_STATE_SIGNALED_CANCEL)) &&
(!row->remaining)) {
if (trigger_cb_without_switch) {
CAM_DBG(CAM_SYNC, "Invoke callback for sync object:%s[%d]",
row->name,
sync_obj);
status = row->state;
kfree(sync_cb);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
cb_func(sync_obj, status, userdata);
} else {
sync_cb->callback_func = cb_func;
sync_cb->cb_data = userdata;
sync_cb->sync_obj = sync_obj;
INIT_WORK(&sync_cb->cb_dispatch_work,
cam_sync_util_cb_dispatch);
sync_cb->status = row->state;
CAM_DBG(CAM_SYNC, "Enqueue callback for sync object:%s[%d]",
row->name,
sync_cb->sync_obj);
sync_cb->workq_scheduled_ts = ktime_get();
queue_work(sync_dev->work_queue,
&sync_cb->cb_dispatch_work);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
}
return 0;
}
sync_cb->callback_func = cb_func;
sync_cb->cb_data = userdata;
sync_cb->sync_obj = sync_obj;
INIT_WORK(&sync_cb->cb_dispatch_work, cam_sync_util_cb_dispatch);
list_add_tail(&sync_cb->list, &row->callback_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
int cam_sync_deregister_callback(sync_callback cb_func,
void *userdata, int32_t sync_obj)
{
struct sync_table_row *row = NULL;
struct sync_callback_info *sync_cb, *temp;
bool found = false;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %s[%d]",
row->name,
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -EINVAL;
}
CAM_DBG(CAM_SYNC, "deregistered callback for sync object:%s[%d]",
row->name,
sync_obj);
list_for_each_entry_safe(sync_cb, temp, &row->callback_list, list) {
if (sync_cb->callback_func == cb_func &&
sync_cb->cb_data == userdata) {
list_del_init(&sync_cb->list);
kfree(sync_cb);
found = true;
}
}
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return found ? 0 : -ENOENT;
}
static inline int cam_sync_signal_dma_fence_util(
struct sync_table_row *row, uint32_t status)
{
struct cam_dma_fence_signal signal_dma_fence;
signal_dma_fence.dma_fence_fd = row->dma_fence_info.dma_fence_fd;
switch (status) {
case CAM_SYNC_STATE_SIGNALED_SUCCESS:
signal_dma_fence.status = 0;
break;
case CAM_SYNC_STATE_SIGNALED_ERROR:
/* Advertise error */
signal_dma_fence.status = -EADV;
break;
case CAM_SYNC_STATE_SIGNALED_CANCEL:
signal_dma_fence.status = -ECANCELED;
break;
default:
CAM_ERR(CAM_SYNC,
"Signaling undefined status: %d for sync obj: %d",
status, row->sync_id);
return -EINVAL;
}
return cam_dma_fence_internal_signal(row->dma_fence_info.dma_fence_row_idx,
&signal_dma_fence);
}
static void cam_sync_signal_parent_util(int32_t status,
uint32_t event_cause, struct list_head *parents_list)
{
int rc;
struct sync_table_row *parent_row = NULL;
struct sync_parent_info *parent_info, *temp_parent_info;
/*
* Now iterate over all parents of this object and if they too need to
* be signaled dispatch cb's
*/
list_for_each_entry_safe(parent_info, temp_parent_info,
parents_list, list) {
parent_row = sync_dev->sync_table + parent_info->sync_id;
spin_lock_bh(&sync_dev->row_spinlocks[parent_info->sync_id]);
parent_row->remaining--;
rc = cam_sync_util_update_parent_state(
parent_row,
status);
if (rc) {
CAM_ERR(CAM_SYNC, "Invalid parent state %d",
parent_row->state);
spin_unlock_bh(
&sync_dev->row_spinlocks[parent_info->sync_id]);
kfree(parent_info);
continue;
}
if (!parent_row->remaining)
cam_sync_util_dispatch_signaled_cb(
parent_info->sync_id, parent_row->state,
event_cause);
spin_unlock_bh(&sync_dev->row_spinlocks[parent_info->sync_id]);
list_del_init(&parent_info->list);
kfree(parent_info);
}
}
static int cam_sync_signal_validate_util(
int32_t sync_obj, int32_t status)
{
struct sync_table_row *row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %s[%d]",
row->name, sync_obj);
return -EINVAL;
}
if (row->type == CAM_SYNC_TYPE_GROUP) {
CAM_ERR(CAM_SYNC,
"Error: Signaling a GROUP sync object = %s[%d]",
row->name, sync_obj);
return -EINVAL;
}
if (row->state != CAM_SYNC_STATE_ACTIVE) {
CAM_ERR(CAM_SYNC,
"Error: Sync object already signaled sync_obj = %s[%d]",
row->name, sync_obj);
return -EALREADY;
}
if ((status != CAM_SYNC_STATE_SIGNALED_SUCCESS) &&
(status != CAM_SYNC_STATE_SIGNALED_ERROR) &&
(status != CAM_SYNC_STATE_SIGNALED_CANCEL)) {
CAM_ERR(CAM_SYNC,
"Error: signaling with undefined status = %d", status);
return -EINVAL;
}
return 0;
}
int cam_sync_signal(int32_t sync_obj, uint32_t status, uint32_t event_cause)
{
struct sync_table_row *row = NULL;
struct list_head parents_list;
int rc = 0;
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
struct cam_synx_obj_signal signal_synx_obj;
#endif
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0) {
CAM_ERR(CAM_SYNC, "Error: Out of range sync obj (0 <= %d < %d)",
sync_obj, CAM_SYNC_MAX_OBJS);
return -EINVAL;
}
row = sync_dev->sync_table + sync_obj;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
rc = cam_sync_signal_validate_util(sync_obj, status);
if (rc) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
CAM_ERR(CAM_SYNC,
"Error: Failed to validate signal info for sync_obj = %s[%d] with status = %d rc = %d",
row->name, sync_obj, status, rc);
return rc;
}
if (!atomic_dec_and_test(&row->ref_cnt)) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
row->state = status;
/*
* Signal associated dma fence first - external entities
* waiting on this fence can start processing
*/
if (test_bit(CAM_GENERIC_FENCE_TYPE_DMA_FENCE, &row->ext_fence_mask)) {
rc = cam_sync_signal_dma_fence_util(row, status);
if (rc)
CAM_ERR(CAM_SYNC,
"Error: Failed to signal associated dma fencefd = %d for sync_obj = %s[%d]",
row->dma_fence_info.dma_fence_fd, row->name, sync_obj);
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/*
* Signal associated synx obj
*/
if (test_bit(CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, &row->ext_fence_mask)) {
signal_synx_obj.status = status;
signal_synx_obj.synx_obj = row->synx_obj_info.synx_obj;
rc = cam_synx_obj_internal_signal(
row->synx_obj_info.synx_obj_row_idx, &signal_synx_obj);
if (rc)
CAM_ERR(CAM_SYNC,
"Error: Failed to signal associated synx obj = %d for sync_obj = %s[%d]",
row->synx_obj_info.synx_obj, row->name, sync_obj);
}
#endif
cam_sync_util_dispatch_signaled_cb(sync_obj, status, event_cause);
/* copy parent list to local and release child lock */
INIT_LIST_HEAD(&parents_list);
list_splice_init(&row->parents_list, &parents_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
if (list_empty(&parents_list))
return 0;
cam_sync_signal_parent_util(status, event_cause, &parents_list);
return 0;
}
int cam_sync_merge(int32_t *sync_obj, uint32_t num_objs, int32_t *merged_obj)
{
int rc;
long idx = 0;
bool bit;
int i = 0;
if (!sync_obj || !merged_obj) {
CAM_ERR(CAM_SYNC, "Invalid pointer(s)");
return -EINVAL;
}
if (num_objs <= 1) {
CAM_ERR(CAM_SYNC, "Single object merge is not allowed");
return -EINVAL;
}
if (cam_common_util_remove_duplicate_arr(sync_obj, num_objs)
!= num_objs) {
CAM_ERR(CAM_SYNC, "The obj list has duplicate fence");
return -EINVAL;
}
for (i = 0; i < num_objs; i++) {
rc = cam_sync_check_valid(sync_obj[i]);
if (rc) {
CAM_ERR(CAM_SYNC, "Sync_obj[%d] %d valid check fail",
i, sync_obj[i]);
return rc;
}
}
do {
idx = find_first_zero_bit(sync_dev->bitmap, CAM_SYNC_MAX_OBJS);
if (idx >= CAM_SYNC_MAX_OBJS)
return -ENOMEM;
bit = test_and_set_bit(idx, sync_dev->bitmap);
} while (bit);
spin_lock_bh(&sync_dev->row_spinlocks[idx]);
rc = cam_sync_init_group_object(sync_dev->sync_table,
idx, sync_obj,
num_objs);
if (rc < 0) {
CAM_ERR(CAM_SYNC, "Error: Unable to init row at idx = %ld",
idx);
clear_bit(idx, sync_dev->bitmap);
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return -EINVAL;
}
CAM_DBG(CAM_SYNC, "Init row at idx:%ld to merge objects", idx);
*merged_obj = idx;
spin_unlock_bh(&sync_dev->row_spinlocks[idx]);
return 0;
}
int cam_sync_get_obj_ref(int32_t sync_obj)
{
struct sync_table_row *row = NULL;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
row = sync_dev->sync_table + sync_obj;
spin_lock(&sync_dev->row_spinlocks[sync_obj]);
if (row->state != CAM_SYNC_STATE_ACTIVE) {
spin_unlock(&sync_dev->row_spinlocks[sync_obj]);
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %s[%d]",
row->name,
sync_obj);
return -EINVAL;
}
atomic_inc(&row->ref_cnt);
spin_unlock(&sync_dev->row_spinlocks[sync_obj]);
CAM_DBG(CAM_SYNC, "get ref for obj %d", sync_obj);
return 0;
}
int cam_sync_put_obj_ref(int32_t sync_obj)
{
struct sync_table_row *row = NULL;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
row = sync_dev->sync_table + sync_obj;
atomic_dec(&row->ref_cnt);
CAM_DBG(CAM_SYNC, "put ref for obj %d", sync_obj);
return 0;
}
int cam_sync_destroy(int32_t sync_obj)
{
return cam_sync_deinit_object(sync_dev->sync_table, sync_obj, NULL, NULL);
}
int cam_sync_check_valid(int32_t sync_obj)
{
struct sync_table_row *row = NULL;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
row = sync_dev->sync_table + sync_obj;
if (!test_bit(sync_obj, sync_dev->bitmap)) {
CAM_ERR(CAM_SYNC, "Error: Released sync obj received %s[%d]",
row->name,
sync_obj);
return -EINVAL;
}
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %s[%d]",
row->name,
sync_obj);
return -EINVAL;
}
return 0;
}
int cam_sync_wait(int32_t sync_obj, uint64_t timeout_ms)
{
unsigned long timeleft;
int rc = -EINVAL;
struct sync_table_row *row = NULL;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %s[%d]",
row->name,
sync_obj);
return -EINVAL;
}
timeleft = cam_common_wait_for_completion_timeout(&row->signaled,
msecs_to_jiffies(timeout_ms));
if (!timeleft) {
CAM_ERR(CAM_SYNC,
"Error: timed out for sync obj = %s[%d]", row->name, sync_obj);
rc = -ETIMEDOUT;
} else {
switch (row->state) {
case CAM_SYNC_STATE_INVALID:
case CAM_SYNC_STATE_ACTIVE:
case CAM_SYNC_STATE_SIGNALED_ERROR:
case CAM_SYNC_STATE_SIGNALED_CANCEL:
CAM_ERR(CAM_SYNC,
"Error: Wait on invalid state = %d, obj = %d, name = %s",
row->state, sync_obj, row->name);
rc = -EINVAL;
break;
case CAM_SYNC_STATE_SIGNALED_SUCCESS:
rc = 0;
break;
default:
rc = -EINVAL;
break;
}
}
return rc;
}
static int cam_sync_handle_create(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_info sync_create;
int result;
if (k_ioctl->size != sizeof(struct cam_sync_info))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_create,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
sync_create.name[SYNC_DEBUG_NAME_LEN] = '\0';
result = cam_sync_create(&sync_create.sync_obj,
sync_create.name);
if (!result)
if (copy_to_user(
u64_to_user_ptr(k_ioctl->ioctl_ptr),
&sync_create,
k_ioctl->size))
return -EFAULT;
return result;
}
static int cam_sync_handle_signal(struct cam_private_ioctl_arg *k_ioctl)
{
int rc = 0;
struct cam_sync_signal sync_signal;
if (k_ioctl->size != sizeof(struct cam_sync_signal))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_signal,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
/* need to get ref for UMD signaled fences */
rc = cam_sync_get_obj_ref(sync_signal.sync_obj);
if (rc) {
CAM_DBG(CAM_SYNC,
"Error: cannot signal an uninitialized sync obj = %d",
sync_signal.sync_obj);
return rc;
}
return cam_sync_signal(sync_signal.sync_obj,
sync_signal.sync_state,
CAM_SYNC_COMMON_SYNC_SIGNAL_EVENT);
}
static int cam_sync_handle_merge(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_merge sync_merge;
uint32_t *sync_objs;
uint32_t num_objs;
uint32_t size;
int result;
if (k_ioctl->size != sizeof(struct cam_sync_merge))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_merge,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
if (sync_merge.num_objs >= CAM_SYNC_MAX_OBJS)
return -EINVAL;
size = sizeof(uint32_t) * sync_merge.num_objs;
sync_objs = kzalloc(size, GFP_ATOMIC);
if (!sync_objs)
return -ENOMEM;
if (copy_from_user(sync_objs,
u64_to_user_ptr(sync_merge.sync_objs),
sizeof(uint32_t) * sync_merge.num_objs)) {
kfree(sync_objs);
return -EFAULT;
}
num_objs = sync_merge.num_objs;
result = cam_sync_merge(sync_objs,
num_objs,
&sync_merge.merged);
if (!result)
if (copy_to_user(
u64_to_user_ptr(k_ioctl->ioctl_ptr),
&sync_merge,
k_ioctl->size)) {
kfree(sync_objs);
return -EFAULT;
}
kfree(sync_objs);
return result;
}
static int cam_sync_handle_wait(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_wait sync_wait;
if (k_ioctl->size != sizeof(struct cam_sync_wait))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_wait,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
k_ioctl->result = cam_sync_wait(sync_wait.sync_obj,
sync_wait.timeout_ms);
return 0;
}
static int cam_sync_handle_destroy(struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_info sync_create;
if (k_ioctl->size != sizeof(struct cam_sync_info))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&sync_create,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
return cam_sync_destroy(sync_create.sync_obj);
}
static int cam_sync_handle_register_user_payload(
struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_userpayload_info userpayload_info;
struct sync_user_payload *user_payload_kernel;
struct sync_user_payload *user_payload_iter;
struct sync_user_payload *temp_upayload_kernel;
uint32_t sync_obj;
struct sync_table_row *row = NULL;
if (k_ioctl->size != sizeof(struct cam_sync_userpayload_info))
return -EINVAL;
if (!k_ioctl->ioctl_ptr)
return -EINVAL;
if (copy_from_user(&userpayload_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
sync_obj = userpayload_info.sync_obj;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
user_payload_kernel = kzalloc(sizeof(*user_payload_kernel), GFP_KERNEL);
if (!user_payload_kernel)
return -ENOMEM;
memcpy(user_payload_kernel->payload_data,
userpayload_info.payload,
CAM_SYNC_PAYLOAD_WORDS * sizeof(__u64));
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %s[%d]",
row->name,
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
kfree(user_payload_kernel);
return -EINVAL;
}
if ((row->state == CAM_SYNC_STATE_SIGNALED_SUCCESS) ||
(row->state == CAM_SYNC_STATE_SIGNALED_ERROR) ||
(row->state == CAM_SYNC_STATE_SIGNALED_CANCEL)) {
cam_sync_util_send_v4l2_event(CAM_SYNC_V4L_EVENT_ID_CB_TRIG,
sync_obj,
row->state,
user_payload_kernel->payload_data,
CAM_SYNC_USER_PAYLOAD_SIZE * sizeof(__u64),
CAM_SYNC_COMMON_REG_PAYLOAD_EVENT);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
kfree(user_payload_kernel);
return 0;
}
list_for_each_entry_safe(user_payload_iter,
temp_upayload_kernel,
&row->user_payload_list,
list) {
if (user_payload_iter->payload_data[0] ==
user_payload_kernel->payload_data[0] &&
user_payload_iter->payload_data[1] ==
user_payload_kernel->payload_data[1]) {
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
kfree(user_payload_kernel);
return -EALREADY;
}
}
list_add_tail(&user_payload_kernel->list, &row->user_payload_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
static int cam_sync_handle_deregister_user_payload(
struct cam_private_ioctl_arg *k_ioctl)
{
struct cam_sync_userpayload_info userpayload_info;
struct sync_user_payload *user_payload_kernel, *temp;
uint32_t sync_obj;
struct sync_table_row *row = NULL;
if (k_ioctl->size != sizeof(struct cam_sync_userpayload_info)) {
CAM_ERR(CAM_SYNC, "Incorrect ioctl size");
return -EINVAL;
}
if (!k_ioctl->ioctl_ptr) {
CAM_ERR(CAM_SYNC, "Invalid embedded ioctl ptr");
return -EINVAL;
}
if (copy_from_user(&userpayload_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
sync_obj = userpayload_info.sync_obj;
if (sync_obj >= CAM_SYNC_MAX_OBJS || sync_obj <= 0)
return -EINVAL;
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
if (row->state == CAM_SYNC_STATE_INVALID) {
CAM_ERR(CAM_SYNC,
"Error: accessing an uninitialized sync obj = %s[%d]",
row->name,
sync_obj);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return -EINVAL;
}
list_for_each_entry_safe(user_payload_kernel, temp,
&row->user_payload_list, list) {
if (user_payload_kernel->payload_data[0] ==
userpayload_info.payload[0] &&
user_payload_kernel->payload_data[1] ==
userpayload_info.payload[1]) {
list_del_init(&user_payload_kernel->list);
kfree(user_payload_kernel);
}
}
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return 0;
}
static int cam_sync_dma_fence_cb(
int32_t sync_obj,
struct cam_dma_fence_signal_sync_obj *signal_sync_obj)
{
int32_t rc = 0;
int32_t status = CAM_SYNC_STATE_SIGNALED_SUCCESS;
struct sync_table_row *row = NULL;
struct list_head parents_list;
if (!signal_sync_obj) {
CAM_ERR(CAM_SYNC, "Invalid signal info args");
return -EINVAL;
}
/* Validate sync object range */
if (!(sync_obj > 0 && sync_obj < CAM_SYNC_MAX_OBJS)) {
CAM_ERR(CAM_SYNC, "Invalid sync obj: %d", sync_obj);
return -EINVAL;
}
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
/* Validate if sync obj has a dma fence association */
if (!test_bit(CAM_GENERIC_FENCE_TYPE_DMA_FENCE, &row->ext_fence_mask)) {
CAM_ERR(CAM_SYNC,
"sync obj = %d[%s] has no associated dma fence ext_fence_mask = 0x%x",
sync_obj, row->name, row->ext_fence_mask);
rc = -EINVAL;
goto end;
}
/* Validate if we are signaling the right sync obj based on dma fence fd */
if (row->dma_fence_info.dma_fence_fd != signal_sync_obj->fd) {
CAM_ERR(CAM_SYNC,
"sync obj: %d[%s] is associated with a different fd: %d, signaling for fd: %d",
sync_obj, row->name, row->dma_fence_info.dma_fence_fd, signal_sync_obj->fd);
rc = -EINVAL;
goto end;
}
/* Check for error status */
if (signal_sync_obj->status < 0) {
if (signal_sync_obj->status == -ECANCELED)
status = CAM_SYNC_STATE_SIGNALED_CANCEL;
else
status = CAM_SYNC_STATE_SIGNALED_ERROR;
}
rc = cam_sync_signal_validate_util(sync_obj, status);
if (rc) {
CAM_ERR(CAM_SYNC,
"Error: Failed to validate signal info for sync_obj = %d[%s] with status = %d rc = %d",
sync_obj, row->name, status, rc);
goto end;
}
if (!atomic_dec_and_test(&row->ref_cnt))
goto end;
row->state = status;
cam_sync_util_dispatch_signaled_cb(sync_obj, status, 0);
INIT_LIST_HEAD(&parents_list);
list_splice_init(&row->parents_list, &parents_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
if (list_empty(&parents_list))
return 0;
cam_sync_signal_parent_util(status, 0x0, &parents_list);
return 0;
end:
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return rc;
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
static int cam_sync_synx_obj_cb(int32_t sync_obj,
struct cam_synx_obj_signal_sync_obj *signal_sync_obj)
{
int32_t rc = 0;
struct sync_table_row *row = NULL;
struct list_head parents_list;
if (!signal_sync_obj) {
CAM_ERR(CAM_SYNC, "Invalid signal info args");
return -EINVAL;
}
/* Validate sync object range */
if (!(sync_obj > 0 && sync_obj < CAM_SYNC_MAX_OBJS)) {
CAM_ERR(CAM_SYNC, "Invalid sync obj: %d", sync_obj);
return -EINVAL;
}
spin_lock_bh(&sync_dev->row_spinlocks[sync_obj]);
row = sync_dev->sync_table + sync_obj;
/* Validate if sync obj has a synx obj association */
if (!test_bit(CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, &row->ext_fence_mask)) {
CAM_ERR(CAM_SYNC,
"sync obj = %d[%s] has no associated synx obj ext_fence_mask = 0x%x",
sync_obj, row->name, row->ext_fence_mask);
rc = -EINVAL;
goto end;
}
/* Validate if we are signaling the right sync obj based on synx handle */
if (row->synx_obj_info.synx_obj != signal_sync_obj->synx_obj) {
CAM_ERR(CAM_SYNC,
"sync obj: %d[%s] is associated with a different synx obj: %d, signaling for synx obj: %d",
sync_obj, row->name, row->synx_obj_info.synx_obj,
signal_sync_obj->synx_obj);
rc = -EINVAL;
goto end;
}
rc = cam_sync_signal_validate_util(sync_obj, signal_sync_obj->status);
if (rc) {
CAM_ERR(CAM_SYNC,
"Error: Failed to validate signal info for sync_obj = %d[%s] with status = %d rc = %d",
sync_obj, row->name, signal_sync_obj->status, rc);
goto end;
}
/* Adding synx reference on sync */
atomic_inc(&row->ref_cnt);
if (!atomic_dec_and_test(&row->ref_cnt)) {
CAM_DBG(CAM_SYNC, "Sync = %d[%s] fence still has references, synx_hdl = %d",
sync_obj, row->name, signal_sync_obj->synx_obj);
goto end;
}
row->state = signal_sync_obj->status;
cam_sync_util_dispatch_signaled_cb(sync_obj, signal_sync_obj->status, 0);
INIT_LIST_HEAD(&parents_list);
list_splice_init(&row->parents_list, &parents_list);
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
if (list_empty(&parents_list))
return 0;
cam_sync_signal_parent_util(signal_sync_obj->status, 0x0, &parents_list);
CAM_DBG(CAM_SYNC,
"Successfully signaled sync obj = %d with status = %d via synx obj = %d signal callback",
sync_obj, signal_sync_obj->status, signal_sync_obj->synx_obj);
return 0;
end:
spin_unlock_bh(&sync_dev->row_spinlocks[sync_obj]);
return rc;
}
#endif
static int cam_generic_fence_alloc_validate_input_info_util(
struct cam_generic_fence_cmd_args *fence_cmd_args,
struct cam_generic_fence_input_info **fence_input_info)
{
int rc = 0;
struct cam_generic_fence_input_info *fence_input = NULL;
uint32_t num_fences;
size_t expected_size;
*fence_input_info = NULL;
if (fence_cmd_args->input_data_size <
sizeof(struct cam_generic_fence_input_info)) {
CAM_ERR(CAM_SYNC, "Size is invalid expected: 0x%llx actual: 0x%llx",
sizeof(struct cam_generic_fence_input_info),
fence_cmd_args->input_data_size);
return -EINVAL;
}
fence_input = memdup_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_cmd_args->input_data_size);
if (IS_ERR_OR_NULL(fence_input)) {
CAM_ERR(CAM_SYNC, "memdup failed for hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
return -ENOMEM;
}
/* Validate num fences */
num_fences = fence_input->num_fences_requested;
if ((num_fences == 0) || (num_fences > CAM_GENERIC_FENCE_BATCH_MAX)) {
CAM_ERR(CAM_SYNC, "Invalid number of fences: %u for batching",
num_fences);
rc = -EINVAL;
goto free_mem;
}
/* Validate sizes */
expected_size = sizeof(struct cam_generic_fence_input_info) +
((num_fences - 1) * sizeof(struct cam_generic_fence_config));
if ((uint32_t)expected_size != fence_cmd_args->input_data_size) {
CAM_ERR(CAM_SYNC, "Invalid input size expected: 0x%x actual: 0x%x for fences: %u",
expected_size, fence_cmd_args->input_data_size, num_fences);
rc = -EINVAL;
goto free_mem;
}
*fence_input_info = fence_input;
return rc;
free_mem:
kfree(fence_input);
return rc;
}
static void cam_generic_fence_free_input_info_util(
struct cam_generic_fence_input_info **fence_input_info)
{
struct cam_generic_fence_input_info *fence_input = *fence_input_info;
kfree(fence_input);
*fence_input_info = NULL;
}
static int cam_generic_fence_handle_dma_create(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = 0, i, dma_fence_row_idx;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_DMA_FENCE,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
fence_cfg->reason_code = 0;
rc = cam_dma_fence_create_fd(&fence_cfg->dma_fence_fd,
&dma_fence_row_idx, fence_cfg->name);
if (rc) {
CAM_ERR(CAM_DMA_FENCE,
"Failed to create dma fence at index: %d rc: %d num fences [requested: %u processed: %u]",
i, rc, fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
fence_cfg->reason_code = rc;
goto out_copy;
}
CAM_DBG(CAM_DMA_FENCE,
"Created dma_fence @ i: %d fence fd: %d[%s] num fences [requested: %u processed: %u] ",
i, fence_cfg->dma_fence_fd, fence_cfg->name,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
out_copy:
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
CAM_ERR(CAM_DMA_FENCE, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
rc = -EFAULT;
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_generic_fence_handle_dma_release(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = 0, i;
bool failed = false;
struct cam_dma_fence_release_params release_params;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_DMA_FENCE,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
fence_cfg->reason_code = 0;
release_params.use_row_idx = false;
release_params.u.dma_fence_fd = fence_cfg->dma_fence_fd;
rc = cam_dma_fence_release(&release_params);
if (rc) {
CAM_ERR(CAM_DMA_FENCE,
"Failed to destroy dma fence at index: %d fd: %d rc: %d num fences [requested: %u processed: %u]",
i, fence_cfg->dma_fence_fd, rc,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
fence_cfg->reason_code = rc;
/* Continue to release other fences, but mark the call as failed */
failed = true;
continue;
}
CAM_DBG(CAM_DMA_FENCE,
"Released dma_fence @ i: %d fd: %d num fences [requested: %u processed: %u]",
i, fence_cfg->dma_fence_fd,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
if (failed)
rc = -ENOMSG;
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
CAM_ERR(CAM_DMA_FENCE, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
rc = -EFAULT;
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_generic_fence_handle_dma_import(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int32_t rc = 0, i, dma_fence_row_idx;
struct dma_fence *fence = NULL;
struct cam_dma_fence_create_sync_obj_payload dma_sync_create;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_DMA_FENCE,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
fence_cfg->reason_code = 0;
/* Check if fd is for a valid dma fence */
fence = cam_dma_fence_get_fence_from_fd(fence_cfg->dma_fence_fd,
&dma_fence_row_idx);
if (IS_ERR_OR_NULL(fence)) {
CAM_ERR(CAM_DMA_FENCE,
"Invalid dma fence for fd: %d", fence_cfg->dma_fence_fd);
fence_cfg->reason_code = -EINVAL;
goto out_copy;
}
dma_sync_create.dma_fence_row_idx = dma_fence_row_idx;
dma_sync_create.fd = fence_cfg->dma_fence_fd;
dma_sync_create.sync_created_with_dma = false;
/* Create new sync object and associate dma fence */
rc = cam_sync_create_util(&fence_cfg->sync_obj, fence_cfg->name,
&dma_sync_create, NULL);
if (rc) {
fence_cfg->reason_code = rc;
/* put on the import refcnt */
cam_dma_fence_get_put_ref(false, dma_fence_row_idx);
goto out_copy;
}
/* Register a cb for dma fence */
rc = cam_dma_fence_register_cb(&fence_cfg->sync_obj,
&dma_fence_row_idx, cam_sync_dma_fence_cb);
if (rc) {
CAM_ERR(CAM_DMA_FENCE,
"Failed to register cb for dma fence fd: %d sync_obj: %d rc: %d",
fence_cfg->dma_fence_fd, fence_cfg->sync_obj, rc);
cam_sync_deinit_object(sync_dev->sync_table, fence_cfg->sync_obj,
NULL, NULL);
fence_cfg->reason_code = rc;
goto out_copy;
}
CAM_DBG(CAM_DMA_FENCE,
"dma fence fd = %d imported for sync_obj = %d[%s] num fences [requested: %u processed: %u]",
fence_cfg->dma_fence_fd, fence_cfg->sync_obj, fence_cfg->name,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
out_copy:
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
rc = -EFAULT;
CAM_ERR(CAM_DMA_FENCE, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_generic_fence_handle_dma_signal(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
struct cam_dma_fence_signal signal_dma_fence;
if (fence_cmd_args->input_data_size < sizeof(struct cam_dma_fence_signal)) {
CAM_ERR(CAM_DMA_FENCE, "Size is invalid expected: 0x%llx actual: 0x%llx",
sizeof(struct cam_dma_fence_signal),
fence_cmd_args->input_data_size);
return -EINVAL;
}
if (copy_from_user(&signal_dma_fence, (void __user *)fence_cmd_args->input_handle,
fence_cmd_args->input_data_size))
return -EFAULT;
return cam_dma_fence_signal_fd(&signal_dma_fence);
}
static int cam_generic_fence_process_dma_fence_cmd(
uint32_t id,
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = -EINVAL;
switch (id) {
case CAM_GENERIC_FENCE_CREATE:
rc = cam_generic_fence_handle_dma_create(fence_cmd_args);
break;
case CAM_GENERIC_FENCE_RELEASE:
rc = cam_generic_fence_handle_dma_release(fence_cmd_args);
break;
case CAM_GENERIC_FENCE_IMPORT:
rc = cam_generic_fence_handle_dma_import(fence_cmd_args);
break;
case CAM_GENERIC_FENCE_SIGNAL:
rc = cam_generic_fence_handle_dma_signal(fence_cmd_args);
break;
default:
CAM_ERR(CAM_DMA_FENCE, "IOCTL cmd: %u not supported for dma fence", id);
break;
}
return rc;
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
static int cam_generic_fence_validate_signal_input_info_util(
int32_t fence_type,
struct cam_generic_fence_cmd_args *fence_cmd_args,
struct cam_generic_fence_signal_info **fence_signal_info,
void **fence_signal_data)
{
int rc = 0;
struct cam_generic_fence_signal_info *signal_info = NULL;
void *signal_data;
uint32_t num_fences;
size_t expected_size;
*fence_signal_info = NULL;
*fence_signal_data = NULL;
if (fence_cmd_args->input_data_size <
sizeof(struct cam_generic_fence_signal_info)) {
CAM_ERR(CAM_SYNC, "Size is invalid expected: 0x%llx actual: 0x%llx",
sizeof(struct cam_generic_fence_signal_info),
fence_cmd_args->input_data_size);
return -EINVAL;
}
signal_info = memdup_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_cmd_args->input_data_size);
if (IS_ERR_OR_NULL(signal_info)) {
CAM_ERR(CAM_SYNC, "memdup failed for hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
return -ENOMEM;
}
/* Validate num fences */
num_fences = signal_info->num_fences_requested;
if ((num_fences == 0) || (num_fences > CAM_GENERIC_FENCE_BATCH_MAX)) {
CAM_ERR(CAM_SYNC, "Invalid number of fences: %u for batching",
num_fences);
rc = -EINVAL;
goto free_mem;
}
if (signal_info->fence_handle_type != CAM_HANDLE_USER_POINTER) {
CAM_ERR(CAM_SYNC, "Invalid signal handle type: %d",
signal_info->fence_handle_type);
rc = -EINVAL;
goto free_mem;
}
/* Validate sizes */
switch (fence_type) {
case CAM_GENERIC_FENCE_TYPE_SYNC_OBJ:
expected_size = sizeof(struct cam_sync_signal);
break;
case CAM_GENERIC_FENCE_TYPE_SYNX_OBJ:
expected_size = sizeof(struct cam_synx_obj_signal);
break;
case CAM_GENERIC_FENCE_TYPE_DMA_FENCE:
expected_size = sizeof(struct cam_dma_fence_signal);
break;
default:
CAM_ERR(CAM_SYNC, "Unsupported fence type: %u", fence_type);
rc = -EINVAL;
goto free_mem;
}
if ((signal_info->fence_data_size) < (expected_size * num_fences)) {
CAM_ERR(CAM_SYNC, "Invalid input size expected: 0x%x actual: 0x%x for fences: %u",
(expected_size * num_fences), signal_info->fence_data_size, num_fences);
rc = -EINVAL;
goto free_mem;
}
signal_data = memdup_user(u64_to_user_ptr(signal_info->fence_info_hdl),
signal_info->fence_data_size);
if (IS_ERR_OR_NULL(signal_data)) {
CAM_ERR(CAM_SYNC, "memdup failed for hdl: %d size: 0x%x",
signal_info->fence_info_hdl, signal_info->fence_data_size);
rc = -ENOMEM;
goto free_mem;
}
*fence_signal_info = signal_info;
*fence_signal_data = signal_data;
return rc;
free_mem:
kfree(signal_info);
return rc;
}
static void cam_generic_fence_free_signal_input_info_util(
struct cam_generic_fence_signal_info **fence_signal_info,
void **fence_signal_data)
{
void *signal_data = *fence_signal_data;
struct cam_generic_fence_signal_info *fence_input = *fence_signal_info;
kfree(signal_data);
kfree(fence_input);
*fence_signal_info = NULL;
*fence_signal_data = NULL;
}
static int cam_generic_fence_config_parse_params(
struct cam_generic_fence_config *fence_cfg,
int32_t requested_param_mask, int32_t *result)
{
uint32_t index = 0, num_entries;
if (!result) {
CAM_ERR(CAM_SYNC, "Invalid result hdl : %p", result);
return -EINVAL;
}
/* Assign to 0 by default */
*result = 0;
if (!fence_cfg->num_valid_params || !requested_param_mask) {
CAM_DBG(CAM_SYNC,
"No params configured num_valid = %d requested_mask = 0x%x",
fence_cfg->num_valid_params, requested_param_mask);
return 0;
}
if (!(fence_cfg->valid_param_mask & requested_param_mask)) {
CAM_DBG(CAM_SYNC,
"Requested parameter not set in additional param mask expecting: 0x%x actual: 0x%x",
requested_param_mask, fence_cfg->valid_param_mask);
return 0;
}
index = ffs(requested_param_mask) - 1;
num_entries = ARRAY_SIZE(fence_cfg->params);
if (index >= num_entries) {
CAM_DBG(CAM_SYNC,
"Obtained index %u from mask: 0x%x num_param_entries: %u, index exceeding max",
index, requested_param_mask, num_entries);
return 0;
}
*result = fence_cfg->params[index];
return 0;
}
static int cam_generic_fence_handle_synx_create(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = 0, i;
int32_t row_idx, fence_flag;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_SYNX,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
fence_cfg->reason_code = 0;
fence_flag = 0;
cam_generic_fence_config_parse_params(fence_cfg,
CAM_GENERIC_FENCE_CONFIG_FLAG_PARAM_INDEX, &fence_flag);
rc = cam_synx_obj_create(fence_cfg->name,
fence_flag, &fence_cfg->synx_obj, &row_idx);
if (rc) {
CAM_ERR(CAM_SYNX,
"Failed to create synx fence at index: %d rc: %d num fences [requested: %u processed: %u]",
i, rc, fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
fence_cfg->reason_code = rc;
goto out_copy;
}
CAM_DBG(CAM_SYNX,
"Created synx fence @ i: %d synx_obj: %d[%s] num fences [requested: %u processed: %u] ",
i, fence_cfg->synx_obj, fence_cfg->name,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
out_copy:
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
CAM_ERR(CAM_SYNX, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
rc = -EFAULT;
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_generic_fence_handle_synx_release(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = 0, i;
bool failed = false;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
struct cam_synx_obj_release_params synx_release_params;
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_SYNX,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
fence_cfg->reason_code = 0;
synx_release_params.use_row_idx = false;
synx_release_params.u.synx_obj = fence_cfg->synx_obj;
rc = cam_synx_obj_release(&synx_release_params);
if (rc) {
CAM_ERR(CAM_SYNX,
"Failed to release synx object at index: %d rc: %d num fences [requested: %u processed: %u]",
i, rc, fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
fence_cfg->reason_code = rc;
/* Continue to release other fences, but mark the call as failed */
failed = true;
continue;
}
CAM_DBG(CAM_SYNX,
"Released synx object @ i: %d handle: %d num fences [requested: %u processed: %u]",
i, fence_cfg->synx_obj,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
if (failed)
rc = -ENOMSG;
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
CAM_ERR(CAM_SYNX, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
rc = -EFAULT;
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_sync_synx_associate_obj(int32_t sync_obj, uint32_t synx_obj,
int32_t synx_obj_row_idx, bool *is_sync_obj_signaled)
{
int rc = 0;
struct sync_table_row *row = NULL;
struct cam_synx_obj_signal signal_synx_obj;
rc = cam_sync_check_valid(sync_obj);
if (rc)
return rc;
row = sync_dev->sync_table + sync_obj;
spin_lock(&sync_dev->row_spinlocks[sync_obj]);
if (row->state != CAM_SYNC_STATE_ACTIVE) {
signal_synx_obj.status = row->state;
signal_synx_obj.synx_obj = synx_obj;
*is_sync_obj_signaled = true;
rc = cam_synx_obj_signal_obj(&signal_synx_obj);
} else {
row->synx_obj_info.synx_obj_row_idx = synx_obj_row_idx;
row->synx_obj_info.sync_created_with_synx = false;
row->synx_obj_info.synx_obj = synx_obj;
set_bit(CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, &row->ext_fence_mask);
CAM_DBG(CAM_SYNX, "sync_obj: %s[%d] associated with synx_obj: %d",
row->name, sync_obj, row->synx_obj_info.synx_obj);
}
spin_unlock(&sync_dev->row_spinlocks[sync_obj]);
return rc;
}
static int cam_generic_fence_handle_synx_import(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int32_t rc = 0, i, synx_obj_row_idx;
struct sync_synx_obj_info synx_sync_create;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
bool is_sync_obj_signaled = false;
bool is_sync_obj_created = false;
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_SYNX,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
fence_cfg->reason_code = 0;
is_sync_obj_signaled = false;
is_sync_obj_created = false;
/* Check if synx handle is for a valid synx obj */
rc = cam_synx_obj_find_obj_in_table(fence_cfg->synx_obj,
&synx_obj_row_idx);
if (rc) {
CAM_ERR(CAM_SYNX,
"Invalid synx obj for handle: %d", fence_cfg->synx_obj);
fence_cfg->reason_code = -EINVAL;
goto out_copy;
}
if ((fence_cfg->sync_obj > 0) && (fence_cfg->sync_obj < CAM_SYNC_MAX_OBJS)) {
/* Associate synx object with existing sync object */
rc = cam_sync_synx_associate_obj(fence_cfg->sync_obj,
fence_cfg->synx_obj, synx_obj_row_idx,
&is_sync_obj_signaled);
} else {
/* Create new sync object and associate synx object */
synx_sync_create.sync_created_with_synx = false;
synx_sync_create.synx_obj = fence_cfg->synx_obj;
synx_sync_create.synx_obj_row_idx = synx_obj_row_idx;
rc = cam_sync_create_util(&fence_cfg->sync_obj, fence_cfg->name,
NULL, &synx_sync_create);
is_sync_obj_created = true;
}
if (rc) {
fence_cfg->reason_code = rc;
goto out_copy;
}
if (!is_sync_obj_signaled) {
/* Register a cb for synx_obj */
rc = cam_synx_obj_register_cb(&fence_cfg->sync_obj,
synx_obj_row_idx, cam_sync_synx_obj_cb);
if (rc) {
CAM_ERR(CAM_SYNX,
"Failed to register cb for synx_obj: %d sync_obj: %d rc: %d",
fence_cfg->synx_obj, fence_cfg->sync_obj, rc);
if (is_sync_obj_created)
cam_sync_deinit_object(sync_dev->sync_table,
fence_cfg->sync_obj, NULL, NULL);
fence_cfg->reason_code = rc;
goto out_copy;
}
}
CAM_DBG(CAM_SYNX,
"synx_obj handle = %d imported for dma fence fd: %d sync_obj = %d[%s] num fences [requested: %u processed: %u]",
fence_cfg->synx_obj, fence_cfg->dma_fence_fd,
fence_cfg->sync_obj, fence_cfg->name,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
out_copy:
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
rc = -EFAULT;
CAM_ERR(CAM_SYNX, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_generic_fence_handle_synx_signal(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int32_t rc = 0, i;
struct cam_generic_fence_signal_info *fence_signal_info;
struct cam_synx_obj_signal *synx_signal_info;
rc = cam_generic_fence_validate_signal_input_info_util(
CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, fence_cmd_args,
&fence_signal_info, (void **)&synx_signal_info);
if (rc || !fence_signal_info || !synx_signal_info) {
CAM_ERR(CAM_SYNX,
"Fence input signal info validation failed rc: %d fence_input_info: %pK synx_signal_info: %pK",
rc, fence_signal_info, synx_signal_info);
return -EINVAL;
}
for (i = 0; i < fence_signal_info->num_fences_requested; i++) {
fence_signal_info->num_fences_processed++;
rc = cam_synx_obj_signal_obj(&synx_signal_info[i]);
if (rc) {
CAM_ERR(CAM_SYNX,
"Failed to signal for synx_obj: %d, rc: %d, status : %d",
synx_signal_info[i].synx_obj, rc,
synx_signal_info[i].status);
}
synx_signal_info[i].reason_code = rc;
}
if (copy_to_user(u64_to_user_ptr(fence_signal_info->fence_info_hdl), synx_signal_info,
fence_signal_info->fence_data_size)) {
rc = -EFAULT;
CAM_ERR(CAM_SYNX, "copy to user for signal data failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle,
(sizeof(struct cam_synx_obj_signal) *
fence_signal_info->num_fences_requested));
goto end;
}
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_signal_info, sizeof(struct cam_generic_fence_signal_info))) {
rc = -EFAULT;
CAM_ERR(CAM_SYNX, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle,
sizeof(struct cam_generic_fence_signal_info));
}
end:
cam_generic_fence_free_signal_input_info_util(&fence_signal_info,
(void **)&synx_signal_info);
return rc;
}
static int cam_generic_fence_process_synx_obj_cmd(
uint32_t id,
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = -EINVAL;
switch (id) {
case CAM_GENERIC_FENCE_CREATE:
rc = cam_generic_fence_handle_synx_create(fence_cmd_args);
break;
case CAM_GENERIC_FENCE_RELEASE:
rc = cam_generic_fence_handle_synx_release(fence_cmd_args);
break;
case CAM_GENERIC_FENCE_IMPORT:
rc = cam_generic_fence_handle_synx_import(fence_cmd_args);
break;
case CAM_GENERIC_FENCE_SIGNAL:
rc = cam_generic_fence_handle_synx_signal(fence_cmd_args);
break;
default:
CAM_ERR(CAM_SYNX, "IOCTL cmd: %u not supported for synx object", id);
break;
}
return rc;
}
#endif
static int cam_generic_fence_handle_sync_create(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = 0, i, dma_fence_row_idx;
bool dma_fence_created;
unsigned long fence_sel_mask;
struct cam_dma_fence_release_params release_params;
struct cam_dma_fence_create_sync_obj_payload dma_sync_create;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
bool synx_obj_created;
struct sync_synx_obj_info synx_obj_create;
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
int32_t fence_flag;
int32_t synx_obj_row_idx;
struct cam_synx_obj_release_params synx_release_params;
struct dma_fence *dma_fence_ptr;
#endif
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_SYNC,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
fence_cfg->reason_code = 0;
/* Reset flag */
dma_fence_created = false;
synx_obj_created = false;
fence_sel_mask = fence_cfg->fence_sel_mask;
if (test_bit(CAM_GENERIC_FENCE_TYPE_DMA_FENCE, &fence_sel_mask)) {
rc = cam_dma_fence_create_fd(&fence_cfg->dma_fence_fd,
&dma_fence_row_idx, fence_cfg->name);
if (rc) {
CAM_ERR(CAM_SYNC,
"Failed to create dma fence at index: %d rc: %d num_fences: %u",
i, rc, fence_input_info->num_fences_requested);
fence_cfg->reason_code = rc;
goto out_copy;
}
dma_sync_create.dma_fence_row_idx = dma_fence_row_idx;
dma_sync_create.fd = fence_cfg->dma_fence_fd;
dma_sync_create.sync_created_with_dma = true;
dma_fence_created = true;
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/* Create a synx object */
if (test_bit(CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, &fence_sel_mask)) {
if (dma_fence_created) {
dma_fence_ptr = cam_dma_fence_get_fence_from_fd(
dma_sync_create.fd, &dma_fence_row_idx);
rc = cam_synx_obj_import_dma_fence(fence_cfg->name,
fence_cfg->params[0], dma_fence_ptr,
&fence_cfg->synx_obj, &synx_obj_row_idx);
} else {
cam_generic_fence_config_parse_params(fence_cfg,
CAM_GENERIC_FENCE_CONFIG_FLAG_PARAM_INDEX, &fence_flag);
rc = cam_synx_obj_create(fence_cfg->name,
fence_flag, &fence_cfg->synx_obj,
&synx_obj_row_idx);
}
if (rc) {
CAM_ERR(CAM_SYNC,
"Failed to create/import synx obj at index: %d rc: %d num_fences: %u",
i, rc, fence_input_info->num_fences_requested);
/* Release dma fence */
if (dma_fence_created) {
release_params.use_row_idx = true;
release_params.u.dma_row_idx = dma_fence_row_idx;
cam_dma_fence_release(&release_params);
}
/* Release synx obj */
if (synx_obj_created) {
synx_release_params.use_row_idx = true;
synx_release_params.u.synx_row_idx = synx_obj_row_idx;
cam_synx_obj_release(&synx_release_params);
}
goto out_copy;
}
synx_obj_create.sync_created_with_synx = true;
synx_obj_create.synx_obj = fence_cfg->synx_obj;
synx_obj_create.synx_obj_row_idx = synx_obj_row_idx;
synx_obj_created = true;
}
#endif
rc = cam_sync_create_util(&fence_cfg->sync_obj, fence_cfg->name,
(dma_fence_created ? &dma_sync_create : NULL),
(synx_obj_created ? &synx_obj_create : NULL));
if (rc) {
fence_cfg->reason_code = rc;
CAM_ERR(CAM_SYNC,
"Failed to create sync obj at index: %d rc: %d num_fences: %u",
i, rc, fence_input_info->num_fences_requested);
/* Release dma fence */
if (dma_fence_created) {
release_params.use_row_idx = true;
release_params.u.dma_row_idx = dma_fence_row_idx;
cam_dma_fence_release(&release_params);
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/* Release synx obj */
if (synx_obj_created) {
synx_release_params.use_row_idx = true;
synx_release_params.u.synx_row_idx = synx_obj_row_idx;
cam_synx_obj_release(&synx_release_params);
}
#endif
goto out_copy;
}
/* Register dma fence cb */
if (test_bit(CAM_GENERIC_FENCE_TYPE_DMA_FENCE, &fence_sel_mask)) {
rc = cam_dma_fence_register_cb(&fence_cfg->sync_obj,
&dma_fence_row_idx, cam_sync_dma_fence_cb);
if (rc) {
CAM_ERR(CAM_SYNC,
"Failed to register cb for dma fence fd: %d sync_obj: %d rc: %d",
fence_cfg->dma_fence_fd, fence_cfg->sync_obj, rc);
fence_cfg->reason_code = rc;
/* Destroy sync obj */
cam_sync_deinit_object(sync_dev->sync_table, fence_cfg->sync_obj,
NULL, NULL);
/* Release dma fence */
if (dma_fence_created) {
release_params.use_row_idx = true;
release_params.u.dma_row_idx = dma_fence_row_idx;
cam_dma_fence_release(&release_params);
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/* Release synx obj */
if (synx_obj_created) {
synx_release_params.use_row_idx = true;
synx_release_params.u.synx_row_idx = synx_obj_row_idx;
cam_synx_obj_release(&synx_release_params);
}
#endif
goto out_copy;
}
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/* Register synx object callback */
if (test_bit(CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, &fence_sel_mask)) {
rc = cam_synx_obj_register_cb(&fence_cfg->sync_obj,
synx_obj_row_idx, cam_sync_synx_obj_cb);
if (rc) {
CAM_ERR(CAM_SYNC,
"Failed to register cb for synx_obj: %d sync_obj: %d rc: %d",
fence_cfg->synx_obj, fence_cfg->sync_obj, rc);
fence_cfg->reason_code = rc;
/* Destroy sync obj */
cam_sync_deinit_object(sync_dev->sync_table, fence_cfg->sync_obj,
NULL, NULL);
/* Release dma fence */
if (dma_fence_created) {
release_params.use_row_idx = true;
release_params.u.dma_row_idx = dma_fence_row_idx;
cam_dma_fence_release(&release_params);
}
/* Release synx obj */
if (synx_obj_created) {
synx_release_params.use_row_idx = true;
synx_release_params.u.synx_row_idx = synx_obj_row_idx;
cam_synx_obj_release(&synx_release_params);
}
goto out_copy;
}
}
#endif
CAM_DBG(CAM_SYNC,
"Created sync_obj = %d[%s] with fence_sel_mask: 0x%x dma_fence_fd: %d num fences [requested: %u processed: %u]",
fence_cfg->sync_obj, fence_cfg->name,
fence_cfg->fence_sel_mask, fence_cfg->dma_fence_fd,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
out_copy:
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
rc = -EFAULT;
CAM_ERR(CAM_SYNC, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_generic_fence_handle_sync_release(
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
bool failed = false;
int rc = 0, i;
unsigned long fence_sel_mask;
struct cam_sync_check_for_dma_release check_for_dma_release;
struct cam_dma_fence_release_params release_params;
struct cam_generic_fence_input_info *fence_input_info = NULL;
struct cam_generic_fence_config *fence_cfg = NULL;
struct cam_sync_check_for_synx_release check_for_synx_release;
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
struct cam_synx_obj_release_params synx_release_params;
#endif
rc = cam_generic_fence_alloc_validate_input_info_util(fence_cmd_args, &fence_input_info);
if (rc || !fence_input_info) {
CAM_ERR(CAM_SYNC,
"Fence input info validation failed rc: %d fence_input_info: %pK",
rc, fence_input_info);
return -EINVAL;
}
for (i = 0; i < fence_input_info->num_fences_requested; i++) {
fence_cfg = &fence_input_info->fence_cfg[i];
fence_input_info->num_fences_processed++;
/* Reset fields */
fence_cfg->reason_code = 0;
check_for_dma_release.sync_created_with_dma = false;
check_for_dma_release.dma_fence_fd = fence_cfg->dma_fence_fd;
check_for_synx_release.sync_created_with_synx = false;
check_for_synx_release.synx_obj = fence_cfg->synx_obj;
rc = cam_sync_deinit_object(sync_dev->sync_table, fence_cfg->sync_obj,
&check_for_dma_release, &check_for_synx_release);
if (rc) {
fence_cfg->reason_code = rc;
failed = true;
CAM_ERR(CAM_SYNC,
"Failed to release sync obj at index: %d rc: %d num_fences [requested: %u processed: %u]",
i, rc, fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
fence_sel_mask = fence_cfg->fence_sel_mask;
if (test_bit(CAM_GENERIC_FENCE_TYPE_DMA_FENCE, &fence_sel_mask)) {
if (!check_for_dma_release.sync_created_with_dma) {
CAM_ERR(CAM_SYNC,
"Failed to release dma fence fd: %d with sync_obj: %d, not created together",
fence_cfg->dma_fence_fd, fence_cfg->sync_obj);
failed = true;
fence_cfg->reason_code = -EPERM;
continue;
}
release_params.use_row_idx = true;
release_params.u.dma_row_idx = check_for_dma_release.dma_fence_row_idx;
rc = cam_dma_fence_release(&release_params);
if (rc) {
CAM_ERR(CAM_SYNC,
"Failed to destroy dma fence at index: %d rc: %d num fences [requested: %u processed: %u]",
i, rc, fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
fence_cfg->reason_code = rc;
failed = true;
continue;
}
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/* Release associated synx obj */
if (test_bit(CAM_GENERIC_FENCE_TYPE_SYNX_OBJ, &fence_sel_mask)) {
if (!check_for_synx_release.sync_created_with_synx) {
CAM_ERR(CAM_SYNC,
"Failed to release synx_obj: %d with sync_obj: %d, not created together",
fence_cfg->synx_obj, fence_cfg->sync_obj);
failed = true;
fence_cfg->reason_code = -EPERM;
continue;
}
synx_release_params.use_row_idx = true;
synx_release_params.u.synx_row_idx =
check_for_synx_release.synx_obj_row_idx;
rc = cam_synx_obj_release(&synx_release_params);
if (rc) {
CAM_ERR(CAM_SYNC,
"Failed to destroy synx_obj at index: %d rc: %d num fences [requested: %u processed: %u]",
i, rc, fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
fence_cfg->reason_code = rc;
failed = true;
continue;
}
}
#endif
CAM_DBG(CAM_SYNC,
"Released sync_obj = %d[%s] with fence_sel_mask: 0x%x dma_fence_fd: %d synx_obj: %d num fences [requested: %u processed: %u]",
fence_cfg->sync_obj, fence_cfg->name,
fence_cfg->fence_sel_mask, fence_cfg->dma_fence_fd, fence_cfg->synx_obj,
fence_input_info->num_fences_requested,
fence_input_info->num_fences_processed);
}
if (failed)
rc = -ENOMSG;
if (copy_to_user(u64_to_user_ptr(fence_cmd_args->input_handle),
fence_input_info, fence_cmd_args->input_data_size)) {
rc = -EFAULT;
CAM_ERR(CAM_SYNC, "copy to user failed hdl: %d size: 0x%x",
fence_cmd_args->input_handle, fence_cmd_args->input_data_size);
}
cam_generic_fence_free_input_info_util(&fence_input_info);
return rc;
}
static int cam_generic_fence_process_sync_obj_cmd(
uint32_t id,
struct cam_generic_fence_cmd_args *fence_cmd_args)
{
int rc = -EINVAL;
switch (id) {
case CAM_GENERIC_FENCE_CREATE:
rc = cam_generic_fence_handle_sync_create(fence_cmd_args);
break;
case CAM_GENERIC_FENCE_RELEASE:
rc = cam_generic_fence_handle_sync_release(fence_cmd_args);
break;
default:
CAM_ERR(CAM_SYNC, "IOCTL cmd: %u not supported for sync object", id);
break;
}
return rc;
}
static int cam_generic_fence_parser(
struct cam_private_ioctl_arg *k_ioctl)
{
int rc;
struct cam_generic_fence_cmd_args fence_cmd_args;
if (!k_ioctl->ioctl_ptr) {
CAM_ERR(CAM_SYNC, "Invalid args input ptr: %p",
k_ioctl->ioctl_ptr);
return -EINVAL;
}
if (k_ioctl->size != sizeof(struct cam_generic_fence_cmd_args)) {
CAM_ERR(CAM_SYNC, "Size mismatch expected: 0x%llx actual: 0x%llx",
sizeof(struct cam_generic_fence_cmd_args), k_ioctl->size);
return -EINVAL;
}
if (copy_from_user(&fence_cmd_args, u64_to_user_ptr(k_ioctl->ioctl_ptr),
sizeof(fence_cmd_args))) {
CAM_ERR(CAM_SYNC, "copy from user failed for input ptr: %pK",
k_ioctl->ioctl_ptr);
return -EFAULT;
}
if (fence_cmd_args.input_handle_type != CAM_HANDLE_USER_POINTER) {
CAM_ERR(CAM_SYNC, "Invalid handle type: %u",
fence_cmd_args.input_handle_type);
return -EINVAL;
}
switch (fence_cmd_args.fence_type) {
case CAM_GENERIC_FENCE_TYPE_SYNC_OBJ:
rc = cam_generic_fence_process_sync_obj_cmd(k_ioctl->id, &fence_cmd_args);
break;
case CAM_GENERIC_FENCE_TYPE_DMA_FENCE:
rc = cam_generic_fence_process_dma_fence_cmd(k_ioctl->id, &fence_cmd_args);
break;
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
case CAM_GENERIC_FENCE_TYPE_SYNX_OBJ:
rc = cam_generic_fence_process_synx_obj_cmd(k_ioctl->id, &fence_cmd_args);
break;
#endif
default:
rc = -EINVAL;
CAM_ERR(CAM_SYNC, "fence type: 0x%x handling not supported",
fence_cmd_args.fence_type);
break;
}
return rc;
}
static long cam_sync_dev_ioctl(struct file *filep, void *fh,
bool valid_prio, unsigned int cmd, void *arg)
{
int32_t rc;
struct sync_device *sync_dev = video_drvdata(filep);
struct cam_private_ioctl_arg k_ioctl;
if (!sync_dev) {
CAM_ERR(CAM_SYNC, "sync_dev NULL");
return -EINVAL;
}
if (!arg)
return -EINVAL;
if (cmd != CAM_PRIVATE_IOCTL_CMD)
return -ENOIOCTLCMD;
k_ioctl = *(struct cam_private_ioctl_arg *)arg;
switch (k_ioctl.id) {
case CAM_SYNC_CREATE:
rc = cam_sync_handle_create(&k_ioctl);
break;
case CAM_SYNC_DESTROY:
rc = cam_sync_handle_destroy(&k_ioctl);
break;
case CAM_SYNC_REGISTER_PAYLOAD:
rc = cam_sync_handle_register_user_payload(
&k_ioctl);
break;
case CAM_SYNC_DEREGISTER_PAYLOAD:
rc = cam_sync_handle_deregister_user_payload(
&k_ioctl);
break;
case CAM_SYNC_SIGNAL:
rc = cam_sync_handle_signal(&k_ioctl);
break;
case CAM_SYNC_MERGE:
rc = cam_sync_handle_merge(&k_ioctl);
break;
case CAM_SYNC_WAIT:
rc = cam_sync_handle_wait(&k_ioctl);
((struct cam_private_ioctl_arg *)arg)->result =
k_ioctl.result;
break;
case CAM_GENERIC_FENCE_CREATE:
case CAM_GENERIC_FENCE_RELEASE:
case CAM_GENERIC_FENCE_IMPORT:
case CAM_GENERIC_FENCE_SIGNAL:
rc = cam_generic_fence_parser(&k_ioctl);
break;
default:
rc = -ENOIOCTLCMD;
}
return rc;
}
static unsigned int cam_sync_poll(struct file *f,
struct poll_table_struct *pll_table)
{
int rc = 0;
struct v4l2_fh *eventq = f->private_data;
if (!eventq)
return -EINVAL;
poll_wait(f, &eventq->wait, pll_table);
if (v4l2_event_pending(eventq))
rc = POLLPRI;
return rc;
}
static int cam_sync_open(struct file *filep)
{
int rc;
struct sync_device *sync_dev = video_drvdata(filep);
if (!sync_dev) {
CAM_ERR(CAM_SYNC, "Sync device NULL");
return -ENODEV;
}
mutex_lock(&sync_dev->table_lock);
if (sync_dev->open_cnt >= 1) {
mutex_unlock(&sync_dev->table_lock);
return -EALREADY;
}
rc = v4l2_fh_open(filep);
if (!rc) {
sync_dev->open_cnt++;
cam_dma_fence_open();
spin_lock_bh(&sync_dev->cam_sync_eventq_lock);
sync_dev->cam_sync_eventq = filep->private_data;
spin_unlock_bh(&sync_dev->cam_sync_eventq_lock);
} else {
CAM_ERR(CAM_SYNC, "v4l2_fh_open failed : %d", rc);
}
mutex_unlock(&sync_dev->table_lock);
return rc;
}
static int cam_sync_close(struct file *filep)
{
int rc = 0;
int i;
struct sync_device *sync_dev = video_drvdata(filep);
if (!sync_dev) {
CAM_ERR(CAM_SYNC, "Sync device NULL");
rc = -ENODEV;
return rc;
}
mutex_lock(&sync_dev->table_lock);
sync_dev->open_cnt--;
if (!sync_dev->open_cnt) {
for (i = 1; i < CAM_SYNC_MAX_OBJS; i++) {
struct sync_table_row *row =
sync_dev->sync_table + i;
/*
* Signal all ACTIVE objects as ERR, but we don't
* care about the return status here apart from logging
* it.
*/
if (row->state == CAM_SYNC_STATE_ACTIVE) {
rc = cam_sync_signal(i,
CAM_SYNC_STATE_SIGNALED_ERROR,
CAM_SYNC_COMMON_RELEASE_EVENT);
if (rc < 0)
CAM_ERR(CAM_SYNC,
"Cleanup signal fail idx:%d", i);
}
}
/*
* Flush the work queue to wait for pending signal callbacks to
* finish
*/
flush_workqueue(sync_dev->work_queue);
/*
* Now that all callbacks worker threads have finished,
* destroy the sync objects
*/
for (i = 1; i < CAM_SYNC_MAX_OBJS; i++) {
struct sync_table_row *row =
sync_dev->sync_table + i;
if (row->state != CAM_SYNC_STATE_INVALID) {
rc = cam_sync_destroy(i);
if (rc < 0)
CAM_ERR(CAM_SYNC,
"Cleanup destroy fail:idx:%d\n", i);
}
}
}
/* Clean dma fence table */
cam_dma_fence_close();
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/* Clean synx obj table */
cam_synx_obj_close();
#endif
mutex_unlock(&sync_dev->table_lock);
spin_lock_bh(&sync_dev->cam_sync_eventq_lock);
sync_dev->cam_sync_eventq = NULL;
spin_unlock_bh(&sync_dev->cam_sync_eventq_lock);
v4l2_fh_release(filep);
return rc;
}
static void cam_sync_event_queue_notify_error(const struct v4l2_event *old,
struct v4l2_event *new)
{
if (sync_dev->version == CAM_SYNC_V4L_EVENT_V2) {
struct cam_sync_ev_header_v2 *ev_header;
ev_header = CAM_SYNC_GET_HEADER_PTR_V2((*old));
CAM_ERR(CAM_CRM,
"Failed to notify event id %d fence %d statue %d reason %u %u %u %u",
old->id, ev_header->sync_obj, ev_header->status,
ev_header->evt_param[0], ev_header->evt_param[1],
ev_header->evt_param[2], ev_header->evt_param[3]);
} else {
struct cam_sync_ev_header *ev_header;
ev_header = CAM_SYNC_GET_HEADER_PTR((*old));
CAM_ERR(CAM_CRM,
"Failed to notify event id %d fence %d statue %d",
old->id, ev_header->sync_obj, ev_header->status);
}
}
static struct v4l2_subscribed_event_ops cam_sync_v4l2_ops = {
.merge = cam_sync_event_queue_notify_error,
};
int cam_sync_subscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
if (!((sub->type == CAM_SYNC_V4L_EVENT) ||
(sub->type == CAM_SYNC_V4L_EVENT_V2))) {
CAM_ERR(CAM_SYNC, "Non supported event type 0x%x", sub->type);
return -EINVAL;
}
sync_dev->version = sub->type;
CAM_DBG(CAM_SYNC, "Sync event verion type 0x%x", sync_dev->version);
return v4l2_event_subscribe(fh, sub, CAM_SYNC_MAX_V4L2_EVENTS,
&cam_sync_v4l2_ops);
}
int cam_sync_unsubscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
if (!((sub->type == CAM_SYNC_V4L_EVENT) ||
(sub->type == CAM_SYNC_V4L_EVENT_V2))) {
CAM_ERR(CAM_SYNC, "Non supported event type 0x%x", sub->type);
return -EINVAL;
}
return v4l2_event_unsubscribe(fh, sub);
}
static const struct v4l2_ioctl_ops g_cam_sync_ioctl_ops = {
.vidioc_subscribe_event = cam_sync_subscribe_event,
.vidioc_unsubscribe_event = cam_sync_unsubscribe_event,
.vidioc_default = cam_sync_dev_ioctl,
};
static struct v4l2_file_operations cam_sync_v4l2_fops = {
.owner = THIS_MODULE,
.open = cam_sync_open,
.release = cam_sync_close,
.poll = cam_sync_poll,
.unlocked_ioctl = video_ioctl2,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = video_ioctl2,
#endif
};
#if IS_REACHABLE(CONFIG_MEDIA_CONTROLLER)
static int cam_sync_media_controller_init(struct sync_device *sync_dev,
struct platform_device *pdev)
{
int rc;
sync_dev->v4l2_dev.mdev = kzalloc(sizeof(struct media_device),
GFP_KERNEL);
if (!sync_dev->v4l2_dev.mdev)
return -ENOMEM;
media_device_init(sync_dev->v4l2_dev.mdev);
strlcpy(sync_dev->v4l2_dev.mdev->model, CAM_SYNC_DEVICE_NAME,
sizeof(sync_dev->v4l2_dev.mdev->model));
sync_dev->v4l2_dev.mdev->dev = &(pdev->dev);
rc = media_device_register(sync_dev->v4l2_dev.mdev);
if (rc < 0)
goto register_fail;
rc = media_entity_pads_init(&sync_dev->vdev->entity, 0, NULL);
if (rc < 0)
goto entity_fail;
return 0;
entity_fail:
media_device_unregister(sync_dev->v4l2_dev.mdev);
register_fail:
media_device_cleanup(sync_dev->v4l2_dev.mdev);
return rc;
}
static void cam_sync_media_controller_cleanup(struct sync_device *sync_dev)
{
media_entity_cleanup(&sync_dev->vdev->entity);
media_device_unregister(sync_dev->v4l2_dev.mdev);
media_device_cleanup(sync_dev->v4l2_dev.mdev);
kfree(sync_dev->v4l2_dev.mdev);
}
static void cam_sync_init_entity(struct sync_device *sync_dev)
{
sync_dev->vdev->entity.function = CAM_SYNC_DEVICE_TYPE;
sync_dev->vdev->entity.name =
video_device_node_name(sync_dev->vdev);
}
#else
static int cam_sync_media_controller_init(struct sync_device *sync_dev,
struct platform_device *pdev)
{
return 0;
}
static void cam_sync_media_controller_cleanup(struct sync_device *sync_dev)
{
}
static void cam_sync_init_entity(struct sync_device *sync_dev)
{
}
#endif
static int cam_sync_create_debugfs(void)
{
int rc = 0;
struct dentry *dbgfileptr = NULL;
if (!cam_debugfs_available())
return 0;
rc = cam_debugfs_create_subdir("sync", &dbgfileptr);
if (rc) {
CAM_ERR(CAM_SYNC,"DebugFS could not create directory!");
rc = -ENOENT;
goto end;
}
/* Store parent inode for cleanup in caller */
sync_dev->dentry = dbgfileptr;
debugfs_create_bool("trigger_cb_without_switch", 0644,
sync_dev->dentry, &trigger_cb_without_switch);
end:
return rc;
}
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX)
int cam_synx_sync_signal(int32_t sync_obj, uint32_t synx_status)
{
int rc = 0;
uint32_t sync_status = synx_status;
switch (synx_status) {
case SYNX_STATE_ACTIVE:
sync_status = CAM_SYNC_STATE_ACTIVE;
break;
case SYNX_STATE_SIGNALED_SUCCESS:
sync_status = CAM_SYNC_STATE_SIGNALED_SUCCESS;
break;
case SYNX_STATE_SIGNALED_ERROR:
sync_status = CAM_SYNC_STATE_SIGNALED_ERROR;
break;
case 4: /* SYNX_STATE_SIGNALED_CANCEL: */
sync_status = CAM_SYNC_STATE_SIGNALED_CANCEL;
break;
default:
CAM_ERR(CAM_SYNC, "Invalid synx status %d for obj %d",
synx_status, sync_obj);
sync_status = CAM_SYNC_STATE_SIGNALED_ERROR;
break;
}
rc = cam_sync_signal(sync_obj, sync_status, CAM_SYNC_COMMON_EVENT_SYNX);
if (rc) {
CAM_ERR(CAM_SYNC,
"synx signal failed with %d, sync_obj=%d, synx_status=%d, sync_status=%d",
sync_obj, synx_status, sync_status, rc);
}
return rc;
}
static int cam_sync_register_synx_bind_ops(
struct synx_register_params *object)
{
int rc = 0;
rc = synx_register_ops(object);
if (rc)
CAM_ERR(CAM_SYNC, "synx registration fail with rc=%d", rc);
return rc;
}
static void cam_sync_unregister_synx_bind_ops(
struct synx_register_params *object)
{
int rc = 0;
rc = synx_deregister_ops(object);
if (rc)
CAM_ERR(CAM_SYNC, "sync unregistration fail with %d", rc);
}
static void cam_sync_configure_synx_obj(struct synx_register_params *object)
{
struct synx_register_params *params = object;
params->name = CAM_SYNC_NAME;
params->type = SYNX_TYPE_CSL;
params->ops.register_callback = cam_sync_register_callback;
params->ops.deregister_callback = cam_sync_deregister_callback;
params->ops.enable_signaling = cam_sync_get_obj_ref;
params->ops.signal = cam_synx_sync_signal;
}
#endif
static int cam_sync_component_bind(struct device *dev,
struct device *master_dev, void *data)
{
int rc;
int idx;
struct platform_device *pdev = to_platform_device(dev);
sync_dev = kzalloc(sizeof(*sync_dev), GFP_KERNEL);
if (!sync_dev)
return -ENOMEM;
mutex_init(&sync_dev->table_lock);
spin_lock_init(&sync_dev->cam_sync_eventq_lock);
for (idx = 0; idx < CAM_SYNC_MAX_OBJS; idx++)
spin_lock_init(&sync_dev->row_spinlocks[idx]);
sync_dev->vdev = video_device_alloc();
if (!sync_dev->vdev) {
rc = -ENOMEM;
goto vdev_fail;
}
rc = cam_sync_media_controller_init(sync_dev, pdev);
if (rc < 0)
goto mcinit_fail;
sync_dev->vdev->v4l2_dev = &sync_dev->v4l2_dev;
rc = v4l2_device_register(&(pdev->dev), sync_dev->vdev->v4l2_dev);
if (rc < 0)
goto register_fail;
strlcpy(sync_dev->vdev->name, CAM_SYNC_NAME,
sizeof(sync_dev->vdev->name));
sync_dev->vdev->release = video_device_release_empty;
sync_dev->vdev->fops = &cam_sync_v4l2_fops;
sync_dev->vdev->ioctl_ops = &g_cam_sync_ioctl_ops;
sync_dev->vdev->minor = -1;
sync_dev->vdev->device_caps |= V4L2_CAP_VIDEO_CAPTURE;
sync_dev->vdev->vfl_type = VFL_TYPE_VIDEO;
rc = video_register_device(sync_dev->vdev, VFL_TYPE_VIDEO, -1);
if (rc < 0) {
CAM_ERR(CAM_SYNC,
"video device registration failure rc = %d, name = %s, device_caps = %d",
rc, sync_dev->vdev->name, sync_dev->vdev->device_caps);
goto v4l2_fail;
}
cam_sync_init_entity(sync_dev);
video_set_drvdata(sync_dev->vdev, sync_dev);
bitmap_zero(sync_dev->bitmap, CAM_SYNC_MAX_OBJS);
/*
* We treat zero as invalid handle, so we will keep the 0th bit set
* always
*/
set_bit(0, sync_dev->bitmap);
sync_dev->work_queue = alloc_workqueue(CAM_SYNC_WORKQUEUE_NAME,
WQ_HIGHPRI | WQ_UNBOUND, 1);
if (!sync_dev->work_queue) {
CAM_ERR(CAM_SYNC,
"Error: high priority work queue creation failed");
rc = -ENOMEM;
goto v4l2_fail;
}
/* Initialize dma fence driver */
rc = cam_dma_fence_driver_init();
if (rc) {
CAM_ERR(CAM_SYNC,
"DMA fence driver initialization failed rc: %d", rc);
goto workq_destroy;
}
trigger_cb_without_switch = false;
cam_sync_create_debugfs();
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
/* Initialize synx obj driver */
rc = cam_synx_obj_driver_init();
if (rc) {
CAM_ERR(CAM_SYNC,
"Synx obj driver initialization failed rc: %d", rc);
goto dma_driver_deinit;
}
#elif IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX)
CAM_DBG(CAM_SYNC, "Registering with synx driver");
cam_sync_configure_synx_obj(&sync_dev->params);
rc = cam_sync_register_synx_bind_ops(&sync_dev->params);
if (rc)
goto dma_driver_deinit;
#endif
CAM_DBG(CAM_SYNC, "Component bound successfully");
return rc;
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX) || IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
dma_driver_deinit:
cam_dma_fence_driver_deinit();
#endif
workq_destroy:
destroy_workqueue(sync_dev->work_queue);
v4l2_fail:
v4l2_device_unregister(sync_dev->vdev->v4l2_dev);
register_fail:
cam_sync_media_controller_cleanup(sync_dev);
mcinit_fail:
video_unregister_device(sync_dev->vdev);
video_device_release(sync_dev->vdev);
vdev_fail:
mutex_destroy(&sync_dev->table_lock);
kfree(sync_dev);
return rc;
}
static void cam_sync_component_unbind(struct device *dev,
struct device *master_dev, void *data)
{
int i;
v4l2_device_unregister(sync_dev->vdev->v4l2_dev);
cam_sync_media_controller_cleanup(sync_dev);
#if IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX_V2)
cam_synx_obj_driver_deinit();
#elif IS_REACHABLE(CONFIG_MSM_GLOBAL_SYNX)
cam_sync_unregister_synx_bind_ops(&sync_dev->params);
#endif
video_unregister_device(sync_dev->vdev);
video_device_release(sync_dev->vdev);
sync_dev->dentry = NULL;
cam_dma_fence_driver_deinit();
for (i = 0; i < CAM_SYNC_MAX_OBJS; i++)
spin_lock_init(&sync_dev->row_spinlocks[i]);
kfree(sync_dev);
sync_dev = NULL;
}
const static struct component_ops cam_sync_component_ops = {
.bind = cam_sync_component_bind,
.unbind = cam_sync_component_unbind,
};
static int cam_sync_probe(struct platform_device *pdev)
{
int rc = 0;
CAM_DBG(CAM_SYNC, "Adding Sync component");
rc = component_add(&pdev->dev, &cam_sync_component_ops);
if (rc)
CAM_ERR(CAM_SYNC, "failed to add component rc: %d", rc);
return rc;
}
static int cam_sync_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &cam_sync_component_ops);
return 0;
}
static const struct of_device_id cam_sync_dt_match[] = {
{.compatible = "qcom,cam-sync"},
{}
};
MODULE_DEVICE_TABLE(of, cam_sync_dt_match);
struct platform_driver cam_sync_driver = {
.probe = cam_sync_probe,
.remove = cam_sync_remove,
.driver = {
.name = "cam_sync",
.owner = THIS_MODULE,
.of_match_table = cam_sync_dt_match,
.suppress_bind_attrs = true,
},
};
int cam_sync_init(void)
{
return platform_driver_register(&cam_sync_driver);
}
void cam_sync_exit(void)
{
platform_driver_unregister(&cam_sync_driver);
}
MODULE_DESCRIPTION("Camera sync driver");
MODULE_LICENSE("GPL v2");