Files
android_kernel_samsung_sm86…/msm/eva/msm_cvp_buf.c
George Shen 6492155ccc msm: eva: Add LE support
Define CONFIG_EVA_LE compiler flag.
Add separate VM support module.
Define stub functions to initialize synx function table in case
SYNX is disabled.

Change-Id: I0f6b28cbd2a43cbb7f464629a329581a73c4de89
Signed-off-by: George Shen <quic_sqiao@quicinc.com>
2022-03-25 11:03:52 -07:00

1944 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/pid.h>
#include <linux/fdtable.h>
#include <linux/rcupdate.h>
#include <linux/fs.h>
#include <linux/dma-buf.h>
#include <linux/sched/task.h>
#include <linux/version.h>
#include "msm_cvp_common.h"
#include "cvp_hfi_api.h"
#include "msm_cvp_debug.h"
#include "msm_cvp_core.h"
#include "msm_cvp_dsp.h"
#define CLEAR_USE_BITMAP(idx, inst) \
do { \
clear_bit(idx, &inst->dma_cache.usage_bitmap); \
dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
hash32_ptr(inst->session), smem->bitmap_index, \
inst->dma_cache.usage_bitmap); \
} while (0)
#define SET_USE_BITMAP(idx, inst) \
do { \
set_bit(idx, &inst->dma_cache.usage_bitmap); \
dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
hash32_ptr(inst->session), idx, \
inst->dma_cache.usage_bitmap); \
} while (0)
static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
struct msm_cvp_smem *smem)
{
if (!(tag & msm_cvp_debug))
return 0;
if (!inst || !smem) {
dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
inst, smem);
return -EINVAL;
}
if (smem->dma_buf) {
dprintk(tag,
"%s: %x : %s size %d flags %#x iova %#x idx %d ref %d",
str, hash32_ptr(inst->session), smem->dma_buf->name,
smem->size, smem->flags, smem->device_addr,
smem->bitmap_index, smem->refcount);
}
return 0;
}
static void print_internal_buffer(u32 tag, const char *str,
struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
{
if (!(tag & msm_cvp_debug) || !inst || !cbuf)
return;
if (cbuf->smem->dma_buf) {
dprintk(tag,
"%s: %x : fd %d off %d %s size %d iova %#x",
str, hash32_ptr(inst->session), cbuf->fd,
cbuf->offset, cbuf->smem->dma_buf->name, cbuf->size,
cbuf->smem->device_addr);
} else {
dprintk(tag,
"%s: %x : idx %2d fd %d off %d size %d iova %#x",
str, hash32_ptr(inst->session), cbuf->fd,
cbuf->offset, cbuf->size, cbuf->smem->device_addr);
}
}
void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
struct cvp_internal_buf *cbuf)
{
dprintk(tag, "%s addr: %x size %u\n", str,
cbuf->smem->device_addr, cbuf->size);
}
static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
struct msm_cvp_smem *smem, bool logging)
{
if (print_smem(CVP_ERR, "bufdump", inst, smem))
return;
if (!logging || !snapshot)
return;
if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
struct smem_data *s;
s = &snapshot->smem_log[snapshot->smem_index];
snapshot->smem_index++;
s->size = smem->size;
s->flags = smem->flags;
s->device_addr = smem->device_addr;
s->bitmap_index = smem->bitmap_index;
s->refcount = atomic_read(&smem->refcount);
}
}
static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
bool logging)
{
struct cvp_buf_data *buf = NULL;
u32 index;
print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
if (!logging)
return;
if (snapshot) {
if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
index = snapshot->dsp_index;
buf = &snapshot->dsp_buf_log[index];
snapshot->dsp_index++;
} else if (prop == SMEM_PERSIST &&
snapshot->persist_index < MAX_ENTRIES) {
index = snapshot->persist_index;
buf = &snapshot->persist_buf_log[index];
snapshot->persist_index++;
}
if (buf) {
buf->device_addr = cbuf->smem->device_addr;
buf->size = cbuf->size;
}
}
}
void print_client_buffer(u32 tag, const char *str,
struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
{
if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
return;
dprintk(tag,
"%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
" reserved[0] %u\n",
str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
cbuf->reserved[0]);
}
static bool __is_buf_valid(struct msm_cvp_inst *inst,
struct eva_kmd_buffer *buf)
{
struct cvp_hal_session *session;
struct cvp_internal_buf *cbuf = NULL;
bool found = false;
if (!inst || !inst->core || !buf) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return false;
}
if (buf->fd < 0) {
dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
return false;
}
if (buf->offset) {
dprintk(CVP_ERR,
"%s: offset is deprecated, set to 0.\n",
__func__);
return false;
}
session = (struct cvp_hal_session *)inst->session;
mutex_lock(&inst->cvpdspbufs.lock);
list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
if (cbuf->fd == buf->fd) {
if (cbuf->size != buf->size) {
dprintk(CVP_ERR, "%s: buf size mismatch\n",
__func__);
mutex_unlock(&inst->cvpdspbufs.lock);
return false;
}
found = true;
break;
}
}
mutex_unlock(&inst->cvpdspbufs.lock);
if (found) {
print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
return false;
}
return true;
}
static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
fmode_t mask, unsigned int refs)
{
struct files_struct *files = task->files;
struct file *file;
if (!files)
return NULL;
rcu_read_lock();
loop:
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
file = fcheck_files(files, fd);
#else
file = files_lookup_fd_rcu(files, fd);
#endif
if (file) {
/* File object ref couldn't be taken.
* dup2() atomicity guarantee is the reason
* we loop to catch the new file (or NULL pointer)
*/
if (file->f_mode & mask)
file = NULL;
else if (!get_file_rcu_many(file, refs))
goto loop;
}
rcu_read_unlock();
return file;
}
static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
struct task_struct *task)
{
if (file->f_op != gfa_cv.dmabuf_f_op) {
dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
return ERR_PTR(-EINVAL);
}
return file->private_data;
}
int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
{
int rc = 0;
struct cvp_internal_buf *cbuf = NULL;
struct msm_cvp_smem *smem = NULL;
struct dma_buf *dma_buf = NULL;
struct file *file;
if (!__is_buf_valid(inst, buf))
return -EINVAL;
if (!inst->task)
return -EINVAL;
file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
if (file == NULL) {
dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
return -EINVAL;
}
dma_buf = cvp_dma_buf_get(
file,
buf->fd,
inst->task);
if (dma_buf == ERR_PTR(-EINVAL)) {
dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
rc = -EINVAL;
goto exit;
}
dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
if (!cbuf) {
rc = -ENOMEM;
goto exit;
}
smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
if (!smem) {
rc = -ENOMEM;
goto exit;
}
smem->dma_buf = dma_buf;
smem->bitmap_index = MAX_DMABUF_NUMS;
dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
rc = msm_cvp_map_smem(inst, smem, "map dsp");
if (rc) {
print_client_buffer(CVP_ERR, "map failed", inst, buf);
goto exit;
}
cbuf->smem = smem;
cbuf->fd = buf->fd;
cbuf->size = buf->size;
cbuf->offset = buf->offset;
cbuf->ownership = CLIENT;
cbuf->index = buf->index;
buf->reserved[0] = (uint32_t)smem->device_addr;
mutex_lock(&inst->cvpdspbufs.lock);
list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
mutex_unlock(&inst->cvpdspbufs.lock);
return rc;
exit:
fput(file);
if (smem) {
if (smem->device_addr)
msm_cvp_unmap_smem(inst, smem, "unmap dsp");
msm_cvp_smem_put_dma_buf(smem->dma_buf);
kmem_cache_free(cvp_driver->smem_cache, smem);
}
if (cbuf)
kmem_cache_free(cvp_driver->buf_cache, cbuf);
return rc;
}
int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
{
int rc = 0;
bool found;
struct cvp_internal_buf *cbuf;
struct cvp_hal_session *session;
if (!inst || !inst->core || !buf) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
session = (struct cvp_hal_session *)inst->session;
if (!session) {
dprintk(CVP_ERR, "%s: invalid session\n", __func__);
return -EINVAL;
}
mutex_lock(&inst->cvpdspbufs.lock);
found = false;
list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
if (cbuf->fd == buf->fd) {
found = true;
break;
}
}
mutex_unlock(&inst->cvpdspbufs.lock);
if (!found) {
print_client_buffer(CVP_ERR, "invalid", inst, buf);
return -EINVAL;
}
if (cbuf->smem->device_addr) {
msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
}
mutex_lock(&inst->cvpdspbufs.lock);
list_del(&cbuf->list);
mutex_unlock(&inst->cvpdspbufs.lock);
kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
kmem_cache_free(cvp_driver->buf_cache, cbuf);
return rc;
}
int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
struct eva_kmd_buffer *buf)
{
int rc = 0, i;
bool found = false;
struct cvp_internal_buf* cbuf;
struct msm_cvp_smem* smem = NULL;
struct dma_buf* dma_buf = NULL;
if (!inst || !inst->core || !buf) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return -EINVAL;
}
if (!inst->session) {
dprintk(CVP_ERR, "%s: invalid session", __func__);
return -EINVAL;
}
if (buf->index) {
dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
__func__, buf->fd);
return -EINVAL;
}
if (buf->fd < 0) {
dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
return -EINVAL;
}
if (buf->offset) {
dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
__func__);
return -EINVAL;
}
mutex_lock(&inst->cvpwnccbufs.lock);
list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
if (cbuf->fd == buf->fd) {
if (cbuf->size != buf->size) {
dprintk(CVP_ERR, "%s: buf size mismatch",
__func__);
mutex_unlock(&inst->cvpwnccbufs.lock);
return -EINVAL;
}
found = true;
break;
}
}
mutex_unlock(&inst->cvpwnccbufs.lock);
if (found) {
print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
return -EINVAL;
}
dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
if (!dma_buf) {
dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
return -EINVAL;
}
cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
if (!cbuf) {
msm_cvp_smem_put_dma_buf(dma_buf);
return -ENOMEM;
}
smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
if (!smem) {
kmem_cache_free(cvp_driver->buf_cache, cbuf);
msm_cvp_smem_put_dma_buf(dma_buf);
return -ENOMEM;
}
smem->dma_buf = dma_buf;
smem->bitmap_index = MAX_DMABUF_NUMS;
dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
rc = msm_cvp_map_smem(inst, smem, "map wncc");
if (rc) {
dprintk(CVP_ERR, "%s: map failed", __func__);
print_client_buffer(CVP_ERR, __func__, inst, buf);
goto exit;
}
cbuf->smem = smem;
cbuf->fd = buf->fd;
cbuf->size = buf->size;
cbuf->offset = buf->offset;
cbuf->ownership = CLIENT;
cbuf->index = buf->index;
/* Added for PreSil/RUMI testing */
#ifdef USE_PRESIL
dprintk(CVP_DBG,
"wncc buffer is %x for cam_presil_send_buffer"
" with MAP_ADDR_OFFSET %x",
(u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
cam_presil_send_buffer((u64)smem->dma_buf, 0,
(u32)cbuf->offset, (u32)cbuf->size,
(u64)(smem->device_addr) - MAP_ADDR_OFFSET);
#endif
mutex_lock(&inst->cvpwnccbufs.lock);
if (inst->cvpwnccbufs_table == NULL) {
inst->cvpwnccbufs_table =
(struct msm_cvp_wncc_buffer*) kzalloc(
sizeof(struct msm_cvp_wncc_buffer) *
EVA_KMD_WNCC_MAX_SRC_BUFS,
GFP_KERNEL);
if (!inst->cvpwnccbufs_table) {
mutex_unlock(&inst->cvpwnccbufs.lock);
goto exit;
}
}
list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
{
if (inst->cvpwnccbufs_table[i].iova == 0)
{
inst->cvpwnccbufs_num++;
inst->cvpwnccbufs_table[i].fd = buf->fd;
inst->cvpwnccbufs_table[i].iova = smem->device_addr;
inst->cvpwnccbufs_table[i].size = smem->size;
/* buf reserved[0] used to store wncc src buf id */
buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
/* cbuf ktid used to store wncc src buf id */
cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
__func__, inst->cvpwnccbufs_table[i].iova);
break;
}
}
if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
dprintk(CVP_ERR,
"%s: wncc buf table full - max (%u) already registered",
__func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
/* _wncc_print_cvpwnccbufs_table(inst); */
mutex_unlock(&inst->cvpwnccbufs.lock);
rc = -EDQUOT;
goto exit;
}
mutex_unlock(&inst->cvpwnccbufs.lock);
return rc;
exit:
if (smem->device_addr)
msm_cvp_unmap_smem(inst, smem, "unmap wncc");
msm_cvp_smem_put_dma_buf(smem->dma_buf);
kmem_cache_free(cvp_driver->buf_cache, cbuf);
cbuf = NULL;
kmem_cache_free(cvp_driver->smem_cache, smem);
smem = NULL;
return rc;
}
int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
struct eva_kmd_buffer *buf)
{
int rc = 0;
bool found;
struct cvp_internal_buf *cbuf;
uint32_t buf_id, buf_idx;
if (!inst || !inst->core || !buf) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return -EINVAL;
}
if (!inst->session) {
dprintk(CVP_ERR, "%s: invalid session", __func__);
return -EINVAL;
}
if (buf->index) {
dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
__func__, buf->fd);
return -EINVAL;
}
buf_id = buf->reserved[0];
if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
(EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
dprintk(CVP_ERR, "%s: invalid buffer id %d",
__func__, buf->reserved[0]);
return -EINVAL;
}
mutex_lock(&inst->cvpwnccbufs.lock);
if (inst->cvpwnccbufs_num == 0) {
dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
mutex_unlock(&inst->cvpwnccbufs.lock);
return -EINVAL;
}
buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
dprintk(CVP_ERR, "%s: buffer id %d not found",
__func__, buf_id);
mutex_unlock(&inst->cvpwnccbufs.lock);
return -EINVAL;
}
buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
found = false;
list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
if (cbuf->fd == buf->fd) {
found = true;
break;
}
}
if (!found) {
dprintk(CVP_ERR, "%s: buffer id %d not found",
__func__, buf_id);
print_client_buffer(CVP_ERR, __func__, inst, buf);
_wncc_print_cvpwnccbufs_table(inst);
mutex_unlock(&inst->cvpwnccbufs.lock);
return -EINVAL;
}
mutex_unlock(&inst->cvpwnccbufs.lock);
if (cbuf->smem->device_addr) {
msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
}
mutex_lock(&inst->cvpwnccbufs.lock);
list_del(&cbuf->list);
inst->cvpwnccbufs_table[buf_idx].fd = 0;
inst->cvpwnccbufs_table[buf_idx].iova = 0;
inst->cvpwnccbufs_table[buf_idx].size = 0;
inst->cvpwnccbufs_num--;
if (inst->cvpwnccbufs_num == 0) {
kfree(inst->cvpwnccbufs_table);
inst->cvpwnccbufs_table = NULL;
}
mutex_unlock(&inst->cvpwnccbufs.lock);
kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
kmem_cache_free(cvp_driver->buf_cache, cbuf);
return rc;
}
static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
{
u32 i, j;
if (!wncc_oob) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return;
}
dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
for (i = 0; i < wncc_oob->num_layers; i++) {
dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
__func__, i, wncc_oob->layers[i].num_addrs);
for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
dprintk(CVP_DBG,
"%s: layers[%u].addrs[%u]: %04u 0x%08x",
__func__, i, j,
wncc_oob->layers[i].addrs[j].buffer_id,
wncc_oob->layers[i].addrs[j].offset);
}
}
}
static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
{
u32 i, entries = 0;
if (!inst) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return;
}
if (inst->cvpwnccbufs_num == 0) {
dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
__func__);
return;
}
if (!inst->cvpwnccbufs_table) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return;
}
dprintk(CVP_DBG, "%s: wncc buffer table:");
for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
entries < inst->cvpwnccbufs_num; i++) {
if (inst->cvpwnccbufs_table[i].iova != 0) {
dprintk(CVP_DBG,
"%s: buf_idx=%04d --> "
"fd=%03d, iova=0x%08x, size=%d",
__func__, i,
inst->cvpwnccbufs_table[i].fd,
inst->cvpwnccbufs_table[i].iova,
inst->cvpwnccbufs_table[i].size);
entries++;
}
}
}
static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
struct eva_kmd_wncc_metadata** wncc_metadata)
{
u32 i, j, iova;
if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
!wncc_metadata) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return;
}
dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
for (i = 0; i < num_layers; i++) {
for (j = 0; j < num_addrs; j++) {
iova = (wncc_metadata[i][j].iova_msb << 22) |
wncc_metadata[i][j].iova_lsb;
dprintk(CVP_DBG,
"%s: wncc_metadata[%u][%u]: "
"%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
__func__, i, j,
wncc_metadata[i][j].loc_x_dec,
wncc_metadata[i][j].loc_x_frac,
wncc_metadata[i][j].loc_y_dec,
wncc_metadata[i][j].loc_y_frac,
iova,
wncc_metadata[i][j].scale_idx,
wncc_metadata[i][j].aff_coeff_3,
wncc_metadata[i][j].aff_coeff_2,
wncc_metadata[i][j].aff_coeff_1,
wncc_metadata[i][j].aff_coeff_0);
}
}
}
static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
struct eva_kmd_oob_wncc* wncc_oob)
{
int rc = 0;
u32 oob_type;
struct eva_kmd_oob_wncc* wncc_oob_u;
struct eva_kmd_oob_wncc* wncc_oob_k;
unsigned int i;
u32 num_addrs;
if (!in_pkt || !wncc_oob) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return -EINVAL;
}
if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
return -EINVAL;
}
rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
if (rc)
return rc;
if (oob_type != EVA_KMD_OOB_WNCC) {
dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
__func__, oob_type);
return -EINVAL;
}
wncc_oob_u = &in_pkt->oob_buf->wncc;
wncc_oob_k = wncc_oob;
rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
if (rc)
return rc;
if (wncc_oob_k->num_layers < 1 ||
wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
return -EINVAL;
}
for (i = 0; i < wncc_oob_k->num_layers; i++) {
rc = get_user(wncc_oob_k->layers[i].num_addrs,
&wncc_oob_u->layers[i].num_addrs);
if (rc)
break;
num_addrs = wncc_oob_k->layers[i].num_addrs;
if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
dprintk(CVP_ERR,
"%s: invalid wncc num addrs for layer %u",
__func__, i);
rc = -EINVAL;
break;
}
rc = copy_from_user(wncc_oob_k->layers[i].addrs,
wncc_oob_u->layers[i].addrs,
wncc_oob_k->layers[i].num_addrs *
sizeof(struct eva_kmd_wncc_addr));
if (rc)
break;
}
if (false)
_wncc_print_oob(wncc_oob);
return rc;
}
static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
{
int rc = 0, i;
struct cvp_buf_type* wncc_metadata_bufs;
struct dma_buf* dmabuf;
struct dma_buf_map map;
if (!in_pkt || !wncc_metadata ||
num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return -EINVAL;
}
wncc_metadata_bufs = (struct cvp_buf_type*)
&in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
for (i = 0; i < num_layers; i++) {
dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
if (IS_ERR(dmabuf)) {
rc = PTR_ERR(dmabuf);
dprintk(CVP_ERR,
"%s: dma_buf_get() failed for "
"wncc_metadata_bufs[%d], rc %d",
__func__, i, rc);
break;
}
rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
if (rc) {
dprintk(CVP_ERR,
"%s: dma_buf_begin_cpu_access() failed "
"for wncc_metadata_bufs[%d], rc %d",
__func__, i, rc);
dma_buf_put(dmabuf);
break;
}
rc = dma_buf_vmap(dmabuf, &map);
if (rc) {
dprintk(CVP_ERR,
"%s: dma_buf_vmap() failed for "
"wncc_metadata_bufs[%d]",
__func__, i);
dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
dma_buf_put(dmabuf);
break;
}
dprintk(CVP_DBG,
"%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
__func__, i, map.is_iomem);
wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
dma_buf_put(dmabuf);
}
if (rc)
_wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
return rc;
}
static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
{
int rc = 0, i;
struct cvp_buf_type* wncc_metadata_bufs;
struct dma_buf* dmabuf;
struct dma_buf_map map;
if (!in_pkt || !wncc_metadata ||
num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return -EINVAL;
}
wncc_metadata_bufs = (struct cvp_buf_type*)
&in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
for (i = 0; i < num_layers; i++) {
if (!wncc_metadata[i]) {
rc = -EINVAL;
break;
}
dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
if (IS_ERR(dmabuf)) {
rc = -PTR_ERR(dmabuf);
dprintk(CVP_ERR,
"%s: dma_buf_get() failed for "
"wncc_metadata_bufs[%d], rc %d",
__func__, i, rc);
break;
}
dma_buf_map_set_vaddr(&map, wncc_metadata[i]);
dma_buf_vunmap(dmabuf, &map);
wncc_metadata[i] = NULL;
rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
dma_buf_put(dmabuf);
if (rc) {
dprintk(CVP_ERR,
"%s: dma_buf_end_cpu_access() failed "
"for wncc_metadata_bufs[%d], rc %d",
__func__, i, rc);
break;
}
}
return rc;
}
static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
struct eva_kmd_hfi_packet* in_pkt)
{
int rc = 0;
struct eva_kmd_oob_wncc* wncc_oob;
struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
unsigned int i, j;
bool empty = false;
u32 buf_id, buf_idx, buf_offset, iova;
if (!inst || !inst->core || !in_pkt) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return -EINVAL;
}
wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
if (!wncc_oob)
return -ENOMEM;
rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
if (rc) {
dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
goto exit;
}
rc = _wncc_map_metadata_bufs(in_pkt,
wncc_oob->num_layers, wncc_metadata);
if (rc) {
dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
__func__);
goto exit;
}
mutex_lock(&inst->cvpwnccbufs.lock);
if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
empty = true;
rc = -EINVAL;
}
for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
EVA_KMD_WNCC_MAX_SRC_BUFS)) {
dprintk(CVP_ERR,
"%s: invalid wncc buf id %u "
"in layer #%u address #%u",
__func__, buf_id, i, j);
rc = -EINVAL;
break;
}
buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
dprintk(CVP_ERR,
"%s: unmapped wncc buf id %u "
"in layer #%u address #%u",
__func__, buf_id, i, j);
/* _wncc_print_cvpwnccbufs_table(inst); */
rc = -EINVAL;
break;
}
buf_offset = wncc_oob->layers[i].addrs[j].offset;
if (buf_offset >=
inst->cvpwnccbufs_table[buf_idx].size) {
/* NOTE: This buffer offset validation is
* not comprehensive since wncc src image
* resolution information is not known to
* KMD. UMD is responsible for comprehensive
* validation.
*/
dprintk(CVP_ERR,
"%s: invalid wncc buf offset %u "
"in layer #%u address #%u",
__func__, buf_offset, i, j);
rc = -EINVAL;
break;
}
iova = inst->cvpwnccbufs_table[buf_idx].iova +
buf_offset;
wncc_metadata[i][j].iova_lsb = iova;
wncc_metadata[i][j].iova_msb = iova >> 22;
}
}
mutex_unlock(&inst->cvpwnccbufs.lock);
if (false)
_wncc_print_metadata_buf(wncc_oob->num_layers,
wncc_oob->layers[0].num_addrs, wncc_metadata);
if (_wncc_unmap_metadata_bufs(in_pkt,
wncc_oob->num_layers, wncc_metadata)) {
dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
__func__);
}
exit:
kfree(wncc_oob);
return rc;
}
int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
struct eva_kmd_hfi_packet* in_pkt)
{
int rc = 0;
struct cvp_hfi_cmd_session_hdr* cmd_hdr =
(struct cvp_hfi_cmd_session_hdr*)in_pkt;
if (!inst || !inst->core || !in_pkt) {
dprintk(CVP_ERR, "%s: invalid params", __func__);
return -EINVAL;
}
switch (cmd_hdr->packet_type) {
case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
break;
default:
break;
}
return rc;
}
void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
u32 offset, u32 size)
{
enum smem_cache_ops cache_op;
if (msm_cvp_cacheop_disabled)
return;
if (!smem) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return;
}
switch (type) {
case EVA_KMD_BUFTYPE_INPUT:
cache_op = SMEM_CACHE_CLEAN;
break;
case EVA_KMD_BUFTYPE_OUTPUT:
cache_op = SMEM_CACHE_INVALIDATE;
break;
default:
cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
}
dprintk(CVP_MEM,
"%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
__func__, smem->dma_buf, cache_op, offset, size);
msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
}
static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
struct dma_buf *dma_buf)
{
struct msm_cvp_smem *smem;
int i;
if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
return NULL;
mutex_lock(&inst->dma_cache.lock);
for (i = 0; i < inst->dma_cache.nr; i++)
if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
SET_USE_BITMAP(i, inst);
smem = inst->dma_cache.entries[i];
smem->bitmap_index = i;
atomic_inc(&smem->refcount);
/*
* If we find it, it means we already increased
* refcount before, so we put it to avoid double
* incremental.
*/
msm_cvp_smem_put_dma_buf(smem->dma_buf);
mutex_unlock(&inst->dma_cache.lock);
print_smem(CVP_MEM, "found", inst, smem);
return smem;
}
mutex_unlock(&inst->dma_cache.lock);
return NULL;
}
static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
struct msm_cvp_smem *smem)
{
unsigned int i;
struct msm_cvp_smem *smem2;
mutex_lock(&inst->dma_cache.lock);
if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
inst->dma_cache.entries[inst->dma_cache.nr] = smem;
SET_USE_BITMAP(inst->dma_cache.nr, inst);
smem->bitmap_index = inst->dma_cache.nr;
inst->dma_cache.nr++;
i = smem->bitmap_index;
} else {
i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
MAX_DMABUF_NUMS);
if (i < MAX_DMABUF_NUMS) {
smem2 = inst->dma_cache.entries[i];
msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
msm_cvp_smem_put_dma_buf(smem2->dma_buf);
kmem_cache_free(cvp_driver->smem_cache, smem2);
inst->dma_cache.entries[i] = smem;
smem->bitmap_index = i;
SET_USE_BITMAP(i, inst);
} else {
dprintk(CVP_WARN,
"%s: reached limit, fallback to frame mapping list\n"
, __func__);
mutex_unlock(&inst->dma_cache.lock);
return -ENOMEM;
}
}
atomic_inc(&smem->refcount);
mutex_unlock(&inst->dma_cache.lock);
dprintk(CVP_MEM, "Add entry %d into cache\n", i);
return 0;
}
static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
struct cvp_buf_type *buf)
{
int rc = 0, found = 1;
struct msm_cvp_smem *smem = NULL;
struct dma_buf *dma_buf = NULL;
if (buf->fd < 0) {
dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
return NULL;
}
dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
if (!dma_buf) {
dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
return NULL;
}
smem = msm_cvp_session_find_smem(inst, dma_buf);
if (!smem) {
found = 0;
smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
if (!smem)
return NULL;
smem->dma_buf = dma_buf;
smem->bitmap_index = MAX_DMABUF_NUMS;
rc = msm_cvp_map_smem(inst, smem, "map cpu");
if (rc)
goto exit;
if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
dprintk(CVP_ERR, "%s: invalid offset %d or size %d for a new entry\n",
__func__, buf->offset, buf->size);
goto exit2;
}
rc = msm_cvp_session_add_smem(inst, smem);
if (rc && rc != -ENOMEM)
goto exit2;
}
if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
__func__, buf->offset, buf->size);
if (found) {
mutex_lock(&inst->dma_cache.lock);
atomic_dec(&smem->refcount);
mutex_unlock(&inst->dma_cache.lock);
return NULL;
}
goto exit2;
}
return smem;
exit2:
msm_cvp_unmap_smem(inst, smem, "unmap cpu");
exit:
msm_cvp_smem_put_dma_buf(dma_buf);
kmem_cache_free(cvp_driver->smem_cache, smem);
smem = NULL;
return smem;
}
static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
struct cvp_buf_type *buf)
{
u32 iova = 0;
struct msm_cvp_smem *smem = NULL;
struct cvp_internal_buf *pbuf;
if (!inst) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
if (!pbuf)
return 0;
smem = msm_cvp_session_get_smem(inst, buf);
if (!smem)
goto exit;
smem->flags |= SMEM_PERSIST;
pbuf->smem = smem;
pbuf->fd = buf->fd;
pbuf->size = buf->size;
pbuf->offset = buf->offset;
pbuf->ownership = CLIENT;
mutex_lock(&inst->persistbufs.lock);
list_add_tail(&pbuf->list, &inst->persistbufs.list);
mutex_unlock(&inst->persistbufs.lock);
print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
iova = smem->device_addr + buf->offset;
return iova;
exit:
kmem_cache_free(cvp_driver->buf_cache, pbuf);
return 0;
}
u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
struct cvp_buf_type *buf,
struct msm_cvp_frame *frame)
{
u32 iova = 0;
struct msm_cvp_smem *smem = NULL;
u32 nr;
u32 type;
if (!inst || !frame) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return 0;
}
nr = frame->nr;
if (nr == MAX_FRAME_BUFFER_NUMS) {
dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
return 0;
}
smem = msm_cvp_session_get_smem(inst, buf);
if (!smem)
return 0;
frame->bufs[nr].fd = buf->fd;
frame->bufs[nr].smem = smem;
frame->bufs[nr].size = buf->size;
frame->bufs[nr].offset = buf->offset;
print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
frame->nr++;
type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
iova = smem->device_addr + buf->offset;
return iova;
}
static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
struct msm_cvp_frame *frame)
{
u32 i;
u32 type;
struct msm_cvp_smem *smem = NULL;
struct cvp_internal_buf *buf;
type = EVA_KMD_BUFTYPE_OUTPUT;
for (i = 0; i < frame->nr; ++i) {
buf = &frame->bufs[i];
smem = buf->smem;
msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
/* smem not in dmamap cache */
msm_cvp_unmap_smem(inst, smem, "unmap cpu");
dma_heap_buffer_free(smem->dma_buf);
kmem_cache_free(cvp_driver->smem_cache, smem);
buf->smem = NULL;
} else {
mutex_lock(&inst->dma_cache.lock);
if (atomic_dec_and_test(&smem->refcount)) {
CLEAR_USE_BITMAP(smem->bitmap_index, inst);
print_smem(CVP_MEM, "Map dereference",
inst, smem);
}
mutex_unlock(&inst->dma_cache.lock);
}
}
kmem_cache_free(cvp_driver->frame_cache, frame);
}
void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
{
struct msm_cvp_frame *frame, *dummy1;
bool found;
if (!inst) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return;
}
ktid &= (FENCE_BIT - 1);
dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
__func__, hash32_ptr(inst->session), ktid);
found = false;
mutex_lock(&inst->frames.lock);
list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
if (frame->ktid == ktid) {
found = true;
list_del(&frame->list);
break;
}
}
mutex_unlock(&inst->frames.lock);
if (found)
msm_cvp_unmap_frame_buf(inst, frame);
else
dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
}
int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
struct eva_kmd_hfi_packet *in_pkt,
unsigned int offset, unsigned int buf_num)
{
struct cvp_hfi_cmd_session_hdr *cmd_hdr;
struct cvp_internal_buf *pbuf, *dummy;
u64 ktid;
int rc = 0;
struct msm_cvp_smem *smem = NULL;
if (!offset || !buf_num)
return rc;
cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
ktid = cmd_hdr->client_data.kdata & (FENCE_BIT - 1);
mutex_lock(&inst->persistbufs.lock);
list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list, list) {
if (pbuf->ktid == ktid && pbuf->ownership == CLIENT) {
list_del(&pbuf->list);
smem = pbuf->smem;
dprintk(CVP_MEM, "unmap persist: %x %d %d %#x",
hash32_ptr(inst->session), pbuf->fd,
pbuf->size, smem->device_addr);
if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
/* smem not in dmamap cache */
msm_cvp_unmap_smem(inst, smem,
"unmap cpu");
dma_heap_buffer_free(smem->dma_buf);
kmem_cache_free(
cvp_driver->smem_cache,
smem);
pbuf->smem = NULL;
} else {
mutex_lock(&inst->dma_cache.lock);
if (atomic_dec_and_test(&smem->refcount))
CLEAR_USE_BITMAP(
smem->bitmap_index,
inst);
mutex_unlock(&inst->dma_cache.lock);
}
kmem_cache_free(cvp_driver->buf_cache, pbuf);
}
}
mutex_unlock(&inst->persistbufs.lock);
return rc;
}
int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
struct eva_kmd_hfi_packet *in_pkt,
unsigned int offset, unsigned int buf_num)
{
struct cvp_hfi_cmd_session_hdr *cmd_hdr;
struct cvp_internal_buf *pbuf, *dummy;
u64 ktid;
struct cvp_buf_type *buf;
int i, rc = 0;
if (!offset || !buf_num)
return 0;
cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
ktid &= (FENCE_BIT - 1);
cmd_hdr->client_data.kdata = ktid;
for (i = 0; i < buf_num; i++) {
buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
offset += sizeof(*buf) >> 2;
if (buf->fd < 0 || !buf->size)
continue;
mutex_lock(&inst->persistbufs.lock);
list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list,
list) {
if (pbuf->ownership == CLIENT) {
if (pbuf->fd == buf->fd &&
pbuf->size == buf->size)
buf->fd = pbuf->smem->device_addr;
rc = 1;
break;
}
}
mutex_unlock(&inst->persistbufs.lock);
if (!rc) {
dprintk(CVP_ERR, "%s No persist buf %d found\n",
__func__, buf->fd);
rc = -EFAULT;
break;
}
pbuf->ktid = ktid;
rc = 0;
}
return rc;
}
int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
struct eva_kmd_hfi_packet *in_pkt,
unsigned int offset, unsigned int buf_num)
{
struct cvp_buf_type *buf;
int i;
u32 iova;
if (!offset || !buf_num)
return 0;
for (i = 0; i < buf_num; i++) {
buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
offset += sizeof(*buf) >> 2;
if (buf->fd < 0 || !buf->size)
continue;
iova = msm_cvp_map_user_persist_buf(inst, buf);
if (!iova) {
dprintk(CVP_ERR,
"%s: buf %d register failed.\n",
__func__, i);
return -EINVAL;
}
buf->fd = iova;
}
return 0;
}
int msm_cvp_map_frame(struct msm_cvp_inst *inst,
struct eva_kmd_hfi_packet *in_pkt,
unsigned int offset, unsigned int buf_num)
{
struct cvp_buf_type *buf;
int i;
u32 iova;
u64 ktid;
struct msm_cvp_frame *frame;
struct cvp_hfi_cmd_session_hdr *cmd_hdr;
if (!offset || !buf_num)
return 0;
cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
ktid &= (FENCE_BIT - 1);
cmd_hdr->client_data.kdata = ktid;
frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
if (!frame)
return -ENOMEM;
frame->ktid = ktid;
frame->nr = 0;
frame->pkt_type = cmd_hdr->packet_type;
for (i = 0; i < buf_num; i++) {
buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
offset += sizeof(*buf) >> 2;
if (buf->fd < 0 || !buf->size)
continue;
iova = msm_cvp_map_frame_buf(inst, buf, frame);
if (!iova) {
dprintk(CVP_ERR,
"%s: buf %d register failed.\n",
__func__, i);
msm_cvp_unmap_frame_buf(inst, frame);
return -EINVAL;
}
buf->fd = iova;
}
mutex_lock(&inst->frames.lock);
list_add_tail(&frame->list, &inst->frames.list);
mutex_unlock(&inst->frames.lock);
dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
return 0;
}
int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
{
int rc = 0, i;
struct cvp_internal_buf *cbuf, *dummy;
struct msm_cvp_frame *frame, *dummy1;
struct msm_cvp_smem *smem;
struct cvp_hal_session *session;
struct eva_kmd_buffer buf;
session = (struct cvp_hal_session *)inst->session;
mutex_lock(&inst->frames.lock);
list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
list_del(&frame->list);
msm_cvp_unmap_frame_buf(inst, frame);
}
mutex_unlock(&inst->frames.lock);
mutex_lock(&inst->dma_cache.lock);
for (i = 0; i < inst->dma_cache.nr; i++) {
smem = inst->dma_cache.entries[i];
if (atomic_read(&smem->refcount) == 0) {
print_smem(CVP_MEM, "free", inst, smem);
} else if (!(smem->flags & SMEM_PERSIST)) {
print_smem(CVP_WARN, "in use", inst, smem);
}
msm_cvp_unmap_smem(inst, smem, "unmap cpu");
msm_cvp_smem_put_dma_buf(smem->dma_buf);
kmem_cache_free(cvp_driver->smem_cache, smem);
inst->dma_cache.entries[i] = NULL;
}
mutex_unlock(&inst->dma_cache.lock);
mutex_lock(&inst->cvpdspbufs.lock);
list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
if (cbuf->ownership == CLIENT) {
rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
cbuf->offset, cbuf->index,
(uint32_t)cbuf->smem->device_addr);
if (rc)
dprintk(CVP_ERR,
"%s: failed dsp deregistration fd=%d rc=%d",
__func__, cbuf->fd, rc);
msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
} else if (cbuf->ownership == DSP) {
rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
if (rc)
dprintk(CVP_ERR,
"%s: failed to unmap buf from DSP\n",
__func__);
rc = cvp_release_dsp_buffers(inst, cbuf);
if (rc)
dprintk(CVP_ERR,
"%s Fail to free buffer 0x%x\n",
__func__, rc);
}
list_del(&cbuf->list);
kmem_cache_free(cvp_driver->buf_cache, cbuf);
}
mutex_unlock(&inst->cvpdspbufs.lock);
mutex_lock(&inst->cvpwnccbufs.lock);
if (inst->cvpwnccbufs_num != 0)
dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
__func__, inst->cvpwnccbufs_num);
list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
buf.fd = cbuf->fd;
buf.reserved[0] = cbuf->ktid;
mutex_unlock(&inst->cvpwnccbufs.lock);
msm_cvp_unmap_buf_wncc(inst, &buf);
mutex_lock(&inst->cvpwnccbufs.lock);
}
mutex_unlock(&inst->cvpwnccbufs.lock);
return rc;
}
void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
{
struct cvp_internal_buf *buf;
struct msm_cvp_core *core;
struct inst_snapshot *snap = NULL;
int i;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
if (log && core->log.snapshot_index < 16) {
snap = &core->log.snapshot[core->log.snapshot_index];
snap->session = inst->session;
core->log.snapshot_index++;
}
if (!inst) {
dprintk(CVP_ERR, "%s - invalid param %pK\n",
__func__, inst);
return;
}
dprintk(CVP_ERR,
"---Buffer details for inst: %pK of type: %d---\n",
inst, inst->session_type);
mutex_lock(&inst->dma_cache.lock);
dprintk(CVP_ERR, "dma cache: %d\n", inst->dma_cache.nr);
if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
for (i = 0; i < inst->dma_cache.nr; i++)
_log_smem(snap, inst, inst->dma_cache.entries[i], log);
mutex_unlock(&inst->dma_cache.lock);
mutex_lock(&inst->cvpdspbufs.lock);
dprintk(CVP_ERR, "dsp buffer list:\n");
list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
_log_buf(snap, SMEM_ADSP, inst, buf, log);
mutex_unlock(&inst->cvpdspbufs.lock);
mutex_lock(&inst->cvpwnccbufs.lock);
dprintk(CVP_ERR, "wncc buffer list:\n");
list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
mutex_unlock(&inst->cvpwnccbufs.lock);
mutex_lock(&inst->persistbufs.lock);
dprintk(CVP_ERR, "persist buffer list:\n");
list_for_each_entry(buf, &inst->persistbufs.list, list)
_log_buf(snap, SMEM_PERSIST, inst, buf, log);
mutex_unlock(&inst->persistbufs.lock);
}
struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
u32 buffer_size)
{
struct cvp_internal_buf *buf;
struct msm_cvp_list *buf_list;
u32 smem_flags = SMEM_UNCACHED;
int rc = 0;
if (!inst) {
dprintk(CVP_ERR, "%s Invalid input\n", __func__);
return NULL;
}
buf_list = &inst->persistbufs;
if (!buffer_size)
return NULL;
/* PERSIST buffer requires secure mapping
* Disable and wait for hyp_assign available
*/
smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
if (!buf) {
dprintk(CVP_ERR, "%s Out of memory\n", __func__);
goto fail_kzalloc;
}
buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
if (!buf->smem) {
dprintk(CVP_ERR, "%s Out of memory\n", __func__);
goto fail_kzalloc;
}
buf->smem->flags = smem_flags;
rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
&(inst->core->resources), buf->smem);
if (rc) {
dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
goto err_no_mem;
}
buf->size = buf->smem->size;
buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
buf->ownership = DRIVER;
mutex_lock(&buf_list->lock);
list_add_tail(&buf->list, &buf_list->list);
mutex_unlock(&buf_list->lock);
return buf;
err_no_mem:
kmem_cache_free(cvp_driver->buf_cache, buf);
fail_kzalloc:
return NULL;
}
int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
{
struct msm_cvp_smem *smem;
struct list_head *ptr, *next;
struct cvp_internal_buf *buf;
int rc = 0;
struct msm_cvp_core *core;
struct cvp_hfi_device *hdev;
if (!inst) {
dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
return -EINVAL;
}
core = inst->core;
if (!core) {
dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
return -EINVAL;
}
hdev = core->device;
if (!hdev) {
dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
return -EINVAL;
}
dprintk(CVP_MEM, "release persist buffer!\n");
mutex_lock(&inst->persistbufs.lock);
/* Workaround for FW: release buffer means release all */
if (inst->state <= MSM_CVP_CLOSE_DONE) {
rc = call_hfi_op(hdev, session_release_buffers,
(void *)inst->session);
if (!rc) {
mutex_unlock(&inst->persistbufs.lock);
rc = wait_for_sess_signal_receipt(inst,
HAL_SESSION_RELEASE_BUFFER_DONE);
if (rc)
dprintk(CVP_WARN,
"%s: wait for signal failed, rc %d\n",
__func__, rc);
mutex_lock(&inst->persistbufs.lock);
} else {
dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
}
}
list_for_each_safe(ptr, next, &inst->persistbufs.list) {
buf = list_entry(ptr, struct cvp_internal_buf, list);
smem = buf->smem;
if (!smem) {
dprintk(CVP_ERR, "%s invalid smem\n", __func__);
mutex_unlock(&inst->persistbufs.lock);
return -EINVAL;
}
list_del(&buf->list);
if (buf->ownership == DRIVER) {
dprintk(CVP_MEM,
"%s: %x : fd %d %s size %d",
"free arp", hash32_ptr(inst->session), buf->fd,
smem->dma_buf->name, buf->size);
msm_cvp_smem_free(smem);
kmem_cache_free(cvp_driver->smem_cache, smem);
}
buf->smem = NULL;
kmem_cache_free(cvp_driver->buf_cache, buf);
}
mutex_unlock(&inst->persistbufs.lock);
return rc;
}
int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
struct cvp_internal_buf *buf,
u32 buffer_size,
u32 secure_type)
{
u32 smem_flags = SMEM_UNCACHED;
int rc = 0;
if (!inst) {
dprintk(CVP_ERR, "%s Invalid input\n", __func__);
return -EINVAL;
}
if (!buf)
return -EINVAL;
if (!buffer_size)
return -EINVAL;
switch (secure_type) {
case 0:
break;
case 1:
smem_flags |= SMEM_SECURE | SMEM_PIXEL;
break;
case 2:
smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
break;
default:
dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
__func__, secure_type);
return -EINVAL;
}
dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
if (!buf->smem) {
dprintk(CVP_ERR, "%s Out of memory\n", __func__);
goto fail_kzalloc_smem_cache;
}
buf->smem->flags = smem_flags;
rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
&(inst->core->resources), buf->smem);
if (rc) {
dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
goto err_no_mem;
}
dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
buf->size = buf->smem->size;
buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
buf->ownership = DSP;
return rc;
err_no_mem:
kmem_cache_free(cvp_driver->smem_cache, buf->smem);
fail_kzalloc_smem_cache:
return rc;
}
int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
struct cvp_internal_buf *buf)
{
struct msm_cvp_smem *smem;
int rc = 0;
if (!inst) {
dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
return -EINVAL;
}
if (!buf) {
dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
return -EINVAL;
}
smem = buf->smem;
if (!smem) {
dprintk(CVP_ERR, "%s invalid smem\n", __func__);
return -EINVAL;
}
if (buf->ownership == DSP) {
dprintk(CVP_MEM,
"%s: %x : fd %x %s size %d",
__func__, hash32_ptr(inst->session), buf->fd,
smem->dma_buf->name, buf->size);
msm_cvp_smem_free(smem);
kmem_cache_free(cvp_driver->smem_cache, smem);
} else {
dprintk(CVP_ERR,
"%s: wrong owner %d %x : fd %x %s size %d",
__func__, buf->ownership, hash32_ptr(inst->session),
buf->fd, smem->dma_buf->name, buf->size);
}
return rc;
}
int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
struct eva_kmd_buffer *buf)
{
struct cvp_hfi_device *hdev;
struct cvp_hal_session *session;
struct msm_cvp_inst *s;
int rc = 0;
if (!inst || !inst->core || !buf) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
s = cvp_get_inst_validate(inst->core, inst);
if (!s)
return -ECONNRESET;
session = (struct cvp_hal_session *)inst->session;
if (!session) {
dprintk(CVP_ERR, "%s: invalid session\n", __func__);
rc = -EINVAL;
goto exit;
}
hdev = inst->core->device;
print_client_buffer(CVP_HFI, "register", inst, buf);
if (buf->index)
rc = msm_cvp_map_buf_dsp(inst, buf);
else
rc = msm_cvp_map_buf_wncc(inst, buf);
dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
buf->fd, buf->reserved[0]);
exit:
cvp_put_inst(s);
return rc;
}
int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
struct eva_kmd_buffer *buf)
{
struct msm_cvp_inst *s;
int rc = 0;
if (!inst || !inst->core || !buf) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
s = cvp_get_inst_validate(inst->core, inst);
if (!s)
return -ECONNRESET;
print_client_buffer(CVP_HFI, "unregister", inst, buf);
if (buf->index)
rc = msm_cvp_unmap_buf_dsp(inst, buf);
else
rc = msm_cvp_unmap_buf_wncc(inst, buf);
cvp_put_inst(s);
return rc;
}