Files
android_kernel_samsung_sm86…/driver/vidc/src/msm_vidc_driver.c

6232 lines
157 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020-2022, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/iommu.h>
#include <linux/workqueue.h>
#include "msm_media_info.h"
#include "msm_vidc_driver.h"
#include "msm_vidc_platform.h"
#include "msm_vidc_internal.h"
#include "msm_vidc_control.h"
#include "msm_vidc_memory.h"
#include "msm_vidc_state.h"
#include "msm_vidc_power.h"
#include "msm_vidc_debug.h"
#include "msm_vidc.h"
#include "msm_vdec.h"
#include "msm_venc.h"
#include "msm_vidc_fence.h"
#include "venus_hfi.h"
#include "venus_hfi_response.h"
#include "hfi_packet.h"
#include "msm_vidc_events.h"
extern struct msm_vidc_core *g_core;
#define is_odd(val) ((val) % 2 == 1)
#define in_range(val, min, max) (((min) <= (val)) && ((val) <= (max)))
#define COUNT_BITS(a, out) { \
while ((a) >= 1) { \
(out) += (a) & (1); \
(a) >>= (1); \
} \
}
#define SSR_TYPE 0x0000000F
#define SSR_TYPE_SHIFT 0
#define SSR_SUB_CLIENT_ID 0x000000F0
#define SSR_SUB_CLIENT_ID_SHIFT 4
#define SSR_ADDR_ID 0xFFFFFFFF00000000
#define SSR_ADDR_SHIFT 32
#define STABILITY_TYPE 0x0000000F
#define STABILITY_TYPE_SHIFT 0
#define STABILITY_SUB_CLIENT_ID 0x000000F0
#define STABILITY_SUB_CLIENT_ID_SHIFT 4
#define STABILITY_PAYLOAD_ID 0xFFFFFFFF00000000
#define STABILITY_PAYLOAD_SHIFT 32
/* do not modify the cap names as it is used in test scripts */
static const char * const cap_name_arr[] =
FOREACH_CAP(GENERATE_STRING);
const char *cap_name(enum msm_vidc_inst_capability_type cap_id)
{
const char *name = "UNKNOWN CAP";
if (cap_id >= ARRAY_SIZE(cap_name_arr))
goto exit;
name = cap_name_arr[cap_id];
exit:
return name;
}
static const char * const buf_type_name_arr[] =
FOREACH_BUF_TYPE(GENERATE_STRING);
const char *buf_name(enum msm_vidc_buffer_type type)
{
const char *name = "UNKNOWN BUF";
if (type >= ARRAY_SIZE(buf_type_name_arr))
goto exit;
name = buf_type_name_arr[type];
exit:
return name;
}
static const char * const inst_allow_name_arr[] =
FOREACH_ALLOW(GENERATE_STRING);
const char *allow_name(enum msm_vidc_allow allow)
{
const char *name = "UNKNOWN";
if (allow >= ARRAY_SIZE(inst_allow_name_arr))
goto exit;
name = inst_allow_name_arr[allow];
exit:
return name;
}
const char *v4l2_type_name(u32 port)
{
switch (port) {
case INPUT_MPLANE: return "INPUT";
case OUTPUT_MPLANE: return "OUTPUT";
case INPUT_META_PLANE: return "INPUT_META";
case OUTPUT_META_PLANE: return "OUTPUT_META";
}
return "UNKNOWN";
}
const char *v4l2_pixelfmt_name(struct msm_vidc_inst *inst, u32 pixfmt)
{
struct msm_vidc_core *core;
const struct codec_info *codec_info;
const struct color_format_info *color_format_info;
u32 i, size;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
goto exit;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
goto exit;
}
codec_info = core->platform->data.format_data->codec_info;
size = core->platform->data.format_data->codec_info_size;
for (i = 0; i < size; i++) {
if (codec_info[i].v4l2_codec == pixfmt)
return codec_info[i].pixfmt_name;
}
color_format_info = core->platform->data.format_data->color_format_info;
size = core->platform->data.format_data->color_format_info_size;
for (i = 0; i < size; i++) {
if (color_format_info[i].v4l2_color_format == pixfmt)
return color_format_info[i].pixfmt_name;
}
exit:
return "UNKNOWN";
}
void print_vidc_buffer(u32 tag, const char *tag_str, const char *str, struct msm_vidc_inst *inst,
struct msm_vidc_buffer *vbuf)
{
struct dma_buf *dbuf;
struct inode *f_inode;
unsigned long inode_num = 0;
long ref_count = -1;
if (!inst || !vbuf || !tag_str || !str)
return;
dbuf = (struct dma_buf *)vbuf->dmabuf;
if (dbuf && dbuf->file) {
f_inode = file_inode(dbuf->file);
if (f_inode) {
inode_num = f_inode->i_ino;
ref_count = file_count(dbuf->file);
}
}
dprintk_inst(tag, tag_str, inst,
"%s: %s: idx %2d fd %3d off %d daddr %#llx inode %8lu ref %2ld size %8d filled %8d flags %#x ts %8lld attr %#x dbuf_get %d attach %d map %d counts(etb ebd ftb fbd) %4llu %4llu %4llu %4llu\n",
str, buf_name(vbuf->type),
vbuf->index, vbuf->fd, vbuf->data_offset,
vbuf->device_addr, inode_num, ref_count, vbuf->buffer_size,
vbuf->data_size, vbuf->flags, vbuf->timestamp, vbuf->attr,
vbuf->dbuf_get, vbuf->attach ? 1 : 0, vbuf->sg_table ? 1 : 0,
inst->debug_count.etb, inst->debug_count.ebd,
inst->debug_count.ftb, inst->debug_count.fbd);
trace_msm_v4l2_vidc_buffer_event_log(inst, str, buf_name(vbuf->type), vbuf,
inode_num, ref_count);
}
void print_vb2_buffer(const char *str, struct msm_vidc_inst *inst,
struct vb2_buffer *vb2)
{
if (!inst || !vb2)
return;
if (vb2->type == INPUT_MPLANE || vb2->type == OUTPUT_MPLANE) {
i_vpr_e(inst,
"%s: %s: idx %2d fd %d off %d size %d filled %d\n",
str, vb2->type == INPUT_MPLANE ? "INPUT" : "OUTPUT",
vb2->index, vb2->planes[0].m.fd,
vb2->planes[0].data_offset, vb2->planes[0].length,
vb2->planes[0].bytesused);
} else if (vb2->type == INPUT_META_PLANE || vb2->type == OUTPUT_META_PLANE) {
i_vpr_e(inst,
"%s: %s: idx %2d fd %d off %d size %d filled %d\n",
str, vb2->type == INPUT_MPLANE ? "INPUT_META" : "OUTPUT_META",
vb2->index, vb2->planes[0].m.fd,
vb2->planes[0].data_offset, vb2->planes[0].length,
vb2->planes[0].bytesused);
}
}
static void print_buffer_stats(u32 tag, const char *tag_str, struct msm_vidc_inst *inst,
struct msm_vidc_buffer_stats *stats)
{
if (!tag_str || !inst || !stats)
return;
/* skip flushed buffer stats */
if (!stats->etb_time_ms || !stats->ebd_time_ms ||
!stats->ftb_time_ms || !stats->fbd_time_ms)
return;
dprintk_inst(tag, tag_str, inst,
"f.no %4u ts %16llu (etb ebd ftb fbd)ms %6u %6u %6u %6u (ebd-etb fbd-etb etb-ftb)ms %4d %4d %4d size %8u attr %#x\n",
stats->frame_num, stats->timestamp, stats->etb_time_ms, stats->ebd_time_ms,
stats->ftb_time_ms, stats->fbd_time_ms, stats->ebd_time_ms - stats->etb_time_ms,
stats->fbd_time_ms - stats->etb_time_ms, stats->etb_time_ms - stats->ftb_time_ms,
stats->data_size, stats->flags);
}
static void __fatal_error(bool fatal)
{
WARN_ON(fatal);
}
static int __strict_check(struct msm_vidc_core *core, const char *function)
{
bool fatal = !mutex_is_locked(&core->lock);
__fatal_error(fatal);
if (fatal)
d_vpr_e("%s: strict check failed\n", function);
return fatal ? -EINVAL : 0;
}
static u32 msm_vidc_get_buffer_stats_flag(struct msm_vidc_inst *inst)
{
u32 flags = 0;
if (inst->hfi_frame_info.data_corrupt)
flags |= MSM_VIDC_STATS_FLAG_CORRUPT;
if (inst->hfi_frame_info.overflow)
flags |= MSM_VIDC_STATS_FLAG_OVERFLOW;
if (inst->hfi_frame_info.no_output)
flags |= MSM_VIDC_STATS_FLAG_NO_OUTPUT;
if (inst->hfi_frame_info.subframe_input)
flags |= MSM_VIDC_STATS_FLAG_SUBFRAME_INPUT;
return flags;
}
int msm_vidc_suspend_locked(struct msm_vidc_core *core)
{
int rc = 0;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = venus_hfi_suspend(core);
if (rc)
return rc;
return rc;
}
static int msm_vidc_try_suspend(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
int rc = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
core_lock(core, __func__);
if (list_empty(&core->instances) && list_empty(&core->dangling_instances)) {
i_vpr_h(inst, "%s: closed last open session. suspend video core\n", __func__);
msm_vidc_suspend_locked(core);
}
core_unlock(core, __func__);
return rc;
}
int msm_vidc_add_buffer_stats(struct msm_vidc_inst *inst,
struct msm_vidc_buffer *buf, u64 timestamp)
{
struct msm_vidc_buffer_stats *stats = NULL;
struct msm_vidc_core *core;
if (!inst || !inst->core || !buf) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!(msm_vidc_debug & VIDC_STAT))
return 0;
/* stats applicable only to input & output buffers */
if (buf->type != MSM_VIDC_BUF_INPUT && buf->type != MSM_VIDC_BUF_OUTPUT)
return -EINVAL;
/* update start timestamp */
buf->start_time_ms = (ktime_get_ns() / 1000 - inst->initial_time_us) / 1000;
/* add buffer stats only in ETB path */
if (buf->type != MSM_VIDC_BUF_INPUT)
return 0;
stats = msm_vidc_pool_alloc(inst, MSM_MEM_POOL_BUF_STATS);
if (!stats)
return -ENOMEM;
INIT_LIST_HEAD(&stats->list);
list_add_tail(&stats->list, &inst->buffer_stats_list);
stats->frame_num = inst->debug_count.etb;
stats->timestamp = timestamp;
stats->ts_offset = 0;
stats->etb_time_ms = buf->start_time_ms;
if (is_decode_session(inst))
stats->data_size = buf->data_size;
return 0;
}
int msm_vidc_remove_buffer_stats(struct msm_vidc_inst *inst,
struct msm_vidc_buffer *buf, u64 timestamp)
{
struct msm_vidc_buffer_stats *stats = NULL, *dummy_stats = NULL;
struct msm_vidc_buffer_stats *prev_stats = NULL;
struct msm_vidc_core *core;
bool remove_stat = false, is_first_stat = false;;
if (!inst || !inst->core || !buf) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!(msm_vidc_debug & VIDC_STAT))
return 0;
/* stats applicable only to input & output buffers */
if (buf->type != MSM_VIDC_BUF_INPUT && buf->type != MSM_VIDC_BUF_OUTPUT)
return -EINVAL;
/* update end timestamp */
buf->end_time_ms = (ktime_get_ns() / 1000 - inst->initial_time_us) / 1000;
list_for_each_entry_safe(stats, dummy_stats, &inst->buffer_stats_list, list) {
if (stats->timestamp - stats->ts_offset != timestamp)
continue;
remove_stat = false;
if (buf->type == MSM_VIDC_BUF_INPUT) {
/* skip - ebd already updated(multiple input - single output case) */
if (stats->ebd_time_ms)
continue;
/* ebd: update end ts and return */
stats->ebd_time_ms = buf->end_time_ms;
stats->flags |= msm_vidc_get_buffer_stats_flag(inst);
/* multi in - single out (interlace/slice decoding case) */
is_first_stat = list_is_first(&stats->list, &inst->buffer_stats_list);
if (!is_first_stat) {
prev_stats = list_prev_entry(stats, list);
/* add offset if FW requires more etb's to process output */
if (prev_stats->flags & MSM_VIDC_STATS_FLAG_SUBFRAME_INPUT)
stats->ts_offset = stats->timestamp - prev_stats->timestamp;
}
/* remove entry - no output attached */
remove_stat = !!(stats->flags & MSM_VIDC_STATS_FLAG_NO_OUTPUT);
remove_stat |= stats->ebd_time_ms && stats->fbd_time_ms;
} else if (buf->type == MSM_VIDC_BUF_OUTPUT) {
/* skip - ebd already updated(encoder superframe case) */
if (stats->fbd_time_ms)
continue;
/* fbd: update end ts */
stats->ftb_time_ms = buf->start_time_ms;
stats->fbd_time_ms = buf->end_time_ms;
stats->flags |= msm_vidc_get_buffer_stats_flag(inst);
if (is_encode_session(inst))
stats->data_size = buf->data_size;
remove_stat |= stats->ebd_time_ms && stats->fbd_time_ms;
}
/* remove stats node */
if (remove_stat) {
list_del_init(&stats->list);
print_buffer_stats(VIDC_STAT, "stat", inst, stats);
msm_vidc_pool_free(inst, stats);
}
}
return 0;
}
int msm_vidc_flush_buffer_stats(struct msm_vidc_inst *inst)
{
struct msm_vidc_buffer_stats *stats, *dummy_stats;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
i_vpr_l(inst, "%s: flush buffer_stats list\n", __func__);
list_for_each_entry_safe(stats, dummy_stats, &inst->buffer_stats_list, list) {
list_del_init(&stats->list);
msm_vidc_pool_free(inst, stats);
}
/* reset initial ts as well to avoid huge delta */
inst->initial_time_us = ktime_get_ns() / 1000;
return 0;
}
enum msm_vidc_buffer_type v4l2_type_to_driver(u32 type, const char *func)
{
enum msm_vidc_buffer_type buffer_type = 0;
switch (type) {
case INPUT_MPLANE:
buffer_type = MSM_VIDC_BUF_INPUT;
break;
case OUTPUT_MPLANE:
buffer_type = MSM_VIDC_BUF_OUTPUT;
break;
case INPUT_META_PLANE:
buffer_type = MSM_VIDC_BUF_INPUT_META;
break;
case OUTPUT_META_PLANE:
buffer_type = MSM_VIDC_BUF_OUTPUT_META;
break;
default:
d_vpr_e("%s: invalid v4l2 buffer type %#x\n", func, type);
break;
}
return buffer_type;
}
u32 v4l2_type_from_driver(enum msm_vidc_buffer_type buffer_type,
const char *func)
{
u32 type = 0;
switch (buffer_type) {
case MSM_VIDC_BUF_INPUT:
type = INPUT_MPLANE;
break;
case MSM_VIDC_BUF_OUTPUT:
type = OUTPUT_MPLANE;
break;
case MSM_VIDC_BUF_INPUT_META:
type = INPUT_META_PLANE;
break;
case MSM_VIDC_BUF_OUTPUT_META:
type = OUTPUT_META_PLANE;
break;
default:
d_vpr_e("%s: invalid driver buffer type %d\n",
func, buffer_type);
break;
}
return type;
}
enum msm_vidc_codec_type v4l2_codec_to_driver(struct msm_vidc_inst *inst,
u32 v4l2_codec, const char *func)
{
struct msm_vidc_core *core;
const struct codec_info *codec_info;
u32 i, size;
enum msm_vidc_codec_type codec = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
codec_info = core->platform->data.format_data->codec_info;
size = core->platform->data.format_data->codec_info_size;
for (i = 0; i < size; i++) {
if (codec_info[i].v4l2_codec == v4l2_codec)
return codec_info[i].vidc_codec;
}
d_vpr_h("%s: invalid v4l2 codec %#x\n", func, v4l2_codec);
return codec;
}
u32 v4l2_codec_from_driver(struct msm_vidc_inst *inst,
enum msm_vidc_codec_type codec, const char *func)
{
struct msm_vidc_core *core;
const struct codec_info *codec_info;
u32 i, size;
u32 v4l2_codec = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
codec_info = core->platform->data.format_data->codec_info;
size = core->platform->data.format_data->codec_info_size;
for (i = 0; i < size; i++) {
if (codec_info[i].vidc_codec == codec)
return codec_info[i].v4l2_codec;
}
d_vpr_e("%s: invalid driver codec %#x\n", func, codec);
return v4l2_codec;
}
enum msm_vidc_colorformat_type v4l2_colorformat_to_driver(
struct msm_vidc_inst *inst,
u32 v4l2_colorformat, const char *func)
{
struct msm_vidc_core *core;
const struct color_format_info *color_format_info;
u32 i, size;
enum msm_vidc_colorformat_type colorformat = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
color_format_info = core->platform->data.format_data->color_format_info;
size = core->platform->data.format_data->color_format_info_size;
for (i = 0; i < size; i++) {
if (color_format_info[i].v4l2_color_format == v4l2_colorformat)
return color_format_info[i].vidc_color_format;
}
d_vpr_e("%s: invalid v4l2 color format %#x\n", func, v4l2_colorformat);
return colorformat;
}
u32 v4l2_colorformat_from_driver(struct msm_vidc_inst *inst,
enum msm_vidc_colorformat_type colorformat,
const char *func)
{
struct msm_vidc_core *core;
const struct color_format_info *color_format_info;
u32 i, size;
u32 v4l2_colorformat = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
color_format_info = core->platform->data.format_data->color_format_info;
size = core->platform->data.format_data->color_format_info_size;
for (i = 0; i < size; i++) {
if (color_format_info[i].vidc_color_format == colorformat)
return color_format_info[i].v4l2_color_format;
}
d_vpr_e("%s: invalid driver color format %#x\n", func, colorformat);
return v4l2_colorformat;
}
u32 v4l2_color_primaries_to_driver(struct msm_vidc_inst *inst,
u32 v4l2_primaries, const char *func)
{
struct msm_vidc_core *core;
const struct color_primaries_info *color_prim_info;
u32 i, size;
u32 vidc_color_primaries = MSM_VIDC_PRIMARIES_RESERVED;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
color_prim_info = core->platform->data.format_data->color_prim_info;
size = core->platform->data.format_data->color_prim_info_size;
for (i = 0; i < size; i++) {
if (color_prim_info[i].v4l2_color_primaries == v4l2_primaries)
return color_prim_info[i].vidc_color_primaries;
}
i_vpr_e(inst, "%s: invalid v4l2 color primaries %d\n",
func, v4l2_primaries);
return vidc_color_primaries;
}
u32 v4l2_color_primaries_from_driver(struct msm_vidc_inst *inst,
u32 vidc_color_primaries, const char *func)
{
struct msm_vidc_core *core;
const struct color_primaries_info *color_prim_info;
u32 i, size;
u32 v4l2_primaries = V4L2_COLORSPACE_DEFAULT;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
color_prim_info = core->platform->data.format_data->color_prim_info;
size = core->platform->data.format_data->color_prim_info_size;
for (i = 0; i < size; i++) {
if (color_prim_info[i].vidc_color_primaries == vidc_color_primaries)
return color_prim_info[i].v4l2_color_primaries;
}
i_vpr_e(inst, "%s: invalid hfi color primaries %d\n",
func, vidc_color_primaries);
return v4l2_primaries;
}
u32 v4l2_transfer_char_to_driver(struct msm_vidc_inst *inst,
u32 v4l2_transfer_char, const char *func)
{
struct msm_vidc_core *core;
const struct transfer_char_info *transfer_char_info;
u32 i, size;
u32 vidc_transfer_char = MSM_VIDC_TRANSFER_RESERVED;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
transfer_char_info = core->platform->data.format_data->transfer_char_info;
size = core->platform->data.format_data->transfer_char_info_size;
for (i = 0; i < size; i++) {
if (transfer_char_info[i].v4l2_transfer_char == v4l2_transfer_char)
return transfer_char_info[i].vidc_transfer_char;
}
i_vpr_e(inst, "%s: invalid v4l2 transfer char %d\n",
func, v4l2_transfer_char);
return vidc_transfer_char;
}
u32 v4l2_transfer_char_from_driver(struct msm_vidc_inst *inst,
u32 vidc_transfer_char, const char *func)
{
struct msm_vidc_core *core;
const struct transfer_char_info *transfer_char_info;
u32 i, size;
u32 v4l2_transfer_char = V4L2_XFER_FUNC_DEFAULT;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
transfer_char_info = core->platform->data.format_data->transfer_char_info;
size = core->platform->data.format_data->transfer_char_info_size;
for (i = 0; i < size; i++) {
if (transfer_char_info[i].vidc_transfer_char == vidc_transfer_char)
return transfer_char_info[i].v4l2_transfer_char;
}
i_vpr_e(inst, "%s: invalid hfi transfer char %d\n",
func, vidc_transfer_char);
return v4l2_transfer_char;
}
u32 v4l2_matrix_coeff_to_driver(struct msm_vidc_inst *inst,
u32 v4l2_matrix_coeff, const char *func)
{
struct msm_vidc_core *core;
const struct matrix_coeff_info *matrix_coeff_info;
u32 i, size;
u32 vidc_matrix_coeff = MSM_VIDC_MATRIX_COEFF_RESERVED;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
matrix_coeff_info = core->platform->data.format_data->matrix_coeff_info;
size = core->platform->data.format_data->matrix_coeff_info_size;
for (i = 0; i < size; i++) {
if (matrix_coeff_info[i].v4l2_matrix_coeff == v4l2_matrix_coeff)
return matrix_coeff_info[i].vidc_matrix_coeff;
}
i_vpr_e(inst, "%s: invalid v4l2 matrix coeff %d\n",
func, v4l2_matrix_coeff);
return vidc_matrix_coeff;
}
u32 v4l2_matrix_coeff_from_driver(struct msm_vidc_inst *inst,
u32 vidc_matrix_coeff, const char *func)
{
struct msm_vidc_core *core;
const struct matrix_coeff_info *matrix_coeff_info;
u32 i, size;
u32 v4l2_matrix_coeff = V4L2_YCBCR_ENC_DEFAULT;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->platform || !core->platform->data.format_data) {
d_vpr_e("%s: invalid core platform\n", __func__);
return -EINVAL;
}
matrix_coeff_info = core->platform->data.format_data->matrix_coeff_info;
size = core->platform->data.format_data->matrix_coeff_info_size;
for (i = 0; i < size; i++) {
if (matrix_coeff_info[i].vidc_matrix_coeff == vidc_matrix_coeff)
return matrix_coeff_info[i].v4l2_matrix_coeff;
}
i_vpr_e(inst, "%s: invalid hfi matrix coeff %d\n",
func, vidc_matrix_coeff);
return v4l2_matrix_coeff;
}
int v4l2_type_to_driver_port(struct msm_vidc_inst *inst, u32 type,
const char *func)
{
int port;
if (type == INPUT_MPLANE) {
port = INPUT_PORT;
} else if (type == INPUT_META_PLANE) {
port = INPUT_META_PORT;
} else if (type == OUTPUT_MPLANE) {
port = OUTPUT_PORT;
} else if (type == OUTPUT_META_PLANE) {
port = OUTPUT_META_PORT;
} else {
i_vpr_e(inst, "%s: port not found for v4l2 type %d\n",
func, type);
port = -EINVAL;
}
return port;
}
struct msm_vidc_buffers *msm_vidc_get_buffers(
struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type,
const char *func)
{
switch (buffer_type) {
case MSM_VIDC_BUF_INPUT:
return &inst->buffers.input;
case MSM_VIDC_BUF_INPUT_META:
return &inst->buffers.input_meta;
case MSM_VIDC_BUF_OUTPUT:
return &inst->buffers.output;
case MSM_VIDC_BUF_OUTPUT_META:
return &inst->buffers.output_meta;
case MSM_VIDC_BUF_READ_ONLY:
return &inst->buffers.read_only;
case MSM_VIDC_BUF_BIN:
return &inst->buffers.bin;
case MSM_VIDC_BUF_ARP:
return &inst->buffers.arp;
case MSM_VIDC_BUF_COMV:
return &inst->buffers.comv;
case MSM_VIDC_BUF_NON_COMV:
return &inst->buffers.non_comv;
case MSM_VIDC_BUF_LINE:
return &inst->buffers.line;
case MSM_VIDC_BUF_DPB:
return &inst->buffers.dpb;
case MSM_VIDC_BUF_PERSIST:
return &inst->buffers.persist;
case MSM_VIDC_BUF_VPSS:
return &inst->buffers.vpss;
case MSM_VIDC_BUF_PARTIAL_DATA:
return &inst->buffers.partial_data;
case MSM_VIDC_BUF_INTERFACE_QUEUE:
return NULL;
default:
i_vpr_e(inst, "%s: invalid driver buffer type %d\n",
func, buffer_type);
return NULL;
}
}
struct msm_vidc_mem_list *msm_vidc_get_mem_info(
struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type,
const char *func)
{
switch (buffer_type) {
case MSM_VIDC_BUF_BIN:
return &inst->mem_info.bin;
case MSM_VIDC_BUF_ARP:
return &inst->mem_info.arp;
case MSM_VIDC_BUF_COMV:
return &inst->mem_info.comv;
case MSM_VIDC_BUF_NON_COMV:
return &inst->mem_info.non_comv;
case MSM_VIDC_BUF_LINE:
return &inst->mem_info.line;
case MSM_VIDC_BUF_DPB:
return &inst->mem_info.dpb;
case MSM_VIDC_BUF_PERSIST:
return &inst->mem_info.persist;
case MSM_VIDC_BUF_VPSS:
return &inst->mem_info.vpss;
case MSM_VIDC_BUF_PARTIAL_DATA:
return &inst->mem_info.partial_data;
default:
i_vpr_e(inst, "%s: invalid driver buffer type %d\n",
func, buffer_type);
return NULL;
}
}
bool res_is_greater_than(u32 width, u32 height,
u32 ref_width, u32 ref_height)
{
u32 num_mbs = NUM_MBS_PER_FRAME(height, width);
u32 max_side = max(ref_width, ref_height);
if (num_mbs > NUM_MBS_PER_FRAME(ref_height, ref_width) ||
width > max_side ||
height > max_side)
return true;
else
return false;
}
bool res_is_greater_than_or_equal_to(u32 width, u32 height,
u32 ref_width, u32 ref_height)
{
u32 num_mbs = NUM_MBS_PER_FRAME(height, width);
u32 max_side = max(ref_width, ref_height);
if (num_mbs >= NUM_MBS_PER_FRAME(ref_height, ref_width) ||
width >= max_side ||
height >= max_side)
return true;
else
return false;
}
bool res_is_less_than(u32 width, u32 height,
u32 ref_width, u32 ref_height)
{
u32 num_mbs = NUM_MBS_PER_FRAME(height, width);
u32 max_side = max(ref_width, ref_height);
if (num_mbs < NUM_MBS_PER_FRAME(ref_height, ref_width) &&
width < max_side &&
height < max_side)
return true;
else
return false;
}
bool res_is_less_than_or_equal_to(u32 width, u32 height,
u32 ref_width, u32 ref_height)
{
u32 num_mbs = NUM_MBS_PER_FRAME(height, width);
u32 max_side = max(ref_width, ref_height);
if (num_mbs <= NUM_MBS_PER_FRAME(ref_height, ref_width) &&
width <= max_side &&
height <= max_side)
return true;
else
return false;
}
int signal_session_msg_receipt(struct msm_vidc_inst *inst,
enum signal_session_response cmd)
{
if (cmd < MAX_SIGNAL)
complete(&inst->completions[cmd]);
return 0;
}
bool msm_vidc_allow_s_fmt(struct msm_vidc_inst *inst, u32 type)
{
bool allow = false;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
if (is_state(inst, MSM_VIDC_OPEN)) {
allow = true;
goto exit;
}
if (type == OUTPUT_MPLANE || type == OUTPUT_META_PLANE) {
if (is_state(inst, MSM_VIDC_INPUT_STREAMING)) {
allow = true;
goto exit;
}
}
if (type == INPUT_MPLANE || type == INPUT_META_PLANE) {
if (is_state(inst, MSM_VIDC_OUTPUT_STREAMING)) {
allow = true;
goto exit;
}
}
exit:
if (!allow)
i_vpr_e(inst, "%s: type %d not allowed in state %s\n",
__func__, type, state_name(inst->state));
return allow;
}
bool msm_vidc_allow_metadata_delivery(struct msm_vidc_inst *inst, u32 cap_id,
u32 port)
{
return true;
}
bool msm_vidc_allow_metadata_subscription(struct msm_vidc_inst *inst, u32 cap_id,
u32 port)
{
bool is_allowed = true;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
if (port == INPUT_PORT) {
switch (cap_id) {
case META_BUF_TAG:
case META_BITSTREAM_RESOLUTION:
case META_CROP_OFFSETS:
case META_SEI_MASTERING_DISP:
case META_SEI_CLL:
case META_HDR10PLUS:
if (!is_meta_rx_inp_enabled(inst, META_OUTBUF_FENCE)) {
i_vpr_h(inst,
"%s: cap: %24s not allowed as output buffer fence is disabled\n",
__func__, cap_name(cap_id));
is_allowed = false;
}
break;
default:
is_allowed = true;
break;
}
} else if (port == OUTPUT_PORT) {
switch (cap_id) {
case META_DPB_TAG_LIST:
if (!is_ubwc_colorformat(inst->capabilities->cap[PIX_FMTS].value)) {
i_vpr_h(inst,
"%s: cap: %24s not allowed for split mode\n",
__func__, cap_name(cap_id));
is_allowed = false;
}
break;
default:
is_allowed = true;
break;
}
} else {
i_vpr_e(inst, "%s: invalid port %d\n", __func__, port);
is_allowed = false;
}
return is_allowed;
}
bool msm_vidc_allow_property(struct msm_vidc_inst *inst, u32 hfi_id)
{
bool is_allowed = true;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
switch (hfi_id) {
case HFI_PROP_WORST_COMPRESSION_RATIO:
case HFI_PROP_WORST_COMPLEXITY_FACTOR:
case HFI_PROP_PICTURE_TYPE:
is_allowed = true;
break;
case HFI_PROP_DPB_LIST:
if (!is_ubwc_colorformat(inst->capabilities->cap[PIX_FMTS].value)) {
i_vpr_h(inst,
"%s: cap: %24s not allowed for split mode\n",
__func__, cap_name(DPB_LIST));
is_allowed = false;
}
break;
case HFI_PROP_FENCE:
if (!is_meta_rx_inp_enabled(inst, META_OUTBUF_FENCE)) {
i_vpr_h(inst,
"%s: cap: %24s not enabled, hence not allowed to subscribe\n",
__func__, cap_name(META_OUTBUF_FENCE));
is_allowed = false;
}
break;
default:
is_allowed = true;
break;
}
return is_allowed;
}
int msm_vidc_update_property_cap(struct msm_vidc_inst *inst, u32 hfi_id,
bool allow)
{
int rc = 0;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
switch (hfi_id) {
case HFI_PROP_WORST_COMPRESSION_RATIO:
case HFI_PROP_WORST_COMPLEXITY_FACTOR:
case HFI_PROP_PICTURE_TYPE:
break;
case HFI_PROP_DPB_LIST:
if (!allow)
memset(inst->dpb_list_payload, 0, MAX_DPB_LIST_ARRAY_SIZE);
msm_vidc_update_cap_value(inst, DPB_LIST, allow, __func__);
break;
default:
break;
}
return rc;
}
bool msm_vidc_allow_reqbufs(struct msm_vidc_inst *inst, u32 type)
{
bool allow = false;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
if (is_state(inst, MSM_VIDC_OPEN)) {
allow = true;
goto exit;
}
if (type == OUTPUT_MPLANE || type == OUTPUT_META_PLANE) {
if (is_state(inst, MSM_VIDC_INPUT_STREAMING)) {
allow = true;
goto exit;
}
}
if (type == INPUT_MPLANE || type == INPUT_META_PLANE) {
if (is_state(inst, MSM_VIDC_OUTPUT_STREAMING)) {
allow = true;
goto exit;
}
}
exit:
if (!allow)
i_vpr_e(inst, "%s: type %d not allowed in state %s\n",
__func__, type, state_name(inst->state));
return allow;
}
enum msm_vidc_allow msm_vidc_allow_stop(struct msm_vidc_inst *inst)
{
enum msm_vidc_allow allow = MSM_VIDC_DISALLOW;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return allow;
}
/* allow stop (drain) if input port is streaming */
if (is_state(inst, MSM_VIDC_INPUT_STREAMING) ||
is_state(inst, MSM_VIDC_STREAMING)) {
/* do not allow back to back drain */
if (!(is_sub_state(inst, MSM_VIDC_DRAIN)))
allow = MSM_VIDC_ALLOW;
} else if (is_state(inst, MSM_VIDC_OPEN)) {
allow = MSM_VIDC_IGNORE;
i_vpr_e(inst, "%s: ignored in state %s, sub state %s\n",
__func__, state_name(inst->state), inst->sub_state_name);
} else {
i_vpr_e(inst, "%s: not allowed in state %s, sub state %s\n",
__func__, state_name(inst->state), inst->sub_state_name);
}
return allow;
}
bool msm_vidc_allow_start(struct msm_vidc_inst *inst)
{
bool allow = false;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return allow;
}
/* client would call start (resume) to complete DRC/drain sequence */
if (inst->state == MSM_VIDC_INPUT_STREAMING ||
inst->state == MSM_VIDC_OUTPUT_STREAMING ||
inst->state == MSM_VIDC_STREAMING) {
if ((is_sub_state(inst, MSM_VIDC_DRC) &&
is_sub_state(inst, MSM_VIDC_DRC_LAST_BUFFER)) ||
(is_sub_state(inst, MSM_VIDC_DRAIN) &&
is_sub_state(inst, MSM_VIDC_DRAIN_LAST_BUFFER)))
allow = true;
}
if (!allow)
i_vpr_e(inst, "%s: not allowed in state %s, sub state %s\n",
__func__, state_name(inst->state), inst->sub_state_name);
return allow;
}
bool msm_vidc_allow_streamon(struct msm_vidc_inst *inst, u32 type)
{
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
if (type == INPUT_MPLANE || type == INPUT_META_PLANE) {
if (is_state(inst, MSM_VIDC_OPEN) ||
is_state(inst, MSM_VIDC_OUTPUT_STREAMING))
return true;
} else if (type == OUTPUT_MPLANE || type == OUTPUT_META_PLANE) {
if (is_state(inst, MSM_VIDC_OPEN) ||
is_state(inst, MSM_VIDC_INPUT_STREAMING))
return true;
}
i_vpr_e(inst, "%s: type %d not allowed in state %s\n",
__func__, type, state_name(inst->state));
return false;
}
enum msm_vidc_allow msm_vidc_allow_input_psc(struct msm_vidc_inst *inst)
{
enum msm_vidc_allow allow = MSM_VIDC_ALLOW;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return MSM_VIDC_DISALLOW;
}
/*
* if drc sequence is not completed by client, fw is not
* expected to raise another ipsc
*/
if (is_sub_state(inst, MSM_VIDC_DRC)) {
i_vpr_e(inst, "%s: not allowed in sub state %s\n",
__func__, inst->sub_state_name);
return MSM_VIDC_DISALLOW;
}
return allow;
}
bool msm_vidc_allow_drain_last_flag(struct msm_vidc_inst *inst)
{
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
/*
* drain last flag is expected only when DRAIN, INPUT_PAUSE
* is set and DRAIN_LAST_BUFFER is not set
*/
if (is_sub_state(inst, MSM_VIDC_DRAIN) &&
is_sub_state(inst, MSM_VIDC_INPUT_PAUSE) &&
!is_sub_state(inst, MSM_VIDC_DRAIN_LAST_BUFFER))
return true;
i_vpr_e(inst, "%s: not allowed in sub state %s\n",
__func__, inst->sub_state_name);
return false;
}
bool msm_vidc_allow_psc_last_flag(struct msm_vidc_inst *inst)
{
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
/*
* drc last flag is expected only when DRC, INPUT_PAUSE
* is set and DRC_LAST_BUFFER is not set
*/
if (is_sub_state(inst, MSM_VIDC_DRC) &&
is_sub_state(inst, MSM_VIDC_INPUT_PAUSE) &&
!is_sub_state(inst, MSM_VIDC_DRC_LAST_BUFFER))
return true;
i_vpr_e(inst, "%s: not allowed in sub state %s\n",
__func__, inst->sub_state_name);
return false;
}
bool msm_vidc_allow_pm_suspend(struct msm_vidc_core *core)
{
if (!core) {
d_vpr_e("%s: invalid param\n", __func__);
return false;
}
/* core must be in valid state to do pm_suspend */
if (!core_in_valid_state(core)) {
d_vpr_e("%s: invalid core state %s\n",
__func__, core_state_name(core->state));
return false;
}
/* check if power is enabled */
if (!is_core_sub_state(core, CORE_SUBSTATE_POWER_ENABLE)) {
d_vpr_e("%s: Power already disabled\n", __func__);
return false;
}
return true;
}
bool is_hevc_10bit_decode_session(struct msm_vidc_inst *inst)
{
bool is10bit = false;
enum msm_vidc_colorformat_type colorformat;
colorformat = v4l2_colorformat_to_driver(inst,
inst->fmts[OUTPUT_PORT].fmt.pix_mp.pixelformat, __func__);
if (colorformat == MSM_VIDC_FMT_TP10C || colorformat == MSM_VIDC_FMT_P010)
is10bit = true;
return inst->domain == MSM_VIDC_DECODER &&
inst->codec == MSM_VIDC_HEVC &&
is10bit;
}
int msm_vidc_state_change_streamon(struct msm_vidc_inst *inst,
enum msm_vidc_port_type port)
{
int rc = 0;
enum msm_vidc_state new_state = MSM_VIDC_ERROR;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (port == INPUT_META_PORT || port == OUTPUT_META_PORT)
return 0;
if (port == INPUT_PORT) {
if (is_state(inst, MSM_VIDC_OPEN))
new_state = MSM_VIDC_INPUT_STREAMING;
else if (is_state(inst, MSM_VIDC_OUTPUT_STREAMING))
new_state = MSM_VIDC_STREAMING;
} else if (port == OUTPUT_PORT) {
if (is_state(inst, MSM_VIDC_OPEN))
new_state = MSM_VIDC_OUTPUT_STREAMING;
else if (is_state(inst, MSM_VIDC_INPUT_STREAMING))
new_state = MSM_VIDC_STREAMING;
}
rc = msm_vidc_change_state(inst, new_state, __func__);
if (rc)
return rc;
return rc;
}
int msm_vidc_state_change_streamoff(struct msm_vidc_inst *inst,
enum msm_vidc_port_type port)
{
int rc = 0;
enum msm_vidc_state new_state = MSM_VIDC_ERROR;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (port == INPUT_META_PORT || port == OUTPUT_META_PORT)
return 0;
if (port == INPUT_PORT) {
if (is_state(inst, MSM_VIDC_INPUT_STREAMING)) {
new_state = MSM_VIDC_OPEN;
} else if (is_state(inst, MSM_VIDC_STREAMING)) {
new_state = MSM_VIDC_OUTPUT_STREAMING;
}
} else if (port == OUTPUT_PORT) {
if (is_state(inst, MSM_VIDC_OUTPUT_STREAMING)) {
new_state = MSM_VIDC_OPEN;
} else if (is_state(inst, MSM_VIDC_STREAMING)) {
new_state = MSM_VIDC_INPUT_STREAMING;
}
}
rc = msm_vidc_change_state(inst, new_state, __func__);
if (rc)
goto exit;
exit:
return rc;
}
int msm_vidc_process_drain(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = venus_hfi_session_drain(inst, INPUT_PORT);
if (rc)
return rc;
rc = msm_vidc_change_sub_state(inst, 0, MSM_VIDC_DRAIN, __func__);
if (rc)
return rc;
msm_vidc_scale_power(inst, true);
return rc;
}
int msm_vidc_process_resume(struct msm_vidc_inst *inst)
{
int rc = 0;
enum msm_vidc_sub_state clear_sub_state = MSM_VIDC_SUB_STATE_NONE;
bool drain_pending = false;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
msm_vidc_scale_power(inst, true);
/* first check DRC pending else check drain pending */
if (is_sub_state(inst, MSM_VIDC_DRC) &&
is_sub_state(inst, MSM_VIDC_DRC_LAST_BUFFER)) {
clear_sub_state = MSM_VIDC_DRC | MSM_VIDC_DRC_LAST_BUFFER;
/*
* if drain sequence is not completed then do not resume here.
* client will eventually complete drain sequence in which ports
* will be resumed.
*/
drain_pending = is_sub_state(inst, MSM_VIDC_DRAIN) &&
is_sub_state(inst, MSM_VIDC_DRAIN_LAST_BUFFER);
if (!drain_pending) {
if (is_sub_state(inst, MSM_VIDC_INPUT_PAUSE)) {
rc = venus_hfi_session_resume(inst, INPUT_PORT,
HFI_CMD_SETTINGS_CHANGE);
if (rc)
return rc;
clear_sub_state |= MSM_VIDC_INPUT_PAUSE;
}
if (is_sub_state(inst, MSM_VIDC_OUTPUT_PAUSE)) {
rc = venus_hfi_session_resume(inst, OUTPUT_PORT,
HFI_CMD_SETTINGS_CHANGE);
if (rc)
return rc;
clear_sub_state |= MSM_VIDC_OUTPUT_PAUSE;
}
}
} else if (is_sub_state(inst, MSM_VIDC_DRAIN) &&
is_sub_state(inst, MSM_VIDC_DRAIN_LAST_BUFFER)) {
clear_sub_state = MSM_VIDC_DRAIN | MSM_VIDC_DRAIN_LAST_BUFFER;
if (is_sub_state(inst, MSM_VIDC_INPUT_PAUSE)) {
rc = venus_hfi_session_resume(inst, INPUT_PORT, HFI_CMD_DRAIN);
if (rc)
return rc;
clear_sub_state |= MSM_VIDC_INPUT_PAUSE;
}
if (is_sub_state(inst, MSM_VIDC_OUTPUT_PAUSE)) {
rc = venus_hfi_session_resume(inst, OUTPUT_PORT, HFI_CMD_DRAIN);
if (rc)
return rc;
clear_sub_state |= MSM_VIDC_OUTPUT_PAUSE;
}
}
rc = msm_vidc_change_sub_state(inst, clear_sub_state, 0, __func__);
if (rc)
return rc;
return rc;
}
int msm_vidc_process_streamon_input(struct msm_vidc_inst *inst)
{
int rc = 0;
enum msm_vidc_sub_state clear_sub_state = MSM_VIDC_SUB_STATE_NONE;
enum msm_vidc_sub_state set_sub_state = MSM_VIDC_SUB_STATE_NONE;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
msm_vidc_scale_power(inst, true);
rc = venus_hfi_start(inst, INPUT_PORT);
if (rc)
return rc;
/* clear input pause substate immediately */
if (is_sub_state(inst, MSM_VIDC_INPUT_PAUSE)) {
rc = msm_vidc_change_sub_state(inst, MSM_VIDC_INPUT_PAUSE, 0, __func__);
if (rc)
return rc;
}
/*
* if DRC sequence is not completed by the client then PAUSE
* firmware input port to avoid firmware raising IPSC again.
* When client completes DRC or DRAIN sequences, firmware
* input port will be resumed.
*/
if (is_sub_state(inst, MSM_VIDC_DRC) ||
is_sub_state(inst, MSM_VIDC_DRAIN)) {
if (!is_sub_state(inst, MSM_VIDC_INPUT_PAUSE)) {
rc = venus_hfi_session_pause(inst, INPUT_PORT);
if (rc)
return rc;
set_sub_state = MSM_VIDC_INPUT_PAUSE;
}
}
rc = msm_vidc_state_change_streamon(inst, INPUT_PORT);
if (rc)
return rc;
rc = msm_vidc_change_sub_state(inst, clear_sub_state, set_sub_state, __func__);
if (rc)
return rc;
return rc;
}
int msm_vidc_process_streamon_output(struct msm_vidc_inst *inst)
{
int rc = 0;
enum msm_vidc_sub_state clear_sub_state = MSM_VIDC_SUB_STATE_NONE;
enum msm_vidc_sub_state set_sub_state = MSM_VIDC_SUB_STATE_NONE;
bool drain_pending = false;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
msm_vidc_scale_power(inst, true);
/*
* client completed drc sequence, reset DRC and
* MSM_VIDC_DRC_LAST_BUFFER substates
*/
if (is_sub_state(inst, MSM_VIDC_DRC) &&
is_sub_state(inst, MSM_VIDC_DRC_LAST_BUFFER)) {
clear_sub_state = MSM_VIDC_DRC | MSM_VIDC_DRC_LAST_BUFFER;
}
/*
* Client is completing port reconfiguration, hence reallocate
* input internal buffers before input port is resumed.
* Drc sub-state cannot be checked because DRC sub-state will
* not be set during initial port reconfiguration.
*/
if (is_decode_session(inst) &&
is_sub_state(inst, MSM_VIDC_INPUT_PAUSE)) {
rc = msm_vidc_alloc_and_queue_input_internal_buffers(inst);
if (rc)
return rc;
rc = msm_vidc_set_stage(inst, STAGE);
if (rc)
return rc;
rc = msm_vidc_set_pipe(inst, PIPE);
if (rc)
return rc;
}
/*
* fw input port is paused due to ipsc. now that client
* completed drc sequence, resume fw input port provided
* drain is not pending and input port is streaming.
*/
drain_pending = is_sub_state(inst, MSM_VIDC_DRAIN) &&
is_sub_state(inst, MSM_VIDC_DRAIN_LAST_BUFFER);
if (!drain_pending && is_state(inst, MSM_VIDC_INPUT_STREAMING)) {
if (is_sub_state(inst, MSM_VIDC_INPUT_PAUSE)) {
rc = venus_hfi_session_resume(inst, INPUT_PORT,
HFI_CMD_SETTINGS_CHANGE);
if (rc)
return rc;
clear_sub_state |= MSM_VIDC_INPUT_PAUSE;
}
}
rc = venus_hfi_start(inst, OUTPUT_PORT);
if (rc)
return rc;
/* clear output pause substate immediately */
if (is_sub_state(inst, MSM_VIDC_OUTPUT_PAUSE)) {
rc = msm_vidc_change_sub_state(inst, MSM_VIDC_OUTPUT_PAUSE, 0, __func__);
if (rc)
return rc;
}
rc = msm_vidc_state_change_streamon(inst, OUTPUT_PORT);
if (rc)
return rc;
rc = msm_vidc_change_sub_state(inst, clear_sub_state, set_sub_state, __func__);
if (rc)
return rc;
return rc;
}
int msm_vidc_process_stop_done(struct msm_vidc_inst *inst,
enum signal_session_response signal_type)
{
int rc = 0;
enum msm_vidc_sub_state set_sub_state = MSM_VIDC_SUB_STATE_NONE;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (signal_type == SIGNAL_CMD_STOP_INPUT) {
set_sub_state = MSM_VIDC_INPUT_PAUSE;
/*
* FW is expected to return DRC LAST flag before input
* stop done if DRC sequence is pending
*/
if (is_sub_state(inst, MSM_VIDC_DRC) &&
!is_sub_state(inst, MSM_VIDC_DRC_LAST_BUFFER)) {
i_vpr_e(inst, "%s: drc last flag pkt not received\n", __func__);
msm_vidc_change_state(inst, MSM_VIDC_ERROR, __func__);
}
/*
* for a decode session, FW is expected to return
* DRAIN LAST flag before input stop done if
* DRAIN sequence is pending
*/
if (is_decode_session(inst) &&
is_sub_state(inst, MSM_VIDC_DRAIN) &&
!is_sub_state(inst, MSM_VIDC_DRAIN_LAST_BUFFER)) {
i_vpr_e(inst, "%s: drain last flag pkt not received\n", __func__);
msm_vidc_change_state(inst, MSM_VIDC_ERROR, __func__);
}
} else if (signal_type == SIGNAL_CMD_STOP_OUTPUT) {
set_sub_state = MSM_VIDC_OUTPUT_PAUSE;
}
rc = msm_vidc_change_sub_state(inst, 0, set_sub_state, __func__);
if (rc)
return rc;
signal_session_msg_receipt(inst, signal_type);
return rc;
}
int msm_vidc_process_drain_done(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (is_sub_state(inst, MSM_VIDC_DRAIN)) {
rc = msm_vidc_change_sub_state(inst, 0, MSM_VIDC_INPUT_PAUSE, __func__);
if (rc)
return rc;
} else {
i_vpr_e(inst, "%s: unexpected drain done\n", __func__);
}
return rc;
}
int msm_vidc_process_drain_last_flag(struct msm_vidc_inst *inst)
{
int rc = 0;
struct v4l2_event event = {0};
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = msm_vidc_state_change_drain_last_flag(inst);
if (rc)
return rc;
if (is_decode_session(inst) &&
!inst->capabilities->cap[LAST_FLAG_EVENT_ENABLE].value) {
i_vpr_h(inst, "%s: last flag event not enabled\n", __func__);
return 0;
}
event.type = V4L2_EVENT_EOS;
v4l2_event_queue_fh(&inst->event_handler, &event);
return rc;
}
int msm_vidc_process_psc_last_flag(struct msm_vidc_inst *inst)
{
int rc = 0;
struct v4l2_event event = {0};
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = msm_vidc_state_change_psc_last_flag(inst);
if (rc)
return rc;
if (is_decode_session(inst) &&
!inst->capabilities->cap[LAST_FLAG_EVENT_ENABLE].value) {
i_vpr_h(inst, "%s: last flag event not enabled\n", __func__);
return 0;
}
event.type = V4L2_EVENT_EOS;
v4l2_event_queue_fh(&inst->event_handler, &event);
return rc;
}
int msm_vidc_state_change_input_psc(struct msm_vidc_inst *inst)
{
int rc = 0;
enum msm_vidc_sub_state set_sub_state = MSM_VIDC_SUB_STATE_NONE;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/*
* if output port is not streaming, then do not set DRC substate
* because DRC_LAST_FLAG is not going to be received. Update
* INPUT_PAUSE substate only
*/
if (is_state(inst, MSM_VIDC_INPUT_STREAMING) ||
is_state(inst, MSM_VIDC_OPEN))
set_sub_state = MSM_VIDC_INPUT_PAUSE;
else
set_sub_state = MSM_VIDC_DRC | MSM_VIDC_INPUT_PAUSE;
rc = msm_vidc_change_sub_state(inst, 0, set_sub_state, __func__);
if (rc)
return rc;
return rc;
}
int msm_vidc_state_change_drain_last_flag(struct msm_vidc_inst *inst)
{
int rc = 0;
enum msm_vidc_sub_state set_sub_state = MSM_VIDC_SUB_STATE_NONE;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
set_sub_state = MSM_VIDC_DRAIN_LAST_BUFFER | MSM_VIDC_OUTPUT_PAUSE;
rc = msm_vidc_change_sub_state(inst, 0, set_sub_state, __func__);
if (rc)
return rc;
return rc;
}
int msm_vidc_state_change_psc_last_flag(struct msm_vidc_inst *inst)
{
int rc = 0;
enum msm_vidc_sub_state set_sub_state = MSM_VIDC_SUB_STATE_NONE;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
set_sub_state = MSM_VIDC_DRC_LAST_BUFFER | MSM_VIDC_OUTPUT_PAUSE;
rc = msm_vidc_change_sub_state(inst, 0, set_sub_state, __func__);
if (rc)
return rc;
return rc;
}
int msm_vidc_get_fence_fd(struct msm_vidc_inst *inst, int *fence_fd)
{
int rc = 0;
struct msm_vidc_fence *fence, *dummy_fence;
bool found = false;
*fence_fd = INVALID_FD;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
list_for_each_entry_safe(fence, dummy_fence, &inst->fence_list, list) {
if (fence->dma_fence.seqno ==
(u64)inst->capabilities->cap[FENCE_ID].value) {
found = true;
break;
}
}
if (!found) {
i_vpr_h(inst, "%s: could not find matching fence for fence id: %d\n",
__func__, inst->capabilities->cap[FENCE_ID].value);
goto exit;
}
if (fence->fd == INVALID_FD) {
rc = msm_vidc_create_fence_fd(inst, fence);
if (rc)
goto exit;
}
*fence_fd = fence->fd;
exit:
return rc;
}
int msm_vidc_get_control(struct msm_vidc_inst *inst, struct v4l2_ctrl *ctrl)
{
int rc = 0;
enum msm_vidc_inst_capability_type cap_id;
if (!inst || !ctrl) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
cap_id = msm_vidc_get_cap_id(inst, ctrl->id);
if (!is_valid_cap_id(cap_id)) {
i_vpr_e(inst, "%s: could not find cap_id for ctrl %s\n",
__func__, ctrl->name);
return -EINVAL;
}
switch (cap_id) {
case MIN_BUFFERS_OUTPUT:
ctrl->val = inst->buffers.output.min_count +
inst->buffers.output.extra_count;
i_vpr_h(inst, "g_min: output buffers %d\n", ctrl->val);
break;
case MIN_BUFFERS_INPUT:
ctrl->val = inst->buffers.input.min_count +
inst->buffers.input.extra_count;
i_vpr_h(inst, "g_min: input buffers %d\n", ctrl->val);
break;
case FILM_GRAIN:
ctrl->val = inst->capabilities->cap[FILM_GRAIN].value;
i_vpr_h(inst, "%s: film grain present: %d\n",
__func__, ctrl->val);
break;
case FENCE_FD:
rc = msm_vidc_get_fence_fd(inst, &ctrl->val);
if (!rc)
i_vpr_l(inst, "%s: fence fd: %d\n",
__func__, ctrl->val);
break;
default:
i_vpr_e(inst, "invalid ctrl %s id %d\n",
ctrl->name, ctrl->id);
return -EINVAL;
}
return rc;
}
int msm_vidc_get_mbs_per_frame(struct msm_vidc_inst *inst)
{
int height = 0, width = 0;
struct v4l2_format *inp_f;
if (is_decode_session(inst)) {
inp_f = &inst->fmts[INPUT_PORT];
width = max(inp_f->fmt.pix_mp.width, inst->crop.width);
height = max(inp_f->fmt.pix_mp.height, inst->crop.height);
} else if (is_encode_session(inst)) {
width = inst->crop.width;
height = inst->crop.height;
}
return NUM_MBS_PER_FRAME(height, width);
}
int msm_vidc_get_fps(struct msm_vidc_inst *inst)
{
int fps;
u32 frame_rate, operating_rate;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
frame_rate = msm_vidc_get_frame_rate(inst);
operating_rate = msm_vidc_get_operating_rate(inst);
if (operating_rate > frame_rate)
fps = operating_rate ? operating_rate : 1;
else
fps = frame_rate;
return fps;
}
int msm_vidc_num_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type type, enum msm_vidc_buffer_attributes attr)
{
int count = 0;
struct msm_vidc_buffer *vbuf;
struct msm_vidc_buffers *buffers;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return count;
}
if (type == MSM_VIDC_BUF_OUTPUT) {
buffers = &inst->buffers.output;
} else if (type == MSM_VIDC_BUF_INPUT) {
buffers = &inst->buffers.input;
} else {
i_vpr_e(inst, "%s: invalid buffer type %#x\n",
__func__, type);
return count;
}
list_for_each_entry(vbuf, &buffers->list, list) {
if (vbuf->type != type)
continue;
if (!(vbuf->attr & attr))
continue;
count++;
}
return count;
}
int vb2_buffer_to_driver(struct vb2_buffer *vb2,
struct msm_vidc_buffer *buf)
{
int rc = 0;
struct vb2_v4l2_buffer *vbuf;
if (!vb2 || !buf) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
vbuf = to_vb2_v4l2_buffer(vb2);
buf->fd = vb2->planes[0].m.fd;
buf->data_offset = vb2->planes[0].data_offset;
buf->data_size = vb2->planes[0].bytesused - vb2->planes[0].data_offset;
buf->buffer_size = vb2->planes[0].length;
buf->timestamp = vb2->timestamp;
buf->flags = vbuf->flags;
buf->attr = 0;
buf->fence_id = 0;
return rc;
}
int msm_vidc_process_readonly_buffers(struct msm_vidc_inst *inst,
struct msm_vidc_buffer *buf)
{
int rc = 0;
struct msm_vidc_buffer *ro_buf, *dummy;
struct msm_vidc_core *core;
if (!inst || !inst->core || !buf) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!is_decode_session(inst) || !is_output_buffer(buf->type))
return 0;
/*
* check if read_only buffer is present in read_only list
* if present: add ro flag to buf provided buffer is not
* pending release
*/
list_for_each_entry_safe(ro_buf, dummy, &inst->buffers.read_only.list, list) {
if (ro_buf->device_addr != buf->device_addr)
continue;
if (ro_buf->attr & MSM_VIDC_ATTR_READ_ONLY &&
!(ro_buf->attr & MSM_VIDC_ATTR_PENDING_RELEASE)) {
/* add READ_ONLY to the buffer going to the firmware */
buf->attr |= MSM_VIDC_ATTR_READ_ONLY;
/*
* remove READ_ONLY on the read_only list buffer so that
* it will get removed from the read_only list below
*/
ro_buf->attr &= ~MSM_VIDC_ATTR_READ_ONLY;
break;
}
}
/* remove ro buffers if not required anymore */
list_for_each_entry_safe(ro_buf, dummy, &inst->buffers.read_only.list, list) {
/* if read only buffer do not remove */
if (ro_buf->attr & MSM_VIDC_ATTR_READ_ONLY)
continue;
print_vidc_buffer(VIDC_LOW, "low ", "ro buf removed", inst, ro_buf);
/* unmap the buffer if driver holds mapping */
if (ro_buf->sg_table && ro_buf->attach) {
call_mem_op(core, dma_buf_unmap_attachment, core,
ro_buf->attach, ro_buf->sg_table);
call_mem_op(core, dma_buf_detach, core,
ro_buf->dmabuf, ro_buf->attach);
ro_buf->sg_table = NULL;
ro_buf->attach = NULL;
}
if (ro_buf->dbuf_get) {
call_mem_op(core, dma_buf_put, inst, ro_buf->dmabuf);
ro_buf->dmabuf = NULL;
ro_buf->dbuf_get = 0;
}
list_del_init(&ro_buf->list);
msm_vidc_pool_free(inst, ro_buf);
}
return rc;
}
int msm_vidc_set_auto_framerate(struct msm_vidc_inst *inst, u64 timestamp)
{
struct msm_vidc_core *core;
struct msm_vidc_timestamp *ts;
struct msm_vidc_timestamp *prev = NULL;
u32 counter = 0, prev_fr = 0, curr_fr = 0;
u64 time_us = 0;
int rc = 0;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->capabilities[ENC_AUTO_FRAMERATE].value ||
is_image_session(inst) || msm_vidc_is_super_buffer(inst) ||
!inst->capabilities->cap[TIME_DELTA_BASED_RC].value)
goto exit;
rc = msm_vidc_update_timestamp_rate(inst, timestamp);
if (rc)
goto exit;
list_for_each_entry(ts, &inst->timestamps.list, sort.list) {
if (prev) {
time_us = ts->sort.val - prev->sort.val;
prev_fr = curr_fr;
curr_fr = time_us ? DIV64_U64_ROUND_CLOSEST(USEC_PER_SEC, time_us) << 16 :
inst->auto_framerate;
if (curr_fr > inst->capabilities->cap[FRAME_RATE].max)
curr_fr = inst->capabilities->cap[FRAME_RATE].max;
}
prev = ts;
counter++;
}
if (counter < ENC_FPS_WINDOW)
goto exit;
/* if framerate changed and stable for 2 frames, set to firmware */
if (curr_fr == prev_fr && curr_fr != inst->auto_framerate) {
i_vpr_l(inst, "%s: updated fps: %u -> %u\n", __func__,
inst->auto_framerate >> 16, curr_fr >> 16);
rc = venus_hfi_session_property(inst,
HFI_PROP_FRAME_RATE,
HFI_HOST_FLAGS_NONE,
HFI_PORT_BITSTREAM,
HFI_PAYLOAD_Q16,
&curr_fr,
sizeof(u32));
if (rc) {
i_vpr_e(inst, "%s: set auto frame rate failed\n",
__func__);
goto exit;
}
inst->auto_framerate = curr_fr;
}
exit:
return rc;
}
int msm_vidc_update_input_rate(struct msm_vidc_inst *inst, u64 time_us)
{
struct msm_vidc_input_timer *input_timer;
struct msm_vidc_input_timer *prev_timer = NULL;
struct msm_vidc_core *core;
u64 counter = 0;
u64 input_timer_sum_us = 0;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
input_timer = msm_vidc_pool_alloc(inst, MSM_MEM_POOL_BUF_TIMER);
if (!input_timer)
return -ENOMEM;
input_timer->time_us = time_us;
INIT_LIST_HEAD(&input_timer->list);
list_add_tail(&input_timer->list, &inst->input_timer_list);
list_for_each_entry(input_timer, &inst->input_timer_list, list) {
if (prev_timer) {
input_timer_sum_us += input_timer->time_us - prev_timer->time_us;
counter++;
}
prev_timer = input_timer;
}
if (input_timer_sum_us && counter >= INPUT_TIMER_LIST_SIZE)
inst->capabilities->cap[INPUT_RATE].value =
(s32)(DIV64_U64_ROUND_CLOSEST(counter * 1000000,
input_timer_sum_us) << 16);
/* delete the first entry once counter >= INPUT_TIMER_LIST_SIZE */
if (counter >= INPUT_TIMER_LIST_SIZE) {
input_timer = list_first_entry(&inst->input_timer_list,
struct msm_vidc_input_timer, list);
list_del_init(&input_timer->list);
msm_vidc_pool_free(inst, input_timer);
}
return 0;
}
int msm_vidc_flush_input_timer(struct msm_vidc_inst *inst)
{
struct msm_vidc_input_timer *input_timer, *dummy_timer;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
i_vpr_l(inst, "%s: flush input_timer list\n", __func__);
list_for_each_entry_safe(input_timer, dummy_timer, &inst->input_timer_list, list) {
list_del_init(&input_timer->list);
msm_vidc_pool_free(inst, input_timer);
}
return 0;
}
int msm_vidc_get_input_rate(struct msm_vidc_inst *inst)
{
if (!inst || !inst->capabilities) {
d_vpr_e("%s: Invalid params\n", __func__);
return 0;
}
return inst->capabilities->cap[INPUT_RATE].value >> 16;
}
int msm_vidc_get_timestamp_rate(struct msm_vidc_inst *inst)
{
if (!inst || !inst->capabilities) {
d_vpr_e("%s: Invalid params\n", __func__);
return 0;
}
return inst->capabilities->cap[TIMESTAMP_RATE].value >> 16;
}
int msm_vidc_get_frame_rate(struct msm_vidc_inst *inst)
{
if (!inst || !inst->capabilities) {
d_vpr_e("%s: Invalid params\n", __func__);
return 0;
}
return inst->capabilities->cap[FRAME_RATE].value >> 16;
}
int msm_vidc_get_operating_rate(struct msm_vidc_inst *inst)
{
if (!inst || !inst->capabilities) {
d_vpr_e("%s: Invalid params\n", __func__);
return 0;
}
return inst->capabilities->cap[OPERATING_RATE].value >> 16;
}
static int msm_vidc_insert_sort(struct list_head *head,
struct msm_vidc_sort *entry)
{
struct msm_vidc_sort *first, *node;
struct msm_vidc_sort *prev = NULL;
bool is_inserted = false;
if (!head || !entry) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (list_empty(head)) {
list_add(&entry->list, head);
return 0;
}
first = list_first_entry(head, struct msm_vidc_sort, list);
if (entry->val < first->val) {
list_add(&entry->list, head);
return 0;
}
list_for_each_entry(node, head, list) {
if (prev &&
entry->val >= prev->val && entry->val <= node->val) {
list_add(&entry->list, &prev->list);
is_inserted = true;
break;
}
prev = node;
}
if (!is_inserted && prev)
list_add(&entry->list, &prev->list);
return 0;
}
static struct msm_vidc_timestamp *msm_vidc_get_least_rank_ts(struct msm_vidc_inst *inst)
{
struct msm_vidc_timestamp *ts, *final = NULL;
u64 least_rank = INT_MAX;
if (!inst) {
d_vpr_e("%s: Invalid params\n", __func__);
return NULL;
}
list_for_each_entry(ts, &inst->timestamps.list, sort.list) {
if (ts->rank < least_rank) {
least_rank = ts->rank;
final = ts;
}
}
return final;
}
int msm_vidc_flush_ts(struct msm_vidc_inst *inst)
{
struct msm_vidc_timestamp *temp, *ts = NULL;
struct msm_vidc_core *core;
if (!inst || !inst->core ) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
list_for_each_entry_safe(ts, temp, &inst->timestamps.list, sort.list) {
i_vpr_l(inst, "%s: flushing ts: val %llu, rank %llu\n",
__func__, ts->sort.val, ts->rank);
list_del(&ts->sort.list);
msm_vidc_pool_free(inst, ts);
}
inst->timestamps.count = 0;
inst->timestamps.rank = 0;
return 0;
}
int msm_vidc_update_timestamp_rate(struct msm_vidc_inst *inst, u64 timestamp)
{
struct msm_vidc_timestamp *ts, *prev = NULL;
struct msm_vidc_core *core;
int rc = 0;
u32 window_size = 0;
u32 timestamp_rate = 0;
u64 ts_ms = 0;
u32 counter = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
ts = msm_vidc_pool_alloc(inst, MSM_MEM_POOL_TIMESTAMP);
if (!ts) {
i_vpr_e(inst, "%s: ts alloc failed\n", __func__);
return -ENOMEM;
}
INIT_LIST_HEAD(&ts->sort.list);
ts->sort.val = timestamp;
ts->rank = inst->timestamps.rank++;
rc = msm_vidc_insert_sort(&inst->timestamps.list, &ts->sort);
if (rc)
return rc;
inst->timestamps.count++;
if (is_encode_session(inst))
window_size = ENC_FPS_WINDOW;
else
window_size = DEC_FPS_WINDOW;
/* keep sliding window */
if (inst->timestamps.count > window_size) {
ts = msm_vidc_get_least_rank_ts(inst);
if (!ts) {
i_vpr_e(inst, "%s: least rank ts is NULL\n", __func__);
return -EINVAL;
}
inst->timestamps.count--;
list_del(&ts->sort.list);
msm_vidc_pool_free(inst, ts);
}
/* Calculate timestamp rate */
list_for_each_entry(ts, &inst->timestamps.list, sort.list) {
if (prev) {
if (ts->sort.val == prev->sort.val)
continue;
ts_ms += div_u64(ts->sort.val - prev->sort.val, 1000000);
counter++;
}
prev = ts;
}
if (ts_ms)
timestamp_rate = (u32)div_u64((u64)counter * 1000, ts_ms);
msm_vidc_update_cap_value(inst, TIMESTAMP_RATE, timestamp_rate << 16, __func__);
return 0;
}
int msm_vidc_ts_reorder_insert_timestamp(struct msm_vidc_inst *inst, u64 timestamp)
{
struct msm_vidc_timestamp *ts;
struct msm_vidc_core *core;
int rc = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
/* allocate ts from pool */
ts = msm_vidc_pool_alloc(inst, MSM_MEM_POOL_TIMESTAMP);
if (!ts) {
i_vpr_e(inst, "%s: ts alloc failed\n", __func__);
return -ENOMEM;
}
/* initialize ts node */
INIT_LIST_HEAD(&ts->sort.list);
ts->sort.val = timestamp;
rc = msm_vidc_insert_sort(&inst->ts_reorder.list, &ts->sort);
if (rc)
return rc;
inst->ts_reorder.count++;
return 0;
}
int msm_vidc_ts_reorder_remove_timestamp(struct msm_vidc_inst *inst, u64 timestamp)
{
struct msm_vidc_timestamp *ts, *temp;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
/* remove matching node */
list_for_each_entry_safe(ts, temp, &inst->ts_reorder.list, sort.list) {
if (ts->sort.val == timestamp) {
list_del_init(&ts->sort.list);
inst->ts_reorder.count--;
msm_vidc_pool_free(inst, ts);
break;
}
}
return 0;
}
int msm_vidc_ts_reorder_get_first_timestamp(struct msm_vidc_inst *inst, u64 *timestamp)
{
struct msm_vidc_timestamp *ts;
struct msm_vidc_core *core;
if (!inst || !inst->core || !timestamp) {
d_vpr_e("%s: Invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
/* check if list empty */
if (list_empty(&inst->ts_reorder.list)) {
i_vpr_e(inst, "%s: list empty. ts %lld\n", __func__, *timestamp);
return -EINVAL;
}
/* get 1st node from reorder list */
ts = list_first_entry(&inst->ts_reorder.list,
struct msm_vidc_timestamp, sort.list);
list_del_init(&ts->sort.list);
/* copy timestamp */
*timestamp = ts->sort.val;
inst->ts_reorder.count--;
msm_vidc_pool_free(inst, ts);
return 0;
}
int msm_vidc_ts_reorder_flush(struct msm_vidc_inst *inst)
{
struct msm_vidc_timestamp *temp, *ts = NULL;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: Invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
/* flush all entries */
list_for_each_entry_safe(ts, temp, &inst->ts_reorder.list, sort.list) {
i_vpr_l(inst, "%s: flushing ts: val %lld\n", __func__, ts->sort.val);
list_del(&ts->sort.list);
msm_vidc_pool_free(inst, ts);
}
inst->ts_reorder.count = 0;
return 0;
}
struct msm_vidc_buffer *msm_vidc_get_driver_buf(struct msm_vidc_inst *inst,
struct vb2_buffer *vb2)
{
int rc = 0;
struct msm_vidc_buffer *buf;
struct msm_vidc_core *core;
if (!inst || !inst->core || !vb2) {
d_vpr_e("%s: Invalid params\n", __func__);
return NULL;
}
core = inst->core;
buf = msm_vidc_fetch_buffer(inst, vb2);
if (!buf) {
i_vpr_e(inst, "%s: failed to fetch buffer\n", __func__);
return NULL;
}
rc = vb2_buffer_to_driver(vb2, buf);
if (rc)
return NULL;
/* treat every buffer as deferred buffer initially */
buf->attr |= MSM_VIDC_ATTR_DEFERRED;
if (is_decode_session(inst) && is_output_buffer(buf->type)) {
/* get a reference */
if (!buf->dbuf_get) {
buf->dmabuf = call_mem_op(core, dma_buf_get, inst, buf->fd);
if (!buf->dmabuf)
return NULL;
buf->dbuf_get = 1;
}
}
return buf;
}
int msm_vidc_allocate_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buf_type, u32 num_buffers)
{
int rc = 0;
int idx = 0;
struct msm_vidc_buffer *buf = NULL;
struct msm_vidc_buffers *buffers;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: Invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
buffers = msm_vidc_get_buffers(inst, buf_type, __func__);
if (!buffers)
return -EINVAL;
for (idx = 0; idx < num_buffers; idx++) {
buf = msm_vidc_pool_alloc(inst, MSM_MEM_POOL_BUFFER);
if (!buf) {
i_vpr_e(inst, "%s: alloc failed\n", __func__);
return -EINVAL;
}
INIT_LIST_HEAD(&buf->list);
list_add_tail(&buf->list, &buffers->list);
buf->type = buf_type;
buf->index = idx;
}
i_vpr_h(inst, "%s: allocated %d buffers for type %s\n",
__func__, num_buffers, buf_name(buf_type));
return rc;
}
int msm_vidc_free_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buf_type)
{
int rc = 0;
int buf_count = 0;
struct msm_vidc_buffer *buf, *dummy;
struct msm_vidc_buffers *buffers;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: Invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
buffers = msm_vidc_get_buffers(inst, buf_type, __func__);
if (!buffers)
return -EINVAL;
list_for_each_entry_safe(buf, dummy, &buffers->list, list) {
buf_count++;
print_vidc_buffer(VIDC_LOW, "low ", "free buffer", inst, buf);
list_del_init(&buf->list);
msm_vidc_pool_free(inst, buf);
}
i_vpr_h(inst, "%s: freed %d buffers for type %s\n",
__func__, buf_count, buf_name(buf_type));
return rc;
}
struct msm_vidc_buffer *msm_vidc_fetch_buffer(struct msm_vidc_inst *inst,
struct vb2_buffer *vb2)
{
struct msm_vidc_buffer *buf = NULL;
struct msm_vidc_buffers *buffers;
enum msm_vidc_buffer_type buf_type;
bool found = false;
if (!inst || !vb2) {
d_vpr_e("%s: invalid params\n", __func__);
return NULL;
}
buf_type = v4l2_type_to_driver(vb2->type, __func__);
if (!buf_type)
return NULL;
buffers = msm_vidc_get_buffers(inst, buf_type, __func__);
if (!buffers)
return NULL;
list_for_each_entry(buf, &buffers->list, list) {
if (buf->index == vb2->index) {
found = true;
break;
}
}
if (!found) {
i_vpr_e(inst, "%s: buffer not found for index %d for vb2 buffer type %s\n",
__func__, vb2->index, v4l2_type_name(vb2->type));
return NULL;
}
return buf;
}
struct msm_vidc_buffer *get_meta_buffer(struct msm_vidc_inst *inst,
struct msm_vidc_buffer *buf)
{
struct msm_vidc_buffer *mbuf;
struct msm_vidc_buffers *buffers;
bool found = false;
if (!inst || !buf) {
d_vpr_e("%s: invalid params\n", __func__);
return NULL;
}
if (buf->type == MSM_VIDC_BUF_INPUT) {
buffers = &inst->buffers.input_meta;
} else if (buf->type == MSM_VIDC_BUF_OUTPUT) {
buffers = &inst->buffers.output_meta;
} else {
i_vpr_e(inst, "%s: invalid buffer type %d\n",
__func__, buf->type);
return NULL;
}
list_for_each_entry(mbuf, &buffers->list, list) {
if (mbuf->index == buf->index) {
found = true;
break;
}
}
if (!found)
return NULL;
return mbuf;
}
bool msm_vidc_is_super_buffer(struct msm_vidc_inst *inst)
{
struct msm_vidc_inst_capability *capability = NULL;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: Invalid params\n", __func__);
return false;
}
capability = inst->capabilities;
return !!capability->cap[SUPER_FRAME].value;
}
static bool is_single_session(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
u32 count = 0;
if (!inst) {
d_vpr_e("%s: Invalid params\n", __func__);
return false;
}
core = inst->core;
core_lock(core, __func__);
list_for_each_entry(inst, &core->instances, list)
count++;
core_unlock(core, __func__);
return count == 1;
}
void msm_vidc_allow_dcvs(struct msm_vidc_inst *inst)
{
bool allow = false;
struct msm_vidc_core *core;
u32 fps;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: Invalid args: %pK\n", __func__, inst);
return;
}
core = inst->core;
allow = !msm_vidc_clock_voting;
if (!allow) {
i_vpr_h(inst, "%s: core_clock_voting is set\n", __func__);
goto exit;
}
allow = core->capabilities[DCVS].value;
if (!allow) {
i_vpr_h(inst, "%s: core doesn't support dcvs\n", __func__);
goto exit;
}
allow = !inst->decode_batch.enable;
if (!allow) {
i_vpr_h(inst, "%s: decode_batching enabled\n", __func__);
goto exit;
}
allow = !msm_vidc_is_super_buffer(inst);
if (!allow) {
i_vpr_h(inst, "%s: encode_batching(super_buffer) enabled\n", __func__);
goto exit;
}
allow = !is_thumbnail_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: thumbnail session\n", __func__);
goto exit;
}
allow = !is_critical_priority_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: critical priority session\n", __func__);
goto exit;
}
allow = !is_image_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: image session\n", __func__);
goto exit;
}
allow = !is_lowlatency_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: lowlatency session\n", __func__);
goto exit;
}
fps = msm_vidc_get_fps(inst);
if (is_decode_session(inst) &&
fps >= inst->capabilities->cap[FRAME_RATE].max) {
allow = false;
i_vpr_h(inst, "%s: unsupported fps %d\n", __func__, fps);
goto exit;
}
exit:
i_vpr_hp(inst, "%s: dcvs: %s\n", __func__, allow ? "enabled" : "disabled");
inst->power.dcvs_flags = 0;
inst->power.dcvs_mode = allow;
}
bool msm_vidc_allow_decode_batch(struct msm_vidc_inst *inst)
{
struct msm_vidc_inst_capability *capability;
struct msm_vidc_core *core;
bool allow = false;
u32 value = 0;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
core = inst->core;
capability = inst->capabilities;
allow = inst->decode_batch.enable;
if (!allow) {
i_vpr_h(inst, "%s: batching already disabled\n", __func__);
goto exit;
}
allow = core->capabilities[DECODE_BATCH].value;
if (!allow) {
i_vpr_h(inst, "%s: core doesn't support batching\n", __func__);
goto exit;
}
allow = is_single_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: multiple sessions running\n", __func__);
goto exit;
}
allow = is_decode_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: not a decoder session\n", __func__);
goto exit;
}
allow = !is_thumbnail_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: thumbnail session\n", __func__);
goto exit;
}
allow = !is_image_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: image session\n", __func__);
goto exit;
}
allow = is_realtime_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: non-realtime session\n", __func__);
goto exit;
}
allow = !is_lowlatency_session(inst);
if (!allow) {
i_vpr_h(inst, "%s: lowlatency session\n", __func__);
goto exit;
}
value = msm_vidc_get_fps(inst);
allow = value < capability->cap[BATCH_FPS].value;
if (!allow) {
i_vpr_h(inst, "%s: unsupported fps %u, max %u\n", __func__,
value, capability->cap[BATCH_FPS].value);
goto exit;
}
value = msm_vidc_get_mbs_per_frame(inst);
allow = value < capability->cap[BATCH_MBPF].value;
if (!allow) {
i_vpr_h(inst, "%s: unsupported mbpf %u, max %u\n", __func__,
value, capability->cap[BATCH_MBPF].value);
goto exit;
}
exit:
i_vpr_hp(inst, "%s: batching: %s\n", __func__, allow ? "enabled" : "disabled");
return allow;
}
static void msm_vidc_update_input_cr(struct msm_vidc_inst *inst, u32 idx, u32 cr)
{
struct msm_vidc_input_cr_data *temp = NULL, *next = NULL;
bool found = false;
list_for_each_entry_safe(temp, next, &inst->enc_input_crs, list) {
if (temp->index == idx) {
temp->input_cr = cr;
found = true;
break;
}
}
if (!found) {
temp = NULL;
if (msm_vidc_vmem_alloc(sizeof(*temp), (void **)&temp, __func__))
return;
temp->index = idx;
temp->input_cr = cr;
list_add_tail(&temp->list, &inst->enc_input_crs);
}
}
static void msm_vidc_free_input_cr_list(struct msm_vidc_inst *inst)
{
struct msm_vidc_input_cr_data *temp, *next;
list_for_each_entry_safe(temp, next, &inst->enc_input_crs, list) {
list_del(&temp->list);
msm_vidc_vmem_free((void **)&temp);
}
INIT_LIST_HEAD(&inst->enc_input_crs);
}
void msm_vidc_update_stats(struct msm_vidc_inst *inst,
struct msm_vidc_buffer *buf, enum msm_vidc_debugfs_event etype)
{
if (!inst || !buf || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
if ((is_decode_session(inst) && etype == MSM_VIDC_DEBUGFS_EVENT_ETB) ||
(is_encode_session(inst) && etype == MSM_VIDC_DEBUGFS_EVENT_FBD))
inst->stats.data_size += buf->data_size;
msm_vidc_debugfs_update(inst, etype);
}
void msm_vidc_print_stats(struct msm_vidc_inst *inst)
{
u32 frame_rate, operating_rate, achieved_fps, priority, etb, ebd, ftb, fbd, dt_ms;
u64 bitrate_kbps = 0, time_ms = ktime_get_ns() / 1000 / 1000;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
etb = inst->debug_count.etb - inst->stats.count.etb;
ebd = inst->debug_count.ebd - inst->stats.count.ebd;
ftb = inst->debug_count.ftb - inst->stats.count.ftb;
fbd = inst->debug_count.fbd - inst->stats.count.fbd;
frame_rate = inst->capabilities->cap[FRAME_RATE].value >> 16;
operating_rate = inst->capabilities->cap[OPERATING_RATE].value >> 16;
priority = inst->capabilities->cap[PRIORITY].value;
dt_ms = time_ms - inst->stats.time_ms;
achieved_fps = (fbd * 1000) / dt_ms;
bitrate_kbps = (inst->stats.data_size * 8 * 1000) / (dt_ms * 1024);
i_vpr_hs(inst,
"stats: counts (etb,ebd,ftb,fbd): %u %u %u %u (total %llu %llu %llu %llu), achieved bitrate %lldKbps fps %u/s, frame rate %u, operating rate %u, priority %u, dt %ums\n",
etb, ebd, ftb, fbd, inst->debug_count.etb, inst->debug_count.ebd,
inst->debug_count.ftb, inst->debug_count.fbd,
bitrate_kbps, achieved_fps, frame_rate, operating_rate, priority, dt_ms);
inst->stats.count = inst->debug_count;
inst->stats.data_size = 0;
inst->stats.time_ms = time_ms;
}
int schedule_stats_work(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/**
* Hfi session is already closed and inst also going to be
* closed soon. So skip scheduling new stats_work to avoid
* use-after-free issues with close sequence.
*/
if (!inst->packet) {
i_vpr_e(inst, "skip scheduling stats_work\n");
return 0;
}
core = inst->core;
mod_delayed_work(inst->workq, &inst->stats_work,
msecs_to_jiffies(core->capabilities[STATS_TIMEOUT_MS].value));
return 0;
}
int cancel_stats_work_sync(struct msm_vidc_inst *inst)
{
if (!inst) {
d_vpr_e("%s: Invalid arguments\n", __func__);
return -EINVAL;
}
cancel_delayed_work_sync(&inst->stats_work);
return 0;
}
void msm_vidc_stats_handler(struct work_struct *work)
{
struct msm_vidc_inst *inst;
inst = container_of(work, struct msm_vidc_inst, stats_work.work);
inst = get_inst_ref(g_core, inst);
if (!inst || !inst->packet) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
inst_lock(inst, __func__);
msm_vidc_print_stats(inst);
schedule_stats_work(inst);
inst_unlock(inst, __func__);
put_inst(inst);
}
static int msm_vidc_queue_buffer(struct msm_vidc_inst *inst, struct msm_vidc_buffer *buf)
{
struct msm_vidc_buffer *meta;
enum msm_vidc_debugfs_event etype;
int rc = 0;
u32 cr = 0;
if (!inst || !buf || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (is_encode_session(inst) && is_input_buffer(buf->type)) {
cr = inst->capabilities->cap[ENC_IP_CR].value;
msm_vidc_update_input_cr(inst, buf->index, cr);
msm_vidc_update_cap_value(inst, ENC_IP_CR, 0, __func__);
}
if (is_decode_session(inst) && is_input_buffer(buf->type) &&
inst->capabilities->cap[CODEC_CONFIG].value) {
buf->flags |= MSM_VIDC_BUF_FLAG_CODECCONFIG;
msm_vidc_update_cap_value(inst, CODEC_CONFIG, 0, __func__);
}
if (is_decode_session(inst) && is_output_buffer(buf->type)) {
rc = msm_vidc_process_readonly_buffers(inst, buf);
if (rc)
return rc;
}
print_vidc_buffer(VIDC_HIGH, "high", "qbuf", inst, buf);
meta = get_meta_buffer(inst, buf);
if (meta && meta->attr & MSM_VIDC_ATTR_DEFERRED)
print_vidc_buffer(VIDC_LOW, "low ", "qbuf", inst, meta);
else
meta = NULL;
if (!meta && is_meta_enabled(inst, buf->type)) {
print_vidc_buffer(VIDC_ERR, "err ", "missing meta for", inst, buf);
return -EINVAL;
}
if (msm_vidc_is_super_buffer(inst) && is_input_buffer(buf->type))
rc = venus_hfi_queue_super_buffer(inst, buf, meta);
else
rc = venus_hfi_queue_buffer(inst, buf, meta);
if (rc)
return rc;
buf->attr &= ~MSM_VIDC_ATTR_DEFERRED;
buf->attr |= MSM_VIDC_ATTR_QUEUED;
if (meta) {
meta->attr &= ~MSM_VIDC_ATTR_DEFERRED;
meta->attr |= MSM_VIDC_ATTR_QUEUED;
}
/* insert timestamp for ts_reorder enable case */
if (is_ts_reorder_allowed(inst) && is_input_buffer(buf->type)) {
rc = msm_vidc_ts_reorder_insert_timestamp(inst, buf->timestamp);
if (rc)
i_vpr_e(inst, "%s: insert timestamp failed\n", __func__);
}
if (is_input_buffer(buf->type))
inst->power.buffer_counter++;
if (is_input_buffer(buf->type))
etype = MSM_VIDC_DEBUGFS_EVENT_ETB;
else
etype = MSM_VIDC_DEBUGFS_EVENT_FTB;
msm_vidc_update_stats(inst, buf, etype);
return 0;
}
int msm_vidc_alloc_and_queue_input_internal_buffers(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = msm_vdec_get_input_internal_buffers(inst);
if (rc)
return rc;
rc = msm_vdec_release_input_internal_buffers(inst);
if (rc)
return rc;
rc = msm_vdec_create_input_internal_buffers(inst);
if (rc)
return rc;
rc = msm_vdec_queue_input_internal_buffers(inst);
if (rc)
return rc;
return rc;
}
int msm_vidc_queue_deferred_buffers(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buf_type)
{
struct msm_vidc_buffers *buffers;
struct msm_vidc_buffer *buf;
int rc = 0;
if (!inst || !buf_type) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
buffers = msm_vidc_get_buffers(inst, buf_type, __func__);
if (!buffers)
return -EINVAL;
msm_vidc_scale_power(inst, true);
list_for_each_entry(buf, &buffers->list, list) {
if (!(buf->attr & MSM_VIDC_ATTR_DEFERRED))
continue;
rc = msm_vidc_queue_buffer(inst, buf);
if (rc)
return rc;
}
return 0;
}
int msm_vidc_buf_queue(struct msm_vidc_inst *inst, struct msm_vidc_buffer *buf)
{
int rc = 0;
if (!inst || !buf) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
msm_vidc_scale_power(inst, is_input_buffer(buf->type));
rc = msm_vidc_queue_buffer(inst, buf);
if (rc)
return rc;
return rc;
}
int msm_vidc_queue_buffer_single(struct msm_vidc_inst *inst, struct vb2_buffer *vb2)
{
int rc = 0;
struct msm_vidc_buffer *buf = NULL;
struct msm_vidc_fence *fence = NULL;
if (!inst || !vb2 || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
buf = msm_vidc_get_driver_buf(inst, vb2);
if (!buf)
return -EINVAL;
if (is_meta_rx_inp_enabled(inst, META_OUTBUF_FENCE) &&
is_output_buffer(buf->type)) {
fence = msm_vidc_fence_create(inst);
if (!fence)
return rc;
buf->fence_id = fence->dma_fence.seqno;
}
rc = inst->event_handle(inst, MSM_VIDC_BUF_QUEUE, buf);
if (rc)
goto exit;
exit:
if (rc) {
i_vpr_e(inst, "%s: qbuf failed\n", __func__);
if (fence)
msm_vidc_fence_destroy(inst, (u32)fence->dma_fence.seqno);
}
return rc;
}
int msm_vidc_destroy_internal_buffer(struct msm_vidc_inst *inst,
struct msm_vidc_buffer *buffer)
{
struct msm_vidc_buffers *buffers;
struct msm_vidc_mem_list *mem_list;
struct msm_vidc_mem *mem, *mem_dummy;
struct msm_vidc_buffer *buf, *dummy;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!is_internal_buffer(buffer->type)) {
i_vpr_e(inst, "%s: type: %s is not internal\n",
__func__, buf_name(buffer->type));
return 0;
}
i_vpr_h(inst, "%s: destroy: type: %8s, size: %9u, device_addr %#llx\n", __func__,
buf_name(buffer->type), buffer->buffer_size, buffer->device_addr);
buffers = msm_vidc_get_buffers(inst, buffer->type, __func__);
if (!buffers)
return -EINVAL;
mem_list = msm_vidc_get_mem_info(inst, buffer->type, __func__);
if (!mem_list)
return -EINVAL;
list_for_each_entry_safe(mem, mem_dummy, &mem_list->list, list) {
if (mem->dmabuf == buffer->dmabuf) {
call_mem_op(core, memory_unmap_free, core, mem);
list_del(&mem->list);
msm_vidc_pool_free(inst, mem);
break;
}
}
list_for_each_entry_safe(buf, dummy, &buffers->list, list) {
if (buf->dmabuf == buffer->dmabuf) {
list_del(&buf->list);
msm_vidc_pool_free(inst, buf);
break;
}
}
buffers->size = 0;
buffers->min_count = buffers->extra_count = buffers->actual_count = 0;
return 0;
}
int msm_vidc_get_internal_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
u32 buf_size;
u32 buf_count;
struct msm_vidc_core *core;
struct msm_vidc_buffers *buffers;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
buf_size = call_session_op(core, buffer_size,
inst, buffer_type);
buf_count = call_session_op(core, min_count,
inst, buffer_type);
buffers = msm_vidc_get_buffers(inst, buffer_type, __func__);
if (!buffers)
return -EINVAL;
if (buf_size <= buffers->size &&
buf_count <= buffers->min_count) {
buffers->reuse = true;
} else {
buffers->reuse = false;
buffers->size = buf_size;
buffers->min_count = buf_count;
}
return 0;
}
int msm_vidc_create_internal_buffer(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type, u32 index)
{
int rc = 0;
struct msm_vidc_buffers *buffers;
struct msm_vidc_mem_list *mem_list;
struct msm_vidc_buffer *buffer;
struct msm_vidc_mem *mem;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!is_internal_buffer(buffer_type)) {
i_vpr_e(inst, "%s: type %s is not internal\n",
__func__, buf_name(buffer_type));
return 0;
}
buffers = msm_vidc_get_buffers(inst, buffer_type, __func__);
if (!buffers)
return -EINVAL;
mem_list = msm_vidc_get_mem_info(inst, buffer_type, __func__);
if (!mem_list)
return -EINVAL;
if (!buffers->size)
return 0;
buffer = msm_vidc_pool_alloc(inst, MSM_MEM_POOL_BUFFER);
if (!buffer) {
i_vpr_e(inst, "%s: buf alloc failed\n", __func__);
return -ENOMEM;
}
INIT_LIST_HEAD(&buffer->list);
buffer->type = buffer_type;
buffer->index = index;
buffer->buffer_size = buffers->size;
list_add_tail(&buffer->list, &buffers->list);
mem = msm_vidc_pool_alloc(inst, MSM_MEM_POOL_ALLOC_MAP);
if (!mem) {
i_vpr_e(inst, "%s: mem poo alloc failed\n", __func__);
return -ENOMEM;
}
INIT_LIST_HEAD(&mem->list);
mem->type = buffer_type;
mem->region = call_mem_op(core, buffer_region, inst, buffer_type);
mem->size = buffer->buffer_size;
mem->secure = is_secure_region(mem->region);
rc = call_mem_op(core, memory_alloc_map, core, mem);
if (rc)
return -ENOMEM;
list_add_tail(&mem->list, &mem_list->list);
buffer->dmabuf = mem->dmabuf;
buffer->device_addr = mem->device_addr;
i_vpr_h(inst, "%s: create: type: %8s, size: %9u, device_addr %#llx\n", __func__,
buf_name(buffer_type), buffers->size, buffer->device_addr);
return 0;
}
int msm_vidc_create_internal_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
int rc = 0;
struct msm_vidc_buffers *buffers;
int i;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
buffers = msm_vidc_get_buffers(inst, buffer_type, __func__);
if (!buffers)
return -EINVAL;
if (buffers->reuse) {
i_vpr_l(inst, "%s: reuse enabled for %s\n", __func__, buf_name(buffer_type));
return 0;
}
for (i = 0; i < buffers->min_count; i++) {
rc = msm_vidc_create_internal_buffer(inst, buffer_type, i);
if (rc)
return rc;
}
return rc;
}
int msm_vidc_queue_internal_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
int rc = 0;
struct msm_vidc_buffers *buffers;
struct msm_vidc_buffer *buffer, *dummy;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (!is_internal_buffer(buffer_type)) {
i_vpr_e(inst, "%s: %s is not internal\n", __func__, buf_name(buffer_type));
return 0;
}
/*
* Set HFI_PROP_COMV_BUFFER_COUNT to firmware even if COMV buffer
* is reused.
*/
if (is_decode_session(inst) && buffer_type == MSM_VIDC_BUF_COMV) {
rc = msm_vdec_set_num_comv(inst);
if (rc)
return rc;
}
buffers = msm_vidc_get_buffers(inst, buffer_type, __func__);
if (!buffers)
return -EINVAL;
if (buffers->reuse) {
i_vpr_l(inst, "%s: reuse enabled for %s buf\n",
__func__, buf_name(buffer_type));
return 0;
}
list_for_each_entry_safe(buffer, dummy, &buffers->list, list) {
/* do not queue pending release buffers */
if (buffer->flags & MSM_VIDC_ATTR_PENDING_RELEASE)
continue;
/* do not queue already queued buffers */
if (buffer->attr & MSM_VIDC_ATTR_QUEUED)
continue;
rc = venus_hfi_queue_buffer(inst, buffer, NULL);
if (rc)
return rc;
/* mark queued */
buffer->attr |= MSM_VIDC_ATTR_QUEUED;
i_vpr_h(inst, "%s: queue: type: %8s, size: %9u, device_addr %#llx\n", __func__,
buf_name(buffer->type), buffer->buffer_size, buffer->device_addr);
}
return 0;
}
int msm_vidc_alloc_and_queue_session_internal_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
int rc = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (buffer_type != MSM_VIDC_BUF_ARP &&
buffer_type != MSM_VIDC_BUF_PERSIST) {
i_vpr_e(inst, "%s: invalid buffer type: %s\n",
__func__, buf_name(buffer_type));
rc = -EINVAL;
goto exit;
}
rc = msm_vidc_get_internal_buffers(inst, buffer_type);
if (rc)
goto exit;
rc = msm_vidc_create_internal_buffers(inst, buffer_type);
if (rc)
goto exit;
rc = msm_vidc_queue_internal_buffers(inst, buffer_type);
if (rc)
goto exit;
exit:
return rc;
}
int msm_vidc_release_internal_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type buffer_type)
{
int rc = 0;
struct msm_vidc_buffers *buffers;
struct msm_vidc_buffer *buffer, *dummy;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (!is_internal_buffer(buffer_type)) {
i_vpr_e(inst, "%s: %s is not internal\n",
__func__, buf_name(buffer_type));
return 0;
}
buffers = msm_vidc_get_buffers(inst, buffer_type, __func__);
if (!buffers)
return -EINVAL;
if (buffers->reuse) {
i_vpr_l(inst, "%s: reuse enabled for %s buf\n",
__func__, buf_name(buffer_type));
return 0;
}
list_for_each_entry_safe(buffer, dummy, &buffers->list, list) {
/* do not release already pending release buffers */
if (buffer->attr & MSM_VIDC_ATTR_PENDING_RELEASE)
continue;
/* release only queued buffers */
if (!(buffer->attr & MSM_VIDC_ATTR_QUEUED))
continue;
rc = venus_hfi_release_buffer(inst, buffer);
if (rc)
return rc;
/* mark pending release */
buffer->attr |= MSM_VIDC_ATTR_PENDING_RELEASE;
i_vpr_h(inst, "%s: release: type: %8s, size: %9u, device_addr %#llx\n", __func__,
buf_name(buffer->type), buffer->buffer_size, buffer->device_addr);
}
return 0;
}
int msm_vidc_vb2_buffer_done(struct msm_vidc_inst *inst,
struct msm_vidc_buffer *buf)
{
int type, port, state;
struct vb2_queue *q;
struct vb2_buffer *vb2;
struct vb2_v4l2_buffer *vbuf;
bool found;
if (!inst || !inst->capabilities || !buf) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
type = v4l2_type_from_driver(buf->type, __func__);
if (!type)
return -EINVAL;
port = v4l2_type_to_driver_port(inst, type, __func__);
if (port < 0)
return -EINVAL;
q = inst->bufq[port].vb2q;
if (!q->streaming) {
i_vpr_e(inst, "%s: port %d is not streaming\n",
__func__, port);
return -EINVAL;
}
found = false;
list_for_each_entry(vb2, &q->queued_list, queued_entry) {
if (vb2->state != VB2_BUF_STATE_ACTIVE)
continue;
if (vb2->index == buf->index) {
found = true;
break;
}
}
if (!found) {
print_vidc_buffer(VIDC_ERR, "err ", "vb2 not found for", inst, buf);
return -EINVAL;
}
/**
* v4l2 clears buffer state related flags. For driver errors
* send state as error to avoid skipping V4L2_BUF_FLAG_ERROR
* flag at v4l2 side.
*/
if (buf->flags & MSM_VIDC_BUF_FLAG_ERROR)
state = VB2_BUF_STATE_ERROR;
else
state = VB2_BUF_STATE_DONE;
vbuf = to_vb2_v4l2_buffer(vb2);
vbuf->flags = buf->flags;
vb2->timestamp = buf->timestamp;
vb2->planes[0].bytesused = buf->data_size + vb2->planes[0].data_offset;
vb2_buffer_done(vb2, state);
return 0;
}
int msm_vidc_event_queue_init(struct msm_vidc_inst *inst)
{
int rc = 0;
int index;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (is_decode_session(inst))
index = 0;
else if (is_encode_session(inst))
index = 1;
else
return -EINVAL;
v4l2_fh_init(&inst->event_handler, &core->vdev[index].vdev);
inst->event_handler.ctrl_handler = &inst->ctrl_handler;
v4l2_fh_add(&inst->event_handler);
return rc;
}
int msm_vidc_event_queue_deinit(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/* do not deinit, if not already inited */
if (!inst->event_handler.vdev) {
i_vpr_e(inst, "%s: already not inited\n", __func__);
return 0;
}
v4l2_fh_del(&inst->event_handler);
v4l2_fh_exit(&inst->event_handler);
return rc;
}
static int vb2q_init(struct msm_vidc_inst *inst,
struct vb2_queue *q, enum v4l2_buf_type type)
{
int rc = 0;
struct msm_vidc_core *core;
if (!inst || !q || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
q->type = type;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
q->ops = core->vb2_ops;
q->mem_ops = core->vb2_mem_ops;
q->drv_priv = inst;
q->allow_zero_bytesused = 1;
q->copy_timestamp = 1;
rc = vb2_queue_init(q);
if (rc)
i_vpr_e(inst, "%s: vb2_queue_init failed for type %d\n",
__func__, type);
return rc;
}
static int m2m_queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
int rc = 0;
struct msm_vidc_inst *inst = priv;
struct msm_vidc_core *core;
if (!inst || !inst->core || !src_vq || !dst_vq) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->capabilities) {
d_vpr_e("%s: invalid core capabilities\n", __func__);
return -EINVAL;
}
src_vq->supports_requests = core->capabilities[SUPPORTS_REQUESTS].value;
src_vq->lock = &inst->request_lock;
src_vq->dev = &core->pdev->dev;
rc = vb2q_init(inst, src_vq, INPUT_MPLANE);
if (rc)
goto fail_input_vb2q_init;
inst->bufq[INPUT_PORT].vb2q = src_vq;
dst_vq->lock = src_vq->lock;
dst_vq->dev = &core->pdev->dev;
rc = vb2q_init(inst, dst_vq, OUTPUT_MPLANE);
if (rc)
goto fail_out_vb2q_init;
inst->bufq[OUTPUT_PORT].vb2q = dst_vq;
return rc;
fail_out_vb2q_init:
vb2_queue_release(inst->bufq[INPUT_PORT].vb2q);
fail_input_vb2q_init:
return rc;
}
int msm_vidc_vb2_queue_init(struct msm_vidc_inst *inst)
{
int rc = 0;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (inst->vb2q_init) {
i_vpr_h(inst, "%s: vb2q already inited\n", __func__);
return 0;
}
inst->m2m_dev = v4l2_m2m_init(core->v4l2_m2m_ops);
if (IS_ERR(inst->m2m_dev)) {
i_vpr_e(inst, "%s: failed to initialize v4l2 m2m device\n", __func__);
rc = PTR_ERR(inst->m2m_dev);
goto fail_m2m_init;
}
/* v4l2_m2m_ctx_init will do input & output queues initialization */
inst->m2m_ctx = v4l2_m2m_ctx_init(inst->m2m_dev, inst, m2m_queue_init);
if (!inst->m2m_ctx) {
i_vpr_e(inst, "%s: v4l2_m2m_ctx_init failed\n", __func__);
goto fail_m2m_ctx_init;
}
inst->event_handler.m2m_ctx = inst->m2m_ctx;
rc = msm_vidc_vmem_alloc(sizeof(struct vb2_queue),
(void **)&inst->bufq[INPUT_META_PORT].vb2q, "input meta port");
if (rc)
goto fail_in_meta_alloc;
/* do input meta port queues initialization */
rc = vb2q_init(inst, inst->bufq[INPUT_META_PORT].vb2q, INPUT_META_PLANE);
if (rc)
goto fail_in_meta_vb2q_init;
rc = msm_vidc_vmem_alloc(sizeof(struct vb2_queue),
(void **)&inst->bufq[OUTPUT_META_PORT].vb2q, "output meta port");
if (rc)
goto fail_out_meta_alloc;
/* do output meta port queues initialization */
rc = vb2q_init(inst, inst->bufq[OUTPUT_META_PORT].vb2q, OUTPUT_META_PLANE);
if (rc)
goto fail_out_meta_vb2q_init;
inst->vb2q_init = true;
return 0;
fail_out_meta_vb2q_init:
msm_vidc_vmem_free((void **)&inst->bufq[OUTPUT_META_PORT].vb2q);
inst->bufq[OUTPUT_META_PORT].vb2q = NULL;
fail_out_meta_alloc:
vb2_queue_release(inst->bufq[INPUT_META_PORT].vb2q);
fail_in_meta_vb2q_init:
msm_vidc_vmem_free((void **)&inst->bufq[INPUT_META_PORT].vb2q);
inst->bufq[INPUT_META_PORT].vb2q = NULL;
fail_in_meta_alloc:
v4l2_m2m_ctx_release(inst->m2m_ctx);
inst->bufq[OUTPUT_PORT].vb2q = NULL;
inst->bufq[INPUT_PORT].vb2q = NULL;
fail_m2m_ctx_init:
v4l2_m2m_release(inst->m2m_dev);
fail_m2m_init:
return rc;
}
int msm_vidc_vb2_queue_deinit(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (!inst->vb2q_init) {
i_vpr_h(inst, "%s: vb2q already deinited\n", __func__);
return 0;
}
/*
* vb2_queue_release() for input and output queues
* is called from v4l2_m2m_ctx_release()
*/
v4l2_m2m_ctx_release(inst->m2m_ctx);
inst->bufq[OUTPUT_PORT].vb2q = NULL;
inst->bufq[INPUT_PORT].vb2q = NULL;
v4l2_m2m_release(inst->m2m_dev);
vb2_queue_release(inst->bufq[OUTPUT_META_PORT].vb2q);
msm_vidc_vmem_free((void **)&inst->bufq[OUTPUT_META_PORT].vb2q);
inst->bufq[OUTPUT_META_PORT].vb2q = NULL;
vb2_queue_release(inst->bufq[INPUT_META_PORT].vb2q);
msm_vidc_vmem_free((void **)&inst->bufq[INPUT_META_PORT].vb2q);
inst->bufq[INPUT_META_PORT].vb2q = NULL;
inst->vb2q_init = false;
return rc;
}
int msm_vidc_add_session(struct msm_vidc_inst *inst)
{
int rc = 0;
struct msm_vidc_inst *i;
struct msm_vidc_core *core;
u32 count = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->capabilities) {
i_vpr_e(inst, "%s: invalid params\n", __func__);
return -EINVAL;
}
core_lock(core, __func__);
if (core->state != MSM_VIDC_CORE_INIT) {
i_vpr_e(inst, "%s: invalid state %s\n",
__func__, core_state_name(core->state));
rc = -EINVAL;
goto unlock;
}
list_for_each_entry(i, &core->instances, list)
count++;
if (count < core->capabilities[MAX_SESSION_COUNT].value) {
list_add_tail(&inst->list, &core->instances);
} else {
i_vpr_e(inst, "%s: max limit %d already running %d sessions\n",
__func__, core->capabilities[MAX_SESSION_COUNT].value, count);
rc = -EINVAL;
}
unlock:
core_unlock(core, __func__);
return rc;
}
int msm_vidc_remove_session(struct msm_vidc_inst *inst)
{
struct msm_vidc_inst *i, *temp;
struct msm_vidc_core *core;
u32 count = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
core_lock(core, __func__);
list_for_each_entry_safe(i, temp, &core->instances, list) {
if (i->session_id == inst->session_id) {
list_move_tail(&i->list, &core->dangling_instances);
i_vpr_h(inst, "%s: removed session %#x\n",
__func__, i->session_id);
}
}
list_for_each_entry(i, &core->instances, list)
count++;
i_vpr_h(inst, "%s: remaining sessions %d\n", __func__, count);
core_unlock(core, __func__);
return 0;
}
static int msm_vidc_remove_dangling_session(struct msm_vidc_inst *inst)
{
struct msm_vidc_inst *i, *temp;
struct msm_vidc_core *core;
u32 count = 0, dcount = 0;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
core_lock(core, __func__);
list_for_each_entry_safe(i, temp, &core->dangling_instances, list) {
if (i->session_id == inst->session_id) {
list_del_init(&i->list);
i_vpr_h(inst, "%s: removed dangling session %#x\n",
__func__, i->session_id);
break;
}
}
list_for_each_entry(i, &core->instances, list)
count++;
list_for_each_entry(i, &core->dangling_instances, list)
dcount++;
i_vpr_h(inst, "%s: remaining sessions. active %d, dangling %d\n",
__func__, count, dcount);
core_unlock(core, __func__);
return 0;
}
int msm_vidc_session_open(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
inst->packet_size = 4096;
rc = msm_vidc_vmem_alloc(inst->packet_size, (void **)&inst->packet, __func__);
if (rc)
return rc;
rc = venus_hfi_session_open(inst);
if (rc)
goto error;
return 0;
error:
i_vpr_e(inst, "%s(): session open failed\n", __func__);
msm_vidc_vmem_free((void **)&inst->packet);
inst->packet = NULL;
return rc;
}
int msm_vidc_session_set_codec(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = venus_hfi_session_set_codec(inst);
if (rc)
return rc;
return 0;
}
int msm_vidc_session_set_secure_mode(struct msm_vidc_inst *inst)
{
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = venus_hfi_session_set_secure_mode(inst);
if (rc)
return rc;
return 0;
}
int msm_vidc_session_set_default_header(struct msm_vidc_inst *inst)
{
int rc = 0;
u32 default_header = false;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
default_header = inst->capabilities->cap[DEFAULT_HEADER].value;
i_vpr_h(inst, "%s: default header: %d", __func__, default_header);
rc = venus_hfi_session_property(inst,
HFI_PROP_DEC_DEFAULT_HEADER,
HFI_HOST_FLAGS_NONE,
get_hfi_port(inst, INPUT_PORT),
HFI_PAYLOAD_U32,
&default_header,
sizeof(u32));
if (rc)
i_vpr_e(inst, "%s: set property failed\n", __func__);
return rc;
}
int msm_vidc_session_streamoff(struct msm_vidc_inst *inst,
enum msm_vidc_port_type port)
{
int rc = 0;
int count = 0;
struct msm_vidc_core *core;
enum signal_session_response signal_type;
enum msm_vidc_buffer_type buffer_type;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (port == INPUT_PORT) {
signal_type = SIGNAL_CMD_STOP_INPUT;
buffer_type = MSM_VIDC_BUF_INPUT;
} else if (port == OUTPUT_PORT) {
signal_type = SIGNAL_CMD_STOP_OUTPUT;
buffer_type = MSM_VIDC_BUF_OUTPUT;
} else {
i_vpr_e(inst, "%s: invalid port: %d\n", __func__, port);
return -EINVAL;
}
rc = venus_hfi_stop(inst, port);
if (rc)
goto error;
core = inst->core;
i_vpr_h(inst, "%s: wait on port: %d for time: %d ms\n",
__func__, port, core->capabilities[HW_RESPONSE_TIMEOUT].value);
inst_unlock(inst, __func__);
rc = wait_for_completion_timeout(
&inst->completions[signal_type],
msecs_to_jiffies(
core->capabilities[HW_RESPONSE_TIMEOUT].value));
if (!rc) {
i_vpr_e(inst, "%s: session stop timed out for port: %d\n",
__func__, port);
rc = -ETIMEDOUT;
msm_vidc_inst_timeout(inst);
} else {
rc = 0;
}
inst_lock(inst, __func__);
if(rc)
goto error;
if (port == INPUT_PORT) {
/* flush input timer list */
msm_vidc_flush_input_timer(inst);
}
/* no more queued buffers after streamoff */
count = msm_vidc_num_buffers(inst, buffer_type, MSM_VIDC_ATTR_QUEUED);
if (!count) {
i_vpr_h(inst, "%s: stop successful on port: %d\n",
__func__, port);
} else {
i_vpr_e(inst,
"%s: %d buffers pending with firmware on port: %d\n",
__func__, count, port);
rc = -EINVAL;
goto error;
}
rc = msm_vidc_state_change_streamoff(inst, port);
if (rc)
goto error;
/* flush deferred buffers */
msm_vidc_flush_buffers(inst, buffer_type);
msm_vidc_flush_read_only_buffers(inst, buffer_type);
return 0;
error:
msm_vidc_kill_session(inst);
msm_vidc_flush_buffers(inst, buffer_type);
msm_vidc_flush_read_only_buffers(inst, buffer_type);
return rc;
}
int msm_vidc_session_close(struct msm_vidc_inst *inst)
{
int rc = 0;
struct msm_vidc_core *core;
bool wait_for_response;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
wait_for_response = true;
rc = venus_hfi_session_close(inst);
if (rc) {
i_vpr_e(inst, "%s: session close cmd failed\n", __func__);
wait_for_response = false;
}
/* we are not supposed to send any more commands after close */
i_vpr_h(inst, "%s: free session packet data\n", __func__);
msm_vidc_vmem_free((void **)&inst->packet);
inst->packet = NULL;
if (wait_for_response) {
i_vpr_h(inst, "%s: wait on close for time: %d ms\n",
__func__, core->capabilities[HW_RESPONSE_TIMEOUT].value);
inst_unlock(inst, __func__);
rc = wait_for_completion_timeout(
&inst->completions[SIGNAL_CMD_CLOSE],
msecs_to_jiffies(
core->capabilities[HW_RESPONSE_TIMEOUT].value));
if (!rc) {
i_vpr_e(inst, "%s: session close timed out\n", __func__);
rc = -ETIMEDOUT;
msm_vidc_inst_timeout(inst);
} else {
rc = 0;
i_vpr_h(inst, "%s: close successful\n", __func__);
}
inst_lock(inst, __func__);
}
return rc;
}
int msm_vidc_kill_session(struct msm_vidc_inst *inst)
{
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (!inst->session_id) {
i_vpr_e(inst, "%s: already killed\n", __func__);
return 0;
}
i_vpr_e(inst, "%s: killing session\n", __func__);
msm_vidc_session_close(inst);
msm_vidc_change_state(inst, MSM_VIDC_ERROR, __func__);
return 0;
}
int msm_vidc_get_inst_capability(struct msm_vidc_inst *inst)
{
int rc = 0;
int i;
struct msm_vidc_core *core;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
for (i = 0; i < core->codecs_count; i++) {
if (core->inst_caps[i].domain == inst->domain &&
core->inst_caps[i].codec == inst->codec) {
i_vpr_h(inst,
"%s: copied capabilities with %#x codec, %#x domain\n",
__func__, inst->codec, inst->domain);
memcpy(inst->capabilities, &core->inst_caps[i],
sizeof(struct msm_vidc_inst_capability));
}
}
return rc;
}
int msm_vidc_deinit_core_caps(struct msm_vidc_core *core)
{
int rc = 0;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
msm_vidc_vmem_free((void **)&core->capabilities);
core->capabilities = NULL;
d_vpr_h("%s: Core capabilities freed\n", __func__);
return rc;
}
int msm_vidc_init_core_caps(struct msm_vidc_core *core)
{
int rc = 0;
int i, num_platform_caps;
struct msm_platform_core_capability *platform_data;
if (!core || !core->platform) {
d_vpr_e("%s: invalid params\n", __func__);
rc = -EINVAL;
goto exit;
}
platform_data = core->platform->data.core_data;
if (!platform_data) {
d_vpr_e("%s: platform core data is NULL\n",
__func__);
rc = -EINVAL;
goto exit;
}
rc = msm_vidc_vmem_alloc((sizeof(struct msm_vidc_core_capability) *
(CORE_CAP_MAX + 1)), (void **)&core->capabilities, __func__);
if (rc)
goto exit;
num_platform_caps = core->platform->data.core_data_size;
/* loop over platform caps */
for (i = 0; i < num_platform_caps && i < CORE_CAP_MAX; i++) {
core->capabilities[platform_data[i].type].type = platform_data[i].type;
core->capabilities[platform_data[i].type].value = platform_data[i].value;
}
exit:
return rc;
}
static void update_inst_capability(struct msm_platform_inst_capability *in,
struct msm_vidc_inst_capability *capability)
{
if (!in || !capability) {
d_vpr_e("%s: invalid params %pK %pK\n",
__func__, in, capability);
return;
}
if (in->cap_id >= INST_CAP_MAX) {
d_vpr_e("%s: invalid cap id %d\n", __func__, in->cap_id);
return;
}
capability->cap[in->cap_id].cap_id = in->cap_id;
capability->cap[in->cap_id].min = in->min;
capability->cap[in->cap_id].max = in->max;
capability->cap[in->cap_id].step_or_mask = in->step_or_mask;
capability->cap[in->cap_id].value = in->value;
capability->cap[in->cap_id].flags = in->flags;
capability->cap[in->cap_id].v4l2_id = in->v4l2_id;
capability->cap[in->cap_id].hfi_id = in->hfi_id;
}
static void update_inst_cap_dependency(
struct msm_platform_inst_cap_dependency *in,
struct msm_vidc_inst_capability *capability)
{
if (!in || !capability) {
d_vpr_e("%s: invalid params %pK %pK\n",
__func__, in, capability);
return;
}
if (in->cap_id >= INST_CAP_MAX) {
d_vpr_e("%s: invalid cap id %d\n", __func__, in->cap_id);
return;
}
capability->cap[in->cap_id].cap_id = in->cap_id;
memcpy(capability->cap[in->cap_id].children, in->children,
sizeof(capability->cap[in->cap_id].children));
capability->cap[in->cap_id].adjust = in->adjust;
capability->cap[in->cap_id].set = in->set;
}
int msm_vidc_deinit_instance_caps(struct msm_vidc_core *core)
{
int rc = 0;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
msm_vidc_vmem_free((void **)&core->inst_caps);
core->inst_caps = NULL;
d_vpr_h("%s: core->inst_caps freed\n", __func__);
return rc;
}
int msm_vidc_init_instance_caps(struct msm_vidc_core *core)
{
int rc = 0;
u8 enc_valid_codecs, dec_valid_codecs;
u8 count_bits, enc_codec_count;
u8 codecs_count = 0;
int i, j, check_bit;
int num_platform_cap_data, num_platform_cap_dependency_data;
struct msm_platform_inst_capability *platform_cap_data = NULL;
struct msm_platform_inst_cap_dependency *platform_cap_dependency_data = NULL;
if (!core || !core->platform || !core->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
rc = -EINVAL;
goto error;
}
platform_cap_data = core->platform->data.inst_cap_data;
if (!platform_cap_data) {
d_vpr_e("%s: platform instance cap data is NULL\n",
__func__);
rc = -EINVAL;
goto error;
}
platform_cap_dependency_data = core->platform->data.inst_cap_dependency_data;
if (!platform_cap_dependency_data) {
d_vpr_e("%s: platform instance cap dependency data is NULL\n",
__func__);
rc = -EINVAL;
goto error;
}
enc_valid_codecs = core->capabilities[ENC_CODECS].value;
count_bits = enc_valid_codecs;
COUNT_BITS(count_bits, codecs_count);
enc_codec_count = codecs_count;
dec_valid_codecs = core->capabilities[DEC_CODECS].value;
count_bits = dec_valid_codecs;
COUNT_BITS(count_bits, codecs_count);
core->codecs_count = codecs_count;
rc = msm_vidc_vmem_alloc(codecs_count * sizeof(struct msm_vidc_inst_capability),
(void **)&core->inst_caps, __func__);
if (rc)
goto error;
check_bit = 0;
/* determine codecs for enc domain */
for (i = 0; i < enc_codec_count; i++) {
while (check_bit < (sizeof(enc_valid_codecs) * 8)) {
if (enc_valid_codecs & BIT(check_bit)) {
core->inst_caps[i].domain = MSM_VIDC_ENCODER;
core->inst_caps[i].codec = enc_valid_codecs &
BIT(check_bit);
check_bit++;
break;
}
check_bit++;
}
}
/* reset checkbit to check from 0th bit of decoder codecs set bits*/
check_bit = 0;
/* determine codecs for dec domain */
for (; i < codecs_count; i++) {
while (check_bit < (sizeof(dec_valid_codecs) * 8)) {
if (dec_valid_codecs & BIT(check_bit)) {
core->inst_caps[i].domain = MSM_VIDC_DECODER;
core->inst_caps[i].codec = dec_valid_codecs &
BIT(check_bit);
check_bit++;
break;
}
check_bit++;
}
}
num_platform_cap_data = core->platform->data.inst_cap_data_size;
num_platform_cap_dependency_data = core->platform->data.inst_cap_dependency_data_size;
d_vpr_h("%s: num caps %d, dependency %d\n", __func__,
num_platform_cap_data, num_platform_cap_dependency_data);
/* loop over each platform capability */
for (i = 0; i < num_platform_cap_data; i++) {
/* select matching core codec and update it */
for (j = 0; j < codecs_count; j++) {
if ((platform_cap_data[i].domain &
core->inst_caps[j].domain) &&
(platform_cap_data[i].codec &
core->inst_caps[j].codec)) {
/* update core capability */
update_inst_capability(&platform_cap_data[i],
&core->inst_caps[j]);
}
}
}
/* loop over each platform dependency capability */
for (i = 0; i < num_platform_cap_dependency_data; i++) {
/* select matching core codec and update it */
for (j = 0; j < codecs_count; j++) {
if ((platform_cap_dependency_data[i].domain &
core->inst_caps[j].domain) &&
(platform_cap_dependency_data[i].codec &
core->inst_caps[j].codec)) {
/* update core dependency capability */
update_inst_cap_dependency(
&platform_cap_dependency_data[i],
&core->inst_caps[j]);
}
}
}
error:
return rc;
}
int msm_vidc_core_deinit_locked(struct msm_vidc_core *core, bool force)
{
int rc = 0;
struct msm_vidc_inst *inst, *dummy;
enum msm_vidc_allow allow;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
rc = __strict_check(core, __func__);
if (rc) {
d_vpr_e("%s(): core was not locked\n", __func__);
return rc;
}
if (is_core_state(core, MSM_VIDC_CORE_DEINIT))
return 0;
/* print error for state change not allowed case */
allow = msm_vidc_allow_core_state_change(core, MSM_VIDC_CORE_DEINIT);
if (allow != MSM_VIDC_ALLOW)
d_vpr_e("%s: %s core state change %s -> %s\n", __func__,
allow_name(allow), core_state_name(core->state),
core_state_name(MSM_VIDC_CORE_DEINIT));
if (force) {
d_vpr_e("%s(): force deinit core\n", __func__);
} else {
/* in normal case, deinit core only if no session present */
if (!list_empty(&core->instances)) {
d_vpr_h("%s(): skip deinit\n", __func__);
return 0;
} else {
d_vpr_h("%s(): deinit core\n", __func__);
}
}
venus_hfi_core_deinit(core, force);
/* unlink all sessions from core, if any */
list_for_each_entry_safe(inst, dummy, &core->instances, list) {
msm_vidc_change_state(inst, MSM_VIDC_ERROR, __func__);
list_move_tail(&inst->list, &core->dangling_instances);
}
msm_vidc_change_core_state(core, MSM_VIDC_CORE_DEINIT, __func__);
return rc;
}
int msm_vidc_core_deinit(struct msm_vidc_core *core, bool force)
{
int rc = 0;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core_lock(core, __func__);
rc = msm_vidc_core_deinit_locked(core, force);
core_unlock(core, __func__);
return rc;
}
int msm_vidc_core_init_wait(struct msm_vidc_core *core)
{
const int interval = 10;
int max_tries, count = 0, rc = 0;
if (!core || !core->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core_lock(core, __func__);
if (is_core_state(core, MSM_VIDC_CORE_INIT)) {
rc = 0;
goto unlock;
} else if (is_core_state(core, MSM_VIDC_CORE_DEINIT) ||
is_core_state(core, MSM_VIDC_CORE_ERROR)) {
d_vpr_e("%s: invalid core state %s\n",
__func__, core_state_name(core->state));
rc = -EINVAL;
goto unlock;
}
d_vpr_h("%s(): waiting for state change\n", __func__);
max_tries = core->capabilities[HW_RESPONSE_TIMEOUT].value / interval;
while (count < max_tries) {
if (core->state != MSM_VIDC_CORE_INIT_WAIT)
break;
core_unlock(core, __func__);
msleep_interruptible(interval);
core_lock(core, __func__);
count++;
}
d_vpr_h("%s: state %s, interval %u, count %u, max_tries %u\n", __func__,
core_state_name(core->state), interval, count, max_tries);
if (is_core_state(core, MSM_VIDC_CORE_INIT)) {
d_vpr_h("%s: sys init successful\n", __func__);
rc = 0;
goto unlock;
} else if (is_core_state(core, MSM_VIDC_CORE_INIT_WAIT)) {
d_vpr_h("%s: sys init wait timedout. state %s\n",
__func__, core_state_name(core->state));
msm_vidc_change_core_state(core, MSM_VIDC_CORE_ERROR, __func__);
/* mark video hw unresponsive */
msm_vidc_change_core_sub_state(core,
0, CORE_SUBSTATE_VIDEO_UNRESPONSIVE, __func__);
/* core deinit to handle error */
msm_vidc_core_deinit_locked(core, true);
rc = -EINVAL;
goto unlock;
} else {
d_vpr_e("%s: invalid core state %s\n",
__func__, core_state_name(core->state));
rc = -EINVAL;
goto unlock;
}
unlock:
core_unlock(core, __func__);
return rc;
}
int msm_vidc_core_init(struct msm_vidc_core *core)
{
enum msm_vidc_allow allow;
int rc = 0;
if (!core || !core->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core_lock(core, __func__);
if (core_in_valid_state(core)) {
goto unlock;
} else if (is_core_state(core, MSM_VIDC_CORE_ERROR)) {
d_vpr_e("%s: invalid core state %s\n",
__func__, core_state_name(core->state));
rc = -EINVAL;
goto unlock;
}
/* print error for state change not allowed case */
allow = msm_vidc_allow_core_state_change(core, MSM_VIDC_CORE_INIT_WAIT);
if (allow != MSM_VIDC_ALLOW)
d_vpr_e("%s: %s core state change %s -> %s\n", __func__,
allow_name(allow), core_state_name(core->state),
core_state_name(MSM_VIDC_CORE_INIT_WAIT));
msm_vidc_change_core_state(core, MSM_VIDC_CORE_INIT_WAIT, __func__);
/* clear PM suspend from core sub_state */
msm_vidc_change_core_sub_state(core, CORE_SUBSTATE_PM_SUSPEND, 0, __func__);
msm_vidc_change_core_sub_state(core, CORE_SUBSTATE_PAGE_FAULT, 0, __func__);
rc = venus_hfi_core_init(core);
if (rc) {
msm_vidc_change_core_state(core, MSM_VIDC_CORE_ERROR, __func__);
d_vpr_e("%s: core init failed\n", __func__);
/* do core deinit to handle error */
msm_vidc_core_deinit_locked(core, true);
goto unlock;
}
unlock:
core_unlock(core, __func__);
return rc;
}
int msm_vidc_print_residency_stats(struct msm_vidc_core *core)
{
int rc = 0;
core_lock(core, __func__);
rc = call_res_op(core, clk_print_residency_stats, core);
if (rc)
goto unlock;
unlock:
core_unlock(core, __func__);
return rc;
}
int msm_vidc_reset_residency_stats(struct msm_vidc_core *core)
{
int rc = 0;
core_lock(core, __func__);
rc = call_res_op(core, clk_reset_residency_stats, core);
if (rc)
goto unlock;
unlock:
core_unlock(core, __func__);
return rc;
}
int msm_vidc_inst_timeout(struct msm_vidc_inst *inst)
{
int rc = 0;
struct msm_vidc_core *core;
struct msm_vidc_inst *instance;
bool found;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
core_lock(core, __func__);
/*
* All sessions will be removed from core list in core deinit,
* do not deinit core from a session which is not present in
* core list.
*/
found = false;
list_for_each_entry(instance, &core->instances, list) {
if (instance == inst) {
found = true;
break;
}
}
if (!found) {
i_vpr_e(inst,
"%s: session not available in core list\n", __func__);
rc = -EINVAL;
goto unlock;
}
/* mark video hw unresponsive */
msm_vidc_change_core_state(core, MSM_VIDC_CORE_ERROR, __func__);
msm_vidc_change_core_sub_state(core,
0, CORE_SUBSTATE_VIDEO_UNRESPONSIVE, __func__);
/* call core deinit for a valid instance timeout case */
msm_vidc_core_deinit_locked(core, true);
unlock:
core_unlock(core, __func__);
return rc;
}
int msm_vidc_print_buffer_info(struct msm_vidc_inst *inst)
{
struct msm_vidc_buffers *buffers;
int i;
if (!inst) {
i_vpr_e(inst, "%s: invalid params\n", __func__);
return -EINVAL;
}
/* Print buffer details */
for (i = 1; i < ARRAY_SIZE(buf_type_name_arr); i++) {
buffers = msm_vidc_get_buffers(inst, i, __func__);
if (!buffers)
continue;
i_vpr_h(inst, "buf: type: %11s, count %2d, extra %2d, actual %2d, size %9u\n",
buf_name(i), buffers->min_count,
buffers->extra_count, buffers->actual_count,
buffers->size);
}
return 0;
}
int msm_vidc_print_inst_info(struct msm_vidc_inst *inst)
{
struct msm_vidc_buffers *buffers;
struct msm_vidc_buffer *buf;
enum msm_vidc_port_type port;
bool is_secure, is_decode;
u32 bit_depth, bit_rate, frame_rate, width, height;
struct dma_buf *dbuf;
struct inode *f_inode;
unsigned long inode_num = 0;
long ref_count = -1;
int i = 0;
if (!inst || !inst->capabilities) {
i_vpr_e(inst, "%s: invalid params\n", __func__);
return -EINVAL;
}
is_secure = is_secure_session(inst);
is_decode = inst->domain == MSM_VIDC_DECODER;
port = is_decode ? INPUT_PORT : OUTPUT_PORT;
width = inst->fmts[port].fmt.pix_mp.width;
height = inst->fmts[port].fmt.pix_mp.height;
bit_depth = inst->capabilities->cap[BIT_DEPTH].value & 0xFFFF;
bit_rate = inst->capabilities->cap[BIT_RATE].value;
frame_rate = inst->capabilities->cap[FRAME_RATE].value >> 16;
i_vpr_e(inst, "%s %s session, HxW: %d x %d, fps: %d, bitrate: %d, bit-depth: %d\n",
is_secure ? "Secure" : "Non-Secure",
is_decode ? "Decode" : "Encode",
height, width,
frame_rate, bit_rate, bit_depth);
/* Print buffer details */
for (i = 1; i < ARRAY_SIZE(buf_type_name_arr); i++) {
buffers = msm_vidc_get_buffers(inst, i, __func__);
if (!buffers)
continue;
i_vpr_e(inst, "count: type: %11s, min: %2d, extra: %2d, actual: %2d\n",
buf_name(i), buffers->min_count,
buffers->extra_count, buffers->actual_count);
list_for_each_entry(buf, &buffers->list, list) {
if (!buf->dmabuf)
continue;
dbuf = (struct dma_buf *)buf->dmabuf;
if (dbuf && dbuf->file) {
f_inode = file_inode(dbuf->file);
if (f_inode) {
inode_num = f_inode->i_ino;
ref_count = file_count(dbuf->file);
}
}
i_vpr_e(inst,
"buf: type: %11s, index: %2d, fd: %4d, size: %9u, off: %8u, filled: %9u, daddr: %#llx, inode: %8lu, ref: %2ld, flags: %8x, ts: %16lld, attr: %8x\n",
buf_name(i), buf->index, buf->fd, buf->buffer_size,
buf->data_offset, buf->data_size, buf->device_addr,
inode_num, ref_count, buf->flags, buf->timestamp, buf->attr);
}
}
return 0;
}
void msm_vidc_print_core_info(struct msm_vidc_core *core)
{
struct msm_vidc_inst *inst = NULL;
struct msm_vidc_inst *instances[MAX_SUPPORTED_INSTANCES];
s32 num_instances = 0;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
core_lock(core, __func__);
list_for_each_entry(inst, &core->instances, list)
instances[num_instances++] = inst;
core_unlock(core, __func__);
while (num_instances--) {
inst = instances[num_instances];
inst = get_inst_ref(core, inst);
if (!inst)
continue;
inst_lock(inst, __func__);
msm_vidc_print_inst_info(inst);
inst_unlock(inst, __func__);
put_inst(inst);
}
}
int msm_vidc_smmu_fault_handler(struct iommu_domain *domain,
struct device *dev, unsigned long iova, int flags, void *data)
{
struct msm_vidc_core *core = data;
if (!domain || !core || !core->capabilities) {
d_vpr_e("%s: invalid params %pK %pK\n",
__func__, domain, core);
return -EINVAL;
}
if (is_core_sub_state(core, CORE_SUBSTATE_PAGE_FAULT)) {
if (core->capabilities[NON_FATAL_FAULTS].value) {
dprintk_ratelimit(VIDC_ERR, "err ",
"%s: non-fatal pagefault address: %lx\n",
__func__, iova);
return 0;
}
}
d_vpr_e(FMT_STRING_FAULT_HANDLER, __func__, iova);
/* mark smmu fault as handled */
core_lock(core, __func__);
msm_vidc_change_core_sub_state(core, 0, CORE_SUBSTATE_PAGE_FAULT, __func__);
core_unlock(core, __func__);
/* print noc error log registers */
venus_hfi_noc_error_info(core);
msm_vidc_print_core_info(core);
/*
* Return -ENOSYS to elicit the default behaviour of smmu driver.
* If we return -ENOSYS, then smmu driver assumes page fault handler
* is not installed and prints a list of useful debug information like
* FAR, SID etc. This information is not printed if we return 0.
*/
return -ENOSYS;
}
int msm_vidc_trigger_ssr(struct msm_vidc_core *core,
u64 trigger_ssr_val)
{
struct msm_vidc_ssr *ssr;
if (!core) {
d_vpr_e("%s: Invalid parameters\n", __func__);
return -EINVAL;
}
ssr = &core->ssr;
/*
* <test_addr><sub_client_id><ssr_type>
* ssr_type: 0-3 bits
* sub_client_id: 4-7 bits
* reserved: 8-31 bits
* test_addr: 32-63 bits
*/
ssr->ssr_type = (trigger_ssr_val &
(unsigned long)SSR_TYPE) >> SSR_TYPE_SHIFT;
ssr->sub_client_id = (trigger_ssr_val &
(unsigned long)SSR_SUB_CLIENT_ID) >> SSR_SUB_CLIENT_ID_SHIFT;
ssr->test_addr = (trigger_ssr_val &
(unsigned long)SSR_ADDR_ID) >> SSR_ADDR_SHIFT;
schedule_work(&core->ssr_work);
return 0;
}
void msm_vidc_ssr_handler(struct work_struct *work)
{
int rc;
struct msm_vidc_core *core;
struct msm_vidc_ssr *ssr;
core = container_of(work, struct msm_vidc_core, ssr_work);
if (!core) {
d_vpr_e("%s: invalid params %pK\n", __func__, core);
return;
}
ssr = &core->ssr;
core_lock(core, __func__);
if (is_core_state(core, MSM_VIDC_CORE_INIT)) {
/*
* In current implementation, user-initiated SSR triggers
* a fatal error from hardware. However, there is no way
* to know if fatal error is due to SSR or not. Handle
* user SSR as non-fatal.
*/
rc = venus_hfi_trigger_ssr(core, ssr->ssr_type,
ssr->sub_client_id, ssr->test_addr);
if (rc)
d_vpr_e("%s: trigger_ssr failed\n", __func__);
} else {
d_vpr_e("%s: video core not initialized\n", __func__);
}
core_unlock(core, __func__);
}
int msm_vidc_trigger_stability(struct msm_vidc_core *core,
u64 trigger_stability_val)
{
struct msm_vidc_inst *inst = NULL;
struct msm_vidc_stability stability;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
/*
* <payload><sub_client_id><stability_type>
* stability_type: 0-3 bits
* sub_client_id: 4-7 bits
* reserved: 8-31 bits
* payload: 32-63 bits
*/
memset(&stability, 0, sizeof(struct msm_vidc_stability));
stability.stability_type = (trigger_stability_val &
(unsigned long)STABILITY_TYPE) >> STABILITY_TYPE_SHIFT;
stability.sub_client_id = (trigger_stability_val &
(unsigned long)STABILITY_SUB_CLIENT_ID) >> STABILITY_SUB_CLIENT_ID_SHIFT;
stability.value = (trigger_stability_val &
(unsigned long)STABILITY_PAYLOAD_ID) >> STABILITY_PAYLOAD_SHIFT;
core_lock(core, __func__);
list_for_each_entry(inst, &core->instances, list) {
memcpy(&inst->stability, &stability, sizeof(struct msm_vidc_stability));
schedule_work(&inst->stability_work);
}
core_unlock(core, __func__);
return 0;
}
void msm_vidc_stability_handler(struct work_struct *work)
{
int rc;
struct msm_vidc_inst *inst;
struct msm_vidc_stability *stability;
inst = container_of(work, struct msm_vidc_inst, stability_work);
inst = get_inst_ref(g_core, inst);
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
inst_lock(inst, __func__);
stability = &inst->stability;
rc = venus_hfi_trigger_stability(inst, stability->stability_type,
stability->sub_client_id, stability->value);
if (rc)
i_vpr_e(inst, "%s: trigger_stability failed\n", __func__);
inst_unlock(inst, __func__);
put_inst(inst);
}
int cancel_stability_work_sync(struct msm_vidc_inst *inst)
{
if (!inst) {
d_vpr_e("%s: Invalid arguments\n", __func__);
return -EINVAL;
}
cancel_work_sync(&inst->stability_work);
return 0;
}
void msm_vidc_fw_unload_handler(struct work_struct *work)
{
struct msm_vidc_core *core = NULL;
int rc = 0;
core = container_of(work, struct msm_vidc_core, fw_unload_work.work);
if (!core) {
d_vpr_e("%s: invalid work or core handle\n", __func__);
return;
}
d_vpr_h("%s: deinitializing video core\n",__func__);
rc = msm_vidc_core_deinit(core, false);
if (rc)
d_vpr_e("%s: Failed to deinit core\n", __func__);
}
void msm_vidc_batch_handler(struct work_struct *work)
{
struct msm_vidc_inst *inst;
struct msm_vidc_core *core;
int rc = 0;
inst = container_of(work, struct msm_vidc_inst, decode_batch.work.work);
inst = get_inst_ref(g_core, inst);
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
core = inst->core;
inst_lock(inst, __func__);
if (is_session_error(inst)) {
i_vpr_e(inst, "%s: failled. Session error\n", __func__);
goto exit;
}
if (is_core_sub_state(core, CORE_SUBSTATE_PM_SUSPEND)) {
i_vpr_h(inst, "%s: device in pm suspend state\n", __func__);
goto exit;
}
if (is_state(inst, MSM_VIDC_OPEN) ||
is_state(inst, MSM_VIDC_INPUT_STREAMING)) {
i_vpr_e(inst, "%s: not allowed in state: %s\n", __func__,
state_name(inst->state));
goto exit;
}
i_vpr_h(inst, "%s: queue pending batch buffers\n", __func__);
rc = msm_vidc_queue_deferred_buffers(inst, MSM_VIDC_BUF_OUTPUT);
if (rc) {
i_vpr_e(inst, "%s: batch qbufs failed\n", __func__);
msm_vidc_change_state(inst, MSM_VIDC_ERROR, __func__);
}
exit:
inst_unlock(inst, __func__);
put_inst(inst);
}
int msm_vidc_flush_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type type)
{
int rc = 0;
struct msm_vidc_core *core;
struct msm_vidc_buffers *buffers;
struct msm_vidc_buffer *buf, *dummy;
enum msm_vidc_buffer_type buffer_type[2];
int i;
if (!inst || !inst->core) {
d_vpr_e("%s: Invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (type == MSM_VIDC_BUF_INPUT) {
buffer_type[0] = MSM_VIDC_BUF_INPUT_META;
buffer_type[1] = MSM_VIDC_BUF_INPUT;
} else if (type == MSM_VIDC_BUF_OUTPUT) {
buffer_type[0] = MSM_VIDC_BUF_OUTPUT_META;
buffer_type[1] = MSM_VIDC_BUF_OUTPUT;
} else {
i_vpr_h(inst, "%s: invalid buffer type %d\n",
__func__, type);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(buffer_type); i++) {
buffers = msm_vidc_get_buffers(inst, buffer_type[i], __func__);
if (!buffers)
return -EINVAL;
list_for_each_entry_safe(buf, dummy, &buffers->list, list) {
if (buf->attr & MSM_VIDC_ATTR_QUEUED ||
buf->attr & MSM_VIDC_ATTR_DEFERRED) {
print_vidc_buffer(VIDC_HIGH, "high", "flushing buffer", inst, buf);
if (!(buf->attr & MSM_VIDC_ATTR_BUFFER_DONE)) {
if (is_decode_session(inst) && is_output_buffer(buf->type)) {
if (buf->dbuf_get) {
call_mem_op(core, dma_buf_put, inst, buf->dmabuf);
buf->dbuf_get = 0;
}
}
buf->data_size = 0;
msm_vidc_vb2_buffer_done(inst, buf);
}
}
}
}
return rc;
}
int msm_vidc_flush_read_only_buffers(struct msm_vidc_inst *inst,
enum msm_vidc_buffer_type type)
{
int rc = 0;
struct msm_vidc_buffer *ro_buf, *dummy;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!is_decode_session(inst) || !is_output_buffer(type))
return 0;
list_for_each_entry_safe(ro_buf, dummy, &inst->buffers.read_only.list, list) {
if (ro_buf->attr & MSM_VIDC_ATTR_READ_ONLY)
continue;
print_vidc_buffer(VIDC_ERR, "high", "flush ro buf", inst, ro_buf);
if (ro_buf->attach && ro_buf->sg_table)
call_mem_op(core, dma_buf_unmap_attachment, core,
ro_buf->attach, ro_buf->sg_table);
if (ro_buf->attach && ro_buf->dmabuf)
call_mem_op(core, dma_buf_detach, core,
ro_buf->dmabuf, ro_buf->attach);
if (ro_buf->dbuf_get)
call_mem_op(core, dma_buf_put, inst, ro_buf->dmabuf);
ro_buf->attach = NULL;
ro_buf->sg_table = NULL;
ro_buf->dmabuf = NULL;
ro_buf->dbuf_get = 0;
ro_buf->device_addr = 0x0;
list_del_init(&ro_buf->list);
msm_vidc_pool_free(inst, ro_buf);
}
return rc;
}
void msm_vidc_destroy_buffers(struct msm_vidc_inst *inst)
{
struct msm_vidc_buffers *buffers;
struct msm_vidc_buffer *buf, *dummy;
struct msm_vidc_timestamp *ts, *dummy_ts;
struct msm_memory_dmabuf *dbuf, *dummy_dbuf;
struct msm_vidc_input_timer *timer, *dummy_timer;
struct msm_vidc_buffer_stats *stats, *dummy_stats;
struct msm_vidc_inst_cap_entry *entry, *dummy_entry;
struct msm_vidc_fence *fence, *dummy_fence;
struct msm_vidc_core *core;
static const enum msm_vidc_buffer_type ext_buf_types[] = {
MSM_VIDC_BUF_INPUT,
MSM_VIDC_BUF_OUTPUT,
MSM_VIDC_BUF_INPUT_META,
MSM_VIDC_BUF_OUTPUT_META,
};
static const enum msm_vidc_buffer_type internal_buf_types[] = {
MSM_VIDC_BUF_BIN,
MSM_VIDC_BUF_ARP,
MSM_VIDC_BUF_COMV,
MSM_VIDC_BUF_NON_COMV,
MSM_VIDC_BUF_LINE,
MSM_VIDC_BUF_DPB,
MSM_VIDC_BUF_PERSIST,
MSM_VIDC_BUF_VPSS,
MSM_VIDC_BUF_PARTIAL_DATA,
};
int i;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
core = inst->core;
for (i = 0; i < ARRAY_SIZE(internal_buf_types); i++) {
buffers = msm_vidc_get_buffers(inst, internal_buf_types[i], __func__);
if (!buffers)
continue;
list_for_each_entry_safe(buf, dummy, &buffers->list, list) {
i_vpr_h(inst,
"destroying internal buffer: type %d idx %d fd %d addr %#llx size %d\n",
buf->type, buf->index, buf->fd, buf->device_addr, buf->buffer_size);
msm_vidc_destroy_internal_buffer(inst, buf);
}
}
/*
* read_only list does not take dma ref_count using dma_buf_get().
* dma_buf ptr will be obselete when its ref_count reaches zero.
* Hence printthe dma_buf info before releasing the ref count.
*/
list_for_each_entry_safe(buf, dummy, &inst->buffers.read_only.list, list) {
print_vidc_buffer(VIDC_ERR, "err ", "destroying ro buf", inst, buf);
if (buf->attach && buf->sg_table)
call_mem_op(core, dma_buf_unmap_attachment, core,
buf->attach, buf->sg_table);
if (buf->attach && buf->dmabuf)
call_mem_op(core, dma_buf_detach, core, buf->dmabuf, buf->attach);
if (buf->dbuf_get)
call_mem_op(core, dma_buf_put, inst, buf->dmabuf);
list_del_init(&buf->list);
msm_vidc_pool_free(inst, buf);
}
for (i = 0; i < ARRAY_SIZE(ext_buf_types); i++) {
buffers = msm_vidc_get_buffers(inst, ext_buf_types[i], __func__);
if (!buffers)
continue;
list_for_each_entry_safe(buf, dummy, &buffers->list, list) {
if (buf->attach && buf->sg_table)
call_mem_op(core, dma_buf_unmap_attachment, core,
buf->attach, buf->sg_table);
if (buf->attach && buf->dmabuf)
call_mem_op(core, dma_buf_detach, core, buf->dmabuf, buf->attach);
if (buf->dbuf_get) {
print_vidc_buffer(VIDC_ERR, "err ", "destroying: put dmabuf", inst, buf);
call_mem_op(core, dma_buf_put, inst, buf->dmabuf);
}
list_del_init(&buf->list);
msm_vidc_pool_free(inst, buf);
}
}
list_for_each_entry_safe(ts, dummy_ts, &inst->timestamps.list, sort.list) {
i_vpr_e(inst, "%s: removing ts: val %lld, rank %lld\n",
__func__, ts->sort.val, ts->rank);
list_del(&ts->sort.list);
msm_vidc_pool_free(inst, ts);
}
list_for_each_entry_safe(ts, dummy_ts, &inst->ts_reorder.list, sort.list) {
i_vpr_e(inst, "%s: removing reorder ts: val %lld\n",
__func__, ts->sort.val);
list_del(&ts->sort.list);
msm_vidc_pool_free(inst, ts);
}
list_for_each_entry_safe(timer, dummy_timer, &inst->input_timer_list, list) {
i_vpr_e(inst, "%s: removing input_timer %lld\n",
__func__, timer->time_us);
list_del(&timer->list);
msm_vidc_pool_free(inst, timer);
}
list_for_each_entry_safe(stats, dummy_stats, &inst->buffer_stats_list, list) {
print_buffer_stats(VIDC_ERR, "err ", inst, stats);
list_del(&stats->list);
msm_vidc_pool_free(inst, stats);
}
list_for_each_entry_safe(dbuf, dummy_dbuf, &inst->dmabuf_tracker, list) {
struct dma_buf *dmabuf;
struct inode *f_inode;
unsigned long inode_num = 0;
dmabuf = dbuf->dmabuf;
if (dmabuf && dmabuf->file) {
f_inode = file_inode(dmabuf->file);
if (f_inode) {
inode_num = f_inode->i_ino;
}
}
i_vpr_e(inst, "%s: removing dma_buf %p, inode %lu, refcount %u\n",
__func__, dbuf->dmabuf, inode_num, dbuf->refcount);
call_mem_op(core, dma_buf_put_completely, inst, dbuf);
}
list_for_each_entry_safe(entry, dummy_entry, &inst->firmware_list, list) {
i_vpr_e(inst, "%s: fw list: %s\n", __func__, cap_name(entry->cap_id));
list_del(&entry->list);
msm_vidc_vmem_free((void **)&entry);
}
list_for_each_entry_safe(entry, dummy_entry, &inst->children_list, list) {
i_vpr_e(inst, "%s: child list: %s\n", __func__, cap_name(entry->cap_id));
list_del(&entry->list);
msm_vidc_vmem_free((void **)&entry);
}
list_for_each_entry_safe(entry, dummy_entry, &inst->caps_list, list) {
list_del(&entry->list);
msm_vidc_vmem_free((void **)&entry);
}
list_for_each_entry_safe(fence, dummy_fence, &inst->fence_list, list) {
i_vpr_e(inst, "%s: destroying fence %s\n", __func__, fence->name);
msm_vidc_fence_destroy(inst, (u32)fence->dma_fence.seqno);
}
/* destroy buffers from pool */
msm_vidc_pools_deinit(inst);
}
static void msm_vidc_close_helper(struct kref *kref)
{
struct msm_vidc_inst *inst = container_of(kref,
struct msm_vidc_inst, kref);
i_vpr_h(inst, "%s()\n", __func__);
msm_vidc_fence_deinit(inst);
msm_vidc_debugfs_deinit_inst(inst);
if (is_decode_session(inst))
msm_vdec_inst_deinit(inst);
else if (is_encode_session(inst))
msm_venc_inst_deinit(inst);
msm_vidc_free_input_cr_list(inst);
if (inst->workq)
destroy_workqueue(inst->workq);
msm_vidc_destroy_buffers(inst);
msm_vidc_remove_dangling_session(inst);
msm_vidc_try_suspend(inst);
mutex_destroy(&inst->client_lock);
mutex_destroy(&inst->request_lock);
mutex_destroy(&inst->lock);
msm_vidc_vmem_free((void **)&inst->capabilities);
msm_vidc_vmem_free((void **)&inst);
}
struct msm_vidc_inst *get_inst_ref(struct msm_vidc_core *core,
struct msm_vidc_inst *instance)
{
struct msm_vidc_inst *inst = NULL;
bool matches = false;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return NULL;
}
mutex_lock(&core->lock);
list_for_each_entry(inst, &core->instances, list) {
if (inst == instance) {
matches = true;
break;
}
}
inst = (matches && kref_get_unless_zero(&inst->kref)) ? inst : NULL;
mutex_unlock(&core->lock);
return inst;
}
struct msm_vidc_inst *get_inst(struct msm_vidc_core *core,
u32 session_id)
{
struct msm_vidc_inst *inst = NULL;
bool matches = false;
if (!core) {
d_vpr_e("%s: invalid params\n", __func__);
return NULL;
}
mutex_lock(&core->lock);
list_for_each_entry(inst, &core->instances, list) {
if (inst->session_id == session_id) {
matches = true;
break;
}
}
inst = (matches && kref_get_unless_zero(&inst->kref)) ? inst : NULL;
mutex_unlock(&core->lock);
return inst;
}
void put_inst(struct msm_vidc_inst *inst)
{
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return;
}
kref_put(&inst->kref, msm_vidc_close_helper);
}
bool core_lock_check(struct msm_vidc_core *core, const char *func)
{
return mutex_is_locked(&core->lock);
}
void core_lock(struct msm_vidc_core *core, const char *function)
{
mutex_lock(&core->lock);
}
void core_unlock(struct msm_vidc_core *core, const char *function)
{
mutex_unlock(&core->lock);
}
bool inst_lock_check(struct msm_vidc_inst *inst, const char *func)
{
return mutex_is_locked(&inst->lock);
}
void inst_lock(struct msm_vidc_inst *inst, const char *function)
{
mutex_lock(&inst->lock);
}
void inst_unlock(struct msm_vidc_inst *inst, const char *function)
{
mutex_unlock(&inst->lock);
}
bool client_lock_check(struct msm_vidc_inst *inst, const char *func)
{
return mutex_is_locked(&inst->client_lock);
}
void client_lock(struct msm_vidc_inst *inst, const char *function)
{
mutex_lock(&inst->client_lock);
}
void client_unlock(struct msm_vidc_inst *inst, const char *function)
{
mutex_unlock(&inst->client_lock);
}
int msm_vidc_update_bitstream_buffer_size(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
struct v4l2_format *fmt;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (is_decode_session(inst)) {
fmt = &inst->fmts[INPUT_PORT];
fmt->fmt.pix_mp.plane_fmt[0].sizeimage = call_session_op(core,
buffer_size, inst, MSM_VIDC_BUF_INPUT);
}
return 0;
}
int msm_vidc_update_meta_port_settings(struct msm_vidc_inst *inst)
{
struct msm_vidc_core *core;
struct v4l2_format *fmt;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
fmt = &inst->fmts[INPUT_META_PORT];
fmt->fmt.meta.buffersize = call_session_op(core,
buffer_size, inst, MSM_VIDC_BUF_INPUT_META);
inst->buffers.input_meta.min_count =
inst->buffers.input.min_count;
inst->buffers.input_meta.extra_count =
inst->buffers.input.extra_count;
inst->buffers.input_meta.actual_count =
inst->buffers.input.actual_count;
inst->buffers.input_meta.size = fmt->fmt.meta.buffersize;
fmt = &inst->fmts[OUTPUT_META_PORT];
fmt->fmt.meta.buffersize = call_session_op(core,
buffer_size, inst, MSM_VIDC_BUF_OUTPUT_META);
inst->buffers.output_meta.min_count =
inst->buffers.output.min_count;
inst->buffers.output_meta.extra_count =
inst->buffers.output.extra_count;
inst->buffers.output_meta.actual_count =
inst->buffers.output.actual_count;
inst->buffers.output_meta.size = fmt->fmt.meta.buffersize;
return 0;
}
int msm_vidc_update_buffer_count(struct msm_vidc_inst *inst, u32 port)
{
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
switch (port) {
case INPUT_PORT:
inst->buffers.input.min_count = call_session_op(core,
min_count, inst, MSM_VIDC_BUF_INPUT);
inst->buffers.input.extra_count = call_session_op(core,
extra_count, inst, MSM_VIDC_BUF_INPUT);
if (inst->buffers.input.actual_count <
inst->buffers.input.min_count +
inst->buffers.input.extra_count) {
inst->buffers.input.actual_count =
inst->buffers.input.min_count +
inst->buffers.input.extra_count;
}
if (is_input_meta_enabled(inst)) {
inst->buffers.input_meta.min_count =
inst->buffers.input.min_count;
inst->buffers.input_meta.extra_count =
inst->buffers.input.extra_count;
inst->buffers.input_meta.actual_count =
inst->buffers.input.actual_count;
} else {
inst->buffers.input_meta.min_count = 0;
inst->buffers.input_meta.extra_count = 0;
inst->buffers.input_meta.actual_count = 0;
}
i_vpr_h(inst, "%s: type: INPUT, count: min %u, extra %u, actual %u\n", __func__,
inst->buffers.input.min_count,
inst->buffers.input.extra_count,
inst->buffers.input.actual_count);
break;
case OUTPUT_PORT:
if (!inst->bufq[INPUT_PORT].vb2q->streaming)
inst->buffers.output.min_count = call_session_op(core,
min_count, inst, MSM_VIDC_BUF_OUTPUT);
inst->buffers.output.extra_count = call_session_op(core,
extra_count, inst, MSM_VIDC_BUF_OUTPUT);
if (inst->buffers.output.actual_count <
inst->buffers.output.min_count +
inst->buffers.output.extra_count) {
inst->buffers.output.actual_count =
inst->buffers.output.min_count +
inst->buffers.output.extra_count;
}
if (is_output_meta_enabled(inst)) {
inst->buffers.output_meta.min_count =
inst->buffers.output.min_count;
inst->buffers.output_meta.extra_count =
inst->buffers.output.extra_count;
inst->buffers.output_meta.actual_count =
inst->buffers.output.actual_count;
} else {
inst->buffers.output_meta.min_count = 0;
inst->buffers.output_meta.extra_count = 0;
inst->buffers.output_meta.actual_count = 0;
}
i_vpr_h(inst, "%s: type: OUTPUT, count: min %u, extra %u, actual %u\n", __func__,
inst->buffers.output.min_count,
inst->buffers.output.extra_count,
inst->buffers.output.actual_count);
break;
default:
d_vpr_e("%s unknown port %d\n", __func__, port);
return -EINVAL;
}
return 0;
}
void msm_vidc_schedule_core_deinit(struct msm_vidc_core *core)
{
if (!core)
return;
if (!core->capabilities[FW_UNLOAD].value)
return;
cancel_delayed_work(&core->fw_unload_work);
schedule_delayed_work(&core->fw_unload_work,
msecs_to_jiffies(core->capabilities[FW_UNLOAD_DELAY].value));
d_vpr_h("firmware unload delayed by %u ms\n",
core->capabilities[FW_UNLOAD_DELAY].value);
return;
}
static const char *get_codec_str(enum msm_vidc_codec_type type)
{
switch (type) {
case MSM_VIDC_H264: return " avc";
case MSM_VIDC_HEVC: return "hevc";
case MSM_VIDC_VP9: return " vp9";
case MSM_VIDC_AV1: return " av1";
case MSM_VIDC_HEIC: return "heic";
}
return "....";
}
static const char *get_domain_str(enum msm_vidc_domain_type type)
{
switch (type) {
case MSM_VIDC_ENCODER: return "E";
case MSM_VIDC_DECODER: return "D";
}
return ".";
}
int msm_vidc_update_debug_str(struct msm_vidc_inst *inst)
{
u32 sid;
int client_id = INVALID_CLIENT_ID;
const char *codec;
const char *domain;
if (!inst) {
d_vpr_e("%s: Invalid params\n", __func__);
return -EINVAL;
}
if (inst->capabilities)
client_id = inst->capabilities->cap[CLIENT_ID].value;
sid = inst->session_id;
codec = get_codec_str(inst->codec);
domain = get_domain_str(inst->domain);
if (client_id != INVALID_CLIENT_ID) {
snprintf(inst->debug_str, sizeof(inst->debug_str), "%08x: %s%s_%d",
sid, codec, domain, client_id);
} else {
snprintf(inst->debug_str, sizeof(inst->debug_str), "%08x: %s%s",
sid, codec, domain);
}
d_vpr_h("%s: sid: %08x, codec: %s, domain: %s, final: %s\n",
__func__, sid, codec, domain, inst->debug_str);
return 0;
}
static int msm_vidc_print_insts_info(struct msm_vidc_core *core)
{
struct msm_vidc_inst *inst;
u32 height, width, fps, orate;
struct msm_vidc_inst_capability *capability;
struct v4l2_format *out_f;
struct v4l2_format *inp_f;
char prop[64];
d_vpr_e("Print all running instances\n");
d_vpr_e("%6s | %6s | %5s | %5s | %5s\n", "width", "height", "fps", "orate", "prop");
core_lock(core, __func__);
list_for_each_entry(inst, &core->instances, list) {
out_f = &inst->fmts[OUTPUT_PORT];
inp_f = &inst->fmts[INPUT_PORT];
capability = inst->capabilities;
memset(&prop, 0, sizeof(prop));
width = max(out_f->fmt.pix_mp.width, inp_f->fmt.pix_mp.width);
height = max(out_f->fmt.pix_mp.height, inp_f->fmt.pix_mp.height);
fps = capability->cap[FRAME_RATE].value >> 16;
orate = capability->cap[OPERATING_RATE].value >> 16;
if (is_realtime_session(inst))
strlcat(prop, "RT ", sizeof(prop));
else
strlcat(prop, "NRT", sizeof(prop));
if (is_thumbnail_session(inst))
strlcat(prop, "+THUMB", sizeof(prop));
if (is_image_session(inst))
strlcat(prop, "+IMAGE", sizeof(prop));
i_vpr_e(inst, "%6u | %6u | %5u | %5u | %5s\n", width, height, fps, orate, prop);
}
core_unlock(core, __func__);
return 0;
}
bool msm_vidc_ignore_session_load(struct msm_vidc_inst *inst) {
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (!is_realtime_session(inst) || is_thumbnail_session(inst) ||
is_image_session(inst))
return true;
return false;
}
int msm_vidc_check_core_mbps(struct msm_vidc_inst *inst)
{
u32 mbps = 0, total_mbps = 0, enc_mbps = 0;
u32 critical_mbps = 0;
struct msm_vidc_core *core;
struct msm_vidc_inst *instance;
if (!inst || !inst->core || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
/* skip mbps check for non-realtime, thumnail, image sessions */
if (msm_vidc_ignore_session_load(inst)) {
i_vpr_h(inst,
"%s: skip mbps check due to NRT %d, TH %d, IMG %d\n", __func__,
!is_realtime_session(inst), is_thumbnail_session(inst),
is_image_session(inst));
return 0;
}
core_lock(core, __func__);
list_for_each_entry(instance, &core->instances, list) {
if (is_critical_priority_session(instance))
critical_mbps += msm_vidc_get_inst_load(instance);
}
core_unlock(core, __func__);
if (critical_mbps > core->capabilities[MAX_MBPS].value) {
i_vpr_e(inst, "%s: Hardware overloaded with critical sessions. needed %u, max %u",
__func__, critical_mbps, core->capabilities[MAX_MBPS].value);
return -ENOMEM;
}
core_lock(core, __func__);
list_for_each_entry(instance, &core->instances, list) {
/* ignore invalid/error session */
if (is_session_error(instance))
continue;
/* ignore thumbnail, image, and non realtime sessions */
if (msm_vidc_ignore_session_load(instance))
continue;
mbps = msm_vidc_get_inst_load(instance);
total_mbps += mbps;
if (is_encode_session(instance))
enc_mbps += mbps;
}
core_unlock(core, __func__);
if (is_encode_session(inst)) {
/* reject encoder if all encoders mbps is greater than MAX_MBPS */
if (enc_mbps > core->capabilities[MAX_MBPS].value) {
i_vpr_e(inst, "%s: Hardware overloaded. needed %u, max %u", __func__,
mbps, core->capabilities[MAX_MBPS].value);
return -ENOMEM;
}
/*
* if total_mbps is greater than max_mbps then reduce all decoders
* priority by 1 to allow this encoder
*/
if (total_mbps > core->capabilities[MAX_MBPS].value) {
core_lock(core, __func__);
list_for_each_entry(instance, &core->instances, list) {
/* reduce realtime decode sessions priority */
if (is_decode_session(instance) && is_realtime_session(instance)) {
instance->adjust_priority = RT_DEC_DOWN_PRORITY_OFFSET;
i_vpr_h(inst, "%s: pending adjust priority by %d\n",
__func__, instance->adjust_priority);
}
}
core_unlock(core, __func__);
}
} else if (is_decode_session(inst)){
if (total_mbps > core->capabilities[MAX_MBPS].value) {
inst->adjust_priority = RT_DEC_DOWN_PRORITY_OFFSET;
i_vpr_h(inst, "%s: pending adjust priority by %d\n",
__func__, inst->adjust_priority);
}
}
i_vpr_h(inst, "%s: HW load needed %u is within max %u", __func__,
total_mbps, core->capabilities[MAX_MBPS].value);
return 0;
}
int msm_vidc_check_core_mbpf(struct msm_vidc_inst *inst)
{
u32 video_mbpf = 0, image_mbpf = 0, video_rt_mbpf = 0;
u32 critical_mbpf = 0;
struct msm_vidc_core *core;
struct msm_vidc_inst *instance;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
core_lock(core, __func__);
list_for_each_entry(instance, &core->instances, list) {
if (is_critical_priority_session(instance))
critical_mbpf += msm_vidc_get_mbs_per_frame(instance);
}
core_unlock(core, __func__);
if (critical_mbpf > core->capabilities[MAX_MBPF].value) {
i_vpr_e(inst, "%s: Hardware overloaded with critical sessions. needed %u, max %u",
__func__, critical_mbpf, core->capabilities[MAX_MBPF].value);
return -ENOMEM;
}
core_lock(core, __func__);
list_for_each_entry(instance, &core->instances, list) {
/* ignore thumbnail session */
if (is_thumbnail_session(instance))
continue;
if (is_image_session(instance))
image_mbpf += msm_vidc_get_mbs_per_frame(instance);
else
video_mbpf += msm_vidc_get_mbs_per_frame(instance);
}
core_unlock(core, __func__);
if (video_mbpf > core->capabilities[MAX_MBPF].value) {
i_vpr_e(inst, "%s: video overloaded. needed %u, max %u", __func__,
video_mbpf, core->capabilities[MAX_MBPF].value);
return -ENOMEM;
}
if (image_mbpf > core->capabilities[MAX_IMAGE_MBPF].value) {
i_vpr_e(inst, "%s: image overloaded. needed %u, max %u", __func__,
image_mbpf, core->capabilities[MAX_IMAGE_MBPF].value);
return -ENOMEM;
}
core_lock(core, __func__);
/* check real-time video sessions max limit */
list_for_each_entry(instance, &core->instances, list) {
if (msm_vidc_ignore_session_load(instance))
continue;
video_rt_mbpf += msm_vidc_get_mbs_per_frame(instance);
}
core_unlock(core, __func__);
if (video_rt_mbpf > core->capabilities[MAX_RT_MBPF].value) {
i_vpr_e(inst, "%s: real-time video overloaded. needed %u, max %u",
__func__, video_rt_mbpf, core->capabilities[MAX_RT_MBPF].value);
return -ENOMEM;
}
return 0;
}
static int msm_vidc_check_inst_mbpf(struct msm_vidc_inst *inst)
{
u32 mbpf = 0, max_mbpf = 0;
struct msm_vidc_inst_capability *capability;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
capability = inst->capabilities;
if (is_secure_session(inst))
max_mbpf = capability->cap[SECURE_MBPF].max;
else if (is_encode_session(inst) && capability->cap[LOSSLESS].value)
max_mbpf = capability->cap[LOSSLESS_MBPF].max;
else
max_mbpf = capability->cap[MBPF].max;
/* check current session mbpf */
mbpf = msm_vidc_get_mbs_per_frame(inst);
if (mbpf > max_mbpf) {
i_vpr_e(inst, "%s: session overloaded. needed %u, max %u", __func__,
mbpf, max_mbpf);
return -ENOMEM;
}
return 0;
}
u32 msm_vidc_get_max_bitrate(struct msm_vidc_inst* inst)
{
u32 max_bitrate = 0x7fffffff;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (inst->capabilities->cap[LOWLATENCY_MODE].value)
max_bitrate = min(max_bitrate,
(u32)inst->capabilities->cap[LOWLATENCY_MAX_BITRATE].max);
if (inst->capabilities->cap[ALL_INTRA].value)
max_bitrate = min(max_bitrate,
(u32)inst->capabilities->cap[ALLINTRA_MAX_BITRATE].max);
if (inst->codec == MSM_VIDC_HEVC) {
max_bitrate = min(max_bitrate,
(u32)inst->capabilities->cap[CABAC_MAX_BITRATE].max);
} else if (inst->codec == MSM_VIDC_H264) {
if (inst->capabilities->cap[ENTROPY_MODE].value ==
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CAVLC)
max_bitrate = min(max_bitrate,
(u32)inst->capabilities->cap[CAVLC_MAX_BITRATE].max);
else
max_bitrate = min(max_bitrate,
(u32)inst->capabilities->cap[CABAC_MAX_BITRATE].max);
}
if (max_bitrate == 0x7fffffff || !max_bitrate)
max_bitrate = min(max_bitrate, (u32)inst->capabilities->cap[BIT_RATE].max);
return max_bitrate;
}
static bool msm_vidc_allow_image_encode_session(struct msm_vidc_inst *inst)
{
struct msm_vidc_inst_capability *capability;
struct v4l2_format *fmt;
u32 min_width, min_height, max_width, max_height, pix_fmt, profile;
bool allow = false;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return false;
}
capability = inst->capabilities;
if (!is_image_encode_session(inst)) {
i_vpr_e(inst, "%s: not an image encode session\n", __func__);
return false;
}
pix_fmt = capability->cap[PIX_FMTS].value;
profile = capability->cap[PROFILE].value;
/* is input with & height is in allowed range */
min_width = capability->cap[FRAME_WIDTH].min;
max_width = capability->cap[FRAME_WIDTH].max;
min_height = capability->cap[FRAME_HEIGHT].min;
max_height = capability->cap[FRAME_HEIGHT].max;
fmt = &inst->fmts[INPUT_PORT];
if (!in_range(fmt->fmt.pix_mp.width, min_width, max_width) ||
!in_range(fmt->fmt.pix_mp.height, min_height, max_height)) {
i_vpr_e(inst, "unsupported wxh [%u x %u], allowed [%u x %u] to [%u x %u]\n",
fmt->fmt.pix_mp.width, fmt->fmt.pix_mp.height,
min_width, min_height, max_width, max_height);
allow = false;
goto exit;
}
/* is linear yuv color fmt */
allow = is_linear_yuv_colorformat(pix_fmt);
if (!allow) {
i_vpr_e(inst, "%s: compressed fmt: %#x\n", __func__, pix_fmt);
goto exit;
}
/* is output grid dimension */
fmt = &inst->fmts[OUTPUT_PORT];
allow = fmt->fmt.pix_mp.width == HEIC_GRID_DIMENSION;
allow &= fmt->fmt.pix_mp.height == HEIC_GRID_DIMENSION;
if (!allow) {
i_vpr_e(inst, "%s: output is not a grid dimension: %u x %u\n", __func__,
fmt->fmt.pix_mp.width, fmt->fmt.pix_mp.height);
goto exit;
}
/* is bitrate mode CQ */
allow = capability->cap[BITRATE_MODE].value == V4L2_MPEG_VIDEO_BITRATE_MODE_CQ;
if (!allow) {
i_vpr_e(inst, "%s: bitrate mode is not CQ: %#x\n", __func__,
capability->cap[BITRATE_MODE].value);
goto exit;
}
/* is all intra */
allow = !capability->cap[GOP_SIZE].value;
allow &= !capability->cap[B_FRAME].value;
if (!allow) {
i_vpr_e(inst, "%s: not all intra: gop: %u, bframe: %u\n", __func__,
capability->cap[GOP_SIZE].value, capability->cap[B_FRAME].value);
goto exit;
}
/* is time delta based rc disabled */
allow = !capability->cap[TIME_DELTA_BASED_RC].value;
if (!allow) {
i_vpr_e(inst, "%s: time delta based rc not disabled: %#x\n", __func__,
capability->cap[TIME_DELTA_BASED_RC].value);
goto exit;
}
/* is frame skip mode disabled */
allow = !capability->cap[FRAME_SKIP_MODE].value;
if (!allow) {
i_vpr_e(inst, "%s: frame skip mode not disabled: %#x\n", __func__,
capability->cap[FRAME_SKIP_MODE].value);
goto exit;
}
exit:
if (!allow)
i_vpr_e(inst, "%s: current session not allowed\n", __func__);
return allow;
}
static int msm_vidc_check_resolution_supported(struct msm_vidc_inst *inst)
{
struct msm_vidc_inst_capability *capability;
u32 width = 0, height = 0, min_width, min_height,
max_width, max_height;
bool is_interlaced = false;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
capability = inst->capabilities;
if (is_decode_session(inst)) {
width = inst->fmts[INPUT_PORT].fmt.pix_mp.width;
height = inst->fmts[INPUT_PORT].fmt.pix_mp.height;
} else if (is_encode_session(inst)) {
width = inst->crop.width;
height = inst->crop.height;
}
if (is_secure_session(inst)) {
min_width = capability->cap[SECURE_FRAME_WIDTH].min;
max_width = capability->cap[SECURE_FRAME_WIDTH].max;
min_height = capability->cap[SECURE_FRAME_HEIGHT].min;
max_height = capability->cap[SECURE_FRAME_HEIGHT].max;
} else if (is_encode_session(inst) && capability->cap[LOSSLESS].value) {
min_width = capability->cap[LOSSLESS_FRAME_WIDTH].min;
max_width = capability->cap[LOSSLESS_FRAME_WIDTH].max;
min_height = capability->cap[LOSSLESS_FRAME_HEIGHT].min;
max_height = capability->cap[LOSSLESS_FRAME_HEIGHT].max;
} else {
min_width = capability->cap[FRAME_WIDTH].min;
max_width = capability->cap[FRAME_WIDTH].max;
min_height = capability->cap[FRAME_HEIGHT].min;
max_height = capability->cap[FRAME_HEIGHT].max;
}
/* reject odd resolution session */
if (is_encode_session(inst) &&
(is_odd(width) || is_odd(height) ||
is_odd(inst->compose.width) ||
is_odd(inst->compose.height))) {
i_vpr_e(inst, "%s: resolution is not even. wxh [%u x %u], compose [%u x %u]\n",
__func__, width, height, inst->compose.width,
inst->compose.height);
return -EINVAL;
}
/* check if input width and height is in supported range */
if (is_decode_session(inst) || is_encode_session(inst)) {
if (!in_range(width, min_width, max_width) ||
!in_range(height, min_height, max_height)) {
i_vpr_e(inst,
"%s: unsupported input wxh [%u x %u], allowed range: [%u x %u] to [%u x %u]\n",
__func__, width, height, min_width,
min_height, max_width, max_height);
return -EINVAL;
}
}
/* check interlace supported resolution */
is_interlaced = capability->cap[CODED_FRAMES].value == CODED_FRAMES_INTERLACE;
if (is_interlaced && (width > INTERLACE_WIDTH_MAX || height > INTERLACE_HEIGHT_MAX ||
NUM_MBS_PER_FRAME(width, height) > INTERLACE_MB_PER_FRAME_MAX)) {
i_vpr_e(inst, "%s: unsupported interlace wxh [%u x %u], max [%u x %u]\n",
__func__, width, height, INTERLACE_WIDTH_MAX, INTERLACE_HEIGHT_MAX);
return -EINVAL;
}
return 0;
}
static int msm_vidc_check_max_sessions(struct msm_vidc_inst *inst)
{
u32 width = 0, height = 0;
u32 num_1080p_sessions = 0, num_4k_sessions = 0, num_8k_sessions = 0;
struct msm_vidc_inst *i;
struct msm_vidc_core *core;
if (!inst || !inst->core) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
core = inst->core;
if (!core->capabilities) {
i_vpr_e(inst, "%s: invalid params\n", __func__);
return -EINVAL;
}
core_lock(core, __func__);
list_for_each_entry(i, &core->instances, list) {
/* skip image sessions count */
if (is_image_session(i))
continue;
if (is_decode_session(i)) {
width = i->fmts[INPUT_PORT].fmt.pix_mp.width;
height = i->fmts[INPUT_PORT].fmt.pix_mp.height;
} else if (is_encode_session(i)) {
width = i->crop.width;
height = i->crop.height;
}
/*
* one 8k session equals to 64 720p sessions in reality.
* So for one 8k session the number of 720p sessions will
* exceed max supported session count(16), hence one 8k session
* will be rejected as well.
* Therefore, treat one 8k session equal to two 4k sessions and
* one 4k session equal to two 1080p sessions and
* one 1080p session equal to two 720p sessions. This equation
* will make one 8k session equal to eight 720p sessions
* which looks good.
*
* Do not treat resolutions above 4k as 8k session instead
* treat (4K + half 4k) above as 8k session
*/
if (res_is_greater_than(width, height, 4096 + (4096 >> 1), 2176 + (2176 >> 1))) {
num_8k_sessions += 1;
num_4k_sessions += 2;
num_1080p_sessions += 4;
} else if (res_is_greater_than(width, height, 1920 + (1920 >> 1), 1088 + (1088 >> 1))) {
num_4k_sessions += 1;
num_1080p_sessions += 2;
} else if (res_is_greater_than(width, height, 1280 + (1280 >> 1), 736 + (736 >> 1))) {
num_1080p_sessions += 1;
}
}
core_unlock(core, __func__);
if (num_8k_sessions > core->capabilities[MAX_NUM_8K_SESSIONS].value) {
i_vpr_e(inst, "%s: total 8k sessions %d, exceeded max limit %d\n",
__func__, num_8k_sessions,
core->capabilities[MAX_NUM_8K_SESSIONS].value);
return -ENOMEM;
}
if (num_4k_sessions > core->capabilities[MAX_NUM_4K_SESSIONS].value) {
i_vpr_e(inst, "%s: total 4K sessions %d, exceeded max limit %d\n",
__func__, num_4k_sessions,
core->capabilities[MAX_NUM_4K_SESSIONS].value);
return -ENOMEM;
}
if (num_1080p_sessions > core->capabilities[MAX_NUM_1080P_SESSIONS].value) {
i_vpr_e(inst, "%s: total 1080p sessions %d, exceeded max limit %d\n",
__func__, num_1080p_sessions,
core->capabilities[MAX_NUM_1080P_SESSIONS].value);
return -ENOMEM;
}
return 0;
}
int msm_vidc_check_session_supported(struct msm_vidc_inst *inst)
{
bool allow = false;
int rc = 0;
if (!inst) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (is_image_session(inst) && is_secure_session(inst)) {
i_vpr_e(inst, "%s: secure image session not supported\n", __func__);
rc = -EINVAL;
goto exit;
}
rc = msm_vidc_check_core_mbps(inst);
if (rc)
goto exit;
rc = msm_vidc_check_core_mbpf(inst);
if (rc)
goto exit;
rc = msm_vidc_check_inst_mbpf(inst);
if (rc)
goto exit;
rc = msm_vidc_check_resolution_supported(inst);
if (rc)
goto exit;
/* check image capabilities */
if (is_image_encode_session(inst)) {
allow = msm_vidc_allow_image_encode_session(inst);
if (!allow) {
rc = -EINVAL;
goto exit;
}
}
rc = msm_vidc_check_max_sessions(inst);
if (rc)
goto exit;
exit:
if (rc) {
i_vpr_e(inst, "%s: current session not supported\n", __func__);
msm_vidc_print_insts_info(inst->core);
}
return rc;
}
int msm_vidc_check_scaling_supported(struct msm_vidc_inst *inst)
{
u32 iwidth, owidth, iheight, oheight, ds_factor;
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
if (is_image_session(inst) || is_decode_session(inst)) {
i_vpr_h(inst, "%s: Scaling is supported for encode session only\n", __func__);
return 0;
}
if (!is_scaling_enabled(inst)) {
i_vpr_h(inst, "%s: Scaling not enabled. skip scaling check\n", __func__);
return 0;
}
iwidth = inst->crop.width;
iheight = inst->crop.height;
owidth = inst->compose.width;
oheight = inst->compose.height;
ds_factor = inst->capabilities->cap[SCALE_FACTOR].value;
/* upscaling: encoder doesnot support upscaling */
if (owidth > iwidth || oheight > iheight) {
i_vpr_e(inst, "%s: upscale not supported: input [%u x %u], output [%u x %u]\n",
__func__, iwidth, iheight, owidth, oheight);
return -EINVAL;
}
/* downscaling: only supported upto 1/8 of width & 1/8 of height */
if (iwidth > owidth * ds_factor || iheight > oheight * ds_factor) {
i_vpr_e(inst,
"%s: unsupported ratio: input [%u x %u], output [%u x %u], ratio %u\n",
__func__, iwidth, iheight, owidth, oheight, ds_factor);
return -EINVAL;
}
return 0;
}
struct msm_vidc_fw_query_params {
u32 hfi_prop_name;
u32 port;
};
int msm_vidc_get_properties(struct msm_vidc_inst *inst)
{
int rc = 0;
int i;
static const struct msm_vidc_fw_query_params fw_query_params[] = {
{HFI_PROP_STAGE, HFI_PORT_NONE},
{HFI_PROP_PIPE, HFI_PORT_NONE},
{HFI_PROP_QUALITY_MODE, HFI_PORT_BITSTREAM}
};
if (!inst || !inst->capabilities) {
d_vpr_e("%s: invalid params\n", __func__);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(fw_query_params); i++) {
if (is_decode_session(inst)) {
if (fw_query_params[i].hfi_prop_name == HFI_PROP_QUALITY_MODE)
continue;
}
i_vpr_l(inst, "%s: querying fw for property %#x\n", __func__,
fw_query_params[i].hfi_prop_name);
rc = venus_hfi_session_property(inst,
fw_query_params[i].hfi_prop_name,
(HFI_HOST_FLAGS_RESPONSE_REQUIRED |
HFI_HOST_FLAGS_INTR_REQUIRED |
HFI_HOST_FLAGS_GET_PROPERTY),
fw_query_params[i].port,
HFI_PAYLOAD_NONE,
NULL,
0);
if (rc)
return rc;
}
return 0;
}
struct context_bank_info *msm_vidc_get_context_bank_for_region(
struct msm_vidc_core *core, enum msm_vidc_buffer_region region)
{
struct context_bank_info *cb = NULL, *match = NULL;
if (!region || region >= MSM_VIDC_REGION_MAX) {
d_vpr_e("Invalid region %#x\n", region);
return NULL;
}
venus_hfi_for_each_context_bank(core, cb) {
if (cb->region == region) {
match = cb;
break;
}
}
if (!match)
d_vpr_e("cb not found for region %#x\n", region);
return match;
}
struct context_bank_info *msm_vidc_get_context_bank_for_device(
struct msm_vidc_core *core, struct device *dev)
{
struct context_bank_info *cb = NULL, *match = NULL;
if (!core || !dev) {
d_vpr_e("%s: invalid params\n", __func__);
return NULL;
}
venus_hfi_for_each_context_bank(core, cb) {
if (of_device_is_compatible(dev->of_node, cb->name)) {
match = cb;
break;
}
}
if (!match)
d_vpr_e("cb not found for dev %s\n", dev_name(dev));
return match;
}