Files
android_kernel_samsung_sm86…/msm/dp/dp_mst_sim.c
Xiaowen Wu fdb86d6f62 disp: msm: dp: add new APIs to dp_mst_sim
Add below new APIs to dp_mst_sim to allow more controls from other
dp modules:

dp_sim_create_bridge: create dp_sim bridge simulator.
dp_sim_destroy_bridge: destroy dp_sim bridge simulator.
dp_sim_set_sim_mode: enable/disable simulation mode.
dp_sim_set_mst_mode: update dp-mst simulation mode.
dp_sim_update_port_status: update dp-mst port status in simulator.
dp_sim_update_port_edid: update dp-sst/mst port edid in simulator.
dp_sim_write_dpcd_reg: update dpcd register in simulator.
dp_sim_read_dpcd_reg: read dpcd register from simulator.

With the new functions dp_debug can move its internal debug function
to dp aux simulator, and dp_display can switch between simulation
mode and physical mode dynamically.

Change-Id: I26296b45a38dac422b8a098b50dca287909c8000
Signed-off-by: Xiaowen Wu <wxiaowen@codeaurora.org>
Signed-off-by: Karim Henain <khenain@codeaurora.org>
Signed-off-by: Sudarsan Ramesh <sudarame@codeaurora.org>
2021-02-10 22:34:33 -05:00

1712 lines
38 KiB
C

/*
* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/platform_device.h>
#include <drm/drm_edid.h>
#include <drm/drm_dp_helper.h>
#include "dp_debug.h"
#include "dp_mst_sim.h"
struct dp_sim_dpcd_reg {
struct list_head head;
u32 addr;
u8 val;
};
#define DP_SIM_BRIDGE_PRIV_FLAG (1 << 31)
#define MAX_BUILTIN_DPCD_ADDR SZ_2K
#define MAX_MST_PORT 8
struct dp_sim_device {
struct device *dev;
struct dp_aux_bridge bridge;
void *host_dev;
int (*hpd_cb)(void *, bool, bool);
struct mutex lock;
const char *label;
struct dentry *debugfs_dir;
struct dentry *debugfs_edid_dir;
u8 dpcd_reg[MAX_BUILTIN_DPCD_ADDR];
struct list_head dpcd_reg_list;
u32 dpcd_write_addr;
u32 dpcd_write_size;
u32 link_training_cnt;
u32 link_training_remain;
u32 link_training_lane_cnt;
bool link_training_mismatch;
struct dp_mst_sim_port *ports;
u32 port_num;
u32 current_port_num;
u32 sim_mode;
u32 edid_seg;
u32 edid_addr;
bool skip_edid;
bool skip_dpcd;
bool skip_link_training;
bool skip_config;
bool skip_hpd;
bool skip_mst;
};
struct dp_sim_debug_edid_entry {
struct dp_sim_device *sim_dev;
u32 index;
};
#define to_dp_sim_dev(x) container_of((x), struct dp_sim_device, bridge)
static const struct dp_mst_sim_port output_port = {
false, false, true, 3, false, 0x12,
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
0, 0, 2520, 2520, NULL, 0
};
#ifdef CONFIG_DYNAMIC_DEBUG
static void dp_sim_aux_hex_dump(struct drm_dp_aux_msg *msg)
{
char prefix[64];
int i, linelen, remaining = msg->size;
const int rowsize = 16;
u8 linebuf[64];
snprintf(prefix, sizeof(prefix), "%s %s %4xh(%2zu): ",
(msg->request & DP_AUX_I2C_MOT) ? "I2C" : "NAT",
(msg->request & DP_AUX_I2C_READ) ? "RD" : "WR",
msg->address, msg->size);
for (i = 0; i < msg->size; i += rowsize) {
linelen = min(remaining, rowsize);
remaining -= rowsize;
hex_dump_to_buffer(msg->buffer + i, linelen, rowsize, 1,
linebuf, sizeof(linebuf), false);
DP_DEBUG("%s%s\n", prefix, linebuf);
}
}
#else
static void dp_sim_aux_hex_dump(struct drm_dp_aux_msg *msg)
{
}
#endif
static int dp_sim_register_hpd(struct dp_aux_bridge *bridge,
int (*hpd_cb)(void *, bool, bool), void *dev)
{
struct dp_sim_device *sim_dev = to_dp_sim_dev(bridge);
sim_dev->host_dev = dev;
sim_dev->hpd_cb = hpd_cb;
if (sim_dev->skip_hpd)
hpd_cb(dev, true, false);
return 0;
}
static u8 dp_sim_read_dpcd(struct dp_sim_device *sim_dev,
u32 addr)
{
struct dp_sim_dpcd_reg *reg;
if (addr < MAX_BUILTIN_DPCD_ADDR) {
return sim_dev->dpcd_reg[addr];
} else {
list_for_each_entry(reg, &sim_dev->dpcd_reg_list, head) {
if (reg->addr == addr)
return reg->val;
}
}
return 0;
}
static void dp_sim_write_dpcd(struct dp_sim_device *sim_dev,
u32 addr, u8 val)
{
struct dp_sim_dpcd_reg *dpcd_reg;
if (addr < MAX_BUILTIN_DPCD_ADDR) {
sim_dev->dpcd_reg[addr] = val;
} else {
list_for_each_entry(dpcd_reg, &sim_dev->dpcd_reg_list, head) {
if (dpcd_reg->addr == addr) {
dpcd_reg->val = val;
return;
}
}
dpcd_reg = devm_kzalloc(sim_dev->dev,
sizeof(*dpcd_reg), GFP_KERNEL);
if (!dpcd_reg)
return;
dpcd_reg->addr = addr;
dpcd_reg->val = val;
list_add_tail(&dpcd_reg->head, &sim_dev->dpcd_reg_list);
}
}
static int dp_sim_read_dpcd_regs(struct dp_sim_device *sim_dev,
u8 *buf, u32 size, u32 offset)
{
u32 i;
if (offset + size <= MAX_BUILTIN_DPCD_ADDR) {
memcpy(buf, &sim_dev->dpcd_reg[offset], size);
} else {
for (i = 0; i < size; i++)
buf[i] = dp_sim_read_dpcd(sim_dev, offset + i);
}
return size;
}
static int dp_sim_read_edid(struct dp_sim_device *sim_dev,
struct drm_dp_aux_msg *msg)
{
u8 *buf = (u8 *)msg->buffer;
u32 addr;
if (!sim_dev->port_num || !msg->size)
return 0;
if (msg->request & DP_AUX_I2C_READ) {
addr = (sim_dev->edid_seg << 8) + sim_dev->edid_addr;
if (addr + msg->size <= sim_dev->ports[0].edid_size) {
memcpy(msg->buffer, &sim_dev->ports[0].edid[addr],
msg->size);
} else if (addr < sim_dev->ports[0].edid_size) {
memcpy(msg->buffer, &sim_dev->ports[0].edid[addr],
sim_dev->ports[0].edid_size - addr);
}
sim_dev->edid_addr += msg->size;
sim_dev->edid_addr &= 0xFF;
} else {
if (msg->address == 0x30)
sim_dev->edid_seg = buf[0];
else if (msg->address == 0x50)
sim_dev->edid_addr = buf[0];
}
return msg->size;
}
static int dp_sim_link_training(struct dp_sim_device *sim_dev,
struct drm_dp_aux *drm_aux,
struct drm_dp_aux_msg *msg)
{
u8 *link_status = msg->buffer;
int ret, i;
if (msg->request == DP_AUX_NATIVE_READ &&
msg->address == DP_LANE0_1_STATUS) {
/*
* remain is an option to allow limited actual
* link training. this is needed for some device
* when actual read is needed.
*/
if (sim_dev->link_training_remain) {
sim_dev->link_training_remain--;
ret = drm_aux->transfer(drm_aux, msg);
if (ret >= 0)
link_status[2] &= ~DP_LINK_STATUS_UPDATED;
return ret;
}
memcpy(msg->buffer, &sim_dev->dpcd_reg[msg->address],
msg->size);
/*
* when mismatch happens, clear status and fail the link
* training.
*/
if (sim_dev->link_training_mismatch) {
link_status[0] = 0;
link_status[1] = 0;
}
return msg->size;
}
if (msg->request == DP_AUX_NATIVE_WRITE) {
if (msg->address == DP_TRAINING_LANE0_SET) {
const u8 mask = DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK;
/*
* when link training is set, only pre-set vx/px is
* going through. here we will fail the initial
* vx/px and correct them automatically.
*/
sim_dev->link_training_mismatch = false;
for (i = 0; i < sim_dev->link_training_lane_cnt; i++) {
if ((link_status[i] & mask) !=
(sim_dev->dpcd_reg[
DP_TRAINING_LANE0_SET + i] & mask)) {
sim_dev->link_training_mismatch = true;
break;
}
}
} else if (msg->address == DP_TRAINING_PATTERN_SET) {
sim_dev->link_training_remain =
sim_dev->link_training_cnt;
} else if (msg->address == DP_LINK_BW_SET) {
sim_dev->link_training_lane_cnt =
link_status[1] & 0x1F;
}
}
return 0;
}
static ssize_t dp_sim_transfer(struct dp_aux_bridge *bridge,
struct drm_dp_aux *drm_aux,
struct drm_dp_aux_msg *msg)
{
struct dp_sim_device *sim_dev = to_dp_sim_dev(bridge);
int ret;
mutex_lock(&sim_dev->lock);
if (sim_dev->skip_link_training &&
!(sim_dev->sim_mode & DP_SIM_MODE_LINK_TRAIN)) {
ret = dp_sim_link_training(sim_dev, drm_aux, msg);
if (ret)
goto end;
}
if ((sim_dev->sim_mode & DP_SIM_MODE_MST) || sim_dev->skip_mst) {
ret = dp_mst_sim_transfer(sim_dev->bridge.mst_ctx, msg);
if (ret >= 0) {
ret = msg->size;
goto end;
}
}
if (msg->request == DP_AUX_NATIVE_WRITE) {
sim_dev->dpcd_write_addr = msg->address;
sim_dev->dpcd_write_size = msg->size;
}
if (((sim_dev->sim_mode & DP_SIM_MODE_EDID) ||
sim_dev->skip_edid) &&
(msg->request & DP_AUX_I2C_MOT))
ret = dp_sim_read_edid(sim_dev, msg);
else if (((sim_dev->sim_mode & DP_SIM_MODE_DPCD_READ) ||
sim_dev->skip_dpcd) &&
msg->request == DP_AUX_NATIVE_READ)
ret = dp_sim_read_dpcd_regs(sim_dev, msg->buffer,
msg->size, msg->address);
else if (((sim_dev->sim_mode & DP_SIM_MODE_DPCD_WRITE) ||
sim_dev->skip_config) &&
msg->request == DP_AUX_NATIVE_WRITE)
ret = msg->size;
else
ret = drm_aux->transfer(drm_aux, msg);
end:
dp_sim_aux_hex_dump(msg);
mutex_unlock(&sim_dev->lock);
return ret;
}
static void dp_sim_host_hpd_irq(void *host_dev)
{
struct dp_sim_device *sim_dev = host_dev;
if (sim_dev->hpd_cb)
sim_dev->hpd_cb(sim_dev->host_dev, false, true);
}
int dp_sim_set_sim_mode(struct dp_aux_bridge *bridge, u32 sim_mode)
{
struct dp_sim_device *sim_dev;
if (!bridge || !(bridge->flag & DP_SIM_BRIDGE_PRIV_FLAG))
return -EINVAL;
sim_dev = to_dp_sim_dev(bridge);
sim_dev->sim_mode = sim_mode;
return 0;
}
int dp_sim_update_port_num(struct dp_aux_bridge *bridge, u32 port_num)
{
struct dp_sim_device *sim_dev;
struct dp_mst_sim_port *ports;
u32 i, rc;
if (!bridge || !(bridge->flag & DP_SIM_BRIDGE_PRIV_FLAG))
return -EINVAL;
sim_dev = to_dp_sim_dev(bridge);
if (port_num > sim_dev->port_num) {
ports = devm_kzalloc(sim_dev->dev,
port_num * sizeof(*ports), GFP_KERNEL);
if (!ports)
return -ENOMEM;
memcpy(ports, sim_dev->ports,
sim_dev->port_num * sizeof(*ports));
if (sim_dev->ports)
devm_kfree(sim_dev->dev, sim_dev->ports);
sim_dev->ports = ports;
for (i = sim_dev->port_num; i < port_num; i++) {
memcpy(&ports[i], &output_port, sizeof(*ports));
ports[i].peer_guid[0] = i;
}
sim_dev->port_num = port_num;
}
rc = dp_mst_sim_update(sim_dev->bridge.mst_ctx,
port_num, sim_dev->ports);
if (rc)
return rc;
sim_dev->current_port_num = port_num;
return rc;
}
int dp_sim_update_port_status(struct dp_aux_bridge *bridge,
int port, enum drm_connector_status status)
{
struct dp_sim_device *sim_dev;
if (!bridge || !(bridge->flag & DP_SIM_BRIDGE_PRIV_FLAG))
return -EINVAL;
sim_dev = to_dp_sim_dev(bridge);
if (port < 0 || port >= sim_dev->current_port_num)
return -EINVAL;
sim_dev->ports[port].pdt = (status == connector_status_connected) ?
DP_PEER_DEVICE_SST_SINK : DP_PEER_DEVICE_NONE;
return dp_mst_sim_update(sim_dev->bridge.mst_ctx,
sim_dev->current_port_num, sim_dev->ports);
}
int dp_sim_update_port_edid(struct dp_aux_bridge *bridge,
int port, const u8 *edid, u32 size)
{
struct dp_sim_device *sim_dev;
struct dp_mst_sim_port *sim_port;
if (!bridge || !(bridge->flag & DP_SIM_BRIDGE_PRIV_FLAG))
return -EINVAL;
sim_dev = to_dp_sim_dev(bridge);
if (port < 0 || port >= sim_dev->current_port_num)
return -EINVAL;
sim_port = &sim_dev->ports[port];
if (size != sim_port->edid_size) {
if (sim_port->edid)
devm_kfree(sim_dev->dev, (u8 *)sim_port->edid);
sim_port->edid = devm_kzalloc(sim_dev->dev,
size, GFP_KERNEL);
if (!sim_port->edid)
return -ENOMEM;
sim_port->edid_size = size;
}
memcpy((u8 *)sim_port->edid, edid, size);
return dp_mst_sim_update(sim_dev->bridge.mst_ctx,
sim_dev->current_port_num, sim_dev->ports);
}
int dp_sim_write_dpcd_reg(struct dp_aux_bridge *bridge,
const u8 *dpcd, u32 size, u32 offset)
{
struct dp_sim_device *sim_dev;
int i;
if (!bridge || !(bridge->flag & DP_SIM_BRIDGE_PRIV_FLAG))
return -EINVAL;
sim_dev = to_dp_sim_dev(bridge);
for (i = 0; i < size; i++)
dp_sim_write_dpcd(sim_dev, offset + i, dpcd[i]);
return 0;
}
int dp_sim_read_dpcd_reg(struct dp_aux_bridge *bridge,
u8 *dpcd, u32 size, u32 offset)
{
struct dp_sim_device *sim_dev;
if (!bridge || !(bridge->flag & DP_SIM_BRIDGE_PRIV_FLAG))
return -EINVAL;
sim_dev = to_dp_sim_dev(bridge);
return dp_sim_read_dpcd_regs(sim_dev, dpcd, size, offset);
}
static void dp_sim_update_dtd(struct edid *edid,
struct drm_display_mode *mode)
{
struct detailed_timing *dtd = &edid->detailed_timings[0];
struct detailed_pixel_timing *pd = &dtd->data.pixel_data;
u32 h_blank = mode->htotal - mode->hdisplay;
u32 v_blank = mode->vtotal - mode->vdisplay;
u32 h_img = 0, v_img = 0;
dtd->pixel_clock = cpu_to_le16(mode->clock / 10);
pd->hactive_lo = mode->hdisplay & 0xFF;
pd->hblank_lo = h_blank & 0xFF;
pd->hactive_hblank_hi = ((h_blank >> 8) & 0xF) |
((mode->hdisplay >> 8) & 0xF) << 4;
pd->vactive_lo = mode->vdisplay & 0xFF;
pd->vblank_lo = v_blank & 0xFF;
pd->vactive_vblank_hi = ((v_blank >> 8) & 0xF) |
((mode->vdisplay >> 8) & 0xF) << 4;
pd->hsync_offset_lo =
(mode->hsync_start - mode->hdisplay) & 0xFF;
pd->hsync_pulse_width_lo =
(mode->hsync_end - mode->hsync_start) & 0xFF;
pd->vsync_offset_pulse_width_lo =
(((mode->vsync_start - mode->vdisplay) & 0xF) << 4) |
((mode->vsync_end - mode->vsync_start) & 0xF);
pd->hsync_vsync_offset_pulse_width_hi =
((((mode->hsync_start - mode->hdisplay) >> 8) & 0x3) << 6) |
((((mode->hsync_end - mode->hsync_start) >> 8) & 0x3) << 4) |
((((mode->vsync_start - mode->vdisplay) >> 4) & 0x3) << 2) |
((((mode->vsync_end - mode->vsync_start) >> 4) & 0x3) << 0);
pd->width_mm_lo = h_img & 0xFF;
pd->height_mm_lo = v_img & 0xFF;
pd->width_height_mm_hi = (((h_img >> 8) & 0xF) << 4) |
((v_img >> 8) & 0xF);
pd->hborder = 0;
pd->vborder = 0;
pd->misc = 0;
}
static void dp_sim_update_checksum(struct edid *edid)
{
u8 *data = (u8 *)edid;
u32 i, sum = 0;
for (i = 0; i < EDID_LENGTH - 1; i++)
sum += data[i];
edid->checksum = 0x100 - (sum & 0xFF);
}
static int dp_sim_parse_edid_from_node(struct dp_sim_device *sim_dev,
int index, struct device_node *node)
{
struct dp_mst_sim_port *port;
struct drm_display_mode mode_buf, *mode = &mode_buf;
u16 h_front_porch, h_pulse_width, h_back_porch;
u16 v_front_porch, v_pulse_width, v_back_porch;
bool h_active_high, v_active_high;
u32 flags = 0;
int rc;
struct edid *edid;
const u8 edid_buf[EDID_LENGTH] = {
0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x44, 0x6D,
0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x1B, 0x10, 0x01, 0x03,
0x80, 0x50, 0x2D, 0x78, 0x0A, 0x0D, 0xC9, 0xA0, 0x57, 0x47,
0x98, 0x27, 0x12, 0x48, 0x4C, 0x00, 0x00, 0x00, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01,
};
rc = of_property_read_u16(node, "qcom,mode-h-active",
&mode->hdisplay);
if (rc) {
DP_ERR("failed to read h-active, rc=%d\n", rc);
goto fail;
}
rc = of_property_read_u16(node, "qcom,mode-h-front-porch",
&h_front_porch);
if (rc) {
DP_ERR("failed to read h-front-porch, rc=%d\n", rc);
goto fail;
}
rc = of_property_read_u16(node, "qcom,mode-h-pulse-width",
&h_pulse_width);
if (rc) {
DP_ERR("failed to read h-pulse-width, rc=%d\n", rc);
goto fail;
}
rc = of_property_read_u16(node, "qcom,mode-h-back-porch",
&h_back_porch);
if (rc) {
DP_ERR("failed to read h-back-porch, rc=%d\n", rc);
goto fail;
}
h_active_high = of_property_read_bool(node,
"qcom,mode-h-active-high");
rc = of_property_read_u16(node, "qcom,mode-v-active",
&mode->vdisplay);
if (rc) {
DP_ERR("failed to read v-active, rc=%d\n", rc);
goto fail;
}
rc = of_property_read_u16(node, "qcom,mode-v-front-porch",
&v_front_porch);
if (rc) {
DP_ERR("failed to read v-front-porch, rc=%d\n", rc);
goto fail;
}
rc = of_property_read_u16(node, "qcom,mode-v-pulse-width",
&v_pulse_width);
if (rc) {
DP_ERR("failed to read v-pulse-width, rc=%d\n", rc);
goto fail;
}
rc = of_property_read_u16(node, "qcom,mode-v-back-porch",
&v_back_porch);
if (rc) {
DP_ERR("failed to read v-back-porch, rc=%d\n", rc);
goto fail;
}
v_active_high = of_property_read_bool(node,
"qcom,mode-v-active-high");
rc = of_property_read_u32(node, "qcom,mode-clock-in-khz",
&mode->clock);
if (rc) {
DP_ERR("failed to read clock, rc=%d\n", rc);
goto fail;
}
mode->hsync_start = mode->hdisplay + h_front_porch;
mode->hsync_end = mode->hsync_start + h_pulse_width;
mode->htotal = mode->hsync_end + h_back_porch;
mode->vsync_start = mode->vdisplay + v_front_porch;
mode->vsync_end = mode->vsync_start + v_pulse_width;
mode->vtotal = mode->vsync_end + v_back_porch;
if (h_active_high)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (v_active_high)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
mode->flags = flags;
edid = devm_kzalloc(sim_dev->dev, sizeof(*edid), GFP_KERNEL);
if (!edid) {
rc = -ENOMEM;
goto fail;
}
memcpy(edid, edid_buf, sizeof(edid_buf));
dp_sim_update_dtd(edid, mode);
dp_sim_update_checksum(edid);
port = &sim_dev->ports[index];
memcpy(port, &output_port, sizeof(*port));
port->peer_guid[0] = index;
if (port->edid)
devm_kfree(sim_dev->dev, (u8 *)port->edid);
port->edid = (u8 *)edid;
port->edid_size = sizeof(*edid);
fail:
return rc;
}
static int dp_sim_parse_edid_from_data(struct dp_sim_device *sim_dev,
int index, const char *data, int len)
{
struct dp_mst_sim_port *port;
u8 *edid_data;
edid_data = devm_kzalloc(sim_dev->dev, len, GFP_KERNEL);
if (!edid_data)
return -ENOMEM;
memcpy(edid_data, data, len);
port = &sim_dev->ports[index];
memcpy(port, &output_port, sizeof(*port));
port->peer_guid[0] = index;
if (port->edid)
devm_kfree(sim_dev->dev, (u8 *)port->edid);
port->edid = edid_data;
port->edid_size = len;
return 0;
}
static int dp_sim_parse_edid(struct dp_sim_device *sim_dev)
{
struct dp_mst_sim_port *ports;
struct device_node *of_node = sim_dev->bridge.of_node;
struct device_node *node;
const char *data;
int rc, port_num, i, len;
port_num = of_get_child_count(of_node);
if (!port_num)
port_num = 1;
if (port_num >= 15)
return -EINVAL;
ports = devm_kzalloc(sim_dev->dev,
port_num * sizeof(*ports), GFP_KERNEL);
if (!ports)
return -ENOMEM;
sim_dev->ports = ports;
sim_dev->port_num = port_num;
sim_dev->current_port_num = port_num;
i = 0;
for_each_child_of_node(of_node, node) {
data = of_get_property(node, "qcom,edid", &len);
if (data)
rc = dp_sim_parse_edid_from_data(sim_dev, i,
data, len);
else
rc = dp_sim_parse_edid_from_node(sim_dev, i,
node);
if (rc)
return rc;
i++;
}
if (i == 0)
memcpy(ports, &output_port, sizeof(*ports));
return 0;
}
static int dp_sim_parse_dpcd(struct dp_sim_device *sim_dev)
{
struct device_node *node = sim_dev->bridge.of_node;
u32 val, i;
const __be32 *arr;
int rc;
rc = of_property_read_u32(node, "qcom,dpcd-max-rate", &val);
if (!rc)
sim_dev->dpcd_reg[DP_MAX_LINK_RATE] = val;
rc = of_property_read_u32(node, "qcom,dpcd-max-lane", &val);
if (!rc)
sim_dev->dpcd_reg[DP_MAX_LANE_COUNT] = val;
rc = of_property_read_u32(node, "qcom,dpcd-mst", &val);
if (!rc)
sim_dev->dpcd_reg[DP_MSTM_CAP] = val;
arr = of_get_property(node, "qcom,dpcd-regs", &val);
if (arr) {
val /= sizeof(u32);
val &= ~0x1;
for (i = 0; i < val; i += 2)
dp_sim_write_dpcd(sim_dev,
be32_to_cpu(arr[i]),
be32_to_cpu(arr[i+1]));
}
rc = of_property_read_u32(node, "qcom,voltage-swing", &val);
if (!rc)
for (i = 0; i < 4; i++) {
sim_dev->dpcd_reg[DP_TRAINING_LANE0_SET + i] |=
val;
sim_dev->dpcd_reg[DP_ADJUST_REQUEST_LANE0_1 + (i/2)] |=
(val & 0x3) << ((i & 0x1) << 2);
}
rc = of_property_read_u32(node, "qcom,pre-emphasis", &val);
if (!rc)
for (i = 0; i < 4; i++) {
sim_dev->dpcd_reg[DP_TRAINING_LANE0_SET + i] |=
val << 3;
sim_dev->dpcd_reg[DP_ADJUST_REQUEST_LANE0_1 + (i/2)] |=
(val & 0x3) << (((i & 0x1) << 2) + 2);
}
rc = of_property_read_u32(node, "qcom,link-training-cnt", &val);
if (!rc)
sim_dev->link_training_cnt = val;
else
sim_dev->link_training_cnt = 0;
return 0;
}
static int dp_sim_parse_misc(struct dp_sim_device *sim_dev)
{
struct device_node *node = sim_dev->bridge.of_node;
sim_dev->skip_edid = of_property_read_bool(node,
"qcom,skip-edid");
sim_dev->skip_dpcd = of_property_read_bool(node,
"qcom,skip-dpcd-read");
sim_dev->skip_link_training = of_property_read_bool(node,
"qcom,skip-link-training");
sim_dev->skip_config = of_property_read_bool(node,
"qcom,skip-dpcd-write");
sim_dev->skip_hpd = of_property_read_bool(node,
"qcom,skip-hpd");
sim_dev->skip_mst = of_property_read_bool(node,
"qcom,skip-mst");
DP_DEBUG("skip: edid=%d dpcd=%d LT=%d config=%d hpd=%d mst=%d\n",
sim_dev->skip_edid,
sim_dev->skip_dpcd,
sim_dev->skip_link_training,
sim_dev->skip_config,
sim_dev->skip_hpd,
sim_dev->skip_mst);
return 0;
}
static ssize_t dp_sim_debug_write_edid(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_debug_edid_entry *entry = file->private_data;
struct dp_sim_device *debug;
struct dp_mst_sim_port *port;
u8 *buf = NULL, *buf_t = NULL;
const int char_to_nib = 2;
size_t edid_size = 0;
size_t size = 0, edid_buf_index = 0;
ssize_t rc = count;
if (!entry)
return -ENODEV;
debug = entry->sim_dev;
if (!debug || entry->index >= debug->port_num)
return -EINVAL;
port = &debug->ports[entry->index];
mutex_lock(&debug->lock);
if (*ppos)
goto bail;
size = min_t(size_t, count, SZ_1K);
buf = kzalloc(size, GFP_KERNEL);
if (ZERO_OR_NULL_PTR(buf)) {
rc = -ENOMEM;
goto bail;
}
if (copy_from_user(buf, user_buff, size))
goto bail;
edid_size = size / char_to_nib;
buf_t = buf;
if (edid_size != port->edid_size) {
if (port->edid)
devm_kfree(debug->dev, (u8 *)port->edid);
port->edid = devm_kzalloc(debug->dev,
edid_size, GFP_KERNEL);
if (!port->edid) {
rc = -ENOMEM;
goto bail;
}
port->edid_size = edid_size;
}
while (edid_size--) {
char t[3];
int d;
memcpy(t, buf_t, sizeof(char) * char_to_nib);
t[char_to_nib] = '\0';
if (kstrtoint(t, 16, &d)) {
DP_ERR("kstrtoint error\n");
goto bail;
}
if (port->edid && (edid_buf_index < port->edid_size))
((u8 *)port->edid)[edid_buf_index++] = d;
buf_t += char_to_nib;
}
if (debug->skip_mst)
dp_mst_sim_update(debug->bridge.mst_ctx,
debug->port_num, debug->ports);
debug->skip_edid = true;
bail:
kfree(buf);
mutex_unlock(&debug->lock);
return rc;
}
static ssize_t dp_sim_debug_write_dpcd(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
u8 *buf = NULL, *buf_t = NULL;
const int char_to_nib = 2;
size_t dpcd_size = 0;
size_t size = 0, dpcd_buf_index = 0;
ssize_t rc = count;
char offset_ch[5];
u32 offset, data_len;
if (!debug)
return -ENODEV;
mutex_lock(&debug->lock);
if (*ppos)
goto bail;
size = min_t(size_t, count, SZ_2K);
if (size < 4)
goto bail;
buf = kzalloc(size, GFP_KERNEL);
if (ZERO_OR_NULL_PTR(buf)) {
rc = -ENOMEM;
goto bail;
}
if (copy_from_user(buf, user_buff, size))
goto bail;
memcpy(offset_ch, buf, 4);
offset_ch[4] = '\0';
if (kstrtoint(offset_ch, 16, &offset)) {
DP_ERR("offset kstrtoint error\n");
goto bail;
}
if (offset == 0xFFFF) {
DP_ERR("clearing dpcd\n");
memset(debug->dpcd_reg, 0, sizeof(debug->dpcd_reg));
goto bail;
}
size -= 4;
if (size == 0)
goto bail;
dpcd_size = size / char_to_nib;
data_len = dpcd_size;
buf_t = buf + 4;
dpcd_buf_index = offset;
while (dpcd_size--) {
char t[3];
int d;
memcpy(t, buf_t, sizeof(char) * char_to_nib);
t[char_to_nib] = '\0';
if (kstrtoint(t, 16, &d)) {
DP_ERR("kstrtoint error\n");
goto bail;
}
dp_sim_write_dpcd(debug, dpcd_buf_index, d);
dpcd_buf_index++;
buf_t += char_to_nib;
}
debug->skip_dpcd = true;
debug->skip_config = true;
bail:
kfree(buf);
mutex_unlock(&debug->lock);
return rc;
}
static ssize_t dp_sim_debug_read_dpcd(struct file *file,
char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
char *buf;
int const buf_size = SZ_4K;
u32 offset = 0;
u32 len = 0;
if (!debug)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(buf_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
len += snprintf(buf, buf_size, "0x%x", debug->dpcd_write_addr);
while (1) {
if (debug->dpcd_write_addr + offset >= buf_size ||
offset >= debug->dpcd_write_size)
break;
len += snprintf(buf + len, buf_size - len, "0x%x",
debug->dpcd_reg[debug->dpcd_write_addr + offset++]);
}
len = min_t(size_t, count, len);
if (!copy_to_user(user_buff, buf, len))
*ppos += len;
kfree(buf);
return len;
}
static ssize_t dp_sim_debug_write_hpd(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
char buf[SZ_8];
size_t len = 0;
int hpd = 0;
if (!debug)
return -ENODEV;
if (*ppos)
return 0;
len = min_t(size_t, count, SZ_8 - 1);
if (copy_from_user(buf, user_buff, len))
goto end;
buf[len] = '\0';
if (kstrtoint(buf, 10, &hpd) != 0)
goto end;
if (debug->hpd_cb)
debug->hpd_cb(debug->host_dev, !!hpd, false);
end:
return len;
}
static ssize_t dp_sim_debug_write_skip_link_training(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
char buf[SZ_8];
size_t len = 0;
int skip_lk, lk_cnt;
if (!debug)
return -ENODEV;
if (*ppos)
return 0;
len = min_t(size_t, count, SZ_8 - 1);
if (copy_from_user(buf, user_buff, len))
goto end;
buf[len] = '\0';
if (sscanf(buf, "%d %u", &skip_lk, &lk_cnt) != 2) {
DP_ERR("invalid input\n");
return -EINVAL;
}
mutex_lock(&debug->lock);
debug->skip_link_training = !!skip_lk;
debug->link_training_cnt = lk_cnt;
mutex_unlock(&debug->lock);
end:
return len;
}
static ssize_t dp_sim_debug_write_skip_edid(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
char buf[SZ_8];
size_t len = 0;
int val = 0;
if (!debug)
return -ENODEV;
if (*ppos)
return 0;
len = min_t(size_t, count, SZ_8 - 1);
if (copy_from_user(buf, user_buff, len))
goto end;
buf[len] = '\0';
if (kstrtoint(buf, 10, &val) != 0)
goto end;
mutex_lock(&debug->lock);
debug->skip_edid = !!val;
mutex_unlock(&debug->lock);
end:
return len;
}
static ssize_t dp_sim_debug_write_skip_dpcd(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
char buf[SZ_8];
size_t len = 0;
int val = 0;
if (!debug)
return -ENODEV;
if (*ppos)
return 0;
len = min_t(size_t, count, SZ_8 - 1);
if (copy_from_user(buf, user_buff, len))
goto end;
buf[len] = '\0';
if (kstrtoint(buf, 10, &val) != 0)
goto end;
mutex_lock(&debug->lock);
debug->skip_dpcd = !!val;
mutex_unlock(&debug->lock);
end:
return len;
}
static ssize_t dp_sim_debug_write_skip_config(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
char buf[SZ_8];
size_t len = 0;
int val = 0;
if (!debug)
return -ENODEV;
if (*ppos)
return 0;
len = min_t(size_t, count, SZ_8 - 1);
if (copy_from_user(buf, user_buff, len))
goto end;
buf[len] = '\0';
if (kstrtoint(buf, 10, &val) != 0)
goto end;
mutex_lock(&debug->lock);
debug->skip_config = !!val;
mutex_unlock(&debug->lock);
end:
return len;
}
static ssize_t dp_sim_debug_write_mst_hpd(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_debug_edid_entry *entry = file->private_data;
struct dp_sim_device *debug;
char buf[SZ_8];
size_t len = 0;
int hpd = 0;
if (!entry)
return -ENODEV;
debug = entry->sim_dev;
if (!debug || entry->index >= debug->port_num)
return -EINVAL;
if (*ppos)
return 0;
len = min_t(size_t, count, SZ_8 - 1);
if (copy_from_user(buf, user_buff, len))
goto end;
buf[len] = '\0';
if (kstrtoint(buf, 10, &hpd) != 0)
goto end;
dp_sim_update_port_status(&debug->bridge,
entry->index, hpd ?
connector_status_connected :
connector_status_disconnected);
end:
return len;
}
static const struct file_operations sim_edid_fops = {
.open = simple_open,
.write = dp_sim_debug_write_edid,
};
static const struct file_operations sim_mst_hpd_fops = {
.open = simple_open,
.write = dp_sim_debug_write_mst_hpd,
};
static ssize_t dp_sim_debug_write_mst_mode(struct file *file,
const char __user *user_buff, size_t count, loff_t *ppos)
{
struct dp_sim_device *debug = file->private_data;
char buf[SZ_16];
size_t len = 0;
int mst_sideband_mode = 0;
u32 mst_port_cnt = 0;
u32 mst_old_port_cnt;
struct dp_sim_debug_edid_entry *edid_entry;
u8 *edid;
u32 i, rc;
if (!debug)
return -ENODEV;
/* Leave room for termination char */
len = min_t(size_t, count, SZ_8 - 1);
if (copy_from_user(buf, user_buff, len))
return -EFAULT;
buf[len] = '\0';
if (sscanf(buf, "%d %u", &mst_sideband_mode, &mst_port_cnt) != 2) {
DP_ERR("invalid input\n");
return -EINVAL;
}
if (mst_port_cnt >= MAX_MST_PORT) {
DP_ERR("port cnt:%d exceeding max:%d\n", mst_port_cnt,
MAX_MST_PORT);
return -EINVAL;
}
if (!mst_port_cnt)
mst_port_cnt = 1;
debug->skip_mst = !mst_sideband_mode;
DP_DEBUG("mst_sideband_mode: %d port_cnt:%d\n",
mst_sideband_mode, mst_port_cnt);
mst_old_port_cnt = debug->port_num;
rc = dp_sim_update_port_num(&debug->bridge, mst_port_cnt);
if (rc)
return rc;
/* write mst */
dp_sim_write_dpcd(debug, DP_MSTM_CAP, debug->skip_mst);
/* create default edid nodes */
for (i = mst_old_port_cnt; i < mst_port_cnt; i++) {
edid_entry = devm_kzalloc(debug->dev,
sizeof(*edid_entry), GFP_KERNEL);
if (!edid_entry)
continue;
edid_entry->index = i;
edid_entry->sim_dev = debug;
scnprintf(buf, sizeof(buf), "edid-%d", i);
debugfs_create_file(buf,
0444,
debug->debugfs_edid_dir,
edid_entry,
&sim_edid_fops);
scnprintf(buf, sizeof(buf), "hpd-%d", i);
debugfs_create_file(buf,
0444,
debug->debugfs_edid_dir,
edid_entry,
&sim_mst_hpd_fops);
if (!debug->ports[0].edid_size)
continue;
edid = devm_kzalloc(debug->dev,
debug->ports[0].edid_size, GFP_KERNEL);
if (!edid)
return -ENOMEM;
memcpy(edid, debug->ports[0].edid, debug->ports[0].edid_size);
debug->ports[i].edid = edid;
debug->ports[i].edid_size = debug->ports[0].edid_size;
}
return count;
}
static const struct file_operations sim_dpcd_fops = {
.open = simple_open,
.write = dp_sim_debug_write_dpcd,
.read = dp_sim_debug_read_dpcd,
};
static const struct file_operations sim_hpd_fops = {
.open = simple_open,
.write = dp_sim_debug_write_hpd,
};
static const struct file_operations sim_skip_link_training_fops = {
.open = simple_open,
.write = dp_sim_debug_write_skip_link_training,
};
static const struct file_operations sim_skip_edid_fops = {
.open = simple_open,
.write = dp_sim_debug_write_skip_edid,
};
static const struct file_operations sim_skip_dpcd_fops = {
.open = simple_open,
.write = dp_sim_debug_write_skip_dpcd,
};
static const struct file_operations sim_skip_config_fops = {
.open = simple_open,
.write = dp_sim_debug_write_skip_config,
};
static const struct file_operations sim_mst_mode_fops = {
.open = simple_open,
.write = dp_sim_debug_write_mst_mode,
};
static int dp_sim_debug_init(struct dp_sim_device *sim_dev)
{
struct dp_sim_debug_edid_entry *edid_entry;
struct dentry *dir, *file, *edid_dir;
char name[SZ_16];
int rc = 0, i;
if (!sim_dev->label)
return 0;
dir = debugfs_create_dir(sim_dev->label, NULL);
if (IS_ERR_OR_NULL(dir)) {
rc = PTR_ERR(dir);
DP_ERR("[%s] debugfs create dir failed, rc = %d\n",
sim_dev->label, rc);
goto error;
}
edid_dir = debugfs_create_dir("mst_edid", dir);
if (IS_ERR_OR_NULL(edid_dir)) {
rc = PTR_ERR(edid_dir);
DP_ERR("[%s] debugfs create dir failed, rc = %d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
for (i = 0; i < sim_dev->port_num; i++) {
edid_entry = devm_kzalloc(sim_dev->dev,
sizeof(*edid_entry), GFP_KERNEL);
edid_entry->index = i;
edid_entry->sim_dev = sim_dev;
scnprintf(name, sizeof(name), "edid-%d", i);
file = debugfs_create_file(name,
0444,
edid_dir,
edid_entry,
&sim_edid_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create edid failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
scnprintf(name, sizeof(name), "hpd-%d", i);
file = debugfs_create_file(name,
0444,
edid_dir,
edid_entry,
&sim_mst_hpd_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create hpd failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
}
file = debugfs_create_symlink("edid", dir, "./mst_edid/edid-0");
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create edid link failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
file = debugfs_create_file("dpcd",
0444,
dir,
sim_dev,
&sim_dpcd_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
file = debugfs_create_file("hpd",
0444,
dir,
sim_dev,
&sim_hpd_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
file = debugfs_create_file("skip_link_training",
0444,
dir,
sim_dev,
&sim_skip_link_training_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
file = debugfs_create_file("skip_edid",
0444,
dir,
sim_dev,
&sim_skip_edid_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
file = debugfs_create_file("skip_dpcd_read",
0444,
dir,
sim_dev,
&sim_skip_dpcd_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
file = debugfs_create_file("skip_dpcd_write",
0444,
dir,
sim_dev,
&sim_skip_config_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
file = debugfs_create_file("mst_sideband_mode",
0444,
dir,
sim_dev,
&sim_mst_mode_fops);
if (IS_ERR_OR_NULL(file)) {
rc = PTR_ERR(file);
DP_ERR("[%s] debugfs create failed, rc=%d\n",
sim_dev->label, rc);
goto error_remove_dir;
}
sim_dev->debugfs_dir = dir;
sim_dev->debugfs_edid_dir = edid_dir;
return 0;
error_remove_dir:
debugfs_remove_recursive(dir);
error:
return rc;
}
static int dp_sim_parse(struct dp_sim_device *sim_dev)
{
int rc;
sim_dev->label = of_get_property(sim_dev->bridge.of_node,
"label", NULL);
rc = dp_sim_parse_dpcd(sim_dev);
if (rc) {
DP_ERR("failed to parse DPCD nodes\n");
return rc;
}
rc = dp_sim_parse_edid(sim_dev);
if (rc) {
DP_ERR("failed to parse EDID nodes\n");
return rc;
}
rc = dp_sim_parse_misc(sim_dev);
if (rc) {
DP_ERR("failed to parse misc nodes\n");
return rc;
}
return 0;
}
int dp_sim_create_bridge(struct device *dev, struct dp_aux_bridge **bridge)
{
struct dp_sim_device *dp_sim_dev;
struct dp_mst_sim_cfg cfg;
int ret;
dp_sim_dev = devm_kzalloc(dev, sizeof(*dp_sim_dev), GFP_KERNEL);
if (!dp_sim_dev)
return -ENOMEM;
dp_sim_dev->dev = dev;
dp_sim_dev->bridge.of_node = dev->of_node;
dp_sim_dev->bridge.register_hpd = dp_sim_register_hpd;
dp_sim_dev->bridge.transfer = dp_sim_transfer;
dp_sim_dev->bridge.dev_priv = dp_sim_dev;
dp_sim_dev->bridge.flag = DP_AUX_BRIDGE_MST | DP_SIM_BRIDGE_PRIV_FLAG;
INIT_LIST_HEAD(&dp_sim_dev->dpcd_reg_list);
mutex_init(&dp_sim_dev->lock);
memset(&cfg, 0, sizeof(cfg));
cfg.host_dev = dp_sim_dev;
cfg.host_hpd_irq = dp_sim_host_hpd_irq;
ret = dp_mst_sim_create(&cfg, &dp_sim_dev->bridge.mst_ctx);
if (ret) {
devm_kfree(dev, dp_sim_dev);
return ret;
}
/* default dpcd reg value */
dp_sim_dev->dpcd_reg[DP_DPCD_REV] = 0x12;
dp_sim_dev->dpcd_reg[DP_MAX_LINK_RATE] = 0x14;
dp_sim_dev->dpcd_reg[DP_MAX_LANE_COUNT] = 0xc4;
dp_sim_dev->dpcd_reg[DP_SINK_COUNT] = 0x1;
dp_sim_dev->dpcd_reg[DP_LANE0_1_STATUS] = 0x77;
dp_sim_dev->dpcd_reg[DP_LANE2_3_STATUS] = 0x77;
dp_sim_dev->dpcd_reg[DP_LANE_ALIGN_STATUS_UPDATED] = 0x1;
dp_sim_dev->dpcd_reg[DP_SINK_STATUS] = 0x3;
dp_sim_dev->dpcd_reg[DP_PAYLOAD_TABLE_UPDATE_STATUS] = 0x3;
/* enable link training by default */
dp_sim_dev->skip_link_training = true;
dp_sim_dev->link_training_cnt = (u32)-1;
*bridge = &dp_sim_dev->bridge;
return 0;
}
int dp_sim_destroy_bridge(struct dp_aux_bridge *bridge)
{
struct dp_sim_device *dp_sim_dev;
struct dp_sim_dpcd_reg *reg, *p;
if (!bridge || !(bridge->flag & DP_SIM_BRIDGE_PRIV_FLAG))
return -EINVAL;
dp_sim_dev = to_dp_sim_dev(bridge);
dp_mst_sim_destroy(dp_sim_dev->bridge.mst_ctx);
list_for_each_entry_safe(reg, p, &dp_sim_dev->dpcd_reg_list, head) {
list_del(&reg->head);
devm_kfree(dp_sim_dev->dev, reg);
}
if (dp_sim_dev->ports)
devm_kfree(dp_sim_dev->dev, dp_sim_dev->ports);
devm_kfree(dp_sim_dev->dev, dp_sim_dev);
return 0;
}
int dp_sim_probe(struct platform_device *pdev)
{
struct dp_sim_device *dp_sim_dev;
struct dp_aux_bridge *bridge;
int ret;
ret = dp_sim_create_bridge(&pdev->dev, &bridge);
if (ret)
return ret;
dp_sim_dev = to_dp_sim_dev(bridge);
ret = dp_sim_parse(dp_sim_dev);
if (ret)
goto fail;
if (dp_sim_dev->skip_hpd)
dp_sim_dev->bridge.flag |= DP_AUX_BRIDGE_HPD;
ret = dp_mst_sim_update(dp_sim_dev->bridge.mst_ctx,
dp_sim_dev->port_num, dp_sim_dev->ports);
if (ret)
goto fail;
ret = dp_sim_debug_init(dp_sim_dev);
if (ret)
goto fail;
ret = dp_aux_add_bridge(&dp_sim_dev->bridge);
if (ret)
goto fail;
platform_set_drvdata(pdev, dp_sim_dev);
return 0;
fail:
dp_sim_destroy_bridge(bridge);
return ret;
}
int dp_sim_remove(struct platform_device *pdev)
{
struct dp_sim_device *dp_sim_dev;
dp_sim_dev = platform_get_drvdata(pdev);
if (!dp_sim_dev)
return 0;
debugfs_remove_recursive(dp_sim_dev->debugfs_dir);
dp_sim_destroy_bridge(&dp_sim_dev->bridge);
return 0;
}
#if 0
static const struct of_device_id dt_match[] = {
{ .compatible = "qcom,dp-mst-sim"},
{},
};
static struct platform_driver dp_sim_driver = {
.probe = dp_sim_probe,
.remove = dp_sim_remove,
.driver = {
.name = "dp_sim",
.of_match_table = dt_match,
.suppress_bind_attrs = true,
},
};
static int __init dp_sim_register(void)
{
return platform_driver_register(&dp_sim_driver);
}
static void __exit dp_sim_unregister(void)
{
platform_driver_unregister(&dp_sim_driver);
}
module_init(dp_sim_register);
module_exit(dp_sim_unregister);
#endif