文件
android_kernel_samsung_sm86…/msm/dsi/dsi_pll_5nm.c
Satya Rama Aditya Pinapala 7471069739 disp: msm: dsi: fix DSI PLL configuring sequence
Change fixes issues with the recalculation and DSI PHY PLL
toggle sequences while using continuous splash.

Change-Id: I6e63dd176e3ad5160b4df9f2da6d981951b696ab
Signed-off-by: Satya Rama Aditya Pinapala <psraditya30@codeaurora.org>
2021-03-31 15:20:15 -07:00

1486 行
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include "dsi_pll_5nm.h"
#define VCO_DELAY_USEC 1
#define MHZ_250 250000000UL
#define MHZ_500 500000000UL
#define MHZ_1000 1000000000UL
#define MHZ_1100 1100000000UL
#define MHZ_1900 1900000000UL
#define MHZ_3000 3000000000UL
struct dsi_pll_regs {
u32 pll_prop_gain_rate;
u32 pll_lockdet_rate;
u32 decimal_div_start;
u32 frac_div_start_low;
u32 frac_div_start_mid;
u32 frac_div_start_high;
u32 pll_clock_inverters;
u32 ssc_stepsize_low;
u32 ssc_stepsize_high;
u32 ssc_div_per_low;
u32 ssc_div_per_high;
u32 ssc_adjper_low;
u32 ssc_adjper_high;
u32 ssc_control;
};
struct dsi_pll_config {
u32 ref_freq;
bool div_override;
u32 output_div;
bool ignore_frac;
bool disable_prescaler;
bool enable_ssc;
bool ssc_center;
u32 dec_bits;
u32 frac_bits;
u32 lock_timer;
u32 ssc_freq;
u32 ssc_offset;
u32 ssc_adj_per;
u32 thresh_cycles;
u32 refclk_cycles;
};
struct dsi_pll_5nm {
struct dsi_pll_resource *rsc;
struct dsi_pll_config pll_configuration;
struct dsi_pll_regs reg_setup;
bool cphy_enabled;
};
static inline bool dsi_pll_5nm_is_hw_revision(
struct dsi_pll_resource *rsc)
{
return (rsc->pll_revision == DSI_PLL_5NM) ?
true : false;
}
static inline void dsi_pll_set_pll_post_div(struct dsi_pll_resource *pll, u32
pll_post_div)
{
u32 pll_post_div_val = 0;
if (pll_post_div == 1)
pll_post_div_val = 0;
if (pll_post_div == 2)
pll_post_div_val = 1;
if (pll_post_div == 4)
pll_post_div_val = 2;
if (pll_post_div == 8)
pll_post_div_val = 3;
DSI_PLL_REG_W(pll->pll_base, PLL_PLL_OUTDIV_RATE, pll_post_div_val);
if (pll->slave)
DSI_PLL_REG_W(pll->slave->pll_base, PLL_PLL_OUTDIV_RATE,
pll_post_div_val);
}
static inline int dsi_pll_get_pll_post_div(struct dsi_pll_resource *pll)
{
u32 reg_val;
reg_val = DSI_PLL_REG_R(pll->pll_base, PLL_PLL_OUTDIV_RATE);
return (1 << reg_val);
}
static inline void dsi_pll_set_phy_post_div(struct dsi_pll_resource *pll, u32
phy_post_div)
{
u32 reg_val = 0;
reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
reg_val &= ~0x0F;
reg_val |= phy_post_div;
DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
if (pll->slave) {
reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG0);
reg_val &= ~0x0F;
reg_val |= phy_post_div;
DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
}
}
static inline int dsi_pll_get_phy_post_div(struct dsi_pll_resource *pll)
{
u32 reg_val = 0;
reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
return (reg_val & 0xF);
}
static inline void dsi_pll_set_dsi_clk(struct dsi_pll_resource *pll, u32
dsi_clk)
{
u32 reg_val = 0;
reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
reg_val &= ~0x3;
reg_val |= dsi_clk;
DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG1, reg_val);
if (pll->slave) {
reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG1);
reg_val &= ~0x3;
reg_val |= dsi_clk;
DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG1, reg_val);
}
}
static inline int dsi_pll_get_dsi_clk(struct dsi_pll_resource *pll)
{
u32 reg_val;
reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
return (reg_val & 0x3);
}
static inline void dsi_pll_set_pclk_div(struct dsi_pll_resource *pll, u32
pclk_div)
{
u32 reg_val = 0;
reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
reg_val &= ~0xF0;
reg_val |= (pclk_div << 4);
DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
if (pll->slave) {
reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG0);
reg_val &= ~0xF0;
reg_val |= (pclk_div << 4);
DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
}
}
static inline int dsi_pll_get_pclk_div(struct dsi_pll_resource *pll)
{
u32 reg_val;
reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
return ((reg_val & 0xF0) >> 4);
}
static struct dsi_pll_resource *pll_rsc_db[DSI_PLL_MAX];
static struct dsi_pll_5nm plls[DSI_PLL_MAX];
static void dsi_pll_config_slave(struct dsi_pll_resource *rsc)
{
u32 reg;
struct dsi_pll_resource *orsc = pll_rsc_db[DSI_PLL_1];
if (!rsc)
return;
/* Only DSI PLL0 can act as a master */
if (rsc->index != DSI_PLL_0)
return;
/* default configuration: source is either internal or ref clock */
rsc->slave = NULL;
if (!orsc) {
DSI_PLL_WARN(rsc,
"slave PLL unavilable, assuming standalone config\n");
return;
}
/* check to see if the source of DSI1 PLL bitclk is set to external */
reg = DSI_PLL_REG_R(orsc->phy_base, PHY_CMN_CLK_CFG1);
reg &= (BIT(2) | BIT(3));
if (reg == 0x04)
rsc->slave = pll_rsc_db[DSI_PLL_1]; /* external source */
DSI_PLL_DBG(rsc, "Slave PLL %s\n",
rsc->slave ? "configured" : "absent");
}
static void dsi_pll_setup_config(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
struct dsi_pll_config *config = &pll->pll_configuration;
config->ref_freq = 19200000;
config->output_div = 1;
config->dec_bits = 8;
config->frac_bits = 18;
config->lock_timer = 64;
config->ssc_freq = 31500;
config->ssc_offset = 4800;
config->ssc_adj_per = 2;
config->thresh_cycles = 32;
config->refclk_cycles = 256;
config->div_override = false;
config->ignore_frac = false;
config->disable_prescaler = false;
config->enable_ssc = rsc->ssc_en;
config->ssc_center = rsc->ssc_center;
if (config->enable_ssc) {
if (rsc->ssc_freq)
config->ssc_freq = rsc->ssc_freq;
if (rsc->ssc_ppm)
config->ssc_offset = rsc->ssc_ppm;
}
}
static void dsi_pll_calc_dec_frac(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u64 fref = rsc->vco_ref_clk_rate;
u64 pll_freq;
u64 divider;
u64 dec, dec_multiple;
u32 frac;
u64 multiplier;
pll_freq = rsc->vco_current_rate;
if (config->disable_prescaler)
divider = fref;
else
divider = fref * 2;
multiplier = 1 << config->frac_bits;
dec_multiple = div_u64(pll_freq * multiplier, divider);
div_u64_rem(dec_multiple, multiplier, &frac);
dec = div_u64(dec_multiple, multiplier);
switch (rsc->pll_revision) {
case DSI_PLL_5NM:
default:
if (pll_freq <= 1000000000)
regs->pll_clock_inverters = 0xA0;
else if (pll_freq <= 2500000000)
regs->pll_clock_inverters = 0x20;
else if (pll_freq <= 3500000000)
regs->pll_clock_inverters = 0x00;
else
regs->pll_clock_inverters = 0x40;
break;
}
regs->pll_lockdet_rate = config->lock_timer;
regs->decimal_div_start = dec;
regs->frac_div_start_low = (frac & 0xff);
regs->frac_div_start_mid = (frac & 0xff00) >> 8;
regs->frac_div_start_high = (frac & 0x30000) >> 16;
regs->pll_prop_gain_rate = 10;
}
static void dsi_pll_calc_ssc(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u32 ssc_per;
u32 ssc_mod;
u64 ssc_step_size;
u64 frac;
if (!config->enable_ssc) {
DSI_PLL_DBG(rsc, "SSC not enabled\n");
return;
}
ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
ssc_per -= ssc_mod;
frac = regs->frac_div_start_low |
(regs->frac_div_start_mid << 8) |
(regs->frac_div_start_high << 16);
ssc_step_size = regs->decimal_div_start;
ssc_step_size *= (1 << config->frac_bits);
ssc_step_size += frac;
ssc_step_size *= config->ssc_offset;
ssc_step_size *= (config->ssc_adj_per + 1);
ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
regs->ssc_div_per_low = ssc_per & 0xFF;
regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
DSI_PLL_DBG(rsc, "SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
regs->decimal_div_start, frac, config->frac_bits);
DSI_PLL_DBG(rsc, "SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
}
static void dsi_pll_ssc_commit(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
void __iomem *pll_base = rsc->pll_base;
struct dsi_pll_regs *regs = &pll->reg_setup;
if (pll->pll_configuration.enable_ssc) {
DSI_PLL_DBG(rsc, "SSC is enabled\n");
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1,
regs->ssc_stepsize_low);
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1,
regs->ssc_stepsize_high);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1,
regs->ssc_div_per_low);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1,
regs->ssc_div_per_high);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1,
regs->ssc_adjper_low);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1,
regs->ssc_adjper_high);
DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL,
SSC_EN | regs->ssc_control);
}
}
static void dsi_pll_config_hzindep_reg(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
void __iomem *pll_base = rsc->pll_base;
u64 vco_rate = rsc->vco_current_rate;
switch (rsc->pll_revision) {
case DSI_PLL_5NM:
default:
if (vco_rate < 3100000000)
DSI_PLL_REG_W(pll_base,
PLL_ANALOG_CONTROLS_FIVE_1, 0x01);
else
DSI_PLL_REG_W(pll_base,
PLL_ANALOG_CONTROLS_FIVE_1, 0x03);
if (vco_rate < 1520000000)
DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x08);
else if (vco_rate < 2990000000)
DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00);
else
DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x01);
break;
}
DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE, 0x01);
DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_TWO, 0x03);
DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_THREE, 0x00);
DSI_PLL_REG_W(pll_base, PLL_DSM_DIVIDER, 0x00);
DSI_PLL_REG_W(pll_base, PLL_FEEDBACK_DIVIDER, 0x4e);
DSI_PLL_REG_W(pll_base, PLL_CALIBRATION_SETTINGS, 0x40);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
DSI_PLL_REG_W(pll_base, PLL_OUTDIV, 0x00);
DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00);
DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0xc0);
DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x80);
DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x29);
DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x2f);
DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x2a);
switch (rsc->pll_revision) {
case DSI_PLL_5NM:
default:
DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x3F);
break;
}
DSI_PLL_REG_W(pll_base, PLL_PERF_OPTIMIZE, 0x22);
if (rsc->slave)
DSI_PLL_REG_W(rsc->slave->pll_base, PLL_PERF_OPTIMIZE, 0x22);
}
static void dsi_pll_init_val(struct dsi_pll_resource *rsc)
{
void __iomem *pll_base = rsc->pll_base;
DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_ONE, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS, 0x0000003F);
DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS_TWO, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FOUR, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_CONTROLS, 0x00000080);
DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FREQ_UPDATE_CONTROL_OVERRIDES, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_CMODE, 0x00000010);
DSI_PLL_REG_W(pll_base, PLL_PSM_CTRL, 0x00000020);
DSI_PLL_REG_W(pll_base, PLL_RSM_CTRL, 0x00000010);
DSI_PLL_REG_W(pll_base, PLL_VCO_TUNE_MAP, 0x00000002);
DSI_PLL_REG_W(pll_base, PLL_PLL_CNTRL, 0x0000001C);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_HIGH, 0x00000002);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS, 0x00000020);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MIN, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MAX, 0x000000FF);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_PFILT, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_IFILT, 0x0000000A);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_TWO, 0x00000025);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0x000000BA);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_FOUR, 0x0000004F);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_HIGH, 0x0000000A);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0000000C);
DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_THRESH, 0x00000020);
DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_LOW, 0x000000FF);
DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_HIGH, 0x00000010);
DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_LOW, 0x00000046);
DSI_PLL_REG_W(pll_base, PLL_PLL_GAIN, 0x00000054);
DSI_PLL_REG_W(pll_base, PLL_ICODE_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_ICODE_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_LOCKDET, 0x00000040);
DSI_PLL_REG_W(pll_base, PLL_FASTLOCK_CONTROL, 0x00000004);
DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_ONE, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_TWO, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x00000010);
DSI_PLL_REG_W(pll_base, PLL_RATE_CHANGE, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS, 0x00000008);
DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x00000008);
DSI_PLL_REG_W(pll_base, PLL_DEC_FRAC_MUXES, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_MASH_CONTROL, 0x00000003);
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_MUX_CONTROL, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PLL_OUTDIV_RATE, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, 0x00000040);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_2, 0x00000040);
DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0000000C);
DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_2, 0x0000000A);
DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0x000000C0);
DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x00000054);
DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_2, 0x00000054);
DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x0000004C);
DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_2, 0x0000004C);
DSI_PLL_REG_W(pll_base, PLL_PLL_FASTLOCK_EN_BAND, 0x00000003);
DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MID, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MUX, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x00000080);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x00000006);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_MIN_DELAY, 0x00000019);
DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SPARE_AND_JPC_OVERRIDES, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_1, 0x00000040);
DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_2, 0x00000020);
DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_CTRL_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_ONE, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_TWO, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FD_OUT_LOW, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FD_OUT_HIGH, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_STATUS_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PLL_MISC_CONFIG, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FLL_CONFIG, 0x00000002);
DSI_PLL_REG_W(pll_base, PLL_FLL_FREQ_ACQ_TIME, 0x00000011);
DSI_PLL_REG_W(pll_base, PLL_FLL_CODE0, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FLL_CODE1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN0, 0x00000080);
DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_SW_RESET, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_FAST_PWRUP, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_LOCKTIME0, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_LOCKTIME1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS_SEL, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS0, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS3, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_ANALOG_FLL_CONTROL_OVERRIDES, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE0_STATUS, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE1_STATUS, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_RESET_SM_STATUS, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_TDC_OFFSET, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_PS3_PWRDOWN_CONTROLS, 0x0000001D);
DSI_PLL_REG_W(pll_base, PLL_PS4_PWRDOWN_CONTROLS, 0x0000001C);
DSI_PLL_REG_W(pll_base, PLL_PLL_RST_CONTROLS, 0x000000FF);
DSI_PLL_REG_W(pll_base, PLL_GEAR_BAND_SELECT_CONTROLS, 0x00000022);
DSI_PLL_REG_W(pll_base, PLL_PSM_CLK_CONTROLS, 0x00000009);
DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1, 0x00000040);
DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_2, 0x00000000);
DSI_PLL_REG_W(pll_base, PLL_CMODE_1, 0x00000010);
DSI_PLL_REG_W(pll_base, PLL_CMODE_2, 0x00000010);
DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE_2, 0x00000003);
}
static void dsi_pll_detect_phy_mode(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
u32 reg_val;
reg_val = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_GLBL_CTRL);
pll->cphy_enabled = (reg_val & BIT(6)) ? true : false;
}
static void dsi_pll_commit(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
void __iomem *pll_base = rsc->pll_base;
struct dsi_pll_regs *reg = &pll->reg_setup;
DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x12);
DSI_PLL_REG_W(pll_base, PLL_DECIMAL_DIV_START_1,
reg->decimal_div_start);
DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_LOW_1,
reg->frac_div_start_low);
DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_MID_1,
reg->frac_div_start_mid);
DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_HIGH_1,
reg->frac_div_start_high);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, reg->pll_lockdet_rate);
DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x06);
DSI_PLL_REG_W(pll_base, PLL_CMODE_1,
pll->cphy_enabled ? 0x00 : 0x10);
DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1,
reg->pll_clock_inverters);
}
static int dsi_pll_5nm_lock_status(struct dsi_pll_resource *pll)
{
int rc;
u32 status;
u32 const delay_us = 100;
u32 const timeout_us = 5000;
rc = readl_poll_timeout_atomic(pll->pll_base + PLL_COMMON_STATUS_ONE,
status,
((status & BIT(0)) > 0),
delay_us,
timeout_us);
if (rc)
DSI_PLL_ERR(pll, "lock failed, status=0x%08x\n", status);
return rc;
}
static void dsi_pll_disable_pll_bias(struct dsi_pll_resource *rsc)
{
u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0);
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data & ~BIT(5));
ndelay(250);
}
static void dsi_pll_enable_pll_bias(struct dsi_pll_resource *rsc)
{
u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data | BIT(5));
DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0xc0);
ndelay(250);
}
static void dsi_pll_disable_global_clk(struct dsi_pll_resource *rsc)
{
u32 data;
data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data & ~BIT(5)));
}
static void dsi_pll_enable_global_clk(struct dsi_pll_resource *rsc)
{
u32 data;
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_3, 0x04);
data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
/* Turn on clk_en_sel bit prior to resync toggle fifo */
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data | BIT(5) |
BIT(4)));
}
static void dsi_pll_phy_dig_reset(struct dsi_pll_resource *rsc)
{
/*
* Reset the PHY digital domain. This would be needed when
* coming out of a CX or analog rail power collapse while
* ensuring that the pads maintain LP00 or LP11 state
*/
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
wmb(); /* Ensure that the reset is asserted */
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
wmb(); /* Ensure that the reset is deasserted */
}
static void dsi_pll_disable_sub(struct dsi_pll_resource *rsc)
{
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_RBUF_CTRL, 0);
dsi_pll_disable_pll_bias(rsc);
}
static void dsi_pll_unprepare_stub(struct clk_hw *hw)
{
return;
}
static int dsi_pll_prepare_stub(struct clk_hw *hw)
{
return 0;
}
static int dsi_pll_set_rate_stub(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return 0;
}
static long dsi_pll_byteclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
struct dsi_pll_resource *pll_res = pll->priv;
return pll_res->byteclk_rate;
}
static long dsi_pll_pclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
struct dsi_pll_resource *pll_res = pll->priv;
return pll_res->pclk_rate;
}
static unsigned long dsi_pll_vco_recalc_rate(struct dsi_pll_resource *pll)
{
u64 ref_clk;
u64 multiplier;
u32 frac;
u32 dec;
u32 pll_post_div;
u64 pll_freq, tmp64;
u64 vco_rate;
struct dsi_pll_5nm *pll_5nm;
struct dsi_pll_config *config;
ref_clk = pll->vco_ref_clk_rate;
pll_5nm = pll->priv;
if (!pll_5nm) {
DSI_PLL_ERR(pll, "pll configuration not found\n");
return -EINVAL;
}
config = &pll_5nm->pll_configuration;
dec = DSI_PLL_REG_R(pll->pll_base, PLL_DECIMAL_DIV_START_1);
dec &= 0xFF;
frac = DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_LOW_1);
frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_MID_1) & 0xFF)
<< 8);
frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_HIGH_1) & 0x3)
<< 16);
multiplier = 1 << config->frac_bits;
pll_freq = dec * (ref_clk * 2);
tmp64 = (ref_clk * 2 * frac);
pll_freq += div_u64(tmp64, multiplier);
pll_post_div = dsi_pll_get_pll_post_div(pll);
vco_rate = div_u64(pll_freq, pll_post_div);
return vco_rate;
}
static unsigned long dsi_pll_byteclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_clk *byte_pll = to_pll_clk_hw(hw);
struct dsi_pll_resource *pll = NULL;
u64 vco_rate = 0;
u64 byte_rate = 0;
u32 phy_post_div;
if (!byte_pll->priv) {
DSI_PLL_INFO(pll, "pll priv is null\n");
return 0;
}
pll = byte_pll->priv;
/*
* In the case when byteclk rate is set, the recalculation function
* should return the current rate. Recalc rate is also called during
* clock registration, during which the function should reverse
* calculate clock rates that were set as part of UEFI.
*/
if (pll->byteclk_rate != 0) {
DSI_PLL_DBG(pll, "returning byte clk rate = %lld %lld\n",
pll->byteclk_rate, parent_rate);
return pll->byteclk_rate;
}
vco_rate = dsi_pll_vco_recalc_rate(pll);
phy_post_div = dsi_pll_get_phy_post_div(pll);
byte_rate = div_u64(vco_rate, phy_post_div);
if (pll->type == DSI_PHY_TYPE_DPHY)
byte_rate = div_u64(byte_rate, 8);
else
byte_rate = div_u64(byte_rate, 7);
return byte_rate;
}
static unsigned long dsi_pll_pclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_clk *pix_pll = to_pll_clk_hw(hw);
struct dsi_pll_resource *pll = NULL;
u64 vco_rate = 0;
u64 pclk_rate = 0;
u32 phy_post_div, pclk_div;
if (!pix_pll->priv) {
DSI_PLL_INFO(pll, "pll priv is null\n");
return 0;
}
pll = pix_pll->priv;
/*
* In the case when pclk rate is set, the recalculation function
* should return the current rate. Recalc rate is also called during
* clock registration, during which the function should reverse
* calculate the clock rates that were set as part of UEFI.
*/
if (pll->pclk_rate != 0) {
DSI_PLL_DBG(pll, "returning pclk rate = %lld %lld\n",
pll->pclk_rate, parent_rate);
return pll->pclk_rate;
}
vco_rate = dsi_pll_vco_recalc_rate(pll);
if (pll->type == DSI_PHY_TYPE_DPHY) {
phy_post_div = dsi_pll_get_phy_post_div(pll);
pclk_rate = div_u64(vco_rate, phy_post_div);
pclk_rate = div_u64(pclk_rate, 2);
pclk_div = dsi_pll_get_pclk_div(pll);
pclk_rate = div_u64(pclk_rate, pclk_div);
} else {
pclk_rate = vco_rate * 2;
pclk_rate = div_u64(pclk_rate, 7);
pclk_div = dsi_pll_get_pclk_div(pll);
pclk_rate = div_u64(pclk_rate, pclk_div);
}
return pclk_rate;
}
static const struct clk_ops pll_byteclk_ops = {
.recalc_rate = dsi_pll_byteclk_recalc_rate,
.set_rate = dsi_pll_set_rate_stub,
.round_rate = dsi_pll_byteclk_round_rate,
.prepare = dsi_pll_prepare_stub,
.unprepare = dsi_pll_unprepare_stub,
};
static const struct clk_ops pll_pclk_ops = {
.recalc_rate = dsi_pll_pclk_recalc_rate,
.set_rate = dsi_pll_set_rate_stub,
.round_rate = dsi_pll_pclk_round_rate,
.prepare = dsi_pll_prepare_stub,
.unprepare = dsi_pll_unprepare_stub,
};
/*
* Clock tree for generating DSI byte and pclk.
*
*
* +-------------------------------+ +----------------------------+
* | dsi_phy_pll_out_byteclk | | dsi_phy_pll_out_dsiclk |
* +---------------+---------------+ +--------------+-------------+
* | |
* | |
* v v
* dsi_byte_clk dsi_pclk
*
*
*/
static struct dsi_pll_clk dsi0_phy_pll_out_byteclk = {
.hw.init = &(struct clk_init_data){
.name = "dsi0_phy_pll_out_byteclk",
.ops = &pll_byteclk_ops,
},
};
static struct dsi_pll_clk dsi1_phy_pll_out_byteclk = {
.hw.init = &(struct clk_init_data){
.name = "dsi1_phy_pll_out_byteclk",
.ops = &pll_byteclk_ops,
},
};
static struct dsi_pll_clk dsi0_phy_pll_out_dsiclk = {
.hw.init = &(struct clk_init_data){
.name = "dsi0_phy_pll_out_dsiclk",
.ops = &pll_pclk_ops,
},
};
static struct dsi_pll_clk dsi1_phy_pll_out_dsiclk = {
.hw.init = &(struct clk_init_data){
.name = "dsi1_phy_pll_out_dsiclk",
.ops = &pll_pclk_ops,
},
};
int dsi_pll_clock_register_5nm(struct platform_device *pdev,
struct dsi_pll_resource *pll_res)
{
int rc = 0, ndx;
struct clk *clk;
struct clk_onecell_data *clk_data;
int num_clks = 4;
if (!pdev || !pdev->dev.of_node ||
!pll_res || !pll_res->pll_base || !pll_res->phy_base) {
DSI_PLL_ERR(pll_res, "Invalid params\n");
return -EINVAL;
}
ndx = pll_res->index;
if (ndx >= DSI_PLL_MAX) {
DSI_PLL_ERR(pll_res, "not supported\n");
return -EINVAL;
}
pll_rsc_db[ndx] = pll_res;
plls[ndx].rsc = pll_res;
pll_res->priv = &plls[ndx];
pll_res->vco_delay = VCO_DELAY_USEC;
pll_res->vco_min_rate = 600000000;
pll_res->vco_ref_clk_rate = 19200000UL;
dsi_pll_setup_config(pll_res->priv, pll_res);
clk_data = devm_kzalloc(&pdev->dev, sizeof(struct clk_onecell_data),
GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->clks = devm_kzalloc(&pdev->dev, (num_clks *
sizeof(struct clk *)), GFP_KERNEL);
if (!clk_data->clks)
return -ENOMEM;
clk_data->clk_num = num_clks;
/* Establish client data */
if (ndx == 0) {
dsi0_phy_pll_out_byteclk.priv = pll_res;
dsi0_phy_pll_out_dsiclk.priv = pll_res;
clk = devm_clk_register(&pdev->dev,
&dsi0_phy_pll_out_byteclk.hw);
if (IS_ERR(clk)) {
DSI_PLL_ERR(pll_res,
"clk registration failed for DSI clock\n");
rc = -EINVAL;
goto clk_register_fail;
}
clk_data->clks[0] = clk;
clk = devm_clk_register(&pdev->dev,
&dsi0_phy_pll_out_dsiclk.hw);
if (IS_ERR(clk)) {
DSI_PLL_ERR(pll_res,
"clk registration failed for DSI clock\n");
rc = -EINVAL;
goto clk_register_fail;
}
clk_data->clks[1] = clk;
rc = of_clk_add_provider(pdev->dev.of_node,
of_clk_src_onecell_get, clk_data);
} else {
dsi1_phy_pll_out_byteclk.priv = pll_res;
dsi1_phy_pll_out_dsiclk.priv = pll_res;
clk = devm_clk_register(&pdev->dev,
&dsi1_phy_pll_out_byteclk.hw);
if (IS_ERR(clk)) {
DSI_PLL_ERR(pll_res,
"clk registration failed for DSI clock\n");
rc = -EINVAL;
goto clk_register_fail;
}
clk_data->clks[2] = clk;
clk = devm_clk_register(&pdev->dev,
&dsi1_phy_pll_out_dsiclk.hw);
if (IS_ERR(clk)) {
DSI_PLL_ERR(pll_res,
"clk registration failed for DSI clock\n");
rc = -EINVAL;
goto clk_register_fail;
}
clk_data->clks[3] = clk;
rc = of_clk_add_provider(pdev->dev.of_node,
of_clk_src_onecell_get, clk_data);
}
if (!rc) {
DSI_PLL_INFO(pll_res, "Registered clocks successfully\n");
return rc;
}
clk_register_fail:
return rc;
}
static int dsi_pll_5nm_set_byteclk_div(struct dsi_pll_resource *pll,
bool commit)
{
int i = 0;
int table_size;
u32 pll_post_div = 0, phy_post_div = 0;
struct dsi_pll_div_table *table;
u32 bitclk_rate;
if (pll->type == DSI_PHY_TYPE_DPHY) {
bitclk_rate = pll->byteclk_rate * 8;
table_size = ARRAY_SIZE(pll_5nm_dphy);
table = pll_5nm_dphy;
} else {
bitclk_rate = pll->byteclk_rate * 7;
table_size = ARRAY_SIZE(pll_5nm_cphy);
table = pll_5nm_cphy;
}
for (i = 0; i < table_size; i++) {
if ((table[i].min_hz <= bitclk_rate) &&
(bitclk_rate <= table[i].max_hz)) {
pll_post_div = table[i].pll_div;
phy_post_div = table[i].phy_div;
break;
}
}
DSI_PLL_DBG(pll, "bit clk rate: %llu, pll_post_div: %d, phy_post_div: %d\n",
bitclk_rate, pll_post_div, phy_post_div);
if (commit) {
dsi_pll_set_pll_post_div(pll, pll_post_div);
dsi_pll_set_phy_post_div(pll, phy_post_div);
}
pll->vco_rate = bitclk_rate * pll_post_div * phy_post_div;
return 0;
}
static int dsi_pll_5nm_set_pclk_div(struct dsi_pll_resource *pll, bool commit)
{
int dsi_clk = 0, pclk_div = 0;
u64 pclk_src_rate;
u32 pll_post_div;
u32 phy_post_div;
pll_post_div = dsi_pll_get_pll_post_div(pll);
pclk_src_rate = div_u64(pll->vco_rate, pll_post_div);
if (pll->type == DSI_PHY_TYPE_DPHY) {
dsi_clk = 0x1;
phy_post_div = dsi_pll_get_phy_post_div(pll);
pclk_src_rate = div_u64(pclk_src_rate, phy_post_div);
pclk_src_rate = div_u64(pclk_src_rate, 2);
} else {
dsi_clk = 0x3;
pclk_src_rate *= 2;
pclk_src_rate = div_u64(pclk_src_rate, 7);
}
pclk_div = DIV_ROUND_CLOSEST(pclk_src_rate, pll->pclk_rate);
DSI_PLL_DBG(pll, "pclk rate: %llu, dsi_clk: %d, pclk_div: %d\n",
pll->pclk_rate, dsi_clk, pclk_div);
if (commit) {
dsi_pll_set_dsi_clk(pll, dsi_clk);
dsi_pll_set_pclk_div(pll, pclk_div);
}
return 0;
}
static int dsi_pll_5nm_vco_set_rate(struct dsi_pll_resource *pll_res)
{
struct dsi_pll_5nm *pll;
pll = pll_res->priv;
if (!pll) {
DSI_PLL_ERR(pll_res, "pll configuration not found\n");
return -EINVAL;
}
DSI_PLL_DBG(pll_res, "rate=%lu\n", pll_res->vco_rate);
pll_res->vco_current_rate = pll_res->vco_rate;
dsi_pll_detect_phy_mode(pll, pll_res);
dsi_pll_config_slave(pll_res);
dsi_pll_calc_dec_frac(pll, pll_res);
dsi_pll_calc_ssc(pll, pll_res);
dsi_pll_commit(pll, pll_res);
dsi_pll_config_hzindep_reg(pll, pll_res);
dsi_pll_ssc_commit(pll, pll_res);
/* flush, ensure all register writes are done*/
wmb();
return 0;
}
static int dsi_pll_read_stored_trim_codes(struct dsi_pll_resource *pll_res,
unsigned long vco_clk_rate)
{
int i;
bool found = false;
if (!pll_res->dfps)
return -EINVAL;
for (i = 0; i < pll_res->dfps->vco_rate_cnt; i++) {
struct dfps_codes_info *codes_info =
&pll_res->dfps->codes_dfps[i];
DSI_PLL_DBG(pll_res, "valid=%d vco_rate=%d, code %d %d %d\n",
codes_info->is_valid, codes_info->clk_rate,
codes_info->pll_codes.pll_codes_1,
codes_info->pll_codes.pll_codes_2,
codes_info->pll_codes.pll_codes_3);
if (vco_clk_rate != codes_info->clk_rate &&
codes_info->is_valid)
continue;
pll_res->cache_pll_trim_codes[0] =
codes_info->pll_codes.pll_codes_1;
pll_res->cache_pll_trim_codes[1] =
codes_info->pll_codes.pll_codes_2;
pll_res->cache_pll_trim_codes[2] =
codes_info->pll_codes.pll_codes_3;
found = true;
break;
}
if (!found)
return -EINVAL;
DSI_PLL_DBG(pll_res, "trim_code_0=0x%x trim_code_1=0x%x trim_code_2=0x%x\n",
pll_res->cache_pll_trim_codes[0],
pll_res->cache_pll_trim_codes[1],
pll_res->cache_pll_trim_codes[2]);
return 0;
}
static void dsi_pll_5nm_dynamic_refresh(struct dsi_pll_5nm *pll,
struct dsi_pll_resource *rsc)
{
u32 data;
u32 offset = DSI_PHY_TO_PLL_OFFSET;
u32 upper_addr = 0;
u32 upper_addr2 = 0;
struct dsi_pll_regs *reg = &pll->reg_setup;
data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
data &= ~BIT(5);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL0,
PHY_CMN_CLK_CFG1, PHY_CMN_PLL_CNTRL, data, 0);
upper_addr |= (upper_8_bit(PHY_CMN_CLK_CFG1) << 0);
upper_addr |= (upper_8_bit(PHY_CMN_PLL_CNTRL) << 1);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL1,
PHY_CMN_RBUF_CTRL,
(PLL_CORE_INPUT_OVERRIDE + offset),
0, 0x12);
upper_addr |= (upper_8_bit(PHY_CMN_RBUF_CTRL) << 2);
upper_addr |= (upper_8_bit(PLL_CORE_INPUT_OVERRIDE + offset) << 3);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL2,
(PLL_DECIMAL_DIV_START_1 + offset),
(PLL_FRAC_DIV_START_LOW_1 + offset),
reg->decimal_div_start, reg->frac_div_start_low);
upper_addr |= (upper_8_bit(PLL_DECIMAL_DIV_START_1 + offset) << 4);
upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_LOW_1 + offset) << 5);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL3,
(PLL_FRAC_DIV_START_MID_1 + offset),
(PLL_FRAC_DIV_START_HIGH_1 + offset),
reg->frac_div_start_mid, reg->frac_div_start_high);
upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_MID_1 + offset) << 6);
upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_HIGH_1 + offset) << 7);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL4,
(PLL_SYSTEM_MUXES + offset),
(PLL_PLL_LOCKDET_RATE_1 + offset),
0xc0, 0x10);
upper_addr |= (upper_8_bit(PLL_SYSTEM_MUXES + offset) << 8);
upper_addr |= (upper_8_bit(PLL_PLL_LOCKDET_RATE_1 + offset) << 9);
data = DSI_PLL_REG_R(rsc->pll_base, PLL_PLL_OUTDIV_RATE) & 0x03;
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL5,
(PLL_PLL_OUTDIV_RATE + offset),
(PLL_PLL_LOCK_DELAY + offset),
data, 0x06);
upper_addr |= (upper_8_bit(PLL_PLL_OUTDIV_RATE + offset) << 10);
upper_addr |= (upper_8_bit(PLL_PLL_LOCK_DELAY + offset) << 11);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL6,
(PLL_CMODE_1 + offset),
(PLL_CLOCK_INVERTERS_1 + offset),
pll->cphy_enabled ? 0x00 : 0x10,
reg->pll_clock_inverters);
upper_addr |= (upper_8_bit(PLL_CMODE_1 + offset) << 12);
upper_addr |= (upper_8_bit(PLL_CLOCK_INVERTERS_1 + offset) << 13);
data = DSI_PLL_REG_R(rsc->pll_base, PLL_VCO_CONFIG_1);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL7,
(PLL_ANALOG_CONTROLS_FIVE_1 + offset),
(PLL_VCO_CONFIG_1 + offset),
0x01, data);
upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE_1 + offset) << 14);
upper_addr |= (upper_8_bit(PLL_VCO_CONFIG_1 + offset) << 15);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL8,
(PLL_ANALOG_CONTROLS_FIVE + offset),
(PLL_ANALOG_CONTROLS_TWO + offset), 0x01, 0x03);
upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE + offset) << 16);
upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_TWO + offset) << 17);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL9,
(PLL_ANALOG_CONTROLS_THREE + offset),
(PLL_DSM_DIVIDER + offset),
rsc->cache_pll_trim_codes[2], 0x00);
upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_THREE + offset) << 18);
upper_addr |= (upper_8_bit(PLL_DSM_DIVIDER + offset) << 19);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL10,
(PLL_FEEDBACK_DIVIDER + offset),
(PLL_CALIBRATION_SETTINGS + offset), 0x4E, 0x40);
upper_addr |= (upper_8_bit(PLL_FEEDBACK_DIVIDER + offset) << 20);
upper_addr |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 21);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL11,
(PLL_BAND_SEL_CAL_SETTINGS_THREE + offset),
(PLL_FREQ_DETECT_SETTINGS_ONE + offset), 0xBA, 0x0C);
upper_addr |= (upper_8_bit(PLL_BAND_SEL_CAL_SETTINGS_THREE + offset)
<< 22);
upper_addr |= (upper_8_bit(PLL_FREQ_DETECT_SETTINGS_ONE + offset)
<< 23);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL12,
(PLL_OUTDIV + offset),
(PLL_CORE_OVERRIDE + offset), 0, 0);
upper_addr |= (upper_8_bit(PLL_OUTDIV + offset) << 24);
upper_addr |= (upper_8_bit(PLL_CORE_OVERRIDE + offset) << 25);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL13,
(PLL_PLL_DIGITAL_TIMERS_TWO + offset),
(PLL_PLL_PROP_GAIN_RATE_1 + offset),
0x08, reg->pll_prop_gain_rate);
upper_addr |= (upper_8_bit(PLL_PLL_DIGITAL_TIMERS_TWO + offset) << 26);
upper_addr |= (upper_8_bit(PLL_PLL_PROP_GAIN_RATE_1 + offset) << 27);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL14,
(PLL_PLL_BAND_SEL_RATE_1 + offset),
(PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset),
0xC0, 0x82);
upper_addr |= (upper_8_bit(PLL_PLL_BAND_SEL_RATE_1 + offset) << 28);
upper_addr |= (upper_8_bit(PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset)
<< 29);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL15,
(PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset),
(PLL_PLL_LOCK_OVERRIDE + offset),
0x4c, 0x80);
upper_addr |= (upper_8_bit(PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset)
<< 30);
upper_addr |= (upper_8_bit(PLL_PLL_LOCK_OVERRIDE + offset) << 31);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL16,
(PLL_PFILT + offset),
(PLL_IFILT + offset),
0x29, 0x3f);
upper_addr2 |= (upper_8_bit(PLL_PFILT + offset) << 0);
upper_addr2 |= (upper_8_bit(PLL_IFILT + offset) << 1);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL17,
(PLL_SYSTEM_MUXES + offset),
(PLL_CALIBRATION_SETTINGS + offset),
0xe0, 0x44);
upper_addr2 |= (upper_8_bit(PLL_BAND_SEL_CAL + offset) << 2);
upper_addr2 |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 3);
data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG0);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL18,
PHY_CMN_CTRL_2, PHY_CMN_CLK_CFG0, 0x40, data);
if (rsc->slave)
DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
DSI_DYNAMIC_REFRESH_PLL_CTRL10,
PHY_CMN_CLK_CFG0, PHY_CMN_CTRL_0,
data, 0x7f);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL27,
PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL28,
PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL29,
PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1) | BIT(5);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL30,
PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL, data, 0x01);
DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL31,
PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1, data, data);
if (rsc->slave) {
data = DSI_PLL_REG_R(rsc->slave->phy_base, PHY_CMN_CLK_CFG1) |
BIT(5);
DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
DSI_DYNAMIC_REFRESH_PLL_CTRL30,
PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL,
data, 0x01);
DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
DSI_DYNAMIC_REFRESH_PLL_CTRL31,
PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1,
data, data);
}
DSI_PLL_REG_W(rsc->dyn_pll_base,
DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR, upper_addr);
DSI_PLL_REG_W(rsc->dyn_pll_base,
DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR2, upper_addr2);
wmb(); /* commit register writes */
}
static int dsi_pll_5nm_dynamic_clk_vco_set_rate(struct dsi_pll_resource *rsc)
{
int rc;
struct dsi_pll_5nm *pll;
u32 rate;
if (!rsc) {
DSI_PLL_ERR(rsc, "pll resource not found\n");
return -EINVAL;
}
rate = rsc->vco_rate;
pll = rsc->priv;
if (!pll) {
DSI_PLL_ERR(rsc, "pll configuration not found\n");
return -EINVAL;
}
rc = dsi_pll_read_stored_trim_codes(rsc, rate);
if (rc) {
DSI_PLL_ERR(rsc, "cannot find pll codes rate=%ld\n", rate);
return -EINVAL;
}
DSI_PLL_DBG(rsc, "ndx=%d, rate=%lu\n", rate);
rsc->vco_current_rate = rate;
dsi_pll_config_slave(rsc);
dsi_pll_calc_dec_frac(pll, rsc);
/* program dynamic refresh control registers */
dsi_pll_5nm_dynamic_refresh(pll, rsc);
return 0;
}
static int dsi_pll_5nm_enable(struct dsi_pll_resource *rsc)
{
int rc = 0;
/* Start PLL */
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0x01);
/*
* ensure all PLL configurations are written prior to checking
* for PLL lock.
*/
wmb();
/* Check for PLL lock */
rc = dsi_pll_5nm_lock_status(rsc);
if (rc) {
DSI_PLL_ERR(rsc, "lock failed\n");
goto error;
}
/*
* assert power on reset for PHY digital in case the PLL is
* enabled after CX of analog domain power collapse. This needs
* to be done before enabling the global clk.
*/
dsi_pll_phy_dig_reset(rsc);
if (rsc->slave)
dsi_pll_phy_dig_reset(rsc->slave);
dsi_pll_enable_global_clk(rsc);
if (rsc->slave)
dsi_pll_enable_global_clk(rsc->slave);
/* flush, ensure all register writes are done*/
wmb();
error:
return rc;
}
static int dsi_pll_5nm_disable(struct dsi_pll_resource *rsc)
{
int rc = 0;
DSI_PLL_DBG(rsc, "stop PLL\n");
/*
* To avoid any stray glitches while
* abruptly powering down the PLL
* make sure to gate the clock using
* the clock enable bit before powering
* down the PLL
*/
dsi_pll_disable_global_clk(rsc);
DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0);
dsi_pll_disable_sub(rsc);
if (rsc->slave) {
dsi_pll_disable_global_clk(rsc->slave);
dsi_pll_disable_sub(rsc->slave);
}
/* flush, ensure all register writes are done*/
wmb();
return rc;
}
int dsi_pll_5nm_configure(void *pll, bool commit)
{
int rc = 0;
struct dsi_pll_resource *rsc = (struct dsi_pll_resource *)pll;
/* PLL power needs to be enabled before accessing PLL registers */
dsi_pll_enable_pll_bias(rsc);
if (rsc->slave)
dsi_pll_enable_pll_bias(rsc->slave);
dsi_pll_init_val(rsc);
rc = dsi_pll_5nm_set_byteclk_div(rsc, commit);
if (commit) {
rc = dsi_pll_5nm_set_pclk_div(rsc, commit);
rc = dsi_pll_5nm_vco_set_rate(rsc);
} else {
rc = dsi_pll_5nm_dynamic_clk_vco_set_rate(rsc);
}
return 0;
}
int dsi_pll_5nm_toggle(void *pll, bool prepare)
{
int rc = 0;
struct dsi_pll_resource *pll_res = (struct dsi_pll_resource *)pll;
if (!pll_res) {
DSI_PLL_ERR(pll_res, "dsi pll resources are not available\n");
return -EINVAL;
}
if (prepare) {
rc = dsi_pll_5nm_enable(pll_res);
if (rc)
DSI_PLL_ERR(pll_res, "enable failed: %d\n", rc);
} else {
rc = dsi_pll_5nm_disable(pll_res);
if (rc)
DSI_PLL_ERR(pll_res, "disable failed: %d\n", rc);
}
return rc;
}