Files
android_kernel_samsung_sm86…/msm/synx/synx.c

2947 righe
74 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/atomic.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/random.h>
#include <linux/remoteproc/qcom_rproc.h>
#include <linux/slab.h>
#include <linux/sync_file.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include "synx_debugfs.h"
#include "synx_private.h"
#include "synx_util.h"
struct synx_device *synx_dev;
static atomic64_t synx_counter = ATOMIC64_INIT(1);
void synx_external_callback(s32 sync_obj, int status, void *data)
{
struct synx_signal_cb *signal_cb = data;
if (IS_ERR_OR_NULL(signal_cb)) {
dprintk(SYNX_ERR,
"invalid payload from external obj %d [%d]\n",
sync_obj, status);
return;
}
signal_cb->status = status;
signal_cb->ext_sync_id = sync_obj;
signal_cb->flag = SYNX_SIGNAL_FROM_CALLBACK;
dprintk(SYNX_DBG,
"external callback from %d on handle %u\n",
sync_obj, signal_cb->handle);
/*
* invoke the handler directly as external callback
* is invoked from separate task.
* avoids creation of separate task again.
*/
synx_signal_handler(&signal_cb->cb_dispatch);
}
EXPORT_SYMBOL(synx_external_callback);
bool synx_fence_enable_signaling(struct dma_fence *fence)
{
return true;
}
const char *synx_fence_driver_name(struct dma_fence *fence)
{
return "Global Synx driver";
}
void synx_fence_release(struct dma_fence *fence)
{
/* release the memory allocated during create */
kfree(fence->lock);
kfree(fence);
dprintk(SYNX_MEM, "released backing fence %pK\n", fence);
}
EXPORT_SYMBOL(synx_fence_release);
static struct dma_fence_ops synx_fence_ops = {
.wait = dma_fence_default_wait,
.enable_signaling = synx_fence_enable_signaling,
.get_driver_name = synx_fence_driver_name,
.get_timeline_name = synx_fence_driver_name,
.release = synx_fence_release,
};
static int synx_create_sync_fd(struct dma_fence *fence)
{
int fd;
struct sync_file *sync_file;
if (IS_ERR_OR_NULL(fence))
return -SYNX_INVALID;
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0)
return fd;
sync_file = sync_file_create(fence);
if (IS_ERR_OR_NULL(sync_file)) {
dprintk(SYNX_ERR, "error creating sync file\n");
goto err;
}
fd_install(fd, sync_file->file);
return fd;
err:
put_unused_fd(fd);
return -SYNX_INVALID;
}
void *synx_get_fence(struct synx_session *session,
u32 h_synx)
{
struct synx_client *client;
struct synx_handle_coredata *synx_data;
struct synx_coredata *synx_obj;
struct dma_fence *fence = NULL;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return NULL;
synx_data = synx_util_acquire_handle(client, h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj) ||
IS_ERR_OR_NULL(synx_obj->fence)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle access %u\n",
client->id, h_synx);
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
fence = synx_obj->fence;
/* obtain an additional reference to the fence */
dma_fence_get(fence);
mutex_unlock(&synx_obj->obj_lock);
fail:
synx_util_release_handle(synx_data);
synx_put_client(client);
return fence;
}
EXPORT_SYMBOL(synx_get_fence);
static int synx_native_check_bind(struct synx_client *client,
struct synx_create_params *params)
{
int rc;
u32 h_synx;
struct synx_entry_64 *ext_entry;
struct synx_map_entry *entry;
if (IS_ERR_OR_NULL(params->fence))
return -SYNX_INVALID;
ext_entry = synx_util_retrieve_data(params->fence,
synx_util_map_params_to_type(params->flags));
if (IS_ERR_OR_NULL(ext_entry))
return -SYNX_NOENT;
h_synx = ext_entry->data[0];
synx_util_remove_data(params->fence,
synx_util_map_params_to_type(params->flags));
entry = synx_util_get_map_entry(h_synx);
if (IS_ERR_OR_NULL(entry))
/* possible cleanup, retry to alloc new handle */
return -SYNX_NOENT;
rc = synx_util_init_handle(client, entry->synx_obj,
&h_synx, entry);
if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR,
"[sess :%llu] new handle init failed\n",
client->id);
goto fail;
}
*params->h_synx = h_synx;
return SYNX_SUCCESS;
fail:
synx_util_release_map_entry(entry);
return rc;
}
static int synx_native_create_core(struct synx_client *client,
struct synx_create_params *params)
{
int rc;
struct synx_coredata *synx_obj;
struct synx_map_entry *map_entry;
if (IS_ERR_OR_NULL(client) || IS_ERR_OR_NULL(params) ||
IS_ERR_OR_NULL(params->h_synx))
return -SYNX_INVALID;
synx_obj = kzalloc(sizeof(*synx_obj), GFP_KERNEL);
if (IS_ERR_OR_NULL(synx_obj))
return -SYNX_NOMEM;
rc = synx_util_init_coredata(synx_obj, params,
&synx_fence_ops, client->dma_context);
if (rc) {
dprintk(SYNX_ERR,
"[sess :%llu] handle allocation failed\n",
client->id);
kfree(synx_obj);
goto fail;
}
map_entry = synx_util_insert_to_map(synx_obj,
*params->h_synx, 0);
if (IS_ERR_OR_NULL(map_entry)) {
rc = PTR_ERR(map_entry);
synx_util_put_object(synx_obj);
goto fail;
}
rc = synx_util_add_callback(synx_obj, *params->h_synx);
if (rc != SYNX_SUCCESS) {
synx_util_release_map_entry(map_entry);
goto fail;
}
rc = synx_util_init_handle(client, synx_obj,
params->h_synx, map_entry);
if (rc < 0) {
dprintk(SYNX_ERR,
"[sess :%llu] unable to init new handle\n",
client->id);
synx_util_release_map_entry(map_entry);
goto fail;
}
dprintk(SYNX_MEM,
"[sess :%llu] allocated %u, core %pK, fence %pK\n",
client->id, *params->h_synx, synx_obj, synx_obj->fence);
return SYNX_SUCCESS;
fail:
return rc;
}
int synx_create(struct synx_session *session,
struct synx_create_params *params)
{
int rc = -SYNX_NOENT;
struct synx_client *client;
struct synx_external_desc_v2 ext_desc = {0};
if (IS_ERR_OR_NULL(params) || IS_ERR_OR_NULL(params->h_synx) ||
params->flags > SYNX_CREATE_MAX_FLAGS) {
dprintk(SYNX_ERR, "invalid create arguments\n");
return -SYNX_INVALID;
}
if (params->flags & SYNX_CREATE_DMA_FENCE) {
dprintk(SYNX_ERR,
"handle create with native fence not supported\n");
return -SYNX_NOSUPPORT;
}
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
*params->h_synx = 0;
do {
/* create with external fence */
if (!IS_ERR_OR_NULL(params->fence))
rc = synx_native_check_bind(client, params);
if (rc == -SYNX_NOENT) {
rc = synx_native_create_core(client, params);
if (rc == SYNX_SUCCESS &&
!IS_ERR_OR_NULL(params->fence)) {
/* save external fence details */
rc = synx_util_save_data(params->fence,
synx_util_map_params_to_type(params->flags),
*params->h_synx);
if (rc == -SYNX_ALREADY) {
/*
* raced with create on same fence from
* another client. clear the allocated
* handle and retry.
*/
synx_native_release_core(client, *params->h_synx);
*params->h_synx = 0;
rc = -SYNX_NOENT;
continue;
} else if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR,
"allocating handle failed=%d", rc);
synx_native_release_core(client, *params->h_synx);
break;
}
/* bind with external fence */
ext_desc.id = *((u32 *)params->fence);
ext_desc.type = synx_util_map_params_to_type(params->flags);
rc = synx_bind(session, *params->h_synx, ext_desc);
if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR,
"[sess :%llu] bind external fence failed\n",
client->id);
synx_native_release_core(client, *params->h_synx);
goto fail;
}
}
}
if (rc == SYNX_SUCCESS)
dprintk(SYNX_VERB,
"[sess :%llu] handle allocated %u\n",
client->id, *params->h_synx);
break;
} while (true);
fail:
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_create);
int synx_native_signal_core(struct synx_coredata *synx_obj,
u32 status,
bool cb_signal,
u64 ext_sync_id)
{
int rc = 0;
int ret;
u32 i = 0;
u32 idx = 0;
s32 sync_id;
u32 type;
void *data = NULL;
struct synx_bind_desc bind_descs[SYNX_MAX_NUM_BINDINGS];
struct bind_operations *bind_ops = NULL;
if (IS_ERR_OR_NULL(synx_obj))
return -SYNX_INVALID;
synx_util_callback_dispatch(synx_obj, status);
/*
* signal the external bound sync obj/s even if fence signal fails,
* w/ error signal state (set above) to prevent deadlock
*/
if (synx_obj->num_bound_synxs > 0) {
memset(bind_descs, 0,
sizeof(struct synx_bind_desc) * SYNX_MAX_NUM_BINDINGS);
for (i = 0; i < synx_obj->num_bound_synxs; i++) {
/* signal invoked by external sync obj */
if (cb_signal &&
(ext_sync_id ==
synx_obj->bound_synxs[i].external_desc.id)) {
dprintk(SYNX_VERB,
"skipping signaling inbound sync: %llu\n",
ext_sync_id);
type = synx_obj->bound_synxs[i].external_desc.type;
memset(&synx_obj->bound_synxs[i], 0,
sizeof(struct synx_bind_desc));
/* clear the hash table entry */
synx_util_remove_data(&ext_sync_id, type);
continue;
}
memcpy(&bind_descs[idx++],
&synx_obj->bound_synxs[i],
sizeof(struct synx_bind_desc));
/* clear the memory, its been backed up above */
memset(&synx_obj->bound_synxs[i], 0,
sizeof(struct synx_bind_desc));
}
synx_obj->num_bound_synxs = 0;
}
for (i = 0; i < idx; i++) {
sync_id = bind_descs[i].external_desc.id;
data = bind_descs[i].external_data;
type = bind_descs[i].external_desc.type;
bind_ops = synx_util_get_bind_ops(type);
if (IS_ERR_OR_NULL(bind_ops)) {
dprintk(SYNX_ERR,
"invalid bind ops for type: %u\n", type);
kfree(data);
continue;
}
/* clear the hash table entry */
synx_util_remove_data(&sync_id, type);
/*
* we are already signaled, so don't want to
* recursively be signaled
*/
ret = bind_ops->deregister_callback(
synx_external_callback, data, sync_id);
if (ret < 0) {
dprintk(SYNX_ERR,
"deregistration fail on %d, type: %u, err=%d\n",
sync_id, type, ret);
continue;
}
dprintk(SYNX_VERB,
"signal external sync: %d, type: %u, status: %u\n",
sync_id, type, status);
/* optional function to enable external signaling */
if (bind_ops->enable_signaling) {
ret = bind_ops->enable_signaling(sync_id);
if (ret < 0)
dprintk(SYNX_ERR,
"enabling fail on %d, type: %u, err=%d\n",
sync_id, type, ret);
}
ret = bind_ops->signal(sync_id, status);
if (ret < 0)
dprintk(SYNX_ERR,
"signaling fail on %d, type: %u, err=%d\n",
sync_id, type, ret);
/*
* release the memory allocated for external data.
* It is safe to release this memory as external cb
* has been already deregistered before this.
*/
kfree(data);
}
return rc;
}
int synx_native_signal_fence(struct synx_coredata *synx_obj,
u32 status)
{
int rc = 0;
unsigned long flags;
if (IS_ERR_OR_NULL(synx_obj) || IS_ERR_OR_NULL(synx_obj->fence))
return -SYNX_INVALID;
if (status <= SYNX_STATE_ACTIVE) {
dprintk(SYNX_ERR, "signaling with wrong status: %u\n",
status);
return -SYNX_INVALID;
}
if (synx_util_is_merged_object(synx_obj)) {
dprintk(SYNX_ERR, "signaling a composite handle\n");
return -SYNX_INVALID;
}
if (synx_util_get_object_status(synx_obj) !=
SYNX_STATE_ACTIVE)
return -SYNX_ALREADY;
if (IS_ERR_OR_NULL(synx_obj->signal_cb)) {
dprintk(SYNX_ERR, "signal cb in bad state\n");
return -SYNX_INVALID;
}
/*
* remove registered callback for the fence
* so it does not invoke the signal through callback again
*/
if (!dma_fence_remove_callback(synx_obj->fence,
&synx_obj->signal_cb->fence_cb)) {
dprintk(SYNX_ERR, "callback could not be removed\n");
return -SYNX_INVALID;
}
dprintk(SYNX_MEM, "signal cb destroyed %pK\n",
synx_obj->signal_cb);
kfree(synx_obj->signal_cb);
synx_obj->signal_cb = NULL;
/* releasing reference held by signal cb */
synx_util_put_object(synx_obj);
spin_lock_irqsave(synx_obj->fence->lock, flags);
/* check the status again acquiring lock to avoid errors */
if (synx_util_get_object_status_locked(synx_obj) !=
SYNX_STATE_ACTIVE) {
spin_unlock_irqrestore(synx_obj->fence->lock, flags);
return -SYNX_ALREADY;
}
synx_obj->status = status;
if (status >= SYNX_DMA_FENCE_STATE_MAX)
status = SYNX_DMA_FENCE_STATE_MAX - 1;
/* set fence error to model {signal w/ error} */
if (status != SYNX_STATE_SIGNALED_SUCCESS)
dma_fence_set_error(synx_obj->fence, -status);
rc = dma_fence_signal_locked(synx_obj->fence);
if (rc)
dprintk(SYNX_ERR,
"signaling fence %pK failed=%d\n",
synx_obj->fence, rc);
spin_unlock_irqrestore(synx_obj->fence->lock, flags);
return rc;
}
int synx_native_signal_merged_fence(struct synx_coredata *synx_obj, u32 status)
{
int rc = SYNX_SUCCESS;
unsigned long flags;
int i = 0, num_fences = 0;
struct synx_coredata **synx_child_obj = NULL;
rc = synx_get_child_coredata(synx_obj, &synx_child_obj, &num_fences);
if (rc != SYNX_SUCCESS)
return rc;
for(i = 0; i < num_fences; i++)
{
if (IS_ERR_OR_NULL(synx_child_obj[i]) || IS_ERR_OR_NULL(synx_child_obj[i]->fence)) {
dprintk(SYNX_ERR, "Invalid child coredata %d\n", i);
rc = -SYNX_NOENT;
goto fail;
}
mutex_lock(&synx_child_obj[i]->obj_lock);
spin_lock_irqsave(synx_child_obj[i]->fence->lock, flags);
if (synx_util_get_object_status_locked(synx_child_obj[i]) != SYNX_STATE_ACTIVE ||
!synx_util_is_global_object(synx_child_obj[i]))
{
spin_unlock_irqrestore(synx_child_obj[i]->fence->lock, flags);
mutex_unlock(&synx_child_obj[i]->obj_lock);
continue;
}
spin_unlock_irqrestore(synx_child_obj[i]->fence->lock, flags);
status = synx_global_get_status(synx_child_obj[i]->global_idx);
rc = synx_native_signal_fence(synx_child_obj[i], status);
mutex_unlock(&synx_child_obj[i]->obj_lock);
}
fail:
kfree(synx_child_obj);
return rc;
}
u32 synx_get_child_status(struct synx_coredata *synx_obj)
{
u32 h_child = 0, i = 0;
u32 status = SYNX_DMA_FENCE_STATE_MAX - 1, child_status = SYNX_STATE_ACTIVE;
struct dma_fence_array *array = NULL;
struct synx_map_entry *fence_entry = NULL;
struct synx_coredata *synx_child_obj = NULL;
if (!dma_fence_is_array(synx_obj->fence))
return status;
array = to_dma_fence_array(synx_obj->fence);
if (IS_ERR_OR_NULL(array))
goto bail;
for (i = 0; i < array->num_fences; i++) {
h_child = synx_util_get_fence_entry((u64)array->fences[i], 1);
if (h_child == 0)
h_child = synx_util_get_fence_entry((u64)array->fences[i], 0);
if (h_child == 0)
continue;
fence_entry = synx_util_get_map_entry(h_child);
if (IS_ERR_OR_NULL(fence_entry) || IS_ERR_OR_NULL(fence_entry->synx_obj)) {
dprintk(SYNX_ERR, "Invalid handle access %u", h_child);
goto bail;
}
synx_child_obj = fence_entry->synx_obj;
mutex_lock(&synx_child_obj->obj_lock);
if (synx_util_is_global_object(synx_child_obj))
child_status = synx_global_get_status(synx_child_obj->global_idx);
else
child_status = synx_child_obj->status;
mutex_unlock(&synx_child_obj->obj_lock);
synx_util_release_map_entry(fence_entry);
dprintk(SYNX_VERB, "Child handle %u status %d", h_child, child_status);
if (child_status != SYNX_STATE_ACTIVE &&
(status == SYNX_DMA_FENCE_STATE_MAX - 1 ||
(child_status > SYNX_STATE_SIGNALED_SUCCESS &&
child_status <= SYNX_STATE_SIGNALED_MAX)))
status = child_status;
}
bail:
return status;
}
u32 synx_custom_get_status(struct synx_coredata *synx_obj, u32 status)
{
u32 custom_status = status;
u32 parent_global_status =
synx_util_is_global_object(synx_obj) ?
synx_global_get_status(synx_obj->global_idx) : SYNX_STATE_ACTIVE;
if (IS_ERR_OR_NULL(synx_obj))
goto bail;
mutex_lock(&synx_obj->obj_lock);
if (synx_util_is_merged_object(synx_obj)) {
if (parent_global_status == SYNX_STATE_ACTIVE)
synx_obj->status = synx_get_child_status(synx_obj);
else
synx_obj->status = parent_global_status;
custom_status = synx_obj->status;
}
mutex_unlock(&synx_obj->obj_lock);
bail:
return custom_status;
}
void synx_signal_handler(struct work_struct *cb_dispatch)
{
int rc = SYNX_SUCCESS;
u32 idx;
struct synx_signal_cb *signal_cb =
container_of(cb_dispatch, struct synx_signal_cb, cb_dispatch);
struct synx_coredata *synx_obj = signal_cb->synx_obj;
u32 h_synx = signal_cb->handle;
u32 status = signal_cb->status;
if (signal_cb->flag & SYNX_SIGNAL_FROM_FENCE) {
status = synx_custom_get_status(synx_obj, status);
dprintk(SYNX_VERB,
"handle %d will be updated with status %d\n",
h_synx, status);
}
if ((signal_cb->flag & SYNX_SIGNAL_FROM_FENCE) &&
(synx_util_is_global_handle(h_synx) ||
synx_util_is_global_object(synx_obj))) {
idx = (IS_ERR_OR_NULL(synx_obj)) ?
synx_util_global_idx(h_synx) :
synx_obj->global_idx;
if (synx_global_get_status(idx) == SYNX_STATE_ACTIVE) {
rc = synx_global_update_status(idx, status);
if (rc != SYNX_SUCCESS)
dprintk(SYNX_ERR,
"global status update of %u failed=%d\n",
h_synx, rc);
}
/*
* We are decrementing the reference here assuming this code will be
* executed after handle is released. But in case if clients signal
* dma fence in middle of execution sequence, then we will put
* one reference thus deleting the global idx. As of now clients cannot
* signal dma fence.
*/
if (IS_ERR_OR_NULL(synx_obj))
synx_global_put_ref(idx);
}
/*
* when invoked from external callback, possible for
* all local clients to have released the handle coredata.
*/
if (IS_ERR_OR_NULL(synx_obj)) {
dprintk(SYNX_WARN,
"handle %d has no local clients\n",
h_synx);
dprintk(SYNX_MEM, "signal cb destroyed %pK\n",
signal_cb);
kfree(signal_cb);
return;
}
if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR,
"global status update for %u failed=%d\n",
h_synx, rc);
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
if (signal_cb->flag & SYNX_SIGNAL_FROM_IPC &&
synx_util_get_object_status(synx_obj) == SYNX_STATE_ACTIVE) {
if (synx_util_is_merged_object(synx_obj))
rc = synx_native_signal_merged_fence(synx_obj, status);
else
rc = synx_native_signal_fence(synx_obj, status);
}
if (rc != SYNX_SUCCESS) {
mutex_unlock(&synx_obj->obj_lock);
dprintk(SYNX_ERR,
"failed to signal fence %u with err=%d\n",
h_synx, rc);
goto fail;
}
if (rc == SYNX_SUCCESS && synx_util_get_object_status(synx_obj)
!= SYNX_STATE_ACTIVE)
rc = synx_native_signal_core(synx_obj, status,
(signal_cb->flag & SYNX_SIGNAL_FROM_CALLBACK) ?
true : false, signal_cb->ext_sync_id);
mutex_unlock(&synx_obj->obj_lock);
if (rc != SYNX_SUCCESS)
dprintk(SYNX_ERR,
"internal signaling %u failed=%d",
h_synx, rc);
fail:
/* release reference held by signal cb */
synx_util_put_object(synx_obj);
dprintk(SYNX_MEM, "signal cb destroyed %pK\n", signal_cb);
kfree(signal_cb);
dprintk(SYNX_VERB, "signal handle %u dispatch complete=%d",
h_synx, rc);
}
/* function would be called from atomic context */
void synx_fence_callback(struct dma_fence *fence,
struct dma_fence_cb *cb)
{
s32 status;
struct synx_signal_cb *signal_cb =
container_of(cb, struct synx_signal_cb, fence_cb);
dprintk(SYNX_DBG,
"callback from external fence %pK for handle %u\n",
fence, signal_cb->handle);
/* other signal_cb members would be set during cb registration */
status = dma_fence_get_status_locked(fence);
/*
* dma_fence_get_status_locked API returns 1 if signaled,
* 0 if ACTIVE,
* and negative error code in case of any failure
*/
if (status == 1)
status = SYNX_STATE_SIGNALED_SUCCESS;
else if (status == -SYNX_STATE_SIGNALED_CANCEL)
status = SYNX_STATE_SIGNALED_CANCEL;
else if (status < 0 && status >= -SYNX_STATE_SIGNALED_MAX)
status = SYNX_STATE_SIGNALED_EXTERNAL;
else
status = (u32)-status;
signal_cb->status = status;
INIT_WORK(&signal_cb->cb_dispatch, synx_signal_handler);
queue_work(synx_dev->wq_cb, &signal_cb->cb_dispatch);
}
EXPORT_SYMBOL(synx_fence_callback);
static int synx_signal_offload_job(
struct synx_client *client,
struct synx_coredata *synx_obj,
u32 h_synx, u32 status)
{
int rc = SYNX_SUCCESS;
struct synx_signal_cb *signal_cb;
signal_cb = kzalloc(sizeof(*signal_cb), GFP_ATOMIC);
if (IS_ERR_OR_NULL(signal_cb)) {
rc = -SYNX_NOMEM;
goto fail;
}
/*
* since the signal will be queued to separate thread,
* to ensure the synx coredata pointer remain valid, get
* additional reference, thus avoiding any potential
* use-after-free.
*/
synx_util_get_object(synx_obj);
signal_cb->handle = h_synx;
signal_cb->status = status;
signal_cb->synx_obj = synx_obj;
signal_cb->flag = SYNX_SIGNAL_FROM_CLIENT;
dprintk(SYNX_VERB,
"[sess :%llu] signal work queued for %u\n",
client->id, h_synx);
INIT_WORK(&signal_cb->cb_dispatch, synx_signal_handler);
queue_work(synx_dev->wq_cb, &signal_cb->cb_dispatch);
fail:
return rc;
}
int synx_signal(struct synx_session *session, u32 h_synx, u32 status)
{
int rc = SYNX_SUCCESS;
struct synx_client *client;
struct synx_handle_coredata *synx_data = NULL;
struct synx_coredata *synx_obj;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
if (status <= SYNX_STATE_ACTIVE ||
!(status == SYNX_STATE_SIGNALED_SUCCESS ||
status == SYNX_STATE_SIGNALED_CANCEL ||
status > SYNX_STATE_SIGNALED_MAX)) {
dprintk(SYNX_ERR,
"[sess :%llu] signaling with wrong status: %u\n",
client->id, status);
rc = -SYNX_INVALID;
goto fail;
}
synx_data = synx_util_acquire_handle(client, h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj) ||
IS_ERR_OR_NULL(synx_obj->fence)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle access %u\n",
client->id, h_synx);
rc = -SYNX_INVALID;
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
if (synx_util_is_global_handle(h_synx) ||
synx_util_is_global_object(synx_obj))
rc = synx_global_update_status(
synx_obj->global_idx, status);
if (rc != SYNX_SUCCESS) {
mutex_unlock(&synx_obj->obj_lock);
dprintk(SYNX_ERR,
"[sess :%llu] status update %d failed=%d\n",
client->id, h_synx, rc);
goto fail;
}
/*
* offload callback dispatch and external fence
* notification to separate worker thread, if any.
*/
if (synx_obj->num_bound_synxs ||
!list_empty(&synx_obj->reg_cbs_list))
rc = synx_signal_offload_job(client, synx_obj,
h_synx, status);
rc = synx_native_signal_fence(synx_obj, status);
if (rc != SYNX_SUCCESS)
dprintk(SYNX_ERR,
"[sess :%llu] signaling %u failed=%d\n",
client->id, h_synx, rc);
mutex_unlock(&synx_obj->obj_lock);
fail:
synx_util_release_handle(synx_data);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_signal);
static int synx_match_payload(struct synx_kernel_payload *cb_payload,
struct synx_kernel_payload *payload)
{
int rc = 0;
if (IS_ERR_OR_NULL(cb_payload) || IS_ERR_OR_NULL(payload))
return -SYNX_INVALID;
if ((cb_payload->cb_func == payload->cb_func) &&
(cb_payload->data == payload->data)) {
if (payload->cancel_cb_func) {
cb_payload->cb_func =
payload->cancel_cb_func;
rc = 1;
} else {
rc = 2;
dprintk(SYNX_VERB,
"kernel cb de-registration success\n");
}
}
return rc;
}
/* Timer Callback function. This will be called when timer expires */
void synx_timer_cb(struct timer_list *data)
{
struct synx_client *client;
struct synx_handle_coredata *synx_data;
struct synx_coredata *synx_obj;
struct synx_cb_data *synx_cb = container_of(data, struct synx_cb_data, synx_timer);
client = synx_get_client(synx_cb->session);
if (IS_ERR_OR_NULL(client)) {
dprintk(SYNX_ERR,
"invalid session data 0x%x in cb payload\n",
synx_cb->session);
return;
}
synx_data = synx_util_acquire_handle(client, synx_cb->h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj)) {
dprintk(SYNX_ERR,
"[sess :0x%llx] invalid handle access 0x%x\n",
synx_cb->session, synx_cb->h_synx);
return;
}
dprintk(SYNX_VERB,
"Timer expired for synx_cb 0x%x timeout 0x%llx. Deleting the timer.\n",
synx_cb, synx_cb->timeout);
synx_cb->status = SYNX_STATE_TIMEOUT;
del_timer(&synx_cb->synx_timer);
list_del_init(&synx_cb->node);
queue_work(synx_dev->wq_cb, &synx_cb->cb_dispatch);
}
static int synx_start_timer(struct synx_cb_data *synx_cb)
{
int rc = 0;
timer_setup(&synx_cb->synx_timer, synx_timer_cb, 0);
rc = mod_timer(&synx_cb->synx_timer, jiffies + msecs_to_jiffies(synx_cb->timeout));
dprintk(SYNX_VERB,
"Timer started for synx_cb 0x%x timeout 0x%llx\n",
synx_cb, synx_cb->timeout);
return rc;
}
int synx_async_wait(struct synx_session *session,
struct synx_callback_params *params)
{
int rc = 0;
u32 idx;
u32 status;
struct synx_client *client;
struct synx_handle_coredata *synx_data;
struct synx_coredata *synx_obj;
struct synx_cb_data *synx_cb;
struct synx_kernel_payload payload;
if (IS_ERR_OR_NULL(session) || IS_ERR_OR_NULL(params))
return -SYNX_INVALID;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
synx_data = synx_util_acquire_handle(client, params->h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle access %u\n",
client->id, params->h_synx);
rc = -SYNX_INVALID;
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
synx_cb = kzalloc(sizeof(*synx_cb), GFP_ATOMIC);
if (IS_ERR_OR_NULL(synx_cb)) {
rc = -SYNX_NOMEM;
goto release;
}
payload.h_synx = params->h_synx;
payload.cb_func = params->cb_func;
payload.data = params->userdata;
/* allocate a free index from client cb table */
rc = synx_util_alloc_cb_entry(client, &payload, &idx);
if (rc) {
dprintk(SYNX_ERR,
"[sess :%llu] error allocating cb entry\n",
client->id);
kfree(synx_cb);
goto release;
}
if (synx_util_is_global_handle(params->h_synx) ||
synx_util_is_global_object(synx_obj)) {
status = synx_global_test_status_set_wait(
synx_util_global_idx(params->h_synx),
SYNX_CORE_APSS);
if (status != SYNX_STATE_ACTIVE) {
if (synx_util_is_merged_object(synx_obj))
synx_native_signal_merged_fence(synx_obj, status);
else
synx_native_signal_fence(synx_obj, status);
}
}
status = synx_util_get_object_status(synx_obj);
synx_cb->session = session;
synx_cb->idx = idx;
synx_cb->h_synx = params->h_synx;
INIT_WORK(&synx_cb->cb_dispatch, synx_util_cb_dispatch);
/* add callback if object still ACTIVE, dispatch if SIGNALED */
if (status == SYNX_STATE_ACTIVE) {
dprintk(SYNX_VERB,
"[sess :%llu] callback added for handle %u\n",
client->id, params->h_synx);
synx_cb->timeout = params->timeout_ms;
if (params->timeout_ms != SYNX_NO_TIMEOUT) {
rc = synx_start_timer(synx_cb);
if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR,
"[sess :%llu] timer start failed - synx_cb: 0x%x, params->timeout_ms: 0x%llx, handle: 0x%x, ret : %d\n",
client->id, synx_cb, params->timeout_ms,
params->h_synx, rc);
goto release;
}
}
list_add(&synx_cb->node, &synx_obj->reg_cbs_list);
} else {
synx_cb->status = status;
dprintk(SYNX_VERB,
"[sess :%llu] callback queued for handle %u\n",
client->id, params->h_synx);
queue_work(synx_dev->wq_cb,
&synx_cb->cb_dispatch);
}
release:
mutex_unlock(&synx_obj->obj_lock);
fail:
synx_util_release_handle(synx_data);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_async_wait);
int synx_cancel_async_wait(
struct synx_session *session,
struct synx_callback_params *params)
{
int rc = 0, ret = 0;
u32 status;
bool match_found = false;
struct synx_client *client;
struct synx_handle_coredata *synx_data;
struct synx_coredata *synx_obj;
struct synx_kernel_payload payload;
struct synx_cb_data *synx_cb, *synx_cb_temp;
struct synx_client_cb *cb_payload;
if (IS_ERR_OR_NULL(session) || IS_ERR_OR_NULL(params))
return -SYNX_INVALID;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
synx_data = synx_util_acquire_handle(client, params->h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle access %u\n",
client->id, params->h_synx);
rc = -SYNX_INVALID;
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
if (synx_util_is_external_object(synx_obj)) {
dprintk(SYNX_ERR,
"cannot cancel wait on external fence\n");
goto release;
}
payload.h_synx = params->h_synx;
payload.cb_func = params->cb_func;
payload.data = params->userdata;
payload.cancel_cb_func = params->cancel_cb_func;
status = synx_util_get_object_status(synx_obj);
if (status != SYNX_STATE_ACTIVE) {
dprintk(SYNX_ERR,
"handle %u already signaled or timed out, cannot cancel\n",
params->h_synx);
rc = -SYNX_INVALID;
goto release;
}
status = SYNX_CALLBACK_RESULT_CANCELED;
/* remove all cb payloads mayching the deregister call */
list_for_each_entry_safe(synx_cb, synx_cb_temp,
&synx_obj->reg_cbs_list, node) {
if (synx_cb->session != session) {
continue;
} else if (synx_cb->idx == 0 ||
synx_cb->idx >= SYNX_MAX_OBJS) {
/*
* this should not happen. Even if it does,
* the allocated memory will be cleaned up
* when object is destroyed, preventing any
* memory leaks.
*/
dprintk(SYNX_ERR,
"[sess :%llu] invalid callback data\n",
client->id);
continue;
}
cb_payload = &client->cb_table[synx_cb->idx];
ret = synx_match_payload(&cb_payload->kernel_cb, &payload);
if (synx_cb->timeout != SYNX_NO_TIMEOUT) {
dprintk(SYNX_VERB,
"Deleting timer synx_cb 0x%x, timeout 0x%llx\n",
synx_cb, synx_cb->timeout);
del_timer(&synx_cb->synx_timer);
}
switch (ret) {
case 1:
/* queue the cancel cb work */
list_del_init(&synx_cb->node);
synx_cb->status = status;
queue_work(synx_dev->wq_cb,
&synx_cb->cb_dispatch);
match_found = true;
break;
case 2:
/* no cancellation cb */
if (synx_util_clear_cb_entry(client, cb_payload))
dprintk(SYNX_ERR,
"[sess :%llu] error clearing cb %u\n",
client->id, params->h_synx);
list_del_init(&synx_cb->node);
kfree(synx_cb);
match_found = true;
break;
default:
break;
}
}
if (!match_found)
rc = -SYNX_INVALID;
release:
mutex_unlock(&synx_obj->obj_lock);
fail:
synx_util_release_handle(synx_data);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_cancel_async_wait);
int synx_merge(struct synx_session *session,
struct synx_merge_params *params)
{
int rc = SYNX_SUCCESS, i, num_signaled = 0;
u32 count = 0, h_child, status = SYNX_STATE_ACTIVE;
u32 *h_child_list = NULL, *h_child_idx_list = NULL;
struct synx_client *client;
struct dma_fence **fences = NULL;
struct synx_map_entry *map_entry;
struct synx_coredata *synx_obj, *synx_obj_child;
struct synx_handle_coredata *synx_data_child;
if (IS_ERR_OR_NULL(session) || IS_ERR_OR_NULL(params))
return -SYNX_INVALID;
if (IS_ERR_OR_NULL(params->h_synxs) ||
IS_ERR_OR_NULL(params->h_merged_obj)) {
dprintk(SYNX_ERR, "invalid arguments\n");
return -SYNX_INVALID;
}
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
synx_obj = kzalloc(sizeof(*synx_obj), GFP_KERNEL);
if (IS_ERR_OR_NULL(synx_obj)) {
rc = -SYNX_NOMEM;
goto fail;
}
rc = synx_util_validate_merge(client, params->h_synxs,
params->num_objs, &fences, &count);
if (rc < 0) {
dprintk(SYNX_ERR,
"[sess :%llu] merge validation failed\n",
client->id);
rc = -SYNX_INVALID;
kfree(synx_obj);
goto fail;
}
rc = synx_util_init_group_coredata(synx_obj, fences,
params, count, client->dma_context);
if (rc) {
dprintk(SYNX_ERR,
"[sess :%llu] error initializing merge handle\n",
client->id);
goto clean_up;
}
map_entry = synx_util_insert_to_map(synx_obj,
*params->h_merged_obj, 0);
if (IS_ERR_OR_NULL(map_entry)) {
rc = PTR_ERR(map_entry);
/*
* dma fence put will take care of removing the references taken
* on child fences
*/
dma_fence_put(synx_obj->fence);
kfree(synx_obj);
goto fail;
}
rc = synx_util_add_callback(synx_obj, *params->h_merged_obj);
if (rc != SYNX_SUCCESS)
goto clean_up;
rc = synx_util_init_handle(client, synx_obj,
params->h_merged_obj, map_entry);
if (rc) {
dprintk(SYNX_ERR,
"[sess :%llu] unable to init merge handle %u\n",
client->id, *params->h_merged_obj);
goto clean_up;
}
h_child_list = kzalloc(count*4, GFP_KERNEL);
if (IS_ERR_OR_NULL(h_child_list)) {
rc = -SYNX_NOMEM;
goto clear;
}
h_child_idx_list = kzalloc(count*4, GFP_KERNEL);
if (IS_ERR_OR_NULL(h_child_idx_list)) {
kfree(h_child_list);
rc = -SYNX_NOMEM;
goto clear;
}
for (i = 0; i < count; i++) {
h_child = synx_util_get_fence_entry((u64)fences[i], 1);
if (!synx_util_is_global_handle(h_child))
continue;
h_child_list[num_signaled] = h_child;
h_child_idx_list[num_signaled++] = synx_util_global_idx(h_child);
}
if (params->flags & SYNX_MERGE_GLOBAL_FENCE) {
rc = synx_global_merge(h_child_idx_list, num_signaled,
synx_util_global_idx(*params->h_merged_obj));
if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR, "global merge failed\n");
kfree(h_child_list);
kfree(h_child_idx_list);
goto clear;
}
}
else {
for(i = 0; i < num_signaled; i++) {
status = synx_global_test_status_set_wait(synx_util_global_idx(h_child_list[i]), SYNX_CORE_APSS);
if (status != SYNX_STATE_ACTIVE) {
synx_data_child = synx_util_acquire_handle(client, h_child_list[i]);
synx_obj_child = synx_util_obtain_object(synx_data_child);
if (IS_ERR_OR_NULL(synx_obj_child)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid child handle %u\n",
client->id, h_child_list[i]);
continue;
}
mutex_lock(&synx_obj_child->obj_lock);
if (synx_obj->status == SYNX_STATE_ACTIVE)
rc = synx_native_signal_fence(synx_obj_child, status);
mutex_unlock(&synx_obj_child->obj_lock);
if (rc != SYNX_SUCCESS)
dprintk(SYNX_ERR, "h_synx %u failed with status %d\n", h_child_list[i], rc);
synx_util_release_handle(synx_data_child);
}
}
}
dprintk(SYNX_MEM,
"[sess :%llu] merge allocated %u, core %pK, fence %pK\n",
client->id, *params->h_merged_obj, synx_obj,
synx_obj->fence);
kfree(h_child_list);
kfree(h_child_idx_list);
synx_put_client(client);
return SYNX_SUCCESS;
clear:
synx_native_release_core(client, (*params->h_merged_obj));
synx_put_client(client);
return rc;
clean_up:
/*
* if map_entry is not created the cleanup of child fences have to be
* handled manually
*/
if (IS_ERR_OR_NULL(map_entry)) {
kfree(synx_obj);
synx_util_merge_error(client, params->h_synxs, count);
if (params->num_objs && params->num_objs <= count)
kfree(fences);
} else {
synx_util_release_map_entry(map_entry);
}
fail:
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_merge);
int synx_native_release_core(struct synx_client *client,
u32 h_synx)
{
int rc = -SYNX_INVALID;
struct synx_handle_coredata *curr, *synx_handle = NULL;
spin_lock_bh(&client->handle_map_lock);
hash_for_each_possible(client->handle_map,
curr, node, h_synx) {
if (curr->key == h_synx &&
curr->rel_count != 0) {
curr->rel_count--;
synx_handle = curr;
rc = SYNX_SUCCESS;
break;
}
}
spin_unlock_bh(&client->handle_map_lock);
/* release the reference obtained at synx creation */
synx_util_release_handle(synx_handle);
return rc;
}
int synx_release(struct synx_session *session, u32 h_synx)
{
int rc = 0;
struct synx_client *client;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
rc = synx_native_release_core(client, h_synx);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_release);
int synx_wait(struct synx_session *session,
u32 h_synx, u64 timeout_ms)
{
int rc = 0;
unsigned long timeleft;
struct synx_client *client;
struct synx_handle_coredata *synx_data;
struct synx_coredata *synx_obj;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
synx_data = synx_util_acquire_handle(client, h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj) || IS_ERR_OR_NULL(synx_obj->fence)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle access %u\n",
client->id, h_synx);
rc = -SYNX_INVALID;
goto fail;
}
if (synx_util_is_global_handle(h_synx)) {
rc = synx_global_test_status_set_wait(
synx_util_global_idx(h_synx), SYNX_CORE_APSS);
if (rc != SYNX_STATE_ACTIVE) {
mutex_lock(&synx_obj->obj_lock);
if (synx_util_is_merged_object(synx_obj))
synx_native_signal_merged_fence(synx_obj, rc);
else
synx_native_signal_fence(synx_obj, rc);
mutex_unlock(&synx_obj->obj_lock);
}
}
timeleft = dma_fence_wait_timeout(synx_obj->fence, (bool) 0,
msecs_to_jiffies(timeout_ms));
if (timeleft <= 0) {
dprintk(SYNX_ERR,
"[sess :%llu] wait timeout for handle %u\n",
client->id, h_synx);
rc = -ETIMEDOUT;
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
rc = synx_util_get_object_status(synx_obj);
mutex_unlock(&synx_obj->obj_lock);
fail:
synx_util_release_handle(synx_data);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_wait);
int synx_bind(struct synx_session *session,
u32 h_synx,
struct synx_external_desc_v2 external_sync)
{
int rc = 0;
u32 i;
u32 bound_idx;
struct synx_client *client;
struct synx_handle_coredata *synx_data = NULL;
struct synx_coredata *synx_obj;
struct synx_signal_cb *data = NULL;
struct bind_operations *bind_ops = NULL;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
synx_data = synx_util_acquire_handle(client, h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj)) {
if (rc || synx_data)
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle access %u\n",
client->id, h_synx);
goto fail;
}
bind_ops = synx_util_get_bind_ops(external_sync.type);
if (IS_ERR_OR_NULL(bind_ops)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid bind ops for %u\n",
client->id, external_sync.type);
rc = -SYNX_INVALID;
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
if (synx_util_is_merged_object(synx_obj)) {
dprintk(SYNX_ERR,
"[sess :%llu] cannot bind to composite handle %u\n",
client->id, h_synx);
rc = -SYNX_INVALID;
goto release;
}
if (synx_obj->num_bound_synxs >= SYNX_MAX_NUM_BINDINGS) {
dprintk(SYNX_ERR,
"[sess :%llu] max bindings reached for handle %u\n",
client->id, h_synx);
rc = -SYNX_NOMEM;
goto release;
}
/* don't bind external sync obj if already done */
for (i = 0; i < synx_obj->num_bound_synxs; i++) {
if ((external_sync.id ==
synx_obj->bound_synxs[i].external_desc.id) &&
(external_sync.type ==
synx_obj->bound_synxs[i].external_desc.type)){
dprintk(SYNX_ERR,
"[sess :%llu] duplicate bind for sync %llu\n",
client->id, external_sync.id);
rc = -SYNX_ALREADY;
goto release;
}
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (IS_ERR_OR_NULL(data)) {
rc = -SYNX_NOMEM;
goto release;
}
/* get additional reference since passing pointer to cb */
synx_util_get_object(synx_obj);
/* data passed to external callback */
data->handle = h_synx;
data->synx_obj = synx_obj;
bound_idx = synx_obj->num_bound_synxs;
memcpy(&synx_obj->bound_synxs[bound_idx],
&external_sync, sizeof(struct synx_external_desc_v2));
synx_obj->bound_synxs[bound_idx].external_data = data;
synx_obj->num_bound_synxs++;
mutex_unlock(&synx_obj->obj_lock);
rc = bind_ops->register_callback(synx_external_callback,
data, external_sync.id);
if (rc) {
dprintk(SYNX_ERR,
"[sess :%llu] callback reg failed for %llu\n",
client->id, external_sync.id);
mutex_lock(&synx_obj->obj_lock);
memset(&synx_obj->bound_synxs[bound_idx], 0,
sizeof(struct synx_external_desc_v2));
synx_obj->num_bound_synxs--;
mutex_unlock(&synx_obj->obj_lock);
synx_util_put_object(synx_obj);
kfree(data);
goto fail;
}
synx_util_release_handle(synx_data);
dprintk(SYNX_DBG,
"[sess :%llu] ext sync %llu bound to handle %u\n",
client->id, external_sync.id, h_synx);
synx_put_client(client);
return SYNX_SUCCESS;
release:
mutex_unlock(&synx_obj->obj_lock);
fail:
synx_util_release_handle(synx_data);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_bind);
int synx_get_status(struct synx_session *session,
u32 h_synx)
{
int rc = 0, status = 0;
struct synx_client *client;
struct synx_handle_coredata *synx_data;
struct synx_coredata *synx_obj;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
synx_data = synx_util_acquire_handle(client, h_synx);
synx_obj = synx_util_obtain_object(synx_data);
if (IS_ERR_OR_NULL(synx_obj) ||
IS_ERR_OR_NULL(synx_obj->fence)) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle access %u\n",
client->id, h_synx);
rc = -SYNX_INVALID;
goto fail;
}
mutex_lock(&synx_obj->obj_lock);
status = synx_util_get_object_status(synx_obj);
rc = synx_obj->status;
mutex_unlock(&synx_obj->obj_lock);
dprintk(SYNX_VERB,
"[sess :%llu] handle %u synx coredata status %d and dma fence status %d\n",
client->id, h_synx, rc, status);
fail:
synx_util_release_handle(synx_data);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_get_status);
static struct synx_map_entry *synx_handle_conversion(
struct synx_client *client,
u32 *h_synx, struct synx_map_entry *old_entry)
{
int rc;
struct synx_map_entry *map_entry = NULL;
struct synx_coredata *synx_obj;
if (IS_ERR_OR_NULL(old_entry)) {
old_entry = synx_util_get_map_entry(*h_synx);
if (IS_ERR_OR_NULL(old_entry)) {
rc = PTR_ERR(old_entry);
dprintk(SYNX_ERR,
"invalid import handle %u err=%d",
*h_synx, rc);
return old_entry;
}
}
synx_obj = old_entry->synx_obj;
BUG_ON(synx_obj == NULL);
mutex_lock(&synx_obj->obj_lock);
synx_util_get_object(synx_obj);
if (synx_obj->global_idx != 0) {
*h_synx = synx_encode_handle(
synx_obj->global_idx, SYNX_CORE_APSS, true);
map_entry = synx_util_get_map_entry(*h_synx);
if (IS_ERR_OR_NULL(map_entry)) {
/* raced with release from last global client */
map_entry = synx_util_insert_to_map(synx_obj,
*h_synx, 0);
if (IS_ERR_OR_NULL(map_entry)) {
rc = PTR_ERR(map_entry);
dprintk(SYNX_ERR,
"addition of %u to map failed=%d",
*h_synx, rc);
}
}
} else {
synx_obj->map_count++;
rc = synx_alloc_global_handle(h_synx);
if (rc == SYNX_SUCCESS) {
synx_obj->global_idx =
synx_util_global_idx(*h_synx);
synx_obj->type |= SYNX_CREATE_GLOBAL_FENCE;
map_entry = synx_util_insert_to_map(synx_obj,
*h_synx, 0);
if (IS_ERR_OR_NULL(map_entry)) {
rc = PTR_ERR(map_entry);
synx_global_put_ref(
synx_util_global_idx(*h_synx));
dprintk(SYNX_ERR,
"insertion of %u to map failed=%d",
*h_synx, rc);
}
}
}
mutex_unlock(&synx_obj->obj_lock);
if (IS_ERR_OR_NULL(map_entry))
synx_util_put_object(synx_obj);
synx_util_release_map_entry(old_entry);
return map_entry;
}
static int synx_native_import_handle(struct synx_client *client,
struct synx_import_indv_params *params)
{
int rc = SYNX_SUCCESS;
u32 h_synx, core_id;
struct synx_map_entry *map_entry, *old_entry;
struct synx_coredata *synx_obj;
struct synx_handle_coredata *synx_data = NULL, *curr;
char name[SYNX_OBJ_NAME_LEN] = {0};
struct synx_create_params c_params = {0};
if (IS_ERR_OR_NULL(client) || IS_ERR_OR_NULL(params) ||
IS_ERR_OR_NULL(params->fence) ||
IS_ERR_OR_NULL(params->new_h_synx))
return -SYNX_INVALID;
h_synx = *((u32 *)params->fence);
/* check if already mapped to client */
spin_lock_bh(&client->handle_map_lock);
hash_for_each_possible(client->handle_map,
curr, node, h_synx) {
if (curr->key == h_synx &&
curr->rel_count != 0 &&
(synx_util_is_global_handle(h_synx) ||
params->flags & SYNX_IMPORT_LOCAL_FENCE)) {
curr->rel_count++;
kref_get(&curr->refcount);
synx_data = curr;
break;
}
}
spin_unlock_bh(&client->handle_map_lock);
if (synx_data) {
*params->new_h_synx = h_synx;
return SYNX_SUCCESS;
}
map_entry = synx_util_get_map_entry(h_synx);
if (IS_ERR_OR_NULL(map_entry)) {
core_id = (h_synx & SYNX_OBJ_CORE_ID_MASK)
>> SYNX_HANDLE_INDEX_BITS;
if (core_id == SYNX_CORE_APSS) {
dprintk(SYNX_ERR,
"[sess :%llu] invalid import handle %u\n",
client->id, h_synx);
return -SYNX_INVALID;
} else if (synx_util_is_global_handle(h_synx)) {
/* import global handle created in another core */
synx_util_map_import_params_to_create(params, &c_params);
scnprintf(name, SYNX_OBJ_NAME_LEN, "import-client-%d",
current->pid);
c_params.name = name;
c_params.h_synx = &h_synx;
rc = synx_native_create_core(client, &c_params);
if (rc != SYNX_SUCCESS)
return rc;
*params->new_h_synx = h_synx;
return SYNX_SUCCESS;
}
dprintk(SYNX_ERR,
"[sess :%llu] invalid handle %u\n",
client->id, h_synx);
return -SYNX_INVALID;
}
synx_obj = map_entry->synx_obj;
BUG_ON(synx_obj == NULL);
if ((params->flags & SYNX_IMPORT_GLOBAL_FENCE) &&
!synx_util_is_global_handle(h_synx)) {
old_entry = map_entry;
map_entry = synx_handle_conversion(client, &h_synx,
old_entry);
}
if (rc != SYNX_SUCCESS)
return rc;
*params->new_h_synx = h_synx;
rc = synx_util_init_handle(client, map_entry->synx_obj,
params->new_h_synx, map_entry);
if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR,
"[sess :%llu] init of imported handle %u failed=%d\n",
client->id, h_synx, rc);
synx_util_release_map_entry(map_entry);
}
return rc;
}
static int synx_native_import_fence(struct synx_client *client,
struct synx_import_indv_params *params)
{
int rc = SYNX_SUCCESS;
u32 curr_h_synx;
u32 global;
struct synx_create_params c_params = {0};
char name[SYNX_OBJ_NAME_LEN] = {0};
struct synx_fence_entry *entry;
struct synx_map_entry *map_entry = NULL;
struct synx_handle_coredata *synx_data = NULL, *curr;
if (IS_ERR_OR_NULL(client) || IS_ERR_OR_NULL(params) ||
IS_ERR_OR_NULL(params->fence) ||
IS_ERR_OR_NULL(params->new_h_synx))
return -SYNX_INVALID;
global = SYNX_IMPORT_GLOBAL_FENCE & params->flags;
retry:
*params->new_h_synx =
synx_util_get_fence_entry((u64)params->fence, global);
if (*params->new_h_synx == 0) {
/* create a new synx obj and add to fence map */
synx_util_map_import_params_to_create(params, &c_params);
scnprintf(name, SYNX_OBJ_NAME_LEN, "import-client-%d",
current->pid);
c_params.name = name;
c_params.h_synx = params->new_h_synx;
c_params.fence = params->fence;
rc = synx_native_create_core(client, &c_params);
if (rc != SYNX_SUCCESS)
return rc;
curr_h_synx = *params->new_h_synx;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (IS_ERR_OR_NULL(entry)) {
rc = -SYNX_NOMEM;
curr_h_synx = *c_params.h_synx;
goto fail;
}
do {
entry->key = (u64)params->fence;
if (global)
entry->g_handle = *params->new_h_synx;
else
entry->l_handle = *params->new_h_synx;
rc = synx_util_insert_fence_entry(entry,
params->new_h_synx, global);
if (rc == SYNX_SUCCESS) {
dprintk(SYNX_DBG,
"mapped fence %pK to new handle %u\n",
params->fence, *params->new_h_synx);
break;
} else if (rc == -SYNX_ALREADY) {
/*
* release the new handle allocated
* and use the available handle
* already mapped instead.
*/
map_entry = synx_util_get_map_entry(
*params->new_h_synx);
if (IS_ERR_OR_NULL(map_entry)) {
/* race with fence release, need to retry */
dprintk(SYNX_DBG,
"re-attempting handle import\n");
*params->new_h_synx = curr_h_synx;
continue;
}
rc = synx_util_init_handle(client,
map_entry->synx_obj,
params->new_h_synx, map_entry);
dprintk(SYNX_DBG, "mapped fence %pK to handle %u\n",
params->fence, *params->new_h_synx);
goto release;
} else {
dprintk(SYNX_ERR,
"importing fence %pK failed, err=%d\n",
params->fence, rc);
goto release;
}
} while (true);
} else {
/* check if already mapped to client */
spin_lock_bh(&client->handle_map_lock);
hash_for_each_possible(client->handle_map,
curr, node, *params->new_h_synx) {
if (curr->key == *params->new_h_synx &&
curr->rel_count != 0) {
curr->rel_count++;
kref_get(&curr->refcount);
synx_data = curr;
break;
}
}
spin_unlock_bh(&client->handle_map_lock);
if (synx_data) {
dprintk(SYNX_DBG, "mapped fence %pK to handle %u\n",
params->fence, *params->new_h_synx);
return SYNX_SUCCESS;
}
if (global && !synx_util_is_global_handle(
*params->new_h_synx))
map_entry = synx_handle_conversion(client,
params->new_h_synx, NULL);
else
map_entry = synx_util_get_map_entry(
*params->new_h_synx);
if (IS_ERR_OR_NULL(map_entry)) {
/* race with fence release, need to retry */
dprintk(SYNX_DBG, "re-attempting handle import\n");
goto retry;
}
rc = synx_util_init_handle(client, map_entry->synx_obj,
params->new_h_synx, map_entry);
dprintk(SYNX_DBG, "mapped fence %pK to existing handle %u\n",
params->fence, *params->new_h_synx);
}
return rc;
release:
kfree(entry);
fail:
synx_native_release_core(client, curr_h_synx);
return rc;
}
static int synx_native_import_indv(struct synx_client *client,
struct synx_import_indv_params *params)
{
int rc = -SYNX_INVALID;
if (IS_ERR_OR_NULL(params) ||
IS_ERR_OR_NULL(params->new_h_synx) ||
IS_ERR_OR_NULL(params->fence)) {
dprintk(SYNX_ERR, "invalid import arguments\n");
return -SYNX_INVALID;
}
if (likely(params->flags & SYNX_IMPORT_DMA_FENCE))
rc = synx_native_import_fence(client, params);
else if (params->flags & SYNX_IMPORT_SYNX_FENCE)
rc = synx_native_import_handle(client, params);
dprintk(SYNX_DBG,
"[sess :%llu] import of fence %pK %s, handle %u\n",
client->id, params->fence,
rc ? "failed" : "successful",
rc ? 0 : *params->new_h_synx);
return rc;
}
static int synx_native_import_arr(struct synx_client *client,
struct synx_import_arr_params *params)
{
u32 i;
int rc = SYNX_SUCCESS;
if (IS_ERR_OR_NULL(params) || params->num_fences == 0) {
dprintk(SYNX_ERR, "invalid import arr arguments\n");
return -SYNX_INVALID;
}
for (i = 0; i < params->num_fences; i++) {
rc = synx_native_import_indv(client, &params->list[i]);
if (rc != SYNX_SUCCESS) {
dprintk(SYNX_ERR,
"importing fence[%u] %pK failed=%d\n",
i, params->list[i].fence, rc);
break;
}
}
if (rc != SYNX_SUCCESS)
while (i--) {
/* release the imported handles and cleanup */
if (synx_native_release_core(client,
*params->list[i].new_h_synx) != SYNX_SUCCESS)
dprintk(SYNX_ERR,
"error cleaning up imported handle[%u] %u\n",
i, *params->list[i].new_h_synx);
}
return rc;
}
int synx_import(struct synx_session *session,
struct synx_import_params *params)
{
int rc = 0;
struct synx_client *client;
if (IS_ERR_OR_NULL(params)) {
dprintk(SYNX_ERR, "invalid import arguments\n");
return -SYNX_INVALID;
}
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
/* import fence based on its type */
if (params->type == SYNX_IMPORT_ARR_PARAMS)
rc = synx_native_import_arr(client, &params->arr);
else
rc = synx_native_import_indv(client, &params->indv);
synx_put_client(client);
return rc;
}
EXPORT_SYMBOL(synx_import);
static int synx_handle_create(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
int result;
int csl_fence;
struct synx_create_v2 create_info;
struct synx_create_params params = {0};
if (k_ioctl->size != sizeof(create_info))
return -SYNX_INVALID;
if (copy_from_user(&create_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
params.h_synx = &create_info.synx_obj;
params.name = create_info.name;
params.flags = create_info.flags;
if (create_info.flags & SYNX_CREATE_CSL_FENCE) {
csl_fence = create_info.desc.id[0];
params.fence = &csl_fence;
}
result = synx_create(session, &params);
if (!result)
if (copy_to_user(u64_to_user_ptr(k_ioctl->ioctl_ptr),
&create_info,
k_ioctl->size))
return -EFAULT;
return result;
}
static int synx_handle_getstatus(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
struct synx_signal_v2 signal_info;
if (k_ioctl->size != sizeof(signal_info))
return -SYNX_INVALID;
if (copy_from_user(&signal_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
signal_info.synx_state =
synx_get_status(session, signal_info.synx_obj);
if (copy_to_user(u64_to_user_ptr(k_ioctl->ioctl_ptr),
&signal_info,
k_ioctl->size))
return -EFAULT;
return SYNX_SUCCESS;
}
static int synx_handle_import(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
struct synx_import_info import_info;
struct synx_import_params params = {0};
int result = SYNX_SUCCESS;
if (k_ioctl->size != sizeof(import_info))
return -SYNX_INVALID;
if (copy_from_user(&import_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
if (import_info.flags & SYNX_IMPORT_DMA_FENCE)
params.indv.fence =
sync_file_get_fence(import_info.desc.id[0]);
else if (import_info.flags & SYNX_IMPORT_SYNX_FENCE)
params.indv.fence = &import_info.synx_obj;
params.type = SYNX_IMPORT_INDV_PARAMS;
params.indv.flags = import_info.flags;
params.indv.new_h_synx = &import_info.new_synx_obj;
if (synx_import(session, &params))
result = -SYNX_INVALID;
// Fence needs to be put irresepctive of import status
if (import_info.flags & SYNX_IMPORT_DMA_FENCE)
dma_fence_put(params.indv.fence);
if (result != SYNX_SUCCESS)
return result;
if (copy_to_user(u64_to_user_ptr(k_ioctl->ioctl_ptr),
&import_info,
k_ioctl->size))
return -EFAULT;
return result;
}
static int synx_handle_import_arr(
struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
int rc = -SYNX_INVALID;
u32 idx = 0;
struct synx_client *client;
struct synx_import_arr_info arr_info;
struct synx_import_info *arr;
struct synx_import_indv_params params = {0};
if (k_ioctl->size != sizeof(arr_info))
return -SYNX_INVALID;
if (copy_from_user(&arr_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
arr = kcalloc(arr_info.num_objs,
sizeof(*arr), GFP_KERNEL);
if (IS_ERR_OR_NULL(arr))
return -ENOMEM;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client)) {
rc = PTR_ERR(client);
goto clean;
}
if (copy_from_user(arr,
u64_to_user_ptr(arr_info.list),
sizeof(*arr) * arr_info.num_objs)) {
rc = -EFAULT;
goto fail;
}
while (idx < arr_info.num_objs) {
params.new_h_synx = &arr[idx].new_synx_obj;
params.flags = arr[idx].flags;
if (arr[idx].flags & SYNX_IMPORT_DMA_FENCE)
params.fence =
sync_file_get_fence(arr[idx].desc.id[0]);
else if (arr[idx].flags & SYNX_IMPORT_SYNX_FENCE)
params.fence = &arr[idx].synx_obj;
rc = synx_native_import_indv(client, &params);
// Fence needs to be put irresepctive of import status
if (arr[idx].flags & SYNX_IMPORT_DMA_FENCE)
dma_fence_put(params.fence);
if (rc != SYNX_SUCCESS)
break;
idx++;
}
/* release allocated handles in case of failure */
if (rc != SYNX_SUCCESS) {
while (idx > 0)
synx_native_release_core(client,
arr[--idx].new_synx_obj);
} else {
if (copy_to_user(u64_to_user_ptr(arr_info.list),
arr,
sizeof(*arr) * arr_info.num_objs)) {
rc = -EFAULT;
goto fail;
}
}
fail:
synx_put_client(client);
clean:
kfree(arr);
return rc;
}
static int synx_handle_export(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
return -SYNX_INVALID;
}
static int synx_handle_signal(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
struct synx_signal_v2 signal_info;
if (k_ioctl->size != sizeof(signal_info))
return -SYNX_INVALID;
if (copy_from_user(&signal_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
return synx_signal(session, signal_info.synx_obj,
signal_info.synx_state);
}
static int synx_handle_merge(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
u32 *h_synxs;
int result;
struct synx_merge_v2 merge_info;
struct synx_merge_params params = {0};
if (k_ioctl->size != sizeof(merge_info))
return -SYNX_INVALID;
if (copy_from_user(&merge_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
if (merge_info.num_objs >= SYNX_MAX_OBJS)
return -SYNX_INVALID;
h_synxs = kcalloc(merge_info.num_objs,
sizeof(*h_synxs), GFP_KERNEL);
if (IS_ERR_OR_NULL(h_synxs))
return -ENOMEM;
if (copy_from_user(h_synxs,
u64_to_user_ptr(merge_info.synx_objs),
sizeof(u32) * merge_info.num_objs)) {
kfree(h_synxs);
return -EFAULT;
}
params.num_objs = merge_info.num_objs;
params.h_synxs = h_synxs;
params.flags = merge_info.flags;
params.h_merged_obj = &merge_info.merged;
result = synx_merge(session, &params);
if (!result)
if (copy_to_user(u64_to_user_ptr(k_ioctl->ioctl_ptr),
&merge_info,
k_ioctl->size)) {
kfree(h_synxs);
return -EFAULT;
}
kfree(h_synxs);
return result;
}
static int synx_handle_wait(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
struct synx_wait_v2 wait_info;
if (k_ioctl->size != sizeof(wait_info))
return -SYNX_INVALID;
if (copy_from_user(&wait_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
k_ioctl->result = synx_wait(session,
wait_info.synx_obj, wait_info.timeout_ms);
return SYNX_SUCCESS;
}
static int synx_handle_async_wait(
struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
int rc = 0;
struct synx_userpayload_info_v2 user_data;
struct synx_callback_params params = {0};
if (k_ioctl->size != sizeof(user_data))
return -SYNX_INVALID;
if (copy_from_user(&user_data,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
params.h_synx = user_data.synx_obj;
params.cb_func = synx_util_default_user_callback;
params.userdata = (void *)user_data.payload[0];
params.timeout_ms = user_data.payload[2];
rc = synx_async_wait(session, &params);
if (rc)
dprintk(SYNX_ERR,
"user cb registration failed for handle %d\n",
user_data.synx_obj);
return rc;
}
static int synx_handle_cancel_async_wait(
struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
int rc = 0;
struct synx_userpayload_info_v2 user_data;
struct synx_callback_params params = {0};
if (k_ioctl->size != sizeof(user_data))
return -SYNX_INVALID;
if (copy_from_user(&user_data,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
params.h_synx = user_data.synx_obj;
params.cb_func = synx_util_default_user_callback;
params.userdata = (void *)user_data.payload[0];
rc = synx_cancel_async_wait(session, &params);
if (rc)
dprintk(SYNX_ERR,
"user cb deregistration failed for handle %d\n",
user_data.synx_obj);
return rc;
}
static int synx_handle_bind(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
struct synx_bind_v2 synx_bind_info;
if (k_ioctl->size != sizeof(synx_bind_info))
return -SYNX_INVALID;
if (copy_from_user(&synx_bind_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
k_ioctl->result = synx_bind(session,
synx_bind_info.synx_obj,
synx_bind_info.ext_sync_desc);
return k_ioctl->result;
}
static int synx_handle_release(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
struct synx_info release_info;
if (k_ioctl->size != sizeof(release_info))
return -SYNX_INVALID;
if (copy_from_user(&release_info,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
return synx_release(session, release_info.synx_obj);
}
static int synx_handle_get_fence(struct synx_private_ioctl_arg *k_ioctl,
struct synx_session *session)
{
struct synx_fence_fd fence_fd;
struct dma_fence *fence;
if (k_ioctl->size != sizeof(fence_fd))
return -SYNX_INVALID;
if (copy_from_user(&fence_fd,
u64_to_user_ptr(k_ioctl->ioctl_ptr),
k_ioctl->size))
return -EFAULT;
fence = synx_get_fence(session, fence_fd.synx_obj);
fence_fd.fd = synx_create_sync_fd(fence);
/*
* release additional reference taken in synx_get_fence.
* additional reference ensures the fence is valid and
* does not race with handle/fence release.
*/
dma_fence_put(fence);
if (copy_to_user(u64_to_user_ptr(k_ioctl->ioctl_ptr),
&fence_fd, k_ioctl->size))
return -EFAULT;
return SYNX_SUCCESS;
}
static long synx_ioctl(struct file *filep,
unsigned int cmd,
unsigned long arg)
{
s32 rc = 0;
struct synx_private_ioctl_arg k_ioctl;
struct synx_session *session = filep->private_data;
if (cmd != SYNX_PRIVATE_IOCTL_CMD) {
dprintk(SYNX_ERR, "invalid ioctl cmd\n");
return -ENOIOCTLCMD;
}
if (copy_from_user(&k_ioctl,
(struct synx_private_ioctl_arg *)arg,
sizeof(k_ioctl))) {
dprintk(SYNX_ERR, "invalid ioctl args\n");
return -EFAULT;
}
if (!k_ioctl.ioctl_ptr)
return -SYNX_INVALID;
dprintk(SYNX_VERB, "[sess :%llu] Enter cmd %u from pid %d\n",
((struct synx_client *)session)->id,
k_ioctl.id, current->pid);
switch (k_ioctl.id) {
case SYNX_CREATE:
rc = synx_handle_create(&k_ioctl, session);
break;
case SYNX_RELEASE:
rc = synx_handle_release(&k_ioctl, session);
break;
case SYNX_REGISTER_PAYLOAD:
rc = synx_handle_async_wait(&k_ioctl,
session);
break;
case SYNX_DEREGISTER_PAYLOAD:
rc = synx_handle_cancel_async_wait(&k_ioctl,
session);
break;
case SYNX_SIGNAL:
rc = synx_handle_signal(&k_ioctl, session);
break;
case SYNX_MERGE:
rc = synx_handle_merge(&k_ioctl, session);
break;
case SYNX_WAIT:
rc = synx_handle_wait(&k_ioctl, session);
if (copy_to_user((void *)arg,
&k_ioctl,
sizeof(k_ioctl))) {
dprintk(SYNX_ERR, "invalid ioctl args\n");
rc = -EFAULT;
}
break;
case SYNX_BIND:
rc = synx_handle_bind(&k_ioctl, session);
break;
case SYNX_GETSTATUS:
rc = synx_handle_getstatus(&k_ioctl, session);
break;
case SYNX_IMPORT:
rc = synx_handle_import(&k_ioctl, session);
break;
case SYNX_IMPORT_ARR:
rc = synx_handle_import_arr(&k_ioctl, session);
break;
case SYNX_EXPORT:
rc = synx_handle_export(&k_ioctl, session);
break;
case SYNX_GETFENCE_FD:
rc = synx_handle_get_fence(&k_ioctl, session);
break;
default:
rc = -SYNX_INVALID;
}
dprintk(SYNX_VERB, "[sess :%llu] exit with status %d\n",
((struct synx_client *)session)->id, rc);
return rc;
}
static ssize_t synx_read(struct file *filep,
char __user *buf, size_t size, loff_t *f_pos)
{
ssize_t rc = 0;
struct synx_client *client = NULL;
struct synx_client_cb *cb;
struct synx_session *session = filep->private_data;
struct synx_userpayload_info_v2 data;
if (size != sizeof(struct synx_userpayload_info_v2)) {
dprintk(SYNX_ERR, "invalid read size\n");
return -SYNX_INVALID;
}
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client))
return -SYNX_INVALID;
mutex_lock(&client->event_q_lock);
cb = list_first_entry_or_null(&client->event_q,
struct synx_client_cb, node);
if (IS_ERR_OR_NULL(cb)) {
mutex_unlock(&client->event_q_lock);
rc = 0;
goto fail;
}
if (cb->idx == 0 || cb->idx >= SYNX_MAX_OBJS) {
dprintk(SYNX_ERR, "invalid index\n");
mutex_unlock(&client->event_q_lock);
rc = -SYNX_INVALID;
goto fail;
}
list_del_init(&cb->node);
mutex_unlock(&client->event_q_lock);
memset(&data, 0, sizeof(struct synx_userpayload_info_v2));
rc = size;
data.synx_obj = cb->kernel_cb.h_synx;
data.reserved = cb->kernel_cb.status;
data.payload[0] = (u64)cb->kernel_cb.data;
if (copy_to_user(buf,
&data,
sizeof(struct synx_userpayload_info_v2))) {
dprintk(SYNX_ERR, "couldn't copy user callback data\n");
rc = -EFAULT;
}
if (synx_util_clear_cb_entry(client, cb))
dprintk(SYNX_ERR,
"[sess :%llu] error clearing cb for handle %u\n",
client->id, data.synx_obj);
fail:
synx_put_client(client);
return rc;
}
static unsigned int synx_poll(struct file *filep,
struct poll_table_struct *poll_table)
{
int rc = 0;
struct synx_client *client;
struct synx_session *session = filep->private_data;
client = synx_get_client(session);
if (IS_ERR_OR_NULL(client)) {
dprintk(SYNX_ERR, "invalid session in poll\n");
return SYNX_SUCCESS;
}
poll_wait(filep, &client->event_wq, poll_table);
mutex_lock(&client->event_q_lock);
if (!list_empty(&client->event_q))
rc = POLLPRI;
mutex_unlock(&client->event_q_lock);
synx_put_client(client);
return rc;
}
struct synx_session *synx_initialize(
struct synx_initialization_params *params)
{
struct synx_client *client;
if (IS_ERR_OR_NULL(params))
return ERR_PTR(-SYNX_INVALID);
client = vzalloc(sizeof(*client));
if (IS_ERR_OR_NULL(client))
return ERR_PTR(-SYNX_NOMEM);
if (params->name)
strlcpy(client->name, params->name, sizeof(client->name));
client->active = true;
client->dma_context = dma_fence_context_alloc(1);
client->id = atomic64_inc_return(&synx_counter);
kref_init(&client->refcount);
spin_lock_init(&client->handle_map_lock);
mutex_init(&client->event_q_lock);
INIT_LIST_HEAD(&client->event_q);
init_waitqueue_head(&client->event_wq);
/* zero idx not allowed */
set_bit(0, client->cb_bitmap);
spin_lock_bh(&synx_dev->native->metadata_map_lock);
hash_add(synx_dev->native->client_metadata_map,
&client->node, (u64)client);
spin_unlock_bh(&synx_dev->native->metadata_map_lock);
dprintk(SYNX_INFO, "[sess :%llu] session created %s\n",
client->id, params->name);
return (struct synx_session *)client;
}
EXPORT_SYMBOL(synx_initialize);
int synx_uninitialize(struct synx_session *session)
{
struct synx_client *client = NULL, *curr;
spin_lock_bh(&synx_dev->native->metadata_map_lock);
hash_for_each_possible(synx_dev->native->client_metadata_map,
curr, node, (u64)session) {
if (curr == (struct synx_client *)session) {
if (curr->active) {
curr->active = false;
client = curr;
}
break;
}
}
spin_unlock_bh(&synx_dev->native->metadata_map_lock);
/* release the reference obtained at synx init */
synx_put_client(client);
return SYNX_SUCCESS;
}
EXPORT_SYMBOL(synx_uninitialize);
static int synx_open(struct inode *inode, struct file *filep)
{
int rc = 0;
char name[SYNX_OBJ_NAME_LEN];
struct synx_initialization_params params = {0};
dprintk(SYNX_VERB, "Enter pid: %d\n", current->pid);
scnprintf(name, SYNX_OBJ_NAME_LEN, "umd-client-%d", current->pid);
params.name = name;
params.id = SYNX_CLIENT_NATIVE;
filep->private_data = synx_initialize(&params);
if (IS_ERR_OR_NULL(filep->private_data)) {
dprintk(SYNX_ERR, "session allocation failed for pid: %d\n",
current->pid);
rc = PTR_ERR(filep->private_data);
} else {
dprintk(SYNX_VERB, "allocated new session for pid: %d\n",
current->pid);
}
return rc;
}
static int synx_close(struct inode *inode, struct file *filep)
{
struct synx_session *session = filep->private_data;
return synx_uninitialize(session);
}
static const struct file_operations synx_fops = {
.owner = THIS_MODULE,
.open = synx_open,
.read = synx_read,
.release = synx_close,
.poll = synx_poll,
.unlocked_ioctl = synx_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = synx_ioctl,
#endif
};
int synx_register_ops(
const struct synx_register_params *params)
{
s32 rc = 0;
struct synx_registered_ops *client_ops;
if (!synx_dev || !params || !params->name ||
!synx_util_is_valid_bind_type(params->type) ||
!params->ops.register_callback ||
!params->ops.deregister_callback ||
!params->ops.signal) {
dprintk(SYNX_ERR, "invalid register params\n");
return -SYNX_INVALID;
}
mutex_lock(&synx_dev->vtbl_lock);
client_ops = &synx_dev->bind_vtbl[params->type];
if (!client_ops->valid) {
client_ops->valid = true;
memcpy(&client_ops->ops, &params->ops,
sizeof(client_ops->ops));
strlcpy(client_ops->name, params->name,
sizeof(client_ops->name));
client_ops->type = params->type;
dprintk(SYNX_INFO,
"registered bind ops type %u for %s\n",
params->type, params->name);
} else {
dprintk(SYNX_WARN,
"client already registered for type %u by %s\n",
client_ops->type, client_ops->name);
rc = -SYNX_ALREADY;
}
mutex_unlock(&synx_dev->vtbl_lock);
return rc;
}
EXPORT_SYMBOL(synx_register_ops);
int synx_deregister_ops(
const struct synx_register_params *params)
{
struct synx_registered_ops *client_ops;
if (IS_ERR_OR_NULL(params) || params->name ||
!synx_util_is_valid_bind_type(params->type)) {
dprintk(SYNX_ERR, "invalid params\n");
return -SYNX_INVALID;
}
mutex_lock(&synx_dev->vtbl_lock);
client_ops = &synx_dev->bind_vtbl[params->type];
memset(client_ops, 0, sizeof(*client_ops));
dprintk(SYNX_INFO, "deregistered bind ops for %s\n",
params->name);
mutex_unlock(&synx_dev->vtbl_lock);
return SYNX_SUCCESS;
}
EXPORT_SYMBOL(synx_deregister_ops);
void synx_ipc_handler(struct work_struct *cb_dispatch)
{
struct synx_signal_cb *signal_cb =
container_of(cb_dispatch, struct synx_signal_cb, cb_dispatch);
struct synx_map_entry *map_entry;
map_entry = synx_util_get_map_entry(signal_cb->handle);
if (IS_ERR_OR_NULL(map_entry)) {
dprintk(SYNX_WARN,
"no clients to notify for %u\n",
signal_cb->handle);
dprintk(SYNX_MEM, "signal cb destroyed %pK\n", signal_cb);
kfree(signal_cb);
return;
}
/* get reference on synx coredata for signal cb */
synx_util_get_object(map_entry->synx_obj);
signal_cb->synx_obj = map_entry->synx_obj;
synx_util_release_map_entry(map_entry);
synx_signal_handler(&signal_cb->cb_dispatch);
}
int synx_ipc_callback(u32 client_id,
s64 data, void *priv)
{
struct synx_signal_cb *signal_cb;
u32 status = (u32)data;
u32 handle = (u32)(data >> 32);
signal_cb = kzalloc(sizeof(*signal_cb), GFP_ATOMIC);
if (IS_ERR_OR_NULL(signal_cb))
return -SYNX_NOMEM;
dprintk(SYNX_DBG,
"signal notification for %u received with status %u\n",
handle, status);
signal_cb->status = status;
signal_cb->handle = handle;
signal_cb->flag = SYNX_SIGNAL_FROM_IPC;
INIT_WORK(&signal_cb->cb_dispatch, synx_ipc_handler);
queue_work(synx_dev->wq_cb, &signal_cb->cb_dispatch);
return SYNX_SUCCESS;
}
EXPORT_SYMBOL(synx_ipc_callback);
int synx_recover(enum synx_client_id id)
{
u32 core_id;
core_id = synx_util_map_client_id_to_core(id);
if (core_id >= SYNX_CORE_MAX) {
dprintk(SYNX_ERR, "invalid client id %u\n", id);
return -SYNX_INVALID;
}
switch (core_id) {
case SYNX_CORE_EVA:
case SYNX_CORE_IRIS:
case SYNX_CORE_ICP:
break;
default:
dprintk(SYNX_ERR, "recovery not supported on %u\n", id);
return -SYNX_NOSUPPORT;
}
return synx_global_recover(core_id);
}
EXPORT_SYMBOL(synx_recover);
static int synx_local_mem_init(void)
{
if (!synx_dev->native)
return -SYNX_INVALID;
hash_init(synx_dev->native->client_metadata_map);
hash_init(synx_dev->native->fence_map);
hash_init(synx_dev->native->global_map);
hash_init(synx_dev->native->local_map);
hash_init(synx_dev->native->csl_fence_map);
spin_lock_init(&synx_dev->native->metadata_map_lock);
spin_lock_init(&synx_dev->native->fence_map_lock);
spin_lock_init(&synx_dev->native->global_map_lock);
spin_lock_init(&synx_dev->native->local_map_lock);
spin_lock_init(&synx_dev->native->csl_map_lock);
/* zero idx not allowed */
set_bit(0, synx_dev->native->bitmap);
return 0;
}
static int synx_cdsp_restart_notifier(struct notifier_block *nb,
unsigned long code, void *data)
{
struct synx_cdsp_ssr *cdsp_ssr = &synx_dev->cdsp_ssr;
if (&cdsp_ssr->nb != nb) {
dprintk(SYNX_ERR, "Invalid SSR Notifier block\n");
return NOTIFY_BAD;
}
switch (code) {
case QCOM_SSR_BEFORE_SHUTDOWN:
break;
case QCOM_SSR_AFTER_SHUTDOWN:
if (cdsp_ssr->ssrcnt != 0) {
dprintk(SYNX_INFO, "Cleaning up global memory\n");
synx_global_recover(SYNX_CORE_NSP);
}
break;
case QCOM_SSR_BEFORE_POWERUP:
break;
case QCOM_SSR_AFTER_POWERUP:
dprintk(SYNX_DBG, "CDSP is up");
if (cdsp_ssr->ssrcnt == 0)
cdsp_ssr->ssrcnt++;
break;
default:
dprintk(SYNX_ERR, "Unknown status code for CDSP SSR\n");
break;
}
return NOTIFY_DONE;
}
static int __init synx_init(void)
{
int rc;
dprintk(SYNX_INFO, "device initialization start\n");
synx_dev = kzalloc(sizeof(*synx_dev), GFP_KERNEL);
if (IS_ERR_OR_NULL(synx_dev))
return -SYNX_NOMEM;
rc = alloc_chrdev_region(&synx_dev->dev, 0, 1, SYNX_DEVICE_NAME);
if (rc < 0) {
dprintk(SYNX_ERR, "region allocation failed\n");
goto alloc_fail;
}
cdev_init(&synx_dev->cdev, &synx_fops);
synx_dev->cdev.owner = THIS_MODULE;
rc = cdev_add(&synx_dev->cdev, synx_dev->dev, 1);
if (rc < 0) {
dprintk(SYNX_ERR, "device registation failed\n");
goto reg_fail;
}
synx_dev->class = class_create(THIS_MODULE, SYNX_DEVICE_NAME);
if (IS_ERR(synx_dev->class)) {
rc = PTR_ERR(synx_dev->class);
goto err_class_create;
}
device_create(synx_dev->class, NULL, synx_dev->dev,
NULL, SYNX_DEVICE_NAME);
synx_dev->wq_cb = alloc_workqueue(SYNX_WQ_CB_NAME,
WQ_HIGHPRI | WQ_UNBOUND, SYNX_WQ_CB_THREADS);
synx_dev->wq_cleanup = alloc_workqueue(SYNX_WQ_CLEANUP_NAME,
WQ_HIGHPRI | WQ_UNBOUND, SYNX_WQ_CLEANUP_THREADS);
if (!synx_dev->wq_cb || !synx_dev->wq_cleanup) {
dprintk(SYNX_ERR,
"high priority work queue creation failed\n");
rc = -SYNX_INVALID;
goto fail;
}
synx_dev->native = vzalloc(sizeof(*synx_dev->native));
if (IS_ERR_OR_NULL(synx_dev->native))
goto fail;
mutex_init(&synx_dev->vtbl_lock);
mutex_init(&synx_dev->error_lock);
INIT_LIST_HEAD(&synx_dev->error_list);
synx_dev->debugfs_root = synx_init_debugfs_dir(synx_dev);
rc = synx_global_mem_init();
if (rc) {
dprintk(SYNX_ERR, "shared mem init failed, err=%d\n", rc);
goto err;
}
synx_dev->cdsp_ssr.ssrcnt = 0;
synx_dev->cdsp_ssr.nb.notifier_call = synx_cdsp_restart_notifier;
synx_dev->cdsp_ssr.handle =
qcom_register_ssr_notifier("cdsp", &synx_dev->cdsp_ssr.nb);
if (synx_dev->cdsp_ssr.handle == NULL) {
dprintk(SYNX_ERR, "SSR registration failed\n");
goto err;
}
ipclite_register_client(synx_ipc_callback, NULL);
synx_local_mem_init();
dprintk(SYNX_INFO, "device initialization success\n");
return 0;
err:
vfree(synx_dev->native);
fail:
device_destroy(synx_dev->class, synx_dev->dev);
class_destroy(synx_dev->class);
err_class_create:
cdev_del(&synx_dev->cdev);
reg_fail:
unregister_chrdev_region(synx_dev->dev, 1);
alloc_fail:
kfree(synx_dev);
synx_dev = NULL;
return rc;
}
static void __exit synx_exit(void)
{
struct error_node *err_node, *err_node_tmp;
flush_workqueue(synx_dev->wq_cb);
flush_workqueue(synx_dev->wq_cleanup);
device_destroy(synx_dev->class, synx_dev->dev);
class_destroy(synx_dev->class);
cdev_del(&synx_dev->cdev);
unregister_chrdev_region(synx_dev->dev, 1);
synx_remove_debugfs_dir(synx_dev);
/* release uncleared error nodes */
list_for_each_entry_safe(
err_node, err_node_tmp,
&synx_dev->error_list,
node) {
list_del(&err_node->node);
kfree(err_node);
}
mutex_destroy(&synx_dev->vtbl_lock);
mutex_destroy(&synx_dev->error_lock);
vfree(synx_dev->native);
kfree(synx_dev);
}
module_init(synx_init);
module_exit(synx_exit);
MODULE_DESCRIPTION("Global Synx Driver");
MODULE_LICENSE("GPL v2");