Files
android_kernel_samsung_sm86…/dp/wifi3.0/dp_rx.h
Mohit Khanna 662379ff1e qcacmn: Remove RX_BUFFER_SIZE from dp_rx.h to fix compilation
RX_BUFFER_SIZE macro got introduced by mistake during rebase. The macro
is present in hal_rx.h. Removing the extra macro.

CRs-Fixed: 2382076

Change-Id: Ia66079d6d4543b4e3fd99e9f0c0376353a92aa9c
2019-04-03 14:23:09 -07:00

1054 行
29 KiB
C

/*
* Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _DP_RX_H
#define _DP_RX_H
#include "hal_rx.h"
#include "dp_tx.h"
#include "dp_peer.h"
#include "dp_internal.h"
#ifdef RXDMA_OPTIMIZATION
#ifdef NO_RX_PKT_HDR_TLV
#define RX_BUFFER_ALIGNMENT 0
#else
#define RX_BUFFER_ALIGNMENT 128
#endif /* NO_RX_PKT_HDR_TLV */
#else /* RXDMA_OPTIMIZATION */
#define RX_BUFFER_ALIGNMENT 4
#endif /* RXDMA_OPTIMIZATION */
#ifdef QCA_HOST2FW_RXBUF_RING
#define DP_WBM2SW_RBM HAL_RX_BUF_RBM_SW1_BM
/**
* For MCL cases, allocate as many RX descriptors as buffers in the SW2RXDMA
* ring. This value may need to be tuned later.
*/
#define DP_RX_DESC_ALLOC_MULTIPLIER 1
#else
#define DP_WBM2SW_RBM HAL_RX_BUF_RBM_SW3_BM
/**
* AP use cases need to allocate more RX Descriptors than the number of
* entries avaialable in the SW2RXDMA buffer replenish ring. This is to account
* for frames sitting in REO queues, HW-HW DMA rings etc. Hence using a
* multiplication factor of 3, to allocate three times as many RX descriptors
* as RX buffers.
*/
#define DP_RX_DESC_ALLOC_MULTIPLIER 3
#endif /* QCA_HOST2FW_RXBUF_RING */
#define RX_BUFFER_RESERVATION 0
#define DP_PEER_METADATA_PEER_ID_MASK 0x0000ffff
#define DP_PEER_METADATA_PEER_ID_SHIFT 0
#define DP_PEER_METADATA_VDEV_ID_MASK 0x00070000
#define DP_PEER_METADATA_VDEV_ID_SHIFT 16
#define DP_PEER_METADATA_PEER_ID_GET(_peer_metadata) \
(((_peer_metadata) & DP_PEER_METADATA_PEER_ID_MASK) \
>> DP_PEER_METADATA_PEER_ID_SHIFT)
#define DP_PEER_METADATA_ID_GET(_peer_metadata) \
(((_peer_metadata) & DP_PEER_METADATA_VDEV_ID_MASK) \
>> DP_PEER_METADATA_VDEV_ID_SHIFT)
#define DP_RX_DESC_MAGIC 0xdec0de
/**
* struct dp_rx_desc
*
* @nbuf : VA of the "skb" posted
* @rx_buf_start : VA of the original Rx buffer, before
* movement of any skb->data pointer
* @cookie : index into the sw array which holds
* the sw Rx descriptors
* Cookie space is 21 bits:
* lower 18 bits -- index
* upper 3 bits -- pool_id
* @pool_id : pool Id for which this allocated.
* Can only be used if there is no flow
* steering
* @in_use rx_desc is in use
* @unmapped used to mark rx_desc an unmapped if the corresponding
* nbuf is already unmapped
*/
struct dp_rx_desc {
qdf_nbuf_t nbuf;
uint8_t *rx_buf_start;
uint32_t cookie;
uint8_t pool_id;
#ifdef RX_DESC_DEBUG_CHECK
uint32_t magic;
#endif
uint8_t in_use:1,
unmapped:1;
};
#define RX_DESC_COOKIE_INDEX_SHIFT 0
#define RX_DESC_COOKIE_INDEX_MASK 0x3ffff /* 18 bits */
#define RX_DESC_COOKIE_POOL_ID_SHIFT 18
#define RX_DESC_COOKIE_POOL_ID_MASK 0x1c0000
#define DP_RX_DESC_COOKIE_MAX \
(RX_DESC_COOKIE_INDEX_MASK | RX_DESC_COOKIE_POOL_ID_MASK)
#define DP_RX_DESC_COOKIE_POOL_ID_GET(_cookie) \
(((_cookie) & RX_DESC_COOKIE_POOL_ID_MASK) >> \
RX_DESC_COOKIE_POOL_ID_SHIFT)
#define DP_RX_DESC_COOKIE_INDEX_GET(_cookie) \
(((_cookie) & RX_DESC_COOKIE_INDEX_MASK) >> \
RX_DESC_COOKIE_INDEX_SHIFT)
/* DOC: Offset to obtain LLC hdr
*
* In the case of Wifi parse error
* to reach LLC header from beginning
* of VLAN tag we need to skip 8 bytes.
* Vlan_tag(4)+length(2)+length added
* by HW(2) = 8 bytes.
*/
#define DP_SKIP_VLAN 8
/*
*dp_rx_xor_block() - xor block of data
*@b: destination data block
*@a: source data block
*@len: length of the data to process
*
*Returns: None
*/
static inline void dp_rx_xor_block(uint8_t *b, const uint8_t *a, qdf_size_t len)
{
qdf_size_t i;
for (i = 0; i < len; i++)
b[i] ^= a[i];
}
/*
*dp_rx_rotl() - rotate the bits left
*@val: unsigned integer input value
*@bits: number of bits
*
*Returns: Integer with left rotated by number of 'bits'
*/
static inline uint32_t dp_rx_rotl(uint32_t val, int bits)
{
return (val << bits) | (val >> (32 - bits));
}
/*
*dp_rx_rotr() - rotate the bits right
*@val: unsigned integer input value
*@bits: number of bits
*
*Returns: Integer with right rotated by number of 'bits'
*/
static inline uint32_t dp_rx_rotr(uint32_t val, int bits)
{
return (val >> bits) | (val << (32 - bits));
}
/*
* dp_set_rx_queue() - set queue_mapping in skb
* @nbuf: skb
* @queue_id: rx queue_id
*
* Return: void
*/
#ifdef QCA_OL_RX_MULTIQ_SUPPORT
static inline void dp_set_rx_queue(qdf_nbuf_t nbuf, uint8_t queue_id)
{
qdf_nbuf_record_rx_queue(nbuf, queue_id);
return;
}
#else
static inline void dp_set_rx_queue(qdf_nbuf_t nbuf, uint8_t queue_id)
{
}
#endif
/*
*dp_rx_xswap() - swap the bits left
*@val: unsigned integer input value
*
*Returns: Integer with bits swapped
*/
static inline uint32_t dp_rx_xswap(uint32_t val)
{
return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
}
/*
*dp_rx_get_le32_split() - get little endian 32 bits split
*@b0: byte 0
*@b1: byte 1
*@b2: byte 2
*@b3: byte 3
*
*Returns: Integer with split little endian 32 bits
*/
static inline uint32_t dp_rx_get_le32_split(uint8_t b0, uint8_t b1, uint8_t b2,
uint8_t b3)
{
return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
}
/*
*dp_rx_get_le32() - get little endian 32 bits
*@b0: byte 0
*@b1: byte 1
*@b2: byte 2
*@b3: byte 3
*
*Returns: Integer with little endian 32 bits
*/
static inline uint32_t dp_rx_get_le32(const uint8_t *p)
{
return dp_rx_get_le32_split(p[0], p[1], p[2], p[3]);
}
/*
* dp_rx_put_le32() - put little endian 32 bits
* @p: destination char array
* @v: source 32-bit integer
*
* Returns: None
*/
static inline void dp_rx_put_le32(uint8_t *p, uint32_t v)
{
p[0] = (v) & 0xff;
p[1] = (v >> 8) & 0xff;
p[2] = (v >> 16) & 0xff;
p[3] = (v >> 24) & 0xff;
}
/* Extract michal mic block of data */
#define dp_rx_michael_block(l, r) \
do { \
r ^= dp_rx_rotl(l, 17); \
l += r; \
r ^= dp_rx_xswap(l); \
l += r; \
r ^= dp_rx_rotl(l, 3); \
l += r; \
r ^= dp_rx_rotr(l, 2); \
l += r; \
} while (0)
/**
* struct dp_rx_desc_list_elem_t
*
* @next : Next pointer to form free list
* @rx_desc : DP Rx descriptor
*/
union dp_rx_desc_list_elem_t {
union dp_rx_desc_list_elem_t *next;
struct dp_rx_desc rx_desc;
};
/**
* dp_rx_cookie_2_va_rxdma_buf() - Converts cookie to a virtual address of
* the Rx descriptor on Rx DMA source ring buffer
* @soc: core txrx main context
* @cookie: cookie used to lookup virtual address
*
* Return: void *: Virtual Address of the Rx descriptor
*/
static inline
void *dp_rx_cookie_2_va_rxdma_buf(struct dp_soc *soc, uint32_t cookie)
{
uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie);
uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie);
struct rx_desc_pool *rx_desc_pool;
if (qdf_unlikely(pool_id >= MAX_RXDESC_POOLS))
return NULL;
rx_desc_pool = &soc->rx_desc_buf[pool_id];
if (qdf_unlikely(index >= rx_desc_pool->pool_size))
return NULL;
return &(soc->rx_desc_buf[pool_id].array[index].rx_desc);
}
/**
* dp_rx_cookie_2_va_mon_buf() - Converts cookie to a virtual address of
* the Rx descriptor on monitor ring buffer
* @soc: core txrx main context
* @cookie: cookie used to lookup virtual address
*
* Return: void *: Virtual Address of the Rx descriptor
*/
static inline
void *dp_rx_cookie_2_va_mon_buf(struct dp_soc *soc, uint32_t cookie)
{
uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie);
uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie);
/* TODO */
/* Add sanity for pool_id & index */
return &(soc->rx_desc_mon[pool_id].array[index].rx_desc);
}
/**
* dp_rx_cookie_2_va_mon_status() - Converts cookie to a virtual address of
* the Rx descriptor on monitor status ring buffer
* @soc: core txrx main context
* @cookie: cookie used to lookup virtual address
*
* Return: void *: Virtual Address of the Rx descriptor
*/
static inline
void *dp_rx_cookie_2_va_mon_status(struct dp_soc *soc, uint32_t cookie)
{
uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie);
uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie);
/* TODO */
/* Add sanity for pool_id & index */
return &(soc->rx_desc_status[pool_id].array[index].rx_desc);
}
void dp_rx_add_desc_list_to_free_list(struct dp_soc *soc,
union dp_rx_desc_list_elem_t **local_desc_list,
union dp_rx_desc_list_elem_t **tail,
uint16_t pool_id,
struct rx_desc_pool *rx_desc_pool);
uint16_t dp_rx_get_free_desc_list(struct dp_soc *soc, uint32_t pool_id,
struct rx_desc_pool *rx_desc_pool,
uint16_t num_descs,
union dp_rx_desc_list_elem_t **desc_list,
union dp_rx_desc_list_elem_t **tail);
QDF_STATUS dp_rx_pdev_attach(struct dp_pdev *pdev);
void dp_rx_pdev_detach(struct dp_pdev *pdev);
uint32_t
dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint8_t reo_ring_num,
uint32_t quota);
uint32_t dp_rx_err_process(struct dp_soc *soc, void *hal_ring, uint32_t quota);
uint32_t
dp_rx_wbm_err_process(struct dp_soc *soc, void *hal_ring, uint32_t quota);
/**
* dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
* multiple nbufs.
* @nbuf: pointer to the first msdu of an amsdu.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
*
* This function implements the creation of RX frag_list for cases
* where an MSDU is spread across multiple nbufs.
*
* Return: returns the head nbuf which contains complete frag_list.
*/
qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr);
QDF_STATUS dp_rx_desc_pool_alloc(struct dp_soc *soc,
uint32_t pool_id,
uint32_t pool_size,
struct rx_desc_pool *rx_desc_pool);
void dp_rx_desc_pool_free(struct dp_soc *soc,
uint32_t pool_id,
struct rx_desc_pool *rx_desc_pool);
void dp_rx_desc_nbuf_pool_free(struct dp_soc *soc,
struct rx_desc_pool *rx_desc_pool);
void dp_rx_desc_free_array(struct dp_soc *soc,
struct rx_desc_pool *rx_desc_pool);
void dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
struct dp_peer *peer);
/**
* dp_rx_add_to_free_desc_list() - Adds to a local free descriptor list
*
* @head: pointer to the head of local free list
* @tail: pointer to the tail of local free list
* @new: new descriptor that is added to the free list
*
* Return: void:
*/
static inline
void dp_rx_add_to_free_desc_list(union dp_rx_desc_list_elem_t **head,
union dp_rx_desc_list_elem_t **tail,
struct dp_rx_desc *new)
{
qdf_assert(head && new);
new->nbuf = NULL;
new->in_use = 0;
((union dp_rx_desc_list_elem_t *)new)->next = *head;
*head = (union dp_rx_desc_list_elem_t *)new;
if (!*tail)
*tail = *head;
}
/**
* dp_rx_wds_add_or_update_ast() - Add or update the ast entry.
*
* @soc: core txrx main context
* @ta_peer: WDS repeater peer
* @mac_addr: mac address of the peer
* @is_ad4_valid: 4-address valid flag
* @is_sa_valid: source address valid flag
* @is_chfrag_start: frag start flag
* @sa_idx: source-address index for peer
* @sa_sw_peer_id: software source-address peer-id
*
* Return: void:
*/
#ifdef FEATURE_WDS
static inline void
dp_rx_wds_add_or_update_ast(struct dp_soc *soc, struct dp_peer *ta_peer,
uint8_t *wds_src_mac, uint8_t is_ad4_valid,
uint8_t is_sa_valid, uint8_t is_chfrag_start,
uint16_t sa_idx, uint16_t sa_sw_peer_id)
{
struct dp_peer *sa_peer;
struct dp_ast_entry *ast;
uint32_t flags = IEEE80211_NODE_F_WDS_HM;
uint32_t ret = 0;
struct dp_neighbour_peer *neighbour_peer = NULL;
struct dp_pdev *pdev = ta_peer->vdev->pdev;
/* For AP mode : Do wds source port learning only if it is a
* 4-address mpdu
*
* For STA mode : Frames from RootAP backend will be in 3-address mode,
* till RootAP does the WDS source port learning; Hence in repeater/STA
* mode, we enable learning even in 3-address mode , to avoid RootAP
* backbone getting wrongly learnt as MEC on repeater
*/
if (ta_peer->vdev->opmode != wlan_op_mode_sta) {
if (!(is_chfrag_start && is_ad4_valid))
return;
} else {
/* For HKv2 Source port learing is not needed in STA mode
* as we have support in HW
*/
if (soc->ast_override_support)
return;
}
if (qdf_unlikely(!is_sa_valid)) {
ret = dp_peer_add_ast(soc,
ta_peer,
wds_src_mac,
CDP_TXRX_AST_TYPE_WDS,
flags);
return;
}
qdf_spin_lock_bh(&soc->ast_lock);
ast = soc->ast_table[sa_idx];
qdf_spin_unlock_bh(&soc->ast_lock);
if (!ast) {
/*
* In HKv1, it is possible that HW retains the AST entry in
* GSE cache on 1 radio , even after the AST entry is deleted
* (on another radio).
*
* Due to this, host might still get sa_is_valid indications
* for frames with SA not really present in AST table.
*
* So we go ahead and send an add_ast command to FW in such
* cases where sa is reported still as valid, so that FW will
* invalidate this GSE cache entry and new AST entry gets
* cached.
*/
if (!soc->ast_override_support) {
ret = dp_peer_add_ast(soc,
ta_peer,
wds_src_mac,
CDP_TXRX_AST_TYPE_WDS,
flags);
return;
} else {
/* In HKv2 smart monitor case, when NAC client is
* added first and this client roams within BSS to
* connect to RE, since we have an AST entry for
* NAC we get sa_is_valid bit set. So we check if
* smart monitor is enabled and send add_ast command
* to FW.
*/
if (pdev->neighbour_peers_added) {
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(neighbour_peer,
&pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (!qdf_mem_cmp(&neighbour_peer->neighbour_peers_macaddr,
wds_src_mac,
QDF_MAC_ADDR_SIZE)) {
ret = dp_peer_add_ast(soc,
ta_peer,
wds_src_mac,
CDP_TXRX_AST_TYPE_WDS,
flags);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
"sa valid and nac roamed to wds");
break;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
}
return;
}
}
if ((ast->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
return;
/*
* Ensure we are updating the right AST entry by
* validating ast_idx.
* There is a possibility we might arrive here without
* AST MAP event , so this check is mandatory
*/
if (ast->is_mapped && (ast->ast_idx == sa_idx))
ast->is_active = TRUE;
if (sa_sw_peer_id != ta_peer->peer_ids[0]) {
sa_peer = ast->peer;
if ((ast->type != CDP_TXRX_AST_TYPE_STATIC) &&
(ast->type != CDP_TXRX_AST_TYPE_SELF) &&
(ast->type != CDP_TXRX_AST_TYPE_STA_BSS)) {
if (ast->pdev_id != ta_peer->vdev->pdev->pdev_id) {
/* This case is when a STA roams from one
* repeater to another repeater, but these
* repeaters are connected to root AP on
* different radios.
* Ex: rptr1 connected to ROOT AP over 5G
* and rptr2 connected to ROOT AP over 2G
* radio
*/
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_del_ast(soc, ast);
qdf_spin_unlock_bh(&soc->ast_lock);
} else {
/* this case is when a STA roams from one
* reapter to another repeater, but inside
* same radio.
*/
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_update_ast(soc, ta_peer, ast, flags);
qdf_spin_unlock_bh(&soc->ast_lock);
return;
}
}
/*
* Do not kickout STA if it belongs to a different radio.
* For DBDC repeater, it is possible to arrive here
* for multicast loopback frames originated from connected
* clients and looped back (intrabss) by Root AP
*/
if (ast->pdev_id != ta_peer->vdev->pdev->pdev_id) {
return;
}
/*
* Kickout, when direct associated peer(SA) roams
* to another AP and reachable via TA peer
*/
if ((sa_peer->vdev->opmode == wlan_op_mode_ap) &&
!sa_peer->delete_in_progress) {
sa_peer->delete_in_progress = true;
if (soc->cdp_soc.ol_ops->peer_sta_kickout) {
soc->cdp_soc.ol_ops->peer_sta_kickout(
sa_peer->vdev->pdev->ctrl_pdev,
wds_src_mac);
}
}
}
}
/**
* dp_rx_wds_srcport_learn() - Add or update the STA PEER which
* is behind the WDS repeater.
*
* @soc: core txrx main context
* @rx_tlv_hdr: base address of RX TLV header
* @ta_peer: WDS repeater peer
* @nbuf: rx pkt
*
* Return: void:
*/
static inline void
dp_rx_wds_srcport_learn(struct dp_soc *soc,
uint8_t *rx_tlv_hdr,
struct dp_peer *ta_peer,
qdf_nbuf_t nbuf)
{
uint16_t sa_sw_peer_id = hal_rx_msdu_end_sa_sw_peer_id_get(rx_tlv_hdr);
uint8_t sa_is_valid = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr);
uint8_t wds_src_mac[QDF_MAC_ADDR_SIZE];
uint16_t sa_idx;
uint8_t is_chfrag_start = 0;
uint8_t is_ad4_valid = 0;
if (qdf_unlikely(!ta_peer))
return;
is_chfrag_start = qdf_nbuf_is_rx_chfrag_start(nbuf);
if (is_chfrag_start)
is_ad4_valid = hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr);
memcpy(wds_src_mac, (qdf_nbuf_data(nbuf) + QDF_MAC_ADDR_SIZE),
QDF_MAC_ADDR_SIZE);
/*
* Get the AST entry from HW SA index and mark it as active
*/
sa_idx = hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr);
dp_rx_wds_add_or_update_ast(soc, ta_peer, wds_src_mac, is_ad4_valid,
sa_is_valid, is_chfrag_start,
sa_idx, sa_sw_peer_id);
return;
}
#else
static inline void
dp_rx_wds_srcport_learn(struct dp_soc *soc,
uint8_t *rx_tlv_hdr,
struct dp_peer *ta_peer,
qdf_nbuf_t nbuf)
{
}
#endif
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t nbuf);
void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
qdf_nbuf_t mpdu, bool mpdu_done);
void dp_rx_process_mic_error(struct dp_soc *soc, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_peer *peer);
void dp_2k_jump_handle(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
uint16_t peer_id, uint8_t tid);
#define DP_RX_LIST_APPEND(head, tail, elem) \
do { \
if (!(head)) { \
(head) = (elem); \
QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(head) = 1;\
} else { \
qdf_nbuf_set_next((tail), (elem)); \
QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(head)++; \
} \
(tail) = (elem); \
qdf_nbuf_set_next((tail), NULL); \
} while (0)
#ifndef BUILD_X86
static inline int check_x86_paddr(struct dp_soc *dp_soc, qdf_nbuf_t *rx_netbuf,
qdf_dma_addr_t *paddr, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#else
#define MAX_RETRY 100
static inline int check_x86_paddr(struct dp_soc *dp_soc, qdf_nbuf_t *rx_netbuf,
qdf_dma_addr_t *paddr, struct dp_pdev *pdev)
{
uint32_t nbuf_retry = 0;
int32_t ret;
const uint32_t x86_phy_addr = 0x50000000;
/*
* in M2M emulation platforms (x86) the memory below 0x50000000
* is reserved for target use, so any memory allocated in this
* region should not be used by host
*/
do {
if (qdf_likely(*paddr > x86_phy_addr))
return QDF_STATUS_SUCCESS;
else {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"phy addr %pK exceeded 0x50000000 trying again",
paddr);
nbuf_retry++;
if ((*rx_netbuf)) {
qdf_nbuf_unmap_single(dp_soc->osdev, *rx_netbuf,
QDF_DMA_BIDIRECTIONAL);
/* Not freeing buffer intentionally.
* Observed that same buffer is getting
* re-allocated resulting in longer load time
* WMI init timeout.
* This buffer is anyway not useful so skip it.
**/
}
*rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
RX_BUFFER_SIZE,
RX_BUFFER_RESERVATION,
RX_BUFFER_ALIGNMENT,
FALSE);
if (qdf_unlikely(!(*rx_netbuf)))
return QDF_STATUS_E_FAILURE;
ret = qdf_nbuf_map_single(dp_soc->osdev, *rx_netbuf,
QDF_DMA_BIDIRECTIONAL);
if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
qdf_nbuf_free(*rx_netbuf);
*rx_netbuf = NULL;
continue;
}
*paddr = qdf_nbuf_get_frag_paddr(*rx_netbuf, 0);
}
} while (nbuf_retry < MAX_RETRY);
if ((*rx_netbuf)) {
qdf_nbuf_unmap_single(dp_soc->osdev, *rx_netbuf,
QDF_DMA_BIDIRECTIONAL);
qdf_nbuf_free(*rx_netbuf);
}
return QDF_STATUS_E_FAILURE;
}
#endif
/**
* dp_rx_cookie_2_link_desc_va() - Converts cookie to a virtual address of
* the MSDU Link Descriptor
* @soc: core txrx main context
* @buf_info: buf_info include cookie that used to lookup virtual address of
* link descriptor Normally this is just an index into a per SOC array.
*
* This is the VA of the link descriptor, that HAL layer later uses to
* retrieve the list of MSDU's for a given MPDU.
*
* Return: void *: Virtual Address of the Rx descriptor
*/
static inline
void *dp_rx_cookie_2_link_desc_va(struct dp_soc *soc,
struct hal_buf_info *buf_info)
{
void *link_desc_va;
uint32_t bank_id = LINK_DESC_COOKIE_BANK_ID(buf_info->sw_cookie);
/* TODO */
/* Add sanity for cookie */
link_desc_va = soc->link_desc_banks[bank_id].base_vaddr +
(buf_info->paddr -
soc->link_desc_banks[bank_id].base_paddr);
return link_desc_va;
}
/**
* dp_rx_cookie_2_mon_link_desc_va() - Converts cookie to a virtual address of
* the MSDU Link Descriptor
* @pdev: core txrx pdev context
* @buf_info: buf_info includes cookie that used to lookup virtual address of
* link descriptor. Normally this is just an index into a per pdev array.
*
* This is the VA of the link descriptor in monitor mode destination ring,
* that HAL layer later uses to retrieve the list of MSDU's for a given MPDU.
*
* Return: void *: Virtual Address of the Rx descriptor
*/
static inline
void *dp_rx_cookie_2_mon_link_desc_va(struct dp_pdev *pdev,
struct hal_buf_info *buf_info,
int mac_id)
{
void *link_desc_va;
int mac_for_pdev = dp_get_mac_id_for_mac(pdev->soc, mac_id);
/* TODO */
/* Add sanity for cookie */
link_desc_va =
pdev->link_desc_banks[mac_for_pdev][buf_info->sw_cookie].base_vaddr +
(buf_info->paddr -
pdev->link_desc_banks[mac_for_pdev][buf_info->sw_cookie].base_paddr);
return link_desc_va;
}
/**
* dp_rx_defrag_concat() - Concatenate the fragments
*
* @dst: destination pointer to the buffer
* @src: source pointer from where the fragment payload is to be copied
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS dp_rx_defrag_concat(qdf_nbuf_t dst, qdf_nbuf_t src)
{
/*
* Inside qdf_nbuf_cat, if it is necessary to reallocate dst
* to provide space for src, the headroom portion is copied from
* the original dst buffer to the larger new dst buffer.
* (This is needed, because the headroom of the dst buffer
* contains the rx desc.)
*/
if (!qdf_nbuf_cat(dst, src)) {
/*
* qdf_nbuf_cat does not free the src memory.
* Free src nbuf before returning
* For failure case the caller takes of freeing the nbuf
*/
qdf_nbuf_free(src);
return QDF_STATUS_SUCCESS;
}
return QDF_STATUS_E_DEFRAG_ERROR;
}
/*
* dp_rx_ast_set_active() - set the active flag of the astentry
* corresponding to a hw index.
* @soc: core txrx main context
* @sa_idx: hw idx
* @is_active: active flag
*
*/
#ifdef FEATURE_WDS
static inline QDF_STATUS dp_rx_ast_set_active(struct dp_soc *soc, uint16_t sa_idx, bool is_active)
{
struct dp_ast_entry *ast;
qdf_spin_lock_bh(&soc->ast_lock);
ast = soc->ast_table[sa_idx];
/*
* Ensure we are updating the right AST entry by
* validating ast_idx.
* There is a possibility we might arrive here without
* AST MAP event , so this check is mandatory
*/
if (ast && ast->is_mapped && (ast->ast_idx == sa_idx)) {
ast->is_active = is_active;
qdf_spin_unlock_bh(&soc->ast_lock);
return QDF_STATUS_SUCCESS;
}
qdf_spin_unlock_bh(&soc->ast_lock);
return QDF_STATUS_E_FAILURE;
}
#else
static inline QDF_STATUS dp_rx_ast_set_active(struct dp_soc *soc, uint16_t sa_idx, bool is_active)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rx_desc_dump() - dump the sw rx descriptor
*
* @rx_desc: sw rx descriptor
*/
static inline void dp_rx_desc_dump(struct dp_rx_desc *rx_desc)
{
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,
"rx_desc->nbuf: %pK, rx_desc->cookie: %d, rx_desc->pool_id: %d, rx_desc->in_use: %d, rx_desc->unmapped: %d",
rx_desc->nbuf, rx_desc->cookie, rx_desc->pool_id,
rx_desc->in_use, rx_desc->unmapped);
}
/*
* check_qwrap_multicast_loopback() - Check if rx packet is a loopback packet.
* In qwrap mode, packets originated from
* any vdev should not loopback and
* should be dropped.
* @vdev: vdev on which rx packet is received
* @nbuf: rx pkt
*
*/
#if ATH_SUPPORT_WRAP
static inline bool check_qwrap_multicast_loopback(struct dp_vdev *vdev,
qdf_nbuf_t nbuf)
{
struct dp_vdev *psta_vdev;
struct dp_pdev *pdev = vdev->pdev;
uint8_t *data = qdf_nbuf_data(nbuf);
if (qdf_unlikely(vdev->proxysta_vdev)) {
/* In qwrap isolation mode, allow loopback packets as all
* packets go to RootAP and Loopback on the mpsta.
*/
if (vdev->isolation_vdev)
return false;
TAILQ_FOREACH(psta_vdev, &pdev->vdev_list, vdev_list_elem) {
if (qdf_unlikely(psta_vdev->proxysta_vdev &&
!qdf_mem_cmp(psta_vdev->mac_addr.raw,
&data[QDF_MAC_ADDR_SIZE],
QDF_MAC_ADDR_SIZE))) {
/* Drop packet if source address is equal to
* any of the vdev addresses.
*/
return true;
}
}
}
return false;
}
#else
static inline bool check_qwrap_multicast_loopback(struct dp_vdev *vdev,
qdf_nbuf_t nbuf)
{
return false;
}
#endif
/*
* dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
* called during dp rx initialization
* and at the end of dp_rx_process.
*
* @soc: core txrx main context
* @mac_id: mac_id which is one of 3 mac_ids
* @dp_rxdma_srng: dp rxdma circular ring
* @rx_desc_pool: Pointer to free Rx descriptor pool
* @num_req_buffers: number of buffer to be replenished
* @desc_list: list of descs if called from dp_rx_process
* or NULL during dp rx initialization or out of buffer
* interrupt.
* @tail: tail of descs list
* Return: return success or failure
*/
QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers,
union dp_rx_desc_list_elem_t **desc_list,
union dp_rx_desc_list_elem_t **tail);
/**
* dp_rx_link_desc_return() - Return a MPDU link descriptor to HW
* (WBM), following error handling
*
* @soc: core DP main context
* @buf_addr_info: opaque pointer to the REO error ring descriptor
* @buf_addr_info: void pointer to the buffer_addr_info
* @bm_action: put to idle_list or release to msdu_list
* Return: QDF_STATUS
*/
QDF_STATUS
dp_rx_link_desc_return(struct dp_soc *soc, void *ring_desc, uint8_t bm_action);
QDF_STATUS
dp_rx_link_desc_buf_return(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
void *buf_addr_info, uint8_t bm_action);
/**
* dp_rx_link_desc_return_by_addr - Return a MPDU link descriptor to
* (WBM) by address
*
* @soc: core DP main context
* @link_desc_addr: link descriptor addr
*
* Return: QDF_STATUS
*/
QDF_STATUS
dp_rx_link_desc_return_by_addr(struct dp_soc *soc, void *link_desc_addr,
uint8_t bm_action);
uint32_t
dp_rxdma_err_process(struct dp_soc *soc, uint32_t mac_id,
uint32_t quota);
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_peer *peer);
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr);
int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr, struct dp_vdev *vdev,
struct dp_peer *peer, int rx_mcast);
qdf_nbuf_t
dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev);
void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
void *ring_desc, struct dp_rx_desc *rx_desc);
void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf);
#ifdef RX_DESC_DEBUG_CHECK
/**
* dp_rx_desc_check_magic() - check the magic value in dp_rx_desc
* @rx_desc: rx descriptor pointer
*
* Return: true, if magic is correct, else false.
*/
static inline bool dp_rx_desc_check_magic(struct dp_rx_desc *rx_desc)
{
if (qdf_unlikely(rx_desc->magic != DP_RX_DESC_MAGIC))
return false;
rx_desc->magic = 0;
return true;
}
/**
* dp_rx_desc_prep() - prepare rx desc
* @rx_desc: rx descriptor pointer to be prepared
* @nbuf: nbuf to be associated with rx_desc
*
* Note: assumption is that we are associating a nbuf which is mapped
*
* Return: none
*/
static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
{
rx_desc->magic = DP_RX_DESC_MAGIC;
rx_desc->nbuf = nbuf;
rx_desc->unmapped = 0;
}
#else
static inline bool dp_rx_desc_check_magic(struct dp_rx_desc *rx_desc)
{
return true;
}
static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
{
rx_desc->nbuf = nbuf;
rx_desc->unmapped = 0;
}
#endif /* RX_DESC_DEBUG_CHECK */
void dp_rx_process_rxdma_err(struct dp_soc *soc, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_peer *peer,
uint8_t err_code);
#endif /* _DP_RX_H */