Files
android_kernel_samsung_sm86…/dp/wifi3.0/dp_main.c
Harsh Kumar Bijlani 56c08d2ecf qcacmn: Store MSCS context in MLD peer in case of MLO connection
Store MSCS context in MLD peer in case of MLO connection

Change-Id: I482e2259077eb8c74aeed93beb8472a683ce2817
CRs-Fixed: 3457780
2023-04-10 01:20:06 -07:00

12411 rader
326 KiB
C

/*
* Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <wlan_ipa_obj_mgmt_api.h>
#include <qdf_types.h>
#include <qdf_lock.h>
#include <qdf_net_types.h>
#include <qdf_lro.h>
#include <qdf_module.h>
#include <hal_hw_headers.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_types.h"
#include "dp_rings.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_rx.h"
#ifdef DP_RATETABLE_SUPPORT
#include "dp_ratetable.h"
#endif
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#include <wlan_utility.h>
#include "cdp_txrx_cmn_struct.h"
#include "cdp_txrx_stats_struct.h"
#include "cdp_txrx_cmn_reg.h"
#include <qdf_util.h>
#include "dp_peer.h"
#include "htt_stats.h"
#include "dp_htt.h"
#ifdef WLAN_SUPPORT_RX_FISA
#include <wlan_dp_fisa_rx.h>
#endif
#include "htt_ppdu_stats.h"
#include "qdf_mem.h" /* qdf_mem_malloc,free */
#include "cfg_ucfg_api.h"
#include <wlan_module_ids.h>
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
#include "cdp_txrx_flow_ctrl_v2.h"
#else
static inline void
cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
{
return;
}
#endif
#ifdef WIFI_MONITOR_SUPPORT
#include <dp_mon.h>
#endif
#include "dp_ipa.h"
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#ifdef WLAN_SUPPORT_MSCS
#include "dp_mscs.h"
#endif
#ifdef WLAN_SUPPORT_MESH_LATENCY
#include "dp_mesh_latency.h"
#endif
#ifdef WLAN_SUPPORT_SCS
#include "dp_scs.h"
#endif
#ifdef ATH_SUPPORT_IQUE
#include "dp_txrx_me.h"
#endif
#if defined(DP_CON_MON)
#ifndef REMOVE_PKT_LOG
#include <pktlog_ac_api.h>
#include <pktlog_ac.h>
#endif
#endif
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
#include <wlan_dp_swlm.h>
#endif
#ifdef CONFIG_SAWF_DEF_QUEUES
#include "dp_sawf.h"
#endif
#ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
#include <target_if_dp.h>
#endif
#if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
#define SET_PEER_REF_CNT_ONE(_peer) \
qdf_atomic_set(&(_peer)->ref_cnt, 1)
#else
#define SET_PEER_REF_CNT_ONE(_peer)
#endif
#ifdef WLAN_SYSFS_DP_STATS
/* sysfs event wait time for firmware stat request unit milliseconds */
#define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
#endif
#ifdef QCA_DP_TX_FW_METADATA_V2
#define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
#else
#define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
#endif
QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
void dp_configure_arch_ops(struct dp_soc *soc);
qdf_size_t dp_get_soc_context_size(uint16_t device_id);
/*
* The max size of cdp_peer_stats_param_t is limited to 16 bytes.
* If the buffer size is exceeding this size limit,
* dp_txrx_get_peer_stats is to be used instead.
*/
QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
(sizeof(cdp_peer_stats_param_t) <= 16));
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
/*
* If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
* also should be updated accordingly
*/
QDF_COMPILE_TIME_ASSERT(num_intr_grps,
HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
/*
* HIF_EVENT_HIST_MAX should always be power of 2
*/
QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
/*
* If WLAN_CFG_INT_NUM_CONTEXTS is changed,
* WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
*/
QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
WLAN_CFG_INT_NUM_CONTEXTS);
static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
static void dp_pdev_srng_free(struct dp_pdev *pdev);
static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
static inline
QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
struct cdp_pdev_attach_params *params);
static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
static QDF_STATUS
dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id);
static QDF_STATUS
dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
uint8_t pdev_id,
int force);
static struct dp_soc *
dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct cdp_soc_attach_params *params);
static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac_addr,
enum cdp_peer_type peer_type);
static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac, uint32_t bitmap,
enum cdp_peer_type peer_type);
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
bool unmap_only,
bool mlo_peers_only);
#ifdef ENABLE_VERBOSE_DEBUG
bool is_dp_verbose_debug_enabled;
#endif
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
bool enable);
static inline void
dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
struct cdp_cfr_rcc_stats *cfr_rcc_stats);
static inline void
dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
#endif
#ifdef DP_UMAC_HW_RESET_SUPPORT
static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
#endif
#define MON_VDEV_TIMER_INIT 0x1
#define MON_VDEV_TIMER_RUNNING 0x2
#define DP_MCS_LENGTH (6*MAX_MCS)
#define DP_CURR_FW_STATS_AVAIL 19
#define DP_HTT_DBG_EXT_STATS_MAX 256
#define DP_MAX_SLEEP_TIME 100
#ifndef QCA_WIFI_3_0_EMU
#define SUSPEND_DRAIN_WAIT 500
#else
#define SUSPEND_DRAIN_WAIT 3000
#endif
#ifdef IPA_OFFLOAD
/* Exclude IPA rings from the interrupt context */
#define TX_RING_MASK_VAL 0xb
#define RX_RING_MASK_VAL 0x7
#else
#define TX_RING_MASK_VAL 0xF
#define RX_RING_MASK_VAL 0xF
#endif
#define STR_MAXLEN 64
#define RNG_ERR "SRNG setup failed for"
/**
* enum dp_stats_type - Select the type of statistics
* @STATS_FW: Firmware-based statistic
* @STATS_HOST: Host-based statistic
* @STATS_TYPE_MAX: maximum enumeration
*/
enum dp_stats_type {
STATS_FW = 0,
STATS_HOST = 1,
STATS_TYPE_MAX = 2,
};
/**
* enum dp_fw_stats - General Firmware statistics options
* @TXRX_FW_STATS_INVALID: statistic is not available
*/
enum dp_fw_stats {
TXRX_FW_STATS_INVALID = -1,
};
/*
* dp_stats_mapping_table - Firmware and Host statistics
* currently supported
*/
const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
/* Last ENUM for HTT FW STATS */
{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
};
/* MCL specific functions */
#if defined(DP_CON_MON)
#ifdef IPA_OFFLOAD
/**
* dp_get_num_rx_contexts() - get number of RX contexts
* @soc_hdl: cdp opaque soc handle
*
* Return: number of RX contexts
*/
static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
{
int num_rx_contexts;
uint32_t reo_ring_map;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
switch (soc->arch_id) {
case CDP_ARCH_TYPE_BE:
/* 2 REO rings are used for IPA */
reo_ring_map &= ~(BIT(3) | BIT(7));
break;
case CDP_ARCH_TYPE_LI:
/* 1 REO ring is used for IPA */
reo_ring_map &= ~BIT(3);
break;
default:
dp_err("unknown arch_id 0x%x", soc->arch_id);
QDF_BUG(0);
}
/*
* qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
* in future
*/
num_rx_contexts = qdf_get_hweight32(reo_ring_map);
return num_rx_contexts;
}
#else
static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
{
int num_rx_contexts;
uint32_t reo_config;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
/*
* qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
* in future
*/
num_rx_contexts = qdf_get_hweight32(reo_config);
return num_rx_contexts;
}
#endif
#endif
#ifdef FEATURE_MEC
void dp_peer_mec_flush_entries(struct dp_soc *soc)
{
unsigned int index;
struct dp_mec_entry *mecentry, *mecentry_next;
TAILQ_HEAD(, dp_mec_entry) free_list;
TAILQ_INIT(&free_list);
if (!soc->mec_hash.mask)
return;
if (!soc->mec_hash.bins)
return;
if (!qdf_atomic_read(&soc->mec_cnt))
return;
qdf_spin_lock_bh(&soc->mec_lock);
for (index = 0; index <= soc->mec_hash.mask; index++) {
if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
hash_list_elem, mecentry_next) {
dp_peer_mec_detach_entry(soc, mecentry, &free_list);
}
}
}
qdf_spin_unlock_bh(&soc->mec_lock);
dp_peer_mec_free_list(soc, &free_list);
}
/**
* dp_print_mec_stats() - Dump MEC entries in table
* @soc: Datapath soc handle
*
* Return: none
*/
static void dp_print_mec_stats(struct dp_soc *soc)
{
int i;
uint32_t index;
struct dp_mec_entry *mecentry = NULL, *mec_list;
uint32_t num_entries = 0;
DP_PRINT_STATS("MEC Stats:");
DP_PRINT_STATS(" Entries Added = %d", soc->stats.mec.added);
DP_PRINT_STATS(" Entries Deleted = %d", soc->stats.mec.deleted);
if (!qdf_atomic_read(&soc->mec_cnt))
return;
mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
if (!mec_list) {
dp_peer_warn("%pK: failed to allocate mec_list", soc);
return;
}
DP_PRINT_STATS("MEC Table:");
for (index = 0; index <= soc->mec_hash.mask; index++) {
qdf_spin_lock_bh(&soc->mec_lock);
if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
qdf_spin_unlock_bh(&soc->mec_lock);
continue;
}
TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
hash_list_elem) {
qdf_mem_copy(&mec_list[num_entries], mecentry,
sizeof(*mecentry));
num_entries++;
}
qdf_spin_unlock_bh(&soc->mec_lock);
}
if (!num_entries) {
qdf_mem_free(mec_list);
return;
}
for (i = 0; i < num_entries; i++) {
DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
" is_active = %d pdev_id = %d vdev_id = %d",
i,
QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
mec_list[i].is_active,
mec_list[i].pdev_id,
mec_list[i].vdev_id);
}
qdf_mem_free(mec_list);
}
#else
static void dp_print_mec_stats(struct dp_soc *soc)
{
}
#endif
static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac,
uint8_t *mac_addr,
enum cdp_txrx_ast_entry_type type,
uint32_t flags)
{
int ret = -1;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_peer_debug("Peer is NULL!");
return ret;
}
status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
peer,
mac_addr,
type,
flags);
if ((status == QDF_STATUS_SUCCESS) ||
(status == QDF_STATUS_E_ALREADY) ||
(status == QDF_STATUS_E_AGAIN))
ret = 0;
dp_hmwds_ast_add_notify(peer, mac_addr,
type, status, false);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return ret;
}
static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac,
uint8_t *wds_macaddr,
uint32_t flags)
{
int status = -1;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_peer *peer;
if (soc->ast_offload_support)
return status;
peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_peer_debug("Peer is NULL!");
return status;
}
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
peer->vdev->pdev->pdev_id);
if (ast_entry) {
status = dp_peer_update_ast(soc,
peer,
ast_entry, flags);
}
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
/**
* dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
* @soc: Datapath SOC handle
* @peer: DP peer
* @arg: callback argument
*
* Return: None
*/
static void
dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
struct dp_ast_entry *ast_entry = NULL;
struct dp_ast_entry *tmp_ast_entry;
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
}
/**
* dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
* @soc_hdl: Datapath SOC handle
* @wds_macaddr: WDS entry MAC Address
* @peer_mac_addr: WDS entry MAC Address
* @vdev_id: id of vdev handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t *wds_macaddr,
uint8_t *peer_mac_addr,
uint8_t vdev_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_peer *peer;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
if (soc->ast_offload_support)
return QDF_STATUS_E_FAILURE;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
if (peer_mac_addr) {
peer = dp_peer_find_hash_find(soc, peer_mac_addr,
0, vdev->vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_reset_ast_entries(soc, peer, NULL);
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
} else if (wds_macaddr) {
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
pdev->pdev_id);
if (ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
* @soc_hdl: Datapath SOC handle
* @vdev_id: id of vdev object
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_wds_reset_ast_table_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
if (soc->ast_offload_support)
return QDF_STATUS_SUCCESS;
qdf_spin_lock_bh(&soc->ast_lock);
dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
DP_MOD_ID_CDP);
qdf_spin_unlock_bh(&soc->ast_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
* @soc: Datapath SOC
* @peer: Datapath peer
* @arg: arg to callback
*
* Return: None
*/
static void
dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
struct dp_ast_entry *ase = NULL;
struct dp_ast_entry *temp_ase;
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if ((ase->type ==
CDP_TXRX_AST_TYPE_STATIC) ||
(ase->type ==
CDP_TXRX_AST_TYPE_SELF) ||
(ase->type ==
CDP_TXRX_AST_TYPE_STA_BSS))
continue;
dp_peer_del_ast(soc, ase);
}
}
/**
* dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
* @soc_hdl: Datapath SOC handle
*
* Return: None
*/
static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
DP_MOD_ID_CDP);
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_mec_flush_entries(soc);
}
#if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
/**
* dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
* @soc: Datapath SOC
* @peer: Datapath peer
*
* Return: None
*/
static void
dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
{
struct dp_ast_entry *ase = NULL;
struct dp_ast_entry *temp_ase;
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
ase->mac_addr.raw,
ase->vdev_id);
}
}
}
#elif defined(FEATURE_AST)
static void
dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
{
}
#endif
/**
* dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
* and return ast entry information
* of first ast entry found in the
* table with given mac address
* @soc_hdl: data path soc handle
* @ast_mac_addr: AST entry mac address
* @ast_entry_info: ast entry information
*
* Return: true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_soc_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry = NULL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer = NULL;
if (soc->ast_offload_support)
return false;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
if ((!ast_entry) ||
(ast_entry->delete_in_progress && !ast_entry->callback)) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
DP_MOD_ID_AST);
if (!peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->vdev_id;
ast_entry_info->peer_id = ast_entry->peer_id;
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
dp_peer_unref_delete(peer, DP_MOD_ID_AST);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
* and return ast entry information
* if mac address and pdev_id matches
* @soc_hdl: data path soc handle
* @ast_mac_addr: AST entry mac address
* @pdev_id: pdev_id
* @ast_entry_info: ast entry information
*
* Return: true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_pdevid_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
uint8_t pdev_id,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer = NULL;
if (soc->ast_offload_support)
return false;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
pdev_id);
if ((!ast_entry) ||
(ast_entry->delete_in_progress && !ast_entry->callback)) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
DP_MOD_ID_AST);
if (!peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->vdev_id;
ast_entry_info->peer_id = ast_entry->peer_id;
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
dp_peer_unref_delete(peer, DP_MOD_ID_AST);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
* with given mac address
* @soc_handle: data path soc handle
* @mac_addr: AST entry mac address
* @callback: callback function to called on ast delete response from FW
* @cookie: argument to be passed to callback
*
* Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry = NULL;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
if (soc->ast_offload_support)
return -QDF_STATUS_E_INVAL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not send delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
* table if mac address and pdev_id matches
* @soc_handle: data path soc handle
* @mac_addr: AST entry mac address
* @pdev_id: pdev id
* @callback: callback function to called on ast delete response from FW
* @cookie: argument to be passed to callback
*
* Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
uint8_t pdev_id,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
if (soc->ast_offload_support)
return -QDF_STATUS_E_INVAL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not sent delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
* table if HMWDS rem-addr command is issued
*
* @soc_handle: data path soc handle
* @vdev_id: vdev id
* @wds_macaddr: AST entry mac address to delete
* @type: cdp_txrx_ast_entry_type to send to FW
* @delete_in_fw: flag to indicate AST entry deletion in FW
*
* Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
uint8_t vdev_id,
uint8_t *wds_macaddr,
uint8_t type,
uint8_t delete_in_fw)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
if (soc->ast_offload_support) {
dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
delete_in_fw);
return QDF_STATUS_SUCCESS;
}
return -QDF_STATUS_E_INVAL;
}
#ifdef FEATURE_AST
/**
* dp_print_mlo_ast_stats() - Print AST stats for MLO peers
*
* @soc: core DP soc context
*
* Return: void
*/
static void dp_print_mlo_ast_stats(struct dp_soc *soc)
{
if (soc->arch_ops.print_mlo_ast_stats)
soc->arch_ops.print_mlo_ast_stats(soc);
}
void
dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
struct dp_ast_entry *ase, *tmp_ase;
uint32_t num_entries = 0;
char type[CDP_TXRX_AST_TYPE_MAX][10] = {
"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
"DA", "HMWDS_SEC", "MLD"};
DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
" peer_mac_addr = "QDF_MAC_ADDR_FMT
" peer_id = %u"
" type = %s"
" next_hop = %d"
" is_active = %d"
" ast_idx = %d"
" ast_hash = %d"
" delete_in_progress = %d"
" pdev_id = %d"
" vdev_id = %d",
++num_entries,
QDF_MAC_ADDR_REF(ase->mac_addr.raw),
QDF_MAC_ADDR_REF(peer->mac_addr.raw),
ase->peer_id,
type[ase->type],
ase->next_hop,
ase->is_active,
ase->ast_idx,
ase->ast_hash_value,
ase->delete_in_progress,
ase->pdev_id,
ase->vdev_id);
}
}
void dp_print_ast_stats(struct dp_soc *soc)
{
DP_PRINT_STATS("AST Stats:");
DP_PRINT_STATS(" Entries Added = %d", soc->stats.ast.added);
DP_PRINT_STATS(" Entries Deleted = %d", soc->stats.ast.deleted);
DP_PRINT_STATS(" Entries Agedout = %d", soc->stats.ast.aged_out);
DP_PRINT_STATS(" Entries MAP ERR = %d", soc->stats.ast.map_err);
DP_PRINT_STATS(" Entries Mismatch ERR = %d",
soc->stats.ast.ast_mismatch);
DP_PRINT_STATS("AST Table:");
qdf_spin_lock_bh(&soc->ast_lock);
dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
DP_MOD_ID_GENERIC_STATS);
qdf_spin_unlock_bh(&soc->ast_lock);
dp_print_mlo_ast_stats(soc);
}
#else
void dp_print_ast_stats(struct dp_soc *soc)
{
DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
return;
}
#endif
/**
* dp_print_peer_info() - Dump peer info
* @soc: Datapath soc handle
* @peer: Datapath peer handle
* @arg: argument to iter function
*
* Return: void
*/
static void
dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
struct dp_txrx_peer *txrx_peer = NULL;
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer)
return;
DP_PRINT_STATS(" peer id = %d"
" peer_mac_addr = "QDF_MAC_ADDR_FMT
" nawds_enabled = %d"
" bss_peer = %d"
" wds_enabled = %d"
" tx_cap_enabled = %d"
" rx_cap_enabled = %d",
peer->peer_id,
QDF_MAC_ADDR_REF(peer->mac_addr.raw),
txrx_peer->nawds_enabled,
txrx_peer->bss_peer,
txrx_peer->wds_enabled,
dp_monitor_is_tx_cap_enabled(peer),
dp_monitor_is_rx_cap_enabled(peer));
}
/**
* dp_print_peer_table() - Dump all Peer stats
* @vdev: Datapath Vdev handle
*
* Return: void
*/
static void dp_print_peer_table(struct dp_vdev *vdev)
{
DP_PRINT_STATS("Dumping Peer Table Stats:");
dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
DP_MOD_ID_GENERIC_STATS);
}
#ifdef DP_MEM_PRE_ALLOC
void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
size_t ctxt_size)
{
void *ctxt_mem;
if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
dp_warn("dp_prealloc_get_context null!");
goto dynamic_alloc;
}
ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
ctxt_size);
if (ctxt_mem)
goto end;
dynamic_alloc:
dp_info("switch to dynamic-alloc for type %d, size %zu",
ctxt_type, ctxt_size);
ctxt_mem = qdf_mem_malloc(ctxt_size);
end:
return ctxt_mem;
}
void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
void *vaddr)
{
QDF_STATUS status;
if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
ctxt_type,
vaddr);
} else {
dp_warn("dp_prealloc_put_context null!");
status = QDF_STATUS_E_NOSUPPORT;
}
if (QDF_IS_STATUS_ERROR(status)) {
dp_info("Context type %d not pre-allocated", ctxt_type);
qdf_mem_free(vaddr);
}
}
static inline
void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
struct dp_srng *srng,
uint32_t ring_type)
{
void *mem;
qdf_assert(!srng->is_mem_prealloc);
if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
dp_warn("dp_prealloc_get_consistent is null!");
goto qdf;
}
mem =
soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
(&srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN, ring_type);
if (mem) {
srng->is_mem_prealloc = true;
goto end;
}
qdf:
mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN);
end:
dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
srng, ring_type, srng->alloc_size, srng->num_entries);
return mem;
}
static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
struct dp_srng *srng)
{
if (srng->is_mem_prealloc) {
if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
dp_warn("dp_prealloc_put_consistent is null!");
QDF_BUG(0);
return;
}
soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
(srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned);
} else {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
}
void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
enum dp_desc_type desc_type,
struct qdf_mem_multi_page_t *pages,
size_t element_size,
uint32_t element_num,
qdf_dma_context_t memctxt,
bool cacheable)
{
if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
dp_warn("dp_get_multi_pages is null!");
goto qdf;
}
pages->num_pages = 0;
pages->is_mem_prealloc = 0;
soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
element_size,
element_num,
pages,
cacheable);
if (pages->num_pages)
goto end;
qdf:
qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
element_num, memctxt, cacheable);
end:
dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
desc_type, (int)element_size, element_num, cacheable);
}
void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
enum dp_desc_type desc_type,
struct qdf_mem_multi_page_t *pages,
qdf_dma_context_t memctxt,
bool cacheable)
{
if (pages->is_mem_prealloc) {
if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
dp_warn("dp_put_multi_pages is null!");
QDF_BUG(0);
return;
}
soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
qdf_mem_zero(pages, sizeof(*pages));
} else {
qdf_mem_multi_pages_free(soc->osdev, pages,
memctxt, cacheable);
}
}
#else
static inline
void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
struct dp_srng *srng,
uint32_t ring_type)
{
void *mem;
mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN);
if (mem)
qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
return mem;
}
static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
struct dp_srng *srng)
{
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
#endif /* DP_MEM_PRE_ALLOC */
#ifdef QCA_SUPPORT_WDS_EXTENDED
bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
{
return vdev->wds_ext_enabled;
}
#else
bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
{
return false;
}
#endif
void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
uint8_t rx_fast_flag = true;
/* Check if protocol tagging enable */
if (pdev->is_rx_protocol_tagging_enabled && !pdev->enhanced_stats_en) {
rx_fast_flag = false;
goto update_flag;
}
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
/* Check if any VDEV has NAWDS enabled */
if (vdev->nawds_enabled) {
rx_fast_flag = false;
break;
}
/* Check if any VDEV has multipass enabled */
if (vdev->multipass_en) {
rx_fast_flag = false;
break;
}
/* Check if any VDEV has mesh enabled */
if (vdev->mesh_vdev) {
rx_fast_flag = false;
break;
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
update_flag:
dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
pdev->rx_fast_flag = rx_fast_flag;
}
void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
{
if (srng->alloc_size && srng->base_vaddr_unaligned) {
if (!srng->cached) {
dp_srng_mem_free_consistent(soc, srng);
} else {
qdf_mem_free(srng->base_vaddr_unaligned);
}
srng->alloc_size = 0;
srng->base_vaddr_unaligned = NULL;
}
srng->hal_srng = NULL;
}
qdf_export_symbol(dp_srng_free);
QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
int ring_num, int mac_id)
{
return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
ring_num, mac_id);
}
qdf_export_symbol(dp_srng_init);
QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, uint32_t num_entries,
bool cached)
{
hal_soc_handle_t hal_soc = soc->hal_soc;
uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
if (srng->base_vaddr_unaligned) {
dp_init_err("%pK: Ring type: %d, is already allocated",
soc, ring_type);
return QDF_STATUS_SUCCESS;
}
num_entries = (num_entries > max_entries) ? max_entries : num_entries;
srng->hal_srng = NULL;
srng->alloc_size = num_entries * entry_size;
srng->num_entries = num_entries;
srng->cached = cached;
if (!cached) {
srng->base_vaddr_aligned =
dp_srng_aligned_mem_alloc_consistent(soc,
srng,
ring_type);
} else {
srng->base_vaddr_aligned = qdf_aligned_malloc(
&srng->alloc_size,
&srng->base_vaddr_unaligned,
&srng->base_paddr_unaligned,
&srng->base_paddr_aligned,
DP_RING_BASE_ALIGN);
}
if (!srng->base_vaddr_aligned)
return QDF_STATUS_E_NOMEM;
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(dp_srng_alloc);
void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!srng->hal_srng) {
dp_init_err("%pK: Ring type: %d, num:%d not setup",
soc, ring_type, ring_num);
return;
}
if (dp_check_umac_reset_in_progress(soc))
goto srng_cleanup;
if (soc->arch_ops.dp_free_ppeds_interrupts)
soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
ring_num);
srng_cleanup:
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
srng->hal_srng = NULL;
}
qdf_export_symbol(dp_srng_deinit);
/* TODO: Need this interface from HIF */
void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
hal_ring_handle_t hal_ring_hdl)
{
hal_soc_handle_t hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
if (!int_ctx)
return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring_hdl);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
}
void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
hal_ring_handle_t hal_ring_hdl)
{
hal_soc_handle_t hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
if (!int_ctx)
return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring_hdl);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
}
static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
hif_record_event(dp_soc->hif_handle, hist_group_id,
0, 0, 0, HIF_EVENT_TIMER_ENTRY);
}
static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
hif_record_event(dp_soc->hif_handle, hist_group_id,
0, 0, 0, HIF_EVENT_TIMER_EXIT);
}
#else
static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
}
static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
uint8_t hist_group_id)
{
}
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
enum timer_yield_status
dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
uint64_t start_time)
{
uint64_t cur_time = qdf_get_log_timestamp();
if (!work_done)
return DP_TIMER_WORK_DONE;
if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
return DP_TIMER_TIME_EXHAUST;
return DP_TIMER_NO_YIELD;
}
qdf_export_symbol(dp_should_timer_irq_yield);
void dp_interrupt_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *) arg;
struct dp_pdev *pdev = soc->pdev_list[0];
enum timer_yield_status yield = DP_TIMER_NO_YIELD;
uint32_t work_done = 0, total_work_done = 0;
int budget = 0xffff, i;
uint32_t remaining_quota = budget;
uint64_t start_time;
uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
uint32_t lmac_iter;
int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
enum reg_wifi_band mon_band;
int cpu = dp_srng_get_cpu();
/*
* this logic makes all data path interfacing rings (UMAC/LMAC)
* and Monitor rings polling mode when NSS offload is disabled
*/
if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
if (qdf_atomic_read(&soc->cmn_init_done)) {
for (i = 0; i < wlan_cfg_get_num_contexts(
soc->wlan_cfg_ctx); i++)
dp_service_srngs(&soc->intr_ctx[i], 0xffff,
cpu);
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
return;
}
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
if (dp_monitor_is_chan_band_known(pdev)) {
mon_band = dp_monitor_get_chan_band(pdev);
lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
dp_srng_record_timer_entry(soc, dp_intr_id);
}
}
start_time = qdf_get_log_timestamp();
dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
while (yield == DP_TIMER_NO_YIELD) {
for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
if (lmac_iter == lmac_id)
work_done = dp_monitor_process(soc,
&soc->intr_ctx[dp_intr_id],
lmac_iter, remaining_quota);
else
work_done =
dp_monitor_drop_packets_for_mac(pdev,
lmac_iter,
remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0) {
yield = DP_TIMER_WORK_EXHAUST;
goto budget_done;
}
remaining_quota = budget;
total_work_done += work_done;
}
}
yield = dp_should_timer_irq_yield(soc, total_work_done,
start_time);
total_work_done = 0;
}
budget_done:
if (yield == DP_TIMER_WORK_EXHAUST ||
yield == DP_TIMER_TIME_EXHAUST)
qdf_timer_mod(&soc->int_timer, 1);
else
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
if (lmac_id != DP_MON_INVALID_LMAC_ID)
dp_srng_record_timer_exit(soc, dp_intr_id);
}
#if defined(DP_INTR_POLL_BOTH)
/**
* dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Call the appropriate attach function based on the mode of operation.
* This is a WAR for enabling monitor mode.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(dp_is_monitor_mode_using_poll(soc) &&
soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE)) {
dp_info("Poll mode");
return dp_soc_attach_poll(txrx_soc);
} else {
dp_info("Interrupt mode");
return dp_soc_interrupt_attach(txrx_soc);
}
}
#else
#if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
{
return dp_soc_attach_poll(txrx_soc);
}
#else
static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
return dp_soc_attach_poll(txrx_soc);
else
return dp_soc_interrupt_attach(txrx_soc);
}
#endif
#endif
/**
* dp_soc_ppeds_stop() - Stop PPE DS processing
* @soc_handle: DP SOC handle
*
* Return: none
*/
static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
if (soc->arch_ops.txrx_soc_ppeds_stop)
soc->arch_ops.txrx_soc_ppeds_stop(soc);
}
#ifdef ENABLE_VERBOSE_DEBUG
void dp_enable_verbose_debug(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
soc_cfg_ctx = soc->wlan_cfg_ctx;
if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
is_dp_verbose_debug_enabled = true;
if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
hal_set_verbose_debug(true);
else
hal_set_verbose_debug(false);
}
#else
void dp_enable_verbose_debug(struct dp_soc *soc)
{
}
#endif
static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct cdp_lro_hash_config lro_hash;
QDF_STATUS status;
if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
dp_err("LRO, GRO and RX hash disabled");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_zero(&lro_hash, sizeof(lro_hash));
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
lro_hash.lro_enable = 1;
lro_hash.tcp_flag = QDF_TCPHDR_ACK;
lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
}
soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
if (!soc->cdp_soc.ol_ops->lro_hash_config) {
QDF_BUG(0);
dp_err("lro_hash_config not configured");
return QDF_STATUS_E_FAILURE;
}
status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
pdev->pdev_id,
&lro_hash);
if (!QDF_IS_STATUS_SUCCESS(status)) {
dp_err("failed to send lro_hash_config to FW %u", status);
return status;
}
dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
lro_hash.lro_enable, lro_hash.tcp_flag,
lro_hash.tcp_flag_mask);
dp_info("toeplitz_hash_ipv4:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
dp_info("toeplitz_hash_ipv6:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
return status;
}
#if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
/**
* dp_reap_timer_init() - initialize the reap timer
* @soc: data path SoC handle
*
* Return: void
*/
static void dp_reap_timer_init(struct dp_soc *soc)
{
/*
* Timer to reap rxdma status rings.
* Needed until we enable ppdu end interrupts
*/
dp_monitor_reap_timer_init(soc);
dp_monitor_vdev_timer_init(soc);
}
/**
* dp_reap_timer_deinit() - de-initialize the reap timer
* @soc: data path SoC handle
*
* Return: void
*/
static void dp_reap_timer_deinit(struct dp_soc *soc)
{
dp_monitor_reap_timer_deinit(soc);
}
#else
/* WIN use case */
static void dp_reap_timer_init(struct dp_soc *soc)
{
/* Configure LMAC rings in Polled mode */
if (soc->lmac_polled_mode) {
/*
* Timer to reap lmac rings.
*/
qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
dp_service_lmac_rings, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
soc->lmac_timer_init = 1;
qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
}
}
static void dp_reap_timer_deinit(struct dp_soc *soc)
{
if (soc->lmac_timer_init) {
qdf_timer_stop(&soc->lmac_reap_timer);
qdf_timer_free(&soc->lmac_reap_timer);
soc->lmac_timer_init = 0;
}
}
#endif
#ifdef QCA_HOST2FW_RXBUF_RING
/**
* dp_rxdma_ring_alloc() - allocate the RXDMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: 0 - success, > 0 - failure
*/
static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
int max_mac_rings;
int i;
int ring_size;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
ring_size = wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
for (i = 0; i < max_mac_rings; i++) {
dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, ring_size, 0)) {
dp_init_err("%pK: failed rx mac ring setup", soc);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_rxdma_ring_setup() - configure the RXDMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: 0 - success, > 0 - failure
*/
static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
int max_mac_rings;
int i;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
for (i = 0; i < max_mac_rings; i++) {
dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1, i)) {
dp_init_err("%pK: failed rx mac ring setup", soc);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: void
*/
static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
{
int i;
for (i = 0; i < MAX_RX_MAC_RINGS; i++)
dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
dp_reap_timer_deinit(soc);
}
/**
* dp_rxdma_ring_free() - Free the RXDMA rings
* @pdev: Physical device handle
*
* Return: void
*/
static void dp_rxdma_ring_free(struct dp_pdev *pdev)
{
int i;
for (i = 0; i < MAX_RX_MAC_RINGS; i++)
dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
}
#else
static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
{
dp_reap_timer_deinit(soc);
}
static void dp_rxdma_ring_free(struct dp_pdev *pdev)
{
}
#endif
#ifdef IPA_OFFLOAD
/**
* dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int entries;
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
soc_cfg_ctx = soc->wlan_cfg_ctx;
entries =
wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
/* Setup second Rx refill buffer ring */
if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
entries, 0)) {
dp_init_err("%pK: dp_srng_alloc failed second"
"rx refill ring", soc);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#ifdef IPA_WDI3_VLAN_SUPPORT
static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int entries;
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
wlan_ipa_is_vlan_enabled()) {
soc_cfg_ctx = soc->wlan_cfg_ctx;
entries =
wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
/* Setup second Rx refill buffer ring */
if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
entries, 0)) {
dp_init_err("%pK: alloc failed for 3rd rx refill ring",
soc);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
wlan_ipa_is_vlan_enabled()) {
if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
IPA_RX_ALT_REFILL_BUF_RING_IDX,
pdev->pdev_id)) {
dp_init_err("%pK: init failed for 3rd rx refill ring",
soc);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
wlan_ipa_is_vlan_enabled())
dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
}
static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
wlan_ipa_is_vlan_enabled())
dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
}
#else
static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
/**
* dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: void
*/
static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
}
/**
* dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
dp_init_err("%pK: dp_srng_init failed second"
"rx refill ring", soc);
return QDF_STATUS_E_FAILURE;
}
}
if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: void
*/
static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
}
#else
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
#ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
/**
* dp_soc_cfg_history_attach() - Allocate and attach datapath config events
* history
* @soc: DP soc handle
*
* Return: None
*/
static void dp_soc_cfg_history_attach(struct dp_soc *soc)
{
dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
DP_CFG_EVT_HIST_MAX_SLOTS,
DP_CFG_EVT_HIST_PER_SLOT_MAX,
sizeof(struct dp_cfg_event),
true, DP_CFG_EVENT_HIST_TYPE);
}
/**
* dp_soc_cfg_history_detach() - Detach and free DP config events history
* @soc: DP soc handle
*
* Return: none
*/
static void dp_soc_cfg_history_detach(struct dp_soc *soc)
{
dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
DP_CFG_EVT_HIST_MAX_SLOTS,
true, DP_CFG_EVENT_HIST_TYPE);
}
#else
static void dp_soc_cfg_history_attach(struct dp_soc *soc)
{
}
static void dp_soc_cfg_history_detach(struct dp_soc *soc)
{
}
#endif
#ifdef DP_TX_HW_DESC_HISTORY
/**
* dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
*
* @soc: DP soc handle
*
* Return: None
*/
static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
{
dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
DP_TX_HW_DESC_HIST_MAX_SLOTS,
DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
sizeof(struct dp_tx_hw_desc_evt),
true, DP_TX_HW_DESC_HIST_TYPE);
}
static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
{
dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
DP_TX_HW_DESC_HIST_MAX_SLOTS,
true, DP_TX_HW_DESC_HIST_TYPE);
}
#else /* DP_TX_HW_DESC_HISTORY */
static inline void
dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
{
}
static inline void
dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
{
}
#endif /* DP_TX_HW_DESC_HISTORY */
#ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
#ifndef RX_DEFRAG_DO_NOT_REINJECT
/**
* dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
* history.
* @soc: DP soc handle
*
* Return: None
*/
static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
{
soc->rx_reinject_ring_history =
dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
sizeof(struct dp_rx_reinject_history));
if (soc->rx_reinject_ring_history)
qdf_atomic_init(&soc->rx_reinject_ring_history->index);
}
#else /* RX_DEFRAG_DO_NOT_REINJECT */
static inline void
dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
{
}
#endif /* RX_DEFRAG_DO_NOT_REINJECT */
/**
* dp_soc_rx_history_attach() - Attach the ring history record buffers
* @soc: DP soc structure
*
* This function allocates the memory for recording the rx ring, rx error
* ring and the reinject ring entries. There is no error returned in case
* of allocation failure since the record function checks if the history is
* initialized or not. We do not want to fail the driver load in case of
* failure to allocate memory for debug history.
*
* Return: None
*/
static void dp_soc_rx_history_attach(struct dp_soc *soc)
{
int i;
uint32_t rx_ring_hist_size;
uint32_t rx_refill_ring_hist_size;
rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
soc->rx_ring_history[i] = dp_context_alloc_mem(
soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
if (soc->rx_ring_history[i])
qdf_atomic_init(&soc->rx_ring_history[i]->index);
}
soc->rx_err_ring_history = dp_context_alloc_mem(
soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
if (soc->rx_err_ring_history)
qdf_atomic_init(&soc->rx_err_ring_history->index);
dp_soc_rx_reinject_ring_history_attach(soc);
for (i = 0; i < MAX_PDEV_CNT; i++) {
soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
soc,
DP_RX_REFILL_RING_HIST_TYPE,
rx_refill_ring_hist_size);
if (soc->rx_refill_ring_history[i])
qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
}
}
static void dp_soc_rx_history_detach(struct dp_soc *soc)
{
int i;
for (i = 0; i < MAX_REO_DEST_RINGS; i++)
dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
soc->rx_ring_history[i]);
dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
soc->rx_err_ring_history);
/*
* No need for a featurized detach since qdf_mem_free takes
* care of NULL pointer.
*/
dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
soc->rx_reinject_ring_history);
for (i = 0; i < MAX_PDEV_CNT; i++)
dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
soc->rx_refill_ring_history[i]);
}
#else
static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
{
}
static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
{
}
#endif
#ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
/**
* dp_soc_mon_status_ring_history_attach() - Attach the monitor status
* buffer record history.
* @soc: DP soc handle
*
* This function allocates memory to track the event for a monitor
* status buffer, before its parsed and freed.
*
* Return: None
*/
static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
{
soc->mon_status_ring_history = dp_context_alloc_mem(soc,
DP_MON_STATUS_BUF_HIST_TYPE,
sizeof(struct dp_mon_status_ring_history));
if (!soc->mon_status_ring_history) {
dp_err("Failed to alloc memory for mon status ring history");
return;
}
}
/**
* dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
* record history.
* @soc: DP soc handle
*
* Return: None
*/
static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
{
dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
soc->mon_status_ring_history);
}
#else
static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
{
}
static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
{
}
#endif
#ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
/**
* dp_soc_tx_history_attach() - Attach the ring history record buffers
* @soc: DP soc structure
*
* This function allocates the memory for recording the tx tcl ring and
* the tx comp ring entries. There is no error returned in case
* of allocation failure since the record function checks if the history is
* initialized or not. We do not want to fail the driver load in case of
* failure to allocate memory for debug history.
*
* Return: None
*/
static void dp_soc_tx_history_attach(struct dp_soc *soc)
{
dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
DP_TX_TCL_HIST_MAX_SLOTS,
DP_TX_TCL_HIST_PER_SLOT_MAX,
sizeof(struct dp_tx_desc_event),
true, DP_TX_TCL_HIST_TYPE);
dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
DP_TX_COMP_HIST_MAX_SLOTS,
DP_TX_COMP_HIST_PER_SLOT_MAX,
sizeof(struct dp_tx_desc_event),
true, DP_TX_COMP_HIST_TYPE);
}
/**
* dp_soc_tx_history_detach() - Detach the ring history record buffers
* @soc: DP soc structure
*
* This function frees the memory for recording the tx tcl ring and
* the tx comp ring entries.
*
* Return: None
*/
static void dp_soc_tx_history_detach(struct dp_soc *soc)
{
dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
DP_TX_TCL_HIST_MAX_SLOTS,
true, DP_TX_TCL_HIST_TYPE);
dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
DP_TX_COMP_HIST_MAX_SLOTS,
true, DP_TX_COMP_HIST_TYPE);
}
#else
static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
{
}
static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
{
}
#endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
QDF_STATUS
dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct dp_rx_fst *rx_fst = NULL;
QDF_STATUS ret = QDF_STATUS_SUCCESS;
/* for Lithium the below API is not registered
* hence fst attach happens for each pdev
*/
if (!soc->arch_ops.dp_get_rx_fst)
return dp_rx_fst_attach(soc, pdev);
rx_fst = soc->arch_ops.dp_get_rx_fst();
/* for BE the FST attach is called only once per
* ML context. if rx_fst is already registered
* increase the ref count and return.
*/
if (rx_fst) {
soc->rx_fst = rx_fst;
pdev->rx_fst = rx_fst;
soc->arch_ops.dp_rx_fst_ref();
} else {
ret = dp_rx_fst_attach(soc, pdev);
if ((ret != QDF_STATUS_SUCCESS) &&
(ret != QDF_STATUS_E_NOSUPPORT))
return ret;
soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
soc->arch_ops.dp_rx_fst_ref();
}
return ret;
}
void
dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct dp_rx_fst *rx_fst = NULL;
/* for Lithium the below API is not registered
* hence fst detach happens for each pdev
*/
if (!soc->arch_ops.dp_get_rx_fst) {
dp_rx_fst_detach(soc, pdev);
return;
}
rx_fst = soc->arch_ops.dp_get_rx_fst();
/* for BE the FST detach is called only when last
* ref count reaches 1.
*/
if (rx_fst) {
if (soc->arch_ops.dp_rx_fst_deref() == 1)
dp_rx_fst_detach(soc, pdev);
}
pdev->rx_fst = NULL;
}
#elif defined(WLAN_SUPPORT_RX_FISA)
QDF_STATUS
dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
{
return dp_rx_fst_attach(soc, pdev);
}
void
dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
{
dp_rx_fst_detach(soc, pdev);
}
#else
QDF_STATUS
dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
void
dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
{
}
#endif
/**
* dp_pdev_attach_wifi3() - attach txrx pdev
* @txrx_soc: Datapath SOC handle
* @params: Params for PDEV attach
*
* Return: QDF_STATUS
*/
static inline
QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
struct cdp_pdev_attach_params *params)
{
qdf_size_t pdev_context_size;
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = NULL;
uint8_t pdev_id = params->pdev_id;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int nss_cfg;
QDF_STATUS ret;
pdev_context_size =
soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
if (pdev_context_size)
pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
pdev_context_size);
if (!pdev) {
dp_init_err("%pK: DP PDEV memory allocation failed",
soc);
goto fail0;
}
wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
WLAN_MD_DP_PDEV, "dp_pdev");
soc_cfg_ctx = soc->wlan_cfg_ctx;
pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
if (!pdev->wlan_cfg_ctx) {
dp_init_err("%pK: pdev cfg_attach failed", soc);
goto fail1;
}
/*
* set nss pdev config based on soc config
*/
nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(nss_cfg & (1 << pdev_id)));
pdev->soc = soc;
pdev->pdev_id = pdev_id;
soc->pdev_list[pdev_id] = pdev;
pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
soc->pdev_count++;
/* Allocate memory for pdev srng rings */
if (dp_pdev_srng_alloc(pdev)) {
dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
goto fail2;
}
/* Setup second Rx refill buffer ring */
if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
soc);
goto fail3;
}
/* Allocate memory for pdev rxdma rings */
if (dp_rxdma_ring_alloc(soc, pdev)) {
dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
goto fail4;
}
/* Rx specific init */
if (dp_rx_pdev_desc_pool_alloc(pdev)) {
dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
goto fail4;
}
if (dp_monitor_pdev_attach(pdev)) {
dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
goto fail5;
}
soc->arch_ops.txrx_pdev_attach(pdev, params);
/* Setup third Rx refill buffer ring */
if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
soc);
goto fail6;
}
ret = dp_rx_fst_attach_wrapper(soc, pdev);
if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
soc, pdev_id, ret);
goto fail7;
}
return QDF_STATUS_SUCCESS;
fail7:
dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
fail6:
dp_monitor_pdev_detach(pdev);
fail5:
dp_rx_pdev_desc_pool_free(pdev);
fail4:
dp_rxdma_ring_free(pdev);
dp_free_ipa_rx_refill_buf_ring(soc, pdev);
fail3:
dp_pdev_srng_free(pdev);
fail2:
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
fail1:
soc->pdev_list[pdev_id] = NULL;
qdf_mem_free(pdev);
fail0:
return QDF_STATUS_E_FAILURE;
}
/**
* dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
* @pdev: Datapath PDEV handle
*
* This is the last chance to flush all pending dp vdevs/peers,
* some peer/vdev leak case like Non-SSR + peer unmap missing
* will be covered here.
*
* Return: None
*/
static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
uint32_t i = 0;
uint32_t num_vdevs = 0;
struct dp_vdev *vdev = NULL;
if (TAILQ_EMPTY(&soc->inactive_vdev_list))
return;
qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
inactive_list_elem) {
if (vdev->pdev != pdev)
continue;
vdev_arr[num_vdevs] = vdev;
num_vdevs++;
/* take reference to free */
dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
}
qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
for (i = 0; i < num_vdevs; i++) {
dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
}
}
#ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
/**
* dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
* for enable/disable of HW vdev stats
* @soc: Datapath soc handle
* @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
* @enable: flag to represent enable/disable of hw vdev stats
*
* Return: none
*/
static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
uint8_t pdev_id,
bool enable)
{
/* Check SOC level config for HW offload vdev stats support */
if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
dp_debug("%pK: HW vdev offload stats is disabled", soc);
return;
}
/* Send HTT command to FW for enable of stats */
dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
}
/**
* dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
* @soc: Datapath soc handle
* @pdev_id: pdev_id (0,1,2)
* @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
* cleared on HW
*
* Return: none
*/
static
void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
uint64_t vdev_id_bitmask)
{
/* Check SOC level config for HW offload vdev stats support */
if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
dp_debug("%pK: HW vdev offload stats is disabled", soc);
return;
}
/* Send HTT command to FW for reset of stats */
dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
vdev_id_bitmask);
}
#else
static void
dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
bool enable)
{
}
static
void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
uint64_t vdev_id_bitmask)
{
}
#endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
/**
* dp_pdev_deinit() - Deinit txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
qdf_nbuf_t curr_nbuf, next_nbuf;
if (pdev->pdev_deinit)
return;
dp_tx_me_exit(pdev);
dp_rx_pdev_buffers_free(pdev);
dp_rx_pdev_desc_pool_deinit(pdev);
dp_pdev_bkp_stats_detach(pdev);
qdf_event_destroy(&pdev->fw_peer_stats_event);
qdf_event_destroy(&pdev->fw_stats_event);
qdf_event_destroy(&pdev->fw_obss_stats_event);
if (pdev->sojourn_buf)
qdf_nbuf_free(pdev->sojourn_buf);
dp_pdev_flush_pending_vdevs(pdev);
dp_tx_desc_flush(pdev, NULL, true);
qdf_spinlock_destroy(&pdev->tx_mutex);
qdf_spinlock_destroy(&pdev->vdev_list_lock);
dp_monitor_pdev_deinit(pdev);
dp_pdev_srng_deinit(pdev);
dp_ipa_uc_detach(pdev->soc, pdev);
dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
dp_rxdma_ring_cleanup(pdev->soc, pdev);
curr_nbuf = pdev->invalid_peer_head_msdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
dp_rx_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
dp_wdi_event_detach(pdev);
pdev->pdev_deinit = 1;
}
/**
* dp_pdev_deinit_wifi3() - Deinit txrx pdev
* @psoc: Datapath psoc handle
* @pdev_id: Id of datapath PDEV handle
* @force: Force deinit
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
int force)
{
struct dp_pdev *txrx_pdev;
txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
pdev_id);
if (!txrx_pdev)
return QDF_STATUS_E_FAILURE;
dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
* @txrx_pdev: Datapath PDEV handle
*
* Return: None
*/
static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
dp_monitor_tx_capture_debugfs_init(pdev);
if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
}
}
/**
* dp_pdev_post_attach_wifi3() - attach txrx pdev post
* @soc: Datapath soc handle
* @pdev_id: pdev id of pdev
*
* Return: QDF_STATUS
*/
static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
uint8_t pdev_id)
{
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev) {
dp_init_err("%pK: DP PDEV is Null for pdev id %d",
(struct dp_soc *)soc, pdev_id);
return QDF_STATUS_E_FAILURE;
}
dp_pdev_post_attach((struct cdp_pdev *)pdev);
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_detach() - Complete rest of pdev detach
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
dp_rx_fst_detach_wrapper(soc, pdev);
dp_pdev_htt_stats_dbgfs_deinit(pdev);
dp_rx_pdev_desc_pool_free(pdev);
dp_monitor_pdev_detach(pdev);
dp_rxdma_ring_free(pdev);
dp_free_ipa_rx_refill_buf_ring(soc, pdev);
dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
dp_pdev_srng_free(pdev);
soc->pdev_count--;
soc->pdev_list[pdev->pdev_id] = NULL;
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
WLAN_MD_DP_PDEV, "dp_pdev");
dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
}
/**
* dp_pdev_detach_wifi3() - detach txrx pdev
* @psoc: Datapath soc handle
* @pdev_id: pdev id of pdev
* @force: Force detach
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
int force)
{
struct dp_pdev *pdev;
struct dp_soc *soc = (struct dp_soc *)psoc;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
pdev_id);
if (!pdev) {
dp_init_err("%pK: DP PDEV is Null for pdev id %d",
(struct dp_soc *)psoc, pdev_id);
return QDF_STATUS_E_FAILURE;
}
soc->arch_ops.txrx_pdev_detach(pdev);
dp_pdev_detach((struct cdp_pdev *)pdev, force);
return QDF_STATUS_SUCCESS;
}
void dp_soc_print_inactive_objects(struct dp_soc *soc)
{
struct dp_peer *peer = NULL;
struct dp_peer *tmp_peer = NULL;
struct dp_vdev *vdev = NULL;
struct dp_vdev *tmp_vdev = NULL;
int i = 0;
uint32_t count;
if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
TAILQ_EMPTY(&soc->inactive_vdev_list))
return;
TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
inactive_list_elem, tmp_peer) {
for (i = 0; i < DP_MOD_ID_MAX; i++) {
count = qdf_atomic_read(&peer->mod_refs[i]);
if (count)
DP_PRINT_STATS("peer %pK Module id %u ==> %u",
peer, i, count);
}
}
TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
inactive_list_elem, tmp_vdev) {
for (i = 0; i < DP_MOD_ID_MAX; i++) {
count = qdf_atomic_read(&vdev->mod_refs[i]);
if (count)
DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
vdev, i, count);
}
}
QDF_BUG(0);
}
/**
* dp_soc_deinit_wifi3() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
soc->arch_ops.txrx_soc_deinit(soc);
}
/**
* dp_soc_detach() - Detach rest of txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
soc->arch_ops.txrx_soc_detach(soc);
dp_runtime_deinit();
dp_sysfs_deinitialize_stats(soc);
dp_soc_swlm_detach(soc);
dp_soc_tx_desc_sw_pools_free(soc);
dp_soc_srng_free(soc);
dp_hw_link_desc_ring_free(soc);
dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
dp_soc_tx_hw_desc_history_detach(soc);
dp_soc_tx_history_detach(soc);
dp_soc_mon_status_ring_history_detach(soc);
dp_soc_rx_history_detach(soc);
dp_soc_cfg_history_detach(soc);
if (!dp_monitor_modularized_enable()) {
dp_mon_soc_detach_wrapper(soc);
}
qdf_mem_free(soc->cdp_soc.ops);
qdf_mem_common_free(soc);
}
/**
* dp_soc_detach_wifi3() - Detach txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
{
dp_soc_detach(txrx_soc);
}
#ifdef QCA_HOST2FW_RXBUF_RING
#ifdef IPA_WDI3_VLAN_SUPPORT
static inline
void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
struct dp_pdev *pdev,
uint8_t idx)
{
if (pdev->rx_refill_buf_ring3.hal_srng)
htt_srng_setup(soc->htt_handle, idx,
pdev->rx_refill_buf_ring3.hal_srng,
RXDMA_BUF);
}
#else
static inline
void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
struct dp_pdev *pdev,
uint8_t idx)
{ }
#endif
/**
* dp_rxdma_ring_config() - configure the RX DMA rings
* @soc: data path SoC handle
*
* This function is used to configure the MAC rings.
* On MCL host provides buffers in Host2FW ring
* FW refills (copies) buffers to the ring and updates
* ring_idx in register
*
* Return: zero on success, non-zero on failure
*/
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
int mac_id;
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
htt_srng_setup(soc->htt_handle, i,
soc->rx_refill_buf_ring[lmac_id]
.hal_srng,
RXDMA_BUF);
if (pdev->rx_refill_buf_ring2.hal_srng)
htt_srng_setup(soc->htt_handle, i,
pdev->rx_refill_buf_ring2
.hal_srng,
RXDMA_BUF);
dp_rxdma_setup_refill_ring3(soc, pdev, i);
dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
dp_err("pdev_id %d max_mac_rings %d",
pdev->pdev_id, max_mac_rings);
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
/*
* Obtain lmac id from pdev to access the LMAC
* ring in soc context
*/
lmac_id =
dp_get_lmac_id_for_pdev_id(soc,
mac_id,
pdev->pdev_id);
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("mac_id %d"), mac_for_pdev);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[mac_id]
.hal_srng,
RXDMA_BUF);
if (!soc->rxdma2sw_rings_not_supported)
dp_htt_setup_rxdma_err_dst_ring(soc,
mac_for_pdev, lmac_id);
/* Configure monitor mode rings */
status = dp_monitor_htt_srng_setup(soc, pdev,
lmac_id,
mac_for_pdev);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt monitor messages to target");
return status;
}
}
}
}
dp_reap_timer_init(soc);
return status;
}
#else
/* This is only for WIN */
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
int mac_for_pdev;
int lmac_id;
/* Configure monitor mode rings */
dp_monitor_soc_htt_srng_setup(soc);
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
mac_for_pdev = i;
lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rx_refill_buf_ring[lmac_id].
hal_srng, RXDMA_BUF);
/* Configure monitor mode rings */
dp_monitor_htt_srng_setup(soc, pdev,
lmac_id,
mac_for_pdev);
if (!soc->rxdma2sw_rings_not_supported)
htt_srng_setup(soc->htt_handle, mac_for_pdev,
soc->rxdma_err_dst_ring[lmac_id].hal_srng,
RXDMA_DST);
}
dp_reap_timer_init(soc);
return status;
}
#endif
/**
* dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
*
* This function is used to configure the FSE HW block in RX OLE on a
* per pdev basis. Here, we will be programming parameters related to
* the Flow Search Table.
*
* @soc: data path SoC handle
*
* Return: zero on success, non-zero on failure
*/
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
static QDF_STATUS
dp_rx_target_fst_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
/* Flow search is not enabled if NSS offload is enabled */
if (pdev &&
!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
if (status != QDF_STATUS_SUCCESS)
break;
}
}
return status;
}
#elif defined(WLAN_SUPPORT_RX_FISA)
/**
* dp_rx_target_fst_config() - Configure RX OLE FSE engine in HW
* @soc: SoC handle
*
* Return: Success
*/
static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
{
QDF_STATUS status;
struct dp_rx_fst *fst = soc->rx_fst;
/* Check if it is enabled in the INI */
if (!soc->fisa_enable) {
dp_err("RX FISA feature is disabled");
return QDF_STATUS_E_NOSUPPORT;
}
status = dp_rx_flow_send_fst_fw_setup(soc, soc->pdev_list[0]);
if (QDF_IS_STATUS_ERROR(status)) {
dp_err("dp_rx_flow_send_fst_fw_setup failed %d",
status);
return status;
}
if (soc->fst_cmem_base) {
soc->fst_in_cmem = true;
dp_rx_fst_update_cmem_params(soc, fst->max_entries,
soc->fst_cmem_base & 0xffffffff,
soc->fst_cmem_base >> 32);
}
return status;
}
#define FISA_MAX_TIMEOUT 0xffffffff
#define FISA_DISABLE_TIMEOUT 0
static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc)
{
struct dp_htt_rx_fisa_cfg fisa_config;
fisa_config.pdev_id = 0;
fisa_config.fisa_timeout = FISA_MAX_TIMEOUT;
return dp_htt_rx_fisa_config(soc->pdev_list[0], &fisa_config);
}
#else /* !WLAN_SUPPORT_RX_FISA */
static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif /* !WLAN_SUPPORT_RX_FISA */
#ifndef WLAN_SUPPORT_RX_FISA
static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_rx_dump_fisa_stats(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static void dp_rx_dump_fisa_table(struct dp_soc *soc)
{
}
static void dp_suspend_fse_cache_flush(struct dp_soc *soc)
{
}
static void dp_resume_fse_cache_flush(struct dp_soc *soc)
{
}
#endif /* !WLAN_SUPPORT_RX_FISA */
#ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
#ifdef WLAN_SUPPORT_PPEDS
/**
* dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
* @soc: DP Tx/Rx handle
*
* Return: QDF_STATUS
*/
static
QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
{
struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
QDF_STATUS status;
/*
* Program RxDMA to override the reo destination indication
* with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
* thereby driving the packet to REO2PPE ring.
* If the MSDU is spanning more than 1 buffer, then this
* override is not done.
*/
htt_cfg.override = 1;
htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
htt_cfg.multi_buffer_msdu_override_en = 0;
/*
* Override use_ppe to 0 in RxOLE for the following
* cases.
*/
htt_cfg.intra_bss_override = 1;
htt_cfg.decap_raw_override = 1;
htt_cfg.decap_nwifi_override = 1;
htt_cfg.ip_frag_override = 1;
status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
if (status != QDF_STATUS_SUCCESS)
dp_err("RxOLE and RxDMA PPE config failed %d", status);
return status;
}
#else
static inline
QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_PPEDS */
#ifdef DP_UMAC_HW_RESET_SUPPORT
static void dp_register_umac_reset_handlers(struct dp_soc *soc)
{
dp_umac_reset_register_rx_action_callback(soc,
dp_umac_reset_action_trigger_recovery,
UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
dp_umac_reset_register_rx_action_callback(soc,
dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
dp_umac_reset_register_rx_action_callback(soc,
dp_umac_reset_handle_post_reset,
UMAC_RESET_ACTION_DO_POST_RESET_START);
dp_umac_reset_register_rx_action_callback(soc,
dp_umac_reset_handle_post_reset_complete,
UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
}
#else
static void dp_register_umac_reset_handlers(struct dp_soc *soc)
{
}
#endif
/**
* dp_soc_attach_target_wifi3() - SOC initialization in the target
* @cdp_soc: Opaque Datapath SOC handle
*
* Return: zero on success, non-zero on failure
*/
static QDF_STATUS
dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct hal_reo_params reo_params;
htt_soc_attach_target(soc->htt_handle);
status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt RxOLE and RxDMA messages to target");
return status;
}
status = dp_rxdma_ring_config(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup messages to target");
return status;
}
status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt ring config message to target");
return status;
}
status = dp_soc_umac_reset_init(soc);
if (status != QDF_STATUS_SUCCESS &&
status != QDF_STATUS_E_NOSUPPORT) {
dp_err("Failed to initialize UMAC reset");
return status;
}
dp_register_umac_reset_handlers(soc);
status = dp_rx_target_fst_config(soc);
if (status != QDF_STATUS_SUCCESS &&
status != QDF_STATUS_E_NOSUPPORT) {
dp_err("Failed to send htt fst setup config message to target");
return status;
}
if (status == QDF_STATUS_SUCCESS) {
status = dp_rx_fisa_config(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt FISA config message to target");
return status;
}
}
DP_STATS_INIT(soc);
dp_runtime_init(soc);
/* Enable HW vdev offload stats if feature is supported */
dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
soc->ctrl_psoc);
/* Setup HW REO */
qdf_mem_zero(&reo_params, sizeof(reo_params));
if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
/*
* Reo ring remap is not required if both radios
* are offloaded to NSS
*/
if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
&reo_params.remap1,
&reo_params.remap2))
reo_params.rx_hash_enabled = true;
else
reo_params.rx_hash_enabled = false;
}
/*
* set the fragment destination ring
*/
dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
reo_params.reo_qref = &soc->reo_qref;
hal_reo_setup(soc->hal_soc, &reo_params, 1);
hal_reo_set_err_dst_remap(soc->hal_soc);
soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
return QDF_STATUS_SUCCESS;
}
/**
* dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
* @soc: SoC handle
* @vdev: vdev handle
* @vdev_id: vdev_id
*
* Return: None
*/
static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
struct dp_vdev *vdev,
uint8_t vdev_id)
{
QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
qdf_spin_lock_bh(&soc->vdev_map_lock);
if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
QDF_STATUS_SUCCESS) {
dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
soc, vdev, vdev_id);
qdf_spin_unlock_bh(&soc->vdev_map_lock);
return;
}
if (!soc->vdev_id_map[vdev_id])
soc->vdev_id_map[vdev_id] = vdev;
else
QDF_ASSERT(0);
qdf_spin_unlock_bh(&soc->vdev_map_lock);
}
/**
* dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
* @soc: SoC handle
* @vdev: vdev handle
*
* Return: None
*/
static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
struct dp_vdev *vdev)
{
qdf_spin_lock_bh(&soc->vdev_map_lock);
QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
soc->vdev_id_map[vdev->vdev_id] = NULL;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
qdf_spin_unlock_bh(&soc->vdev_map_lock);
}
/**
* dp_vdev_pdev_list_add() - add vdev into pdev's list
* @soc: soc handle
* @pdev: pdev handle
* @vdev: vdev handle
*
* Return: none
*/
static void dp_vdev_pdev_list_add(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_vdev *vdev)
{
qdf_spin_lock_bh(&pdev->vdev_list_lock);
if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
QDF_STATUS_SUCCESS) {
dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
soc, vdev);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
return;
}
/* add this vdev into the pdev's list */
TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
/**
* dp_vdev_pdev_list_remove() - remove vdev from pdev's list
* @soc: SoC handle
* @pdev: pdev handle
* @vdev: VDEV handle
*
* Return: none
*/
static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_vdev *vdev)
{
uint8_t found = 0;
struct dp_vdev *tmpvdev = NULL;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
if (tmpvdev == vdev) {
found = 1;
break;
}
}
if (found) {
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
} else {
dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
soc, vdev, pdev, &pdev->vdev_list);
QDF_ASSERT(0);
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
#ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
/**
* dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
* @vdev: Datapath VDEV handle
*
* Return: None
*/
static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
{
vdev->osif_rx_eapol = NULL;
}
/**
* dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
* @vdev: DP vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: None
*/
static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
struct ol_txrx_ops *txrx_ops)
{
vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
}
#else
static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
{
}
static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
struct ol_txrx_ops *txrx_ops)
{
}
#endif
#ifdef WLAN_FEATURE_11BE_MLO
static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
struct cdp_vdev_info *vdev_info)
{
if (vdev_info->mld_mac_addr)
qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
}
#else
static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
struct cdp_vdev_info *vdev_info)
{
}
#endif
#ifdef DP_TRAFFIC_END_INDICATION
/**
* dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
* related members in VDEV
* @vdev: DP vdev handle
*
* Return: None
*/
static inline void
dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
{
qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
}
/**
* dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
* related members in VDEV
* @vdev: DP vdev handle
*
* Return: None
*/
static inline void
dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
{
qdf_nbuf_t nbuf;
while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
qdf_nbuf_free(nbuf);
}
#else
static inline void
dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
{}
static inline void
dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
{}
#endif
/**
* dp_vdev_attach_wifi3() - attach txrx vdev
* @cdp_soc: CDP SoC context
* @pdev_id: PDEV ID for vdev creation
* @vdev_info: parameters used for vdev creation
*
* Return: status
*/
static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
uint8_t pdev_id,
struct cdp_vdev_info *vdev_info)
{
int i = 0;
qdf_size_t vdev_context_size;
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
struct dp_vdev *vdev;
uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
uint8_t vdev_id = vdev_info->vdev_id;
enum wlan_op_mode op_mode = vdev_info->op_mode;
enum wlan_op_subtype subtype = vdev_info->subtype;
uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
vdev_context_size =
soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
vdev = qdf_mem_malloc(vdev_context_size);
if (!pdev) {
dp_init_err("%pK: DP PDEV is Null for pdev id %d",
cdp_soc, pdev_id);
qdf_mem_free(vdev);
goto fail0;
}
if (!vdev) {
dp_init_err("%pK: DP VDEV memory allocation failed",
cdp_soc);
goto fail0;
}
wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
WLAN_MD_DP_VDEV, "dp_vdev");
vdev->pdev = pdev;
vdev->vdev_id = vdev_id;
vdev->vdev_stats_id = vdev_stats_id;
vdev->opmode = op_mode;
vdev->subtype = subtype;
vdev->osdev = soc->osdev;
vdev->osif_rx = NULL;
vdev->osif_rsim_rx_decap = NULL;
vdev->osif_get_key = NULL;
vdev->osif_tx_free_ext = NULL;
vdev->osif_vdev = NULL;
vdev->delete.pending = 0;
vdev->safemode = 0;
vdev->drop_unenc = 1;
vdev->sec_type = cdp_sec_type_none;
vdev->multipass_en = false;
vdev->wrap_vdev = false;
dp_vdev_init_rx_eapol(vdev);
qdf_atomic_init(&vdev->ref_cnt);
for (i = 0; i < DP_MOD_ID_MAX; i++)
qdf_atomic_init(&vdev->mod_refs[i]);
/* Take one reference for create*/
qdf_atomic_inc(&vdev->ref_cnt);
qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
vdev->num_peers = 0;
#ifdef notyet
vdev->filters_num = 0;
#endif
vdev->lmac_id = pdev->lmac_id;
qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
dp_vdev_save_mld_addr(vdev, vdev_info);
/* TODO: Initialize default HTT meta data that will be used in
* TCL descriptors for packets transmitted from this VDEV
*/
qdf_spinlock_create(&vdev->peer_list_lock);
TAILQ_INIT(&vdev->peer_list);
dp_peer_multipass_list_init(vdev);
if ((soc->intr_mode == DP_INTR_POLL) &&
wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
if ((pdev->vdev_count == 0) ||
(wlan_op_mode_monitor == vdev->opmode))
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
soc->intr_mode == DP_INTR_MSI &&
wlan_op_mode_monitor == vdev->opmode) {
/* Timer to reap status ring in mission mode */
dp_monitor_vdev_timer_start(soc);
}
dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
if (wlan_op_mode_monitor == vdev->opmode) {
if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
dp_monitor_pdev_set_mon_vdev(vdev);
return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
}
return QDF_STATUS_E_FAILURE;
}
vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->dscp_tid_map_id = 0;
vdev->mcast_enhancement_en = 0;
vdev->igmp_mcast_enhanc_en = 0;
vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
vdev->prev_tx_enq_tstamp = 0;
vdev->prev_rx_deliver_tstamp = 0;
vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
dp_tx_vdev_traffic_end_indication_attach(vdev);
dp_vdev_pdev_list_add(soc, pdev, vdev);
pdev->vdev_count++;
if (wlan_op_mode_sta != vdev->opmode &&
wlan_op_mode_ndi != vdev->opmode)
vdev->ap_bridge_enabled = true;
else
vdev->ap_bridge_enabled = false;
dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
cdp_soc, vdev->ap_bridge_enabled);
dp_tx_vdev_attach(vdev);
dp_monitor_vdev_attach(vdev);
if (!pdev->is_lro_hash_configured) {
if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
pdev->is_lro_hash_configured = true;
else
dp_err("LRO hash setup failure!");
}
dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
DP_STATS_INIT(vdev);
if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
goto fail0;
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
dp_pdev_update_fast_rx_flag(soc, pdev);
return QDF_STATUS_SUCCESS;
fail0:
return QDF_STATUS_E_FAILURE;
}
#ifndef QCA_HOST_MODE_WIFI_DISABLED
/**
* dp_vdev_fetch_tx_handler() - Fetch Tx handlers
* @vdev: struct dp_vdev *
* @soc: struct dp_soc *
* @ctx: struct ol_txrx_hardtart_ctxt *
*/
static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
struct dp_soc *soc,
struct ol_txrx_hardtart_ctxt *ctx)
{
/* Enable vdev_id check only for ap, if flag is enabled */
if (vdev->mesh_vdev)
ctx->tx = dp_tx_send_mesh;
else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
(vdev->opmode == wlan_op_mode_ap)) {
ctx->tx = dp_tx_send_vdev_id_check;
ctx->tx_fast = dp_tx_send_vdev_id_check;
} else {
ctx->tx = dp_tx_send;
ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
}
/* Avoid check in regular exception Path */
if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
(vdev->opmode == wlan_op_mode_ap))
ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
else
ctx->tx_exception = dp_tx_send_exception;
}
/**
* dp_vdev_register_tx_handler() - Register Tx handler
* @vdev: struct dp_vdev *
* @soc: struct dp_soc *
* @txrx_ops: struct ol_txrx_ops *
*/
static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
struct dp_soc *soc,
struct ol_txrx_ops *txrx_ops)
{
struct ol_txrx_hardtart_ctxt ctx = {0};
dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
txrx_ops->tx.tx = ctx.tx;
txrx_ops->tx.tx_fast = ctx.tx_fast;
txrx_ops->tx.tx_exception = ctx.tx_exception;
dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
vdev->opmode, vdev->vdev_id);
}
#else /* QCA_HOST_MODE_WIFI_DISABLED */
static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
struct dp_soc *soc,
struct ol_txrx_ops *txrx_ops)
{
}
static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
struct dp_soc *soc,
struct ol_txrx_hardtart_ctxt *ctx)
{
}
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
/**
* dp_vdev_register_wifi3() - Register VDEV operations from osif layer
* @soc_hdl: Datapath soc handle
* @vdev_id: id of Datapath VDEV handle
* @osif_vdev: OSIF vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: DP VDEV handle on success, NULL on failure
*/
static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
ol_osif_vdev_handle osif_vdev,
struct ol_txrx_ops *txrx_ops)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
vdev->osif_vdev = osif_vdev;
vdev->osif_rx = txrx_ops->rx.rx;
vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
vdev->osif_get_key = txrx_ops->get_key;
dp_monitor_vdev_register_osif(vdev, txrx_ops);
vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
vdev->tx_comp = txrx_ops->tx.tx_comp;
vdev->stats_cb = txrx_ops->rx.stats_rx;
vdev->tx_classify_critical_pkt_cb =
txrx_ops->tx.tx_classify_critical_pkt_cb;
#ifdef notyet
#if ATH_SUPPORT_WAPI
vdev->osif_check_wai = txrx_ops->rx.wai_check;
#endif
#endif
#ifdef UMAC_SUPPORT_PROXY_ARP
vdev->osif_proxy_arp = txrx_ops->proxy_arp;
#endif
vdev->me_convert = txrx_ops->me_convert;
vdev->get_tsf_time = txrx_ops->get_tsf_time;
dp_vdev_register_rx_eapol(vdev, txrx_ops);
dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
dp_init_info("%pK: DP Vdev Register success", soc);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_FEATURE_11BE_MLO
void dp_peer_delete(struct dp_soc *soc,
struct dp_peer *peer,
void *arg)
{
if (!peer->valid)
return;
dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
peer->vdev->vdev_id,
peer->mac_addr.raw, 0,
peer->peer_type);
}
#else
void dp_peer_delete(struct dp_soc *soc,
struct dp_peer *peer,
void *arg)
{
if (!peer->valid)
return;
dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
peer->vdev->vdev_id,
peer->mac_addr.raw, 0,
CDP_LINK_PEER_TYPE);
}
#endif
#if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
if (!peer->valid)
return;
if (IS_MLO_DP_LINK_PEER(peer))
dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
peer->vdev->vdev_id,
peer->mac_addr.raw, 0,
CDP_LINK_PEER_TYPE);
}
#else
void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
{
}
#endif
/**
* dp_vdev_flush_peers() - Forcibily Flush peers of vdev
* @vdev_handle: Datapath VDEV handle
* @unmap_only: Flag to indicate "only unmap"
* @mlo_peers_only: true if only MLO peers should be flushed
*
* Return: void
*/
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
bool unmap_only,
bool mlo_peers_only)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *peer;
uint32_t i = 0;
if (!unmap_only) {
if (!mlo_peers_only)
dp_vdev_iterate_peer_lock_safe(vdev,
dp_peer_delete,
NULL,
DP_MOD_ID_CDP);
else
dp_vdev_iterate_peer_lock_safe(vdev,
dp_mlo_peer_delete,
NULL,
DP_MOD_ID_CDP);
}
for (i = 0; i < soc->max_peer_id ; i++) {
peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
if (!peer)
continue;
if (peer->vdev != vdev) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
continue;
}
if (!mlo_peers_only) {
dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
QDF_MAC_ADDR_REF(peer->mac_addr.raw));
dp_rx_peer_unmap_handler(soc, i,
vdev->vdev_id,
peer->mac_addr.raw, 0,
DP_PEER_WDS_COUNT_INVALID);
SET_PEER_REF_CNT_ONE(peer);
} else if (IS_MLO_DP_LINK_PEER(peer) ||
IS_MLO_DP_MLD_PEER(peer)) {
dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
QDF_MAC_ADDR_REF(peer->mac_addr.raw));
dp_rx_peer_unmap_handler(soc, i,
vdev->vdev_id,
peer->mac_addr.raw, 0,
DP_PEER_WDS_COUNT_INVALID);
SET_PEER_REF_CNT_ONE(peer);
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
}
#ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
/**
* dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
* @soc_hdl: Datapath soc handle
* @vdev_stats_id: Address of vdev_stats_id
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
uint8_t *vdev_stats_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
uint8_t id = 0;
if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
return QDF_STATUS_E_FAILURE;
}
while (id < CDP_MAX_VDEV_STATS_ID) {
if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
*vdev_stats_id = id;
return QDF_STATUS_SUCCESS;
}
id++;
}
*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
return QDF_STATUS_E_FAILURE;
}
/**
* dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
* @soc_hdl: Datapath soc handle
* @vdev_stats_id: vdev_stats_id to reset in dp_soc
*
* Return: none
*/
static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
uint8_t vdev_stats_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
(vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
return;
qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
}
#else
static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
uint8_t vdev_stats_id)
{}
#endif
/**
* dp_vdev_detach_wifi3() - Detach txrx vdev
* @cdp_soc: Datapath soc handle
* @vdev_id: VDEV Id
* @callback: Callback OL_IF on completion of detach
* @cb_context: Callback context
*
*/
static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
uint8_t vdev_id,
ol_txrx_vdev_delete_cb callback,
void *cb_context)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_pdev *pdev;
struct dp_neighbour_peer *peer = NULL;
struct dp_peer *vap_self_peer = NULL;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
soc->arch_ops.txrx_vdev_detach(soc, vdev);
pdev = vdev->pdev;
vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
DP_MOD_ID_CONFIG);
if (vap_self_peer) {
qdf_spin_lock_bh(&soc->ast_lock);
if (vap_self_peer->self_ast_entry) {
dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
vap_self_peer->self_ast_entry = NULL;
}
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
vap_self_peer->mac_addr.raw, 0,
CDP_LINK_PEER_TYPE);
dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
}
/*
* If Target is hung, flush all peers before detaching vdev
* this will free all references held due to missing
* unmap commands from Target
*/
if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
/* indicate that the vdev needs to be deleted */
vdev->delete.pending = 1;
dp_rx_vdev_detach(vdev);
/*
* move it after dp_rx_vdev_detach(),
* as the call back done in dp_rx_vdev_detach()
* still need to get vdev pointer by vdev_id.
*/
dp_vdev_id_map_tbl_remove(soc, vdev);
dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
dp_tx_vdev_multipass_deinit(vdev);
dp_tx_vdev_traffic_end_indication_detach(vdev);
if (vdev->vdev_dp_ext_handle) {
qdf_mem_free(vdev->vdev_dp_ext_handle);
vdev->vdev_dp_ext_handle = NULL;
}
vdev->delete.callback = callback;
vdev->delete.context = cb_context;
if (vdev->opmode != wlan_op_mode_monitor)
dp_vdev_pdev_list_remove(soc, pdev, vdev);
pdev->vdev_count--;
/* release reference taken above for find */
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
dp_info("detach vdev %pK id %d pending refs %d",
vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
/* release reference taken at dp_vdev_create */
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_FEATURE_11BE_MLO
/**
* is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
* @vdev: Target DP vdev handle
* @peer: DP peer handle to be checked
* @peer_mac_addr: Target peer mac address
* @peer_type: Target peer type
*
* Return: true - if match, false - not match
*/
static inline
bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
struct dp_peer *peer,
uint8_t *peer_mac_addr,
enum cdp_peer_type peer_type)
{
if (peer->bss_peer && (peer->vdev == vdev) &&
(peer->peer_type == peer_type) &&
(qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0))
return true;
return false;
}
#else
static inline
bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
struct dp_peer *peer,
uint8_t *peer_mac_addr,
enum cdp_peer_type peer_type)
{
if (peer->bss_peer && (peer->vdev == vdev) &&
(qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0))
return true;
return false;
}
#endif
static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
uint8_t *peer_mac_addr,
enum cdp_peer_type peer_type)
{
struct dp_peer *peer;
struct dp_soc *soc = vdev->pdev->soc;
qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
TAILQ_FOREACH(peer, &soc->inactive_peer_list,
inactive_list_elem) {
/* reuse bss peer only when vdev matches*/
if (is_dp_peer_can_reuse(vdev, peer,
peer_mac_addr, peer_type)) {
/* increment ref count for cdp_peer_create*/
if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
QDF_STATUS_SUCCESS) {
TAILQ_REMOVE(&soc->inactive_peer_list, peer,
inactive_list_elem);
qdf_spin_unlock_bh
(&soc->inactive_peer_list_lock);
return peer;
}
}
}
qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
return NULL;
}
#ifdef FEATURE_AST
static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
struct dp_pdev *pdev,
uint8_t *peer_mac_addr)
{
struct dp_ast_entry *ast_entry;
if (soc->ast_offload_support)
return;
qdf_spin_lock_bh(&soc->ast_lock);
if (soc->ast_override_support)
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
pdev->pdev_id);
else
ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#else
static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
struct dp_pdev *pdev,
uint8_t *peer_mac_addr)
{
}
#endif
#ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
/**
* dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
* @soc: Datapath soc handle
* @txrx_peer: Datapath peer handle
*
* Return: none
*/
static inline
void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
struct dp_txrx_peer *txrx_peer)
{
txrx_peer->hw_txrx_stats_en =
wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
}
#else
static inline
void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
struct dp_txrx_peer *txrx_peer)
{
txrx_peer->hw_txrx_stats_en = 0;
}
#endif
static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
{
struct dp_txrx_peer *txrx_peer;
struct dp_pdev *pdev;
struct cdp_txrx_peer_params_update params = {0};
/* dp_txrx_peer exists for mld peer and legacy peer */
if (peer->txrx_peer) {
txrx_peer = peer->txrx_peer;
peer->txrx_peer = NULL;
pdev = txrx_peer->vdev->pdev;
params.osif_vdev = (void *)peer->vdev->osif_vdev;
params.peer_mac = peer->mac_addr.raw;
dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
(void *)&params, peer->peer_id,
WDI_NO_VAL, pdev->pdev_id);
dp_peer_defrag_rx_tids_deinit(txrx_peer);
/*
* Deallocate the extended stats contenxt
*/
dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
dp_peer_rx_bufq_resources_deinit(txrx_peer);
dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
qdf_mem_free(txrx_peer);
}
return QDF_STATUS_SUCCESS;
}
static inline
uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
struct dp_peer *peer)
{
if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
IS_MLO_DP_MLD_PEER(peer)) {
return (DP_MAX_MLO_LINKS + 1);
}
return 1;
}
static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
{
struct dp_txrx_peer *txrx_peer;
struct dp_pdev *pdev;
struct cdp_txrx_peer_params_update params = {0};
uint8_t stats_arr_size = 0;
stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
(stats_arr_size *
sizeof(struct dp_peer_stats)));
if (!txrx_peer)
return QDF_STATUS_E_NOMEM; /* failure */
txrx_peer->peer_id = HTT_INVALID_PEER;
/* initialize the peer_id */
txrx_peer->vdev = peer->vdev;
pdev = peer->vdev->pdev;
txrx_peer->stats_arr_size = stats_arr_size;
DP_TXRX_PEER_STATS_INIT(txrx_peer,
(txrx_peer->stats_arr_size *
sizeof(struct dp_peer_stats)));
if (!IS_DP_LEGACY_PEER(peer))
txrx_peer->is_mld_peer = 1;
dp_wds_ext_peer_init(txrx_peer);
dp_peer_rx_bufq_resources_init(txrx_peer);
dp_peer_hw_txrx_stats_init(soc, txrx_peer);
/*
* Allocate peer extended stats context. Fall through in
* case of failure as its not an implicit requirement to have
* this object for regular statistics updates.
*/
if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
QDF_STATUS_SUCCESS)
dp_warn("peer delay_stats ctx alloc failed");
/*
* Alloctate memory for jitter stats. Fall through in
* case of failure as its not an implicit requirement to have
* this object for regular statistics updates.
*/
if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
QDF_STATUS_SUCCESS)
dp_warn("peer jitter_stats ctx alloc failed");
dp_set_peer_isolation(txrx_peer, false);
dp_peer_defrag_rx_tids_init(txrx_peer);
if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
dp_warn("peer sawf stats alloc failed");
dp_txrx_peer_attach_add(soc, peer, txrx_peer);
params.peer_mac = peer->mac_addr.raw;
params.osif_vdev = (void *)peer->vdev->osif_vdev;
params.chip_id = dp_mlo_get_chip_id(soc);
params.pdev_id = peer->vdev->pdev->pdev_id;
dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
(void *)&params, peer->peer_id,
WDI_NO_VAL, params.pdev_id);
return QDF_STATUS_SUCCESS;
}
static inline
void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
{
if (!txrx_peer)
return;
txrx_peer->tx_failed = 0;
txrx_peer->comp_pkt.num = 0;
txrx_peer->comp_pkt.bytes = 0;
txrx_peer->to_stack.num = 0;
txrx_peer->to_stack.bytes = 0;
DP_TXRX_PEER_STATS_CLR(txrx_peer,
(txrx_peer->stats_arr_size *
sizeof(struct dp_peer_stats)));
dp_peer_delay_stats_ctx_clr(txrx_peer);
dp_peer_jitter_stats_ctx_clr(txrx_peer);
}
/**
* dp_peer_create_wifi3() - attach txrx peer
* @soc_hdl: Datapath soc handle
* @vdev_id: id of vdev
* @peer_mac_addr: Peer MAC address
* @peer_type: link or MLD peer type
*
* Return: 0 on success, -1 on failure
*/
static QDF_STATUS
dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
{
struct dp_peer *peer;
int i;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev;
enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
struct dp_vdev *vdev = NULL;
if (!peer_mac_addr)
return QDF_STATUS_E_FAILURE;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
soc = pdev->soc;
/*
* If a peer entry with given MAC address already exists,
* reuse the peer and reset the state of peer.
*/
peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
if (peer) {
qdf_atomic_init(&peer->is_default_route_set);
dp_peer_cleanup(vdev, peer);
dp_peer_vdev_list_add(soc, vdev, peer);
dp_peer_find_hash_add(soc, peer);
if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
if (IS_MLO_DP_MLD_PEER(peer))
dp_mld_peer_init_link_peers_info(peer);
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_delete_ast_entries(soc, peer);
qdf_spin_unlock_bh(&soc->ast_lock);
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
peer->valid = 1;
peer->is_tdls_peer = false;
dp_local_peer_id_alloc(pdev, peer);
qdf_spinlock_create(&peer->peer_info_lock);
DP_STATS_INIT(peer);
/*
* In tx_monitor mode, filter may be set for unassociated peer
* when unassociated peer get associated peer need to
* update tx_cap_enabled flag to support peer filter.
*/
if (!IS_MLO_DP_MLD_PEER(peer)) {
dp_monitor_peer_tx_capture_filter_check(pdev, peer);
dp_monitor_peer_reset_stats(soc, peer);
}
if (peer->txrx_peer) {
dp_peer_rx_bufq_resources_init(peer->txrx_peer);
dp_txrx_peer_stats_clr(peer->txrx_peer);
dp_set_peer_isolation(peer->txrx_peer, false);
dp_wds_ext_peer_init(peer->txrx_peer);
dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
}
dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
peer, vdev, 1);
dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
") vdev_ref_cnt "
"%d peer_ref_cnt: %d",
vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
qdf_atomic_read(&vdev->ref_cnt),
qdf_atomic_read(&peer->ref_cnt));
dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
} else {
/*
* When a STA roams from RPTR AP to ROOT AP and vice versa, we
* need to remove the AST entry which was earlier added as a WDS
* entry.
* If an AST entry exists, but no peer entry exists with a given
* MAC addresses, we could deduce it as a WDS entry
*/
dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
}
#ifdef notyet
peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
soc->mempool_ol_ath_peer);
#else
peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
#endif
wlan_minidump_log(peer,
sizeof(*peer),
soc->ctrl_psoc,
WLAN_MD_DP_PEER, "dp_peer");
if (!peer) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE; /* failure */
}
qdf_mem_zero(peer, sizeof(struct dp_peer));
/* store provided params */
peer->vdev = vdev;
/* initialize the peer_id */
peer->peer_id = HTT_INVALID_PEER;
qdf_mem_copy(
&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
DP_PEER_SET_TYPE(peer, peer_type);
if (IS_MLO_DP_MLD_PEER(peer)) {
if (dp_txrx_peer_attach(soc, peer) !=
QDF_STATUS_SUCCESS)
goto fail; /* failure */
dp_mld_peer_init_link_peers_info(peer);
} else if (dp_monitor_peer_attach(soc, peer) !=
QDF_STATUS_SUCCESS)
dp_warn("peer monitor ctx alloc failed");
TAILQ_INIT(&peer->ast_entry_list);
/* get the vdev reference for new peer */
dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
qdf_spinlock_create(&peer->peer_state_lock);
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
qdf_spinlock_create(&peer->peer_info_lock);
/* reset the ast index to flowid table */
dp_peer_reset_flowq_map(peer);
qdf_atomic_init(&peer->ref_cnt);
for (i = 0; i < DP_MOD_ID_MAX; i++)
qdf_atomic_init(&peer->mod_refs[i]);
/* keep one reference for attach */
qdf_atomic_inc(&peer->ref_cnt);
qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
dp_peer_vdev_list_add(soc, vdev, peer);
/* TODO: See if hash based search is required */
dp_peer_find_hash_add(soc, peer);
/* Initialize the peer state */
peer->state = OL_TXRX_PEER_STATE_DISC;
dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
peer, vdev, 0);
dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
"%d peer_ref_cnt: %d",
vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
qdf_atomic_read(&vdev->ref_cnt),
qdf_atomic_read(&peer->ref_cnt));
/*
* For every peer MAp message search and set if bss_peer
*/
if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0 &&
(wlan_op_mode_sta != vdev->opmode)) {
dp_info("vdev bss_peer!!");
peer->bss_peer = 1;
if (peer->txrx_peer)
peer->txrx_peer->bss_peer = 1;
}
if (wlan_op_mode_sta == vdev->opmode &&
qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
peer->sta_self_peer = 1;
}
if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
goto fail;
}
peer->valid = 1;
dp_local_peer_id_alloc(pdev, peer);
DP_STATS_INIT(peer);
if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
dp_warn("peer sawf context alloc failed");
dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
fail:
qdf_mem_free(peer);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
{
/* txrx_peer might exist already in peer reuse case */
if (peer->txrx_peer)
return QDF_STATUS_SUCCESS;
if (dp_txrx_peer_attach(soc, peer) !=
QDF_STATUS_SUCCESS) {
dp_err("peer txrx ctx alloc failed");
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_FEATURE_11BE_MLO
QDF_STATUS dp_peer_mlo_setup(
struct dp_soc *soc,
struct dp_peer *peer,
uint8_t vdev_id,
struct cdp_peer_setup_info *setup_info)
{
struct dp_peer *mld_peer = NULL;
struct cdp_txrx_peer_params_update params = {0};
/* Non-MLO connection, do nothing */
if (!setup_info || !setup_info->mld_peer_mac)
return QDF_STATUS_SUCCESS;
dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
peer, NULL, vdev_id, setup_info);
dp_info("link peer: " QDF_MAC_ADDR_FMT "mld peer: " QDF_MAC_ADDR_FMT
"first_link %d, primary_link %d",
QDF_MAC_ADDR_REF(peer->mac_addr.raw),
QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
setup_info->is_first_link,
setup_info->is_primary_link);
/* if this is the first link peer */
if (setup_info->is_first_link)
/* create MLD peer */
dp_peer_create_wifi3((struct cdp_soc_t *)soc,
vdev_id,
setup_info->mld_peer_mac,
CDP_MLD_PEER_TYPE);
if (peer->vdev->opmode == wlan_op_mode_sta &&
setup_info->is_primary_link) {
struct cdp_txrx_peer_params_update params = {0};
params.chip_id = dp_mlo_get_chip_id(soc);
params.pdev_id = peer->vdev->pdev->pdev_id;
params.osif_vdev = peer->vdev->osif_vdev;
dp_wdi_event_handler(
WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
soc,
(void *)&params, peer->peer_id,
WDI_NO_VAL, params.pdev_id);
}
peer->first_link = setup_info->is_first_link;
peer->primary_link = setup_info->is_primary_link;
mld_peer = dp_mld_peer_find_hash_find(soc,
setup_info->mld_peer_mac,
0, vdev_id, DP_MOD_ID_CDP);
if (mld_peer) {
if (setup_info->is_first_link) {
/* assign rx_tid to mld peer */
mld_peer->rx_tid = peer->rx_tid;
/* no cdp_peer_setup for MLD peer,
* set it for addba processing
*/
qdf_atomic_set(&mld_peer->is_default_route_set, 1);
} else {
/* free link peer original rx_tids mem */
dp_peer_rx_tids_destroy(peer);
/* assign mld peer rx_tid to link peer */
peer->rx_tid = mld_peer->rx_tid;
}
if (setup_info->is_primary_link &&
!setup_info->is_first_link) {
struct dp_vdev *prev_vdev;
/*
* if first link is not the primary link,
* then need to change mld_peer->vdev as
* primary link dp_vdev is not same one
* during mld peer creation.
*/
prev_vdev = mld_peer->vdev;
dp_info("Primary link is not the first link. vdev: %pK,"
"vdev_id %d vdev_ref_cnt %d",
mld_peer->vdev, vdev_id,
qdf_atomic_read(&mld_peer->vdev->ref_cnt));
/* release the ref to original dp_vdev */
dp_vdev_unref_delete(soc, mld_peer->vdev,
DP_MOD_ID_CHILD);
/*
* get the ref to new dp_vdev,
* increase dp_vdev ref_cnt
*/
mld_peer->vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CHILD);
mld_peer->txrx_peer->vdev = mld_peer->vdev;
dp_cfg_event_record_mlo_setup_vdev_update_evt(
soc, mld_peer, prev_vdev,
mld_peer->vdev);
params.osif_vdev = (void *)peer->vdev->osif_vdev;
params.peer_mac = mld_peer->mac_addr.raw;
params.chip_id = dp_mlo_get_chip_id(soc);
params.pdev_id = peer->vdev->pdev->pdev_id;
dp_wdi_event_handler(
WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
soc, (void *)&params, peer->peer_id,
WDI_NO_VAL, params.pdev_id);
}
/* associate mld and link peer */
dp_link_peer_add_mld_peer(peer, mld_peer);
dp_mld_peer_add_link_peer(mld_peer, peer);
mld_peer->txrx_peer->is_mld_peer = 1;
dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
} else {
peer->mld_peer = NULL;
dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_mlo_peer_authorize() - authorize MLO peer
* @soc: soc handle
* @peer: pointer to link peer
*
* Return: void
*/
static void dp_mlo_peer_authorize(struct dp_soc *soc,
struct dp_peer *peer)
{
int i;
struct dp_peer *link_peer = NULL;
struct dp_peer *mld_peer = peer->mld_peer;
struct dp_mld_link_peers link_peers_info;
if (!mld_peer)
return;
/* get link peers with reference */
dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
&link_peers_info,
DP_MOD_ID_CDP);
for (i = 0; i < link_peers_info.num_links; i++) {
link_peer = link_peers_info.link_peers[i];
if (!link_peer->authorize) {
dp_release_link_peers_ref(&link_peers_info,
DP_MOD_ID_CDP);
mld_peer->authorize = false;
return;
}
}
/* if we are here all link peers are authorized,
* authorize ml_peer also
*/
mld_peer->authorize = true;
/* release link peers reference */
dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
}
#endif
/**
* dp_peer_setup_wifi3_wrapper() - initialize the peer
* @soc_hdl: soc handle object
* @vdev_id : vdev_id of vdev object
* @peer_mac: Peer's mac address
* @setup_info: peer setup info for MLO
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac,
struct cdp_peer_setup_info *setup_info)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
peer_mac, setup_info);
}
/**
* dp_cp_peer_del_resp_handler() - Handle the peer delete response
* @soc_hdl: Datapath SOC handle
* @vdev_id: id of virtual device object
* @mac_addr: Mac address of the peer
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
txrx_ast_free_cb cb = NULL;
void *cookie;
if (soc->ast_offload_support)
return QDF_STATUS_E_INVAL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry =
dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
vdev_id);
/* in case of qwrap we have multiple BSS peers
* with same mac address
*
* AST entry for this mac address will be created
* only for one peer hence it will be NULL here
*/
if ((!ast_entry || !ast_entry->delete_in_progress) ||
(ast_entry->peer_id != HTT_INVALID_PEER)) {
qdf_spin_unlock_bh(&soc->ast_lock);
return QDF_STATUS_E_FAILURE;
}
if (ast_entry->is_mapped)
soc->ast_table[ast_entry->ast_idx] = NULL;
DP_STATS_INC(soc, ast.deleted, 1);
dp_peer_ast_hash_remove(soc, ast_entry);
cb = ast_entry->callback;
cookie = ast_entry->cookie;
ast_entry->callback = NULL;
ast_entry->cookie = NULL;
soc->num_ast_entries--;
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
dp_soc_to_cdp_soc(soc),
cookie,
CDP_TXRX_AST_DELETED);
}
qdf_mem_free(ast_entry);
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_SUPPORT_MSCS
/**
* dp_record_mscs_params() - Record MSCS parameters sent by the STA in
* the MSCS Request to the AP.
* @soc_hdl: Datapath soc handle
* @peer_mac: STA Mac address
* @vdev_id: ID of the vdev handle
* @mscs_params: Structure having MSCS parameters obtained
* from handshake
* @active: Flag to set MSCS active/inactive
*
* The AP makes a note of these parameters while comparing the MSDUs
* sent by the STA, to send the downlink traffic with correct User
* priority.
*
* Return: QDF_STATUS - Success/Invalid
*/
static QDF_STATUS
dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
bool active)
{
struct dp_peer *peer;
struct dp_peer *tgt_peer;
QDF_STATUS status = QDF_STATUS_E_INVAL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_err("Peer is NULL!");
goto fail;
}
tgt_peer = dp_get_tgt_peer_from_peer(peer);
if (!tgt_peer)
goto fail;
if (!active) {
dp_info("MSCS Procedure is terminated");
tgt_peer->mscs_active = active;
goto fail;
}
if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
/* Populate entries inside IPV4 database first */
tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
mscs_params->user_pri_bitmap;
tgt_peer->mscs_ipv4_parameter.user_priority_limit =
mscs_params->user_pri_limit;
tgt_peer->mscs_ipv4_parameter.classifier_mask =
mscs_params->classifier_mask;
/* Populate entries inside IPV6 database */
tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
mscs_params->user_pri_bitmap;
tgt_peer->mscs_ipv6_parameter.user_priority_limit =
mscs_params->user_pri_limit;
tgt_peer->mscs_ipv6_parameter.classifier_mask =
mscs_params->classifier_mask;
tgt_peer->mscs_active = 1;
dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
"\tClassifier_type = %d\tUser priority bitmap = %x\n"
"\tUser priority limit = %x\tClassifier mask = %x",
QDF_MAC_ADDR_REF(peer_mac),
mscs_params->classifier_type,
tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
tgt_peer->mscs_ipv4_parameter.user_priority_limit,
tgt_peer->mscs_ipv4_parameter.classifier_mask);
}
status = QDF_STATUS_SUCCESS;
fail:
if (peer)
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
#endif
/**
* dp_get_sec_type() - Get the security type
* @soc: soc handle
* @vdev_id: id of dp handle
* @peer_mac: mac of datapath PEER handle
* @sec_idx: Security id (mcast, ucast)
*
* return sec_type: Security type
*/
static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac, uint8_t sec_idx)
{
int sec_type = 0;
struct dp_peer *peer =
dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_cdp_err("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
return sec_type;
}
if (!peer->txrx_peer) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
dp_peer_debug("%pK: txrx peer is NULL!\n", soc);
return sec_type;
}
sec_type = peer->txrx_peer->security[sec_idx].sec_type;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return sec_type;
}
/**
* dp_peer_authorize() - authorize txrx peer
* @soc_hdl: soc handle
* @vdev_id: id of dp handle
* @peer_mac: mac of datapath PEER handle
* @authorize:
*
* Return: QDF_STATUS
*
*/
static QDF_STATUS
dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac, uint32_t authorize)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_cdp_debug("%pK: Peer is NULL!\n", soc);
status = QDF_STATUS_E_FAILURE;
} else {
peer->authorize = authorize ? 1 : 0;
if (peer->txrx_peer)
peer->txrx_peer->authorize = peer->authorize;
if (!peer->authorize)
dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
dp_mlo_peer_authorize(soc, peer);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
return status;
}
/**
* dp_peer_get_authorize() - get peer authorize status
* @soc_hdl: soc handle
* @vdev_id: id of dp handle
* @peer_mac: mac of datapath PEER handle
*
* Return: true is peer is authorized, false otherwise
*/
static bool
dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
bool authorize = false;
struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_cdp_debug("%pK: Peer is NULL!\n", soc);
return authorize;
}
authorize = peer->authorize;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return authorize;
}
void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
enum dp_mod_id mod_id)
{
ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
void *vdev_delete_context = NULL;
uint8_t vdev_id = vdev->vdev_id;
struct dp_pdev *pdev = vdev->pdev;
struct dp_vdev *tmp_vdev = NULL;
uint8_t found = 0;
QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
/* Return if this is not the last reference*/
if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
return;
/*
* This should be set as last reference need to released
* after cdp_vdev_detach() is called
*
* if this assert is hit there is a ref count issue
*/
QDF_ASSERT(vdev->delete.pending);
vdev_delete_cb = vdev->delete.callback;
vdev_delete_context = vdev->delete.context;
dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
if (wlan_op_mode_monitor == vdev->opmode) {
dp_monitor_vdev_delete(soc, vdev);
goto free_vdev;
}
/* all peers are gone, go ahead and delete it */
dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
FLOW_TYPE_VDEV, vdev_id);
dp_tx_vdev_detach(vdev);
dp_monitor_vdev_detach(vdev);
free_vdev:
qdf_spinlock_destroy(&vdev->peer_list_lock);
qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
inactive_list_elem) {
if (tmp_vdev == vdev) {
found = 1;
break;
}
}
if (found)
TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
inactive_list_elem);
/* delete this peer from the list */
qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
vdev);
dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
WLAN_MD_DP_VDEV, "dp_vdev");
qdf_mem_free(vdev);
vdev = NULL;
if (vdev_delete_cb)
vdev_delete_cb(vdev_delete_context);
}
qdf_export_symbol(dp_vdev_unref_delete);
void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
{
struct dp_vdev *vdev = peer->vdev;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
uint16_t peer_id;
struct dp_peer *tmp_peer;
bool found = false;
if (mod_id > DP_MOD_ID_RX)
QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
/*
* Hold the lock all the way from checking if the peer ref count
* is zero until the peer references are removed from the hash
* table and vdev list (if the peer ref count is zero).
* This protects against a new HL tx operation starting to use the
* peer object just after this function concludes it's done being used.
* Furthermore, the lock needs to be held while checking whether the
* vdev's list of peers is empty, to make sure that list is not modified
* concurrently with the empty check.
*/
if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
peer_id = peer->peer_id;
/*
* Make sure that the reference to the peer in
* peer object map is removed
*/
QDF_ASSERT(peer_id == HTT_INVALID_PEER);
dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
QDF_MAC_ADDR_REF(peer->mac_addr.raw));
dp_peer_sawf_ctx_free(soc, peer);
wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
WLAN_MD_DP_PEER, "dp_peer");
qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
inactive_list_elem) {
if (tmp_peer == peer) {
found = 1;
break;
}
}
if (found)
TAILQ_REMOVE(&soc->inactive_peer_list, peer,
inactive_list_elem);
/* delete this peer from the list */
qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
/* cleanup the peer data */
dp_peer_cleanup(vdev, peer);
if (!IS_MLO_DP_MLD_PEER(peer))
dp_monitor_peer_detach(soc, peer);
qdf_spinlock_destroy(&peer->peer_state_lock);
dp_txrx_peer_detach(soc, peer);
dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
peer, vdev, 0);
qdf_mem_free(peer);
/*
* Decrement ref count taken at peer create
*/
dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
vdev, qdf_atomic_read(&vdev->ref_cnt));
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
}
}
qdf_export_symbol(dp_peer_unref_delete);
void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
enum dp_mod_id mod_id)
{
dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
}
qdf_export_symbol(dp_txrx_peer_unref_delete);
/**
* dp_peer_delete_wifi3() - Delete txrx peer
* @soc_hdl: soc handle
* @vdev_id: id of dp handle
* @peer_mac: mac of datapath PEER handle
* @bitmap: bitmap indicating special handling of request.
* @peer_type: peer type (link or MLD)
*
*/
static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac, uint32_t bitmap,
enum cdp_peer_type peer_type)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_peer *peer;
struct cdp_peer_info peer_info = { 0 };
struct dp_vdev *vdev = NULL;
DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
false, peer_type);
peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
/* Peer can be null for monitor vap mac address */
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: Invalid peer\n", __func__);
return QDF_STATUS_E_FAILURE;
}
if (!peer->valid) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
QDF_MAC_ADDR_REF(peer_mac));
return QDF_STATUS_E_ALREADY;
}
vdev = peer->vdev;
if (!vdev) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
peer->valid = 0;
dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
vdev, 0);
dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
qdf_atomic_read(&peer->ref_cnt));
dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
dp_local_peer_id_free(peer->vdev->pdev, peer);
/* Drop all rx packets before deleting peer */
dp_clear_peer_internal(soc, peer);
qdf_spinlock_destroy(&peer->peer_info_lock);
dp_peer_multipass_list_remove(peer);
/* remove the reference to the peer from the hash table */
dp_peer_find_hash_remove(soc, peer);
dp_peer_vdev_list_remove(soc, vdev, peer);
dp_peer_mlo_delete(peer);
qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
inactive_list_elem);
qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
/*
* Remove the reference added during peer_attach.
* The peer will still be left allocated until the
* PEER_UNMAP message arrives to remove the other
* reference, added by the PEER_MAP message.
*/
dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
/*
* Remove the reference taken above
*/
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#ifdef DP_RX_UDP_OVER_PEER_ROAM
static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *peer_mac,
uint32_t auth_status)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
vdev->roaming_peer_status = auth_status;
qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
QDF_MAC_ADDR_SIZE);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
* @soc_hdl: Datapath soc handle
* @vdev_id: virtual interface id
*
* Return: MAC address on success, NULL on failure.
*
*/
static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
uint8_t *mac = NULL;
if (!vdev)
return NULL;
mac = vdev->mac_addr.raw;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return mac;
}
/**
* dp_vdev_set_wds() - Enable per packet stats
* @soc_hdl: DP soc handle
* @vdev_id: id of DP VDEV handle
* @val: value
*
* Return: none
*/
static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint32_t val)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev =
dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
vdev->wds_enabled = val;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
int opmode;
if (!vdev) {
dp_err_rl("vdev for id %d is NULL", vdev_id);
return -EINVAL;
}
opmode = vdev->opmode;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return opmode;
}
/**
* dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
* @soc_hdl: ol_txrx_soc_handle handle
* @vdev_id: vdev id for which os rx handles are needed
* @stack_fn_p: pointer to stack function pointer
* @osif_vdev_p: pointer to ol_osif_vdev_handle
*
* Return: void
*/
static
void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
ol_txrx_rx_fp *stack_fn_p,
ol_osif_vdev_handle *osif_vdev_p)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (qdf_unlikely(!vdev)) {
*stack_fn_p = NULL;
*osif_vdev_p = NULL;
return;
}
*stack_fn_p = vdev->osif_rx_stack;
*osif_vdev_p = vdev->osif_vdev;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
/**
* dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
* @soc_hdl: datapath soc handle
* @vdev_id: virtual device/interface id
*
* Return: Handle to control pdev
*/
static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
struct dp_pdev *pdev;
if (!vdev)
return NULL;
pdev = vdev->pdev;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
}
int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return qdf_atomic_read(&pdev->num_tx_outstanding);
}
/**
* dp_get_peer_mac_from_peer_id() - get peer mac
* @soc: CDP SoC handle
* @peer_id: Peer ID
* @peer_mac: MAC addr of PEER
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
uint32_t peer_id,
uint8_t *peer_mac)
{
struct dp_peer *peer;
if (soc && peer_mac) {
peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
(uint16_t)peer_id,
DP_MOD_ID_CDP);
if (peer) {
qdf_mem_copy(peer_mac, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
}
return QDF_STATUS_E_FAILURE;
}
#ifdef MESH_MODE_SUPPORT
static
void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
vdev->mesh_vdev = val;
if (val)
vdev->skip_sw_tid_classification |=
DP_TX_MESH_ENABLED;
else
vdev->skip_sw_tid_classification &=
~DP_TX_MESH_ENABLED;
}
/**
* dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: void
*/
static
void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
vdev->mesh_rx_filter = val;
}
#endif
/**
* dp_vdev_set_hlos_tid_override() - to set hlos tid override
* @vdev: virtual device object
* @val: value to be set
*
* Return: void
*/
static
void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
{
dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
if (val)
vdev->skip_sw_tid_classification |=
DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
else
vdev->skip_sw_tid_classification &=
~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
}
/**
* dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
* @vdev_hdl: virtual device object
*
* Return: 1 if this flag is set
*/
static
uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
return !!(vdev->skip_sw_tid_classification &
DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
}
#ifdef VDEV_PEER_PROTOCOL_COUNT
static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
int8_t vdev_id,
bool enable)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return;
dp_info("enable %d vdev_id %d", enable, vdev_id);
vdev->peer_protocol_count_track = enable;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
int8_t vdev_id,
int drop_mask)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return;
dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
vdev->peer_protocol_count_dropmask = drop_mask;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
int8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
int peer_protocol_count_track;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return 0;
dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
vdev_id);
peer_protocol_count_track =
vdev->peer_protocol_count_track;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return peer_protocol_count_track;
}
static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
int8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
int peer_protocol_count_dropmask;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return 0;
dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
vdev_id);
peer_protocol_count_dropmask =
vdev->peer_protocol_count_dropmask;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return peer_protocol_count_dropmask;
}
#endif
bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
{
uint8_t pdev_count;
for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
if (soc->pdev_list[pdev_count] &&
soc->pdev_list[pdev_count] == data)
return true;
}
return false;
}
void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
struct cdp_vdev_stats *vdev_stats)
{
if (!vdev || !vdev->pdev)
return;
dp_update_vdev_ingress_stats(vdev);
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
DP_MOD_ID_GENERIC_STATS);
dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
vdev_stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
}
void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats =
qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
pdev->soc);
return;
}
soc = pdev->soc;
qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
if (dp_monitor_is_enable_mcopy_mode(pdev))
dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
dp_aggregate_vdev_stats(vdev, vdev_stats);
dp_update_pdev_stats(pdev, vdev_stats);
dp_update_pdev_ingress_stats(pdev, vdev);
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_mem_free(vdev_stats);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
#endif
}
/**
* dp_vdev_getstats() - get vdev packet level stats
* @vdev_handle: Datapath VDEV handle
* @stats: cdp network device stats structure
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats;
if (!vdev)
return QDF_STATUS_E_FAILURE;
pdev = vdev->pdev;
if (!pdev)
return QDF_STATUS_E_FAILURE;
soc = pdev->soc;
vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
soc);
return QDF_STATUS_E_FAILURE;
}
dp_aggregate_vdev_stats(vdev, vdev_stats);
stats->tx_packets = vdev_stats->tx.comp_pkt.num;
stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
stats->tx_errors = vdev_stats->tx.tx_failed;
stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
vdev_stats->tx_i.sg.dropped_host.num +
vdev_stats->tx_i.mcast_en.dropped_map_error +
vdev_stats->tx_i.mcast_en.dropped_self_mac +
vdev_stats->tx_i.mcast_en.dropped_send_fail +
vdev_stats->tx.nawds_mcast_drop;
if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
stats->rx_packets = vdev_stats->rx.to_stack.num;
stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
} else {
stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
vdev_stats->rx_i.null_q_desc_pkt.num +
vdev_stats->rx_i.routed_eapol_pkt.num;
stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
vdev_stats->rx_i.null_q_desc_pkt.bytes +
vdev_stats->rx_i.routed_eapol_pkt.bytes;
}
stats->rx_errors = vdev_stats->rx.err.mic_err +
vdev_stats->rx.err.decrypt_err +
vdev_stats->rx.err.fcserr +
vdev_stats->rx.err.pn_err +
vdev_stats->rx.err.oor_err +
vdev_stats->rx.err.jump_2k_err +
vdev_stats->rx.err.rxdma_wifi_parse_err;
stats->rx_dropped = vdev_stats->rx.mec_drop.num +
vdev_stats->rx.multipass_rx_pkt_drop +
vdev_stats->rx.peer_unauth_rx_pkt_drop +
vdev_stats->rx.policy_check_drop +
vdev_stats->rx.nawds_mcast_drop +
vdev_stats->rx.mcast_3addr_drop +
vdev_stats->rx.ppeds_drop.num;
qdf_mem_free(vdev_stats);
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_getstats() - get pdev packet level stats
* @pdev_handle: Datapath PDEV handle
* @stats: cdp network device stats structure
*
* Return: QDF_STATUS
*/
static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
stats->tx_packets = pdev->stats.tx.comp_pkt.num;
stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
stats->tx_errors = pdev->stats.tx.tx_failed;
stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
pdev->stats.tx_i.sg.dropped_host.num +
pdev->stats.tx_i.mcast_en.dropped_map_error +
pdev->stats.tx_i.mcast_en.dropped_self_mac +
pdev->stats.tx_i.mcast_en.dropped_send_fail +
pdev->stats.tx.nawds_mcast_drop +
pdev->stats.tso_stats.dropped_host.num;
if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
stats->rx_packets = pdev->stats.rx.to_stack.num;
stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
} else {
stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
pdev->stats.rx_i.null_q_desc_pkt.num +
pdev->stats.rx_i.routed_eapol_pkt.num;
stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
pdev->stats.rx_i.null_q_desc_pkt.bytes +
pdev->stats.rx_i.routed_eapol_pkt.bytes;
}
stats->rx_errors = pdev->stats.err.ip_csum_err +
pdev->stats.err.tcp_udp_csum_err +
pdev->stats.rx.err.mic_err +
pdev->stats.rx.err.decrypt_err +
pdev->stats.rx.err.fcserr +
pdev->stats.rx.err.pn_err +
pdev->stats.rx.err.oor_err +
pdev->stats.rx.err.jump_2k_err +
pdev->stats.rx.err.rxdma_wifi_parse_err;
stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
pdev->stats.dropped.mec +
pdev->stats.dropped.mesh_filter +
pdev->stats.dropped.wifi_parse +
pdev->stats.dropped.mon_rx_drop +
pdev->stats.dropped.mon_radiotap_update_err +
pdev->stats.rx.mec_drop.num +
pdev->stats.rx.ppeds_drop.num +
pdev->stats.rx.multipass_rx_pkt_drop +
pdev->stats.rx.peer_unauth_rx_pkt_drop +
pdev->stats.rx.policy_check_drop +
pdev->stats.rx.nawds_mcast_drop +
pdev->stats.rx.mcast_3addr_drop;
}
/**
* dp_get_device_stats() - get interface level packet stats
* @soc_hdl: soc handle
* @id: vdev_id or pdev_id based on type
* @stats: cdp network device stats structure
* @type: device type pdev/vdev
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
struct cdp_dev_stats *stats,
uint8_t type)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
QDF_STATUS status = QDF_STATUS_E_FAILURE;
struct dp_vdev *vdev;
switch (type) {
case UPDATE_VDEV_STATS:
vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
if (vdev) {
status = dp_vdev_getstats((struct cdp_vdev *)vdev,
stats);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
return status;
case UPDATE_PDEV_STATS:
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3(
(struct dp_soc *)soc,
id);
if (pdev) {
dp_pdev_getstats((struct cdp_pdev *)pdev,
stats);
return QDF_STATUS_SUCCESS;
}
}
break;
default:
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"apstats cannot be updated for this input "
"type %d", type);
break;
}
return QDF_STATUS_E_FAILURE;
}
const
char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
{
switch (ring_type) {
case REO_DST:
return "Reo_dst";
case REO_EXCEPTION:
return "Reo_exception";
case REO_CMD:
return "Reo_cmd";
case REO_REINJECT:
return "Reo_reinject";
case REO_STATUS:
return "Reo_status";
case WBM2SW_RELEASE:
return "wbm2sw_release";
case TCL_DATA:
return "tcl_data";
case TCL_CMD_CREDIT:
return "tcl_cmd_credit";
case TCL_STATUS:
return "tcl_status";
case SW2WBM_RELEASE:
return "sw2wbm_release";
case RXDMA_BUF:
return "Rxdma_buf";
case RXDMA_DST:
return "Rxdma_dst";
case RXDMA_MONITOR_BUF:
return "Rxdma_monitor_buf";
case RXDMA_MONITOR_DESC:
return "Rxdma_monitor_desc";
case RXDMA_MONITOR_STATUS:
return "Rxdma_monitor_status";
case RXDMA_MONITOR_DST:
return "Rxdma_monitor_destination";
case WBM_IDLE_LINK:
return "WBM_hw_idle_link";
case PPE2TCL:
return "PPE2TCL";
case REO2PPE:
return "REO2PPE";
case TX_MONITOR_DST:
return "tx_monitor_destination";
case TX_MONITOR_BUF:
return "tx_monitor_buf";
default:
dp_err("Invalid ring type");
break;
}
return "Invalid";
}
void dp_print_napi_stats(struct dp_soc *soc)
{
hif_print_napi_stats(soc->hif_handle);
}
/**
* dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
* @soc: Datapath soc
* @peer: Datatpath peer
* @arg: argument to iter function
*
* Return: QDF_STATUS
*/
static inline void
dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
struct dp_peer *peer,
void *arg)
{
struct dp_txrx_peer *txrx_peer = NULL;
struct dp_peer *tgt_peer = NULL;
struct cdp_interface_peer_stats peer_stats_intf;
qdf_mem_zero(&peer_stats_intf, sizeof(struct cdp_interface_peer_stats));
DP_STATS_CLR(peer);
/* Clear monitor peer stats */
dp_monitor_peer_reset_stats(soc, peer);
/* Clear MLD peer stats only when link peer is primary */
if (dp_peer_is_primary_link_peer(peer)) {
tgt_peer = dp_get_tgt_peer_from_peer(peer);
if (tgt_peer) {
DP_STATS_CLR(tgt_peer);
txrx_peer = tgt_peer->txrx_peer;
dp_txrx_peer_stats_clr(txrx_peer);
}
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
&peer_stats_intf, peer->peer_id,
UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
#endif
}
#ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
{
int ring;
for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
soc->reo_dest_ring[ring].hal_srng);
}
#else
static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
{
}
#endif
/**
* dp_txrx_host_stats_clr() - Reinitialize the txrx stats
* @vdev: DP_VDEV handle
* @soc: DP_SOC handle
*
* Return: QDF_STATUS
*/
static inline QDF_STATUS
dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
{
if (!vdev || !vdev->pdev)
return QDF_STATUS_E_FAILURE;
/*
* if NSS offload is enabled, then send message
* to NSS FW to clear the stats. Once NSS FW clears the statistics
* then clear host statistics.
*/
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
if (soc->cdp_soc.ol_ops->nss_stats_clr)
soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
vdev->vdev_id);
}
dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
(1 << vdev->vdev_id));
DP_STATS_CLR(vdev->pdev);
DP_STATS_CLR(vdev->pdev->soc);
DP_STATS_CLR(vdev);
hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
dp_vdev_iterate_peer(vdev, dp_txrx_host_peer_stats_clr, NULL,
DP_MOD_ID_GENERIC_STATS);
dp_srng_clear_ring_usage_wm_stats(soc);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
&vdev->stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_peer_calibr_stats()- Get peer calibrated stats
* @peer: Datapath peer
* @peer_stats: buffer for peer stats
*
* Return: none
*/
static inline
void dp_get_peer_calibr_stats(struct dp_peer *peer,
struct cdp_peer_stats *peer_stats)
{
struct dp_peer *tgt_peer;
tgt_peer = dp_get_tgt_peer_from_peer(peer);
if (!tgt_peer)
return;
peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
peer_stats->tx.tx_bytes_success_last =
tgt_peer->stats.tx.tx_bytes_success_last;
peer_stats->tx.tx_data_success_last =
tgt_peer->stats.tx.tx_data_success_last;
peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
peer_stats->tx.tx_data_ucast_last =
tgt_peer->stats.tx.tx_data_ucast_last;
peer_stats->tx.tx_data_ucast_rate =
tgt_peer->stats.tx.tx_data_ucast_rate;
peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
peer_stats->rx.rx_bytes_success_last =
tgt_peer->stats.rx.rx_bytes_success_last;
peer_stats->rx.rx_data_success_last =
tgt_peer->stats.rx.rx_data_success_last;
peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
}
/**
* dp_get_peer_basic_stats()- Get peer basic stats
* @peer: Datapath peer
* @peer_stats: buffer for peer stats
*
* Return: none
*/
static inline
void dp_get_peer_basic_stats(struct dp_peer *peer,
struct cdp_peer_stats *peer_stats)
{
struct dp_txrx_peer *txrx_peer;
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer)
return;
peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
peer_stats->tx.tx_failed += txrx_peer->tx_failed;
peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
}
#ifdef QCA_ENHANCED_STATS_SUPPORT
/**
* dp_get_peer_per_pkt_stats()- Get peer per pkt stats
* @peer: Datapath peer
* @peer_stats: buffer for peer stats
*
* Return: none
*/
static inline
void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
struct cdp_peer_stats *peer_stats)
{
struct dp_txrx_peer *txrx_peer;
struct dp_peer_per_pkt_stats *per_pkt_stats;
uint8_t inx = 0, link_id = 0;
struct dp_pdev *pdev;
struct dp_soc *soc;
uint8_t stats_arr_size;
txrx_peer = dp_get_txrx_peer(peer);
pdev = peer->vdev->pdev;
if (!txrx_peer)
return;
if (!IS_MLO_DP_LINK_PEER(peer)) {
stats_arr_size = txrx_peer->stats_arr_size;
for (inx = 0; inx < stats_arr_size; inx++) {
per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
}
} else {
soc = pdev->soc;
link_id = dp_get_peer_hw_link_id(soc, pdev);
per_pkt_stats =
&txrx_peer->stats[link_id].per_pkt_stats;
DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
}
}
#ifdef WLAN_FEATURE_11BE_MLO
/**
* dp_get_peer_extd_stats()- Get peer extd stats
* @peer: Datapath peer
* @peer_stats: buffer for peer stats
*
* Return: none
*/
static inline
void dp_get_peer_extd_stats(struct dp_peer *peer,
struct cdp_peer_stats *peer_stats)
{
struct dp_soc *soc = peer->vdev->pdev->soc;
if (IS_MLO_DP_MLD_PEER(peer)) {
uint8_t i;
struct dp_peer *link_peer;
struct dp_soc *link_peer_soc;
struct dp_mld_link_peers link_peers_info;
dp_get_link_peers_ref_from_mld_peer(soc, peer,
&link_peers_info,
DP_MOD_ID_CDP);
for (i = 0; i < link_peers_info.num_links; i++) {
link_peer = link_peers_info.link_peers[i];
link_peer_soc = link_peer->vdev->pdev->soc;
dp_monitor_peer_get_stats(link_peer_soc, link_peer,
peer_stats,
UPDATE_PEER_STATS);
}
dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
} else {
dp_monitor_peer_get_stats(soc, peer, peer_stats,
UPDATE_PEER_STATS);
}
}
#else
static inline
void dp_get_peer_extd_stats(struct dp_peer *peer,
struct cdp_peer_stats *peer_stats)
{
struct dp_soc *soc = peer->vdev->pdev->soc;
dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
}
#endif
#else
static inline
void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
struct cdp_peer_stats *peer_stats)
{
struct dp_txrx_peer *txrx_peer;
struct dp_peer_per_pkt_stats *per_pkt_stats;
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer)
return;
per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
}
static inline
void dp_get_peer_extd_stats(struct dp_peer *peer,
struct cdp_peer_stats *peer_stats)
{
struct dp_txrx_peer *txrx_peer;
struct dp_peer_extd_stats *extd_stats;
txrx_peer = dp_get_txrx_peer(peer);
if (qdf_unlikely(!txrx_peer)) {
dp_err_rl("txrx_peer NULL");
return;
}
extd_stats = &txrx_peer->stats[0].extd_stats;
DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
}
#endif
/**
* dp_get_peer_tx_per()- Get peer packet error ratio
* @peer_stats: buffer for peer stats
*
* Return: none
*/
static inline
void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
{
if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
peer_stats->tx.per = (peer_stats->tx.retries * 100) /
(peer_stats->tx.tx_success.num +
peer_stats->tx.retries);
else
peer_stats->tx.per = 0;
}
void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
{
dp_get_peer_calibr_stats(peer, peer_stats);
dp_get_peer_basic_stats(peer, peer_stats);
dp_get_peer_per_pkt_stats(peer, peer_stats);
dp_get_peer_extd_stats(peer, peer_stats);
dp_get_peer_tx_per(peer_stats);
}
/**
* dp_get_host_peer_stats()- function to print peer stats
* @soc: dp_soc handle
* @mac_addr: mac address of the peer
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
{
struct dp_peer *peer = NULL;
struct cdp_peer_stats *peer_stats = NULL;
struct cdp_peer_info peer_info = { 0 };
if (!mac_addr) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: NULL peer mac addr\n", __func__);
return QDF_STATUS_E_FAILURE;
}
DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
CDP_WILD_PEER_TYPE);
peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
DP_MOD_ID_CDP);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid peer\n", __func__);
return QDF_STATUS_E_FAILURE;
}
peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
if (!peer_stats) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Memory allocation failed for cdp_peer_stats\n",
__func__);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_E_NOMEM;
}
qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
dp_get_peer_stats(peer, peer_stats);
dp_print_peer_stats(peer, peer_stats);
dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
dp_rx_tid_stats_cb, NULL);
qdf_mem_free(peer_stats);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_stats_help() - Helper function for Txrx_Stats
*
* Return: None
*/
static void dp_txrx_stats_help(void)
{
dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
dp_info("stats_option:");
dp_info(" 1 -- HTT Tx Statistics");
dp_info(" 2 -- HTT Rx Statistics");
dp_info(" 3 -- HTT Tx HW Queue Statistics");
dp_info(" 4 -- HTT Tx HW Sched Statistics");
dp_info(" 5 -- HTT Error Statistics");
dp_info(" 6 -- HTT TQM Statistics");
dp_info(" 7 -- HTT TQM CMDQ Statistics");
dp_info(" 8 -- HTT TX_DE_CMN Statistics");
dp_info(" 9 -- HTT Tx Rate Statistics");
dp_info(" 10 -- HTT Rx Rate Statistics");
dp_info(" 11 -- HTT Peer Statistics");
dp_info(" 12 -- HTT Tx SelfGen Statistics");
dp_info(" 13 -- HTT Tx MU HWQ Statistics");
dp_info(" 14 -- HTT RING_IF_INFO Statistics");
dp_info(" 15 -- HTT SRNG Statistics");
dp_info(" 16 -- HTT SFM Info Statistics");
dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
dp_info(" 18 -- HTT Peer List Details");
dp_info(" 20 -- Clear Host Statistics");
dp_info(" 21 -- Host Rx Rate Statistics");
dp_info(" 22 -- Host Tx Rate Statistics");
dp_info(" 23 -- Host Tx Statistics");
dp_info(" 24 -- Host Rx Statistics");
dp_info(" 25 -- Host AST Statistics");
dp_info(" 26 -- Host SRNG PTR Statistics");
dp_info(" 27 -- Host Mon Statistics");
dp_info(" 28 -- Host REO Queue Statistics");
dp_info(" 29 -- Host Soc cfg param Statistics");
dp_info(" 30 -- Host pdev cfg param Statistics");
dp_info(" 31 -- Host NAPI stats");
dp_info(" 32 -- Host Interrupt stats");
dp_info(" 33 -- Host FISA stats");
dp_info(" 34 -- Host Register Work stats");
dp_info(" 35 -- HW REO Queue stats");
dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
dp_info(" 37 -- Host SRNG usage watermark stats");
}
#ifdef DP_UMAC_HW_RESET_SUPPORT
/**
* dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
* @soc: dp soc handle
* @en: ebable/disable
*
* Return: void
*/
static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
{
soc->umac_reset_ctx.skel_enable = en;
dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
soc->umac_reset_ctx.skel_enable);
}
/**
* dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
* @soc: dp soc handle
*
* Return: enable/disable flag
*/
static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
{
return soc->umac_reset_ctx.skel_enable;
}
#else
static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
{
}
static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
{
return false;
}
#endif
/**
* dp_print_host_stats()- Function to print the stats aggregated at host
* @vdev: DP_VDEV handle
* @req: host stats type
* @soc: dp soc handler
*
* Return: 0 on success, print error message in case of failure
*/
static int
dp_print_host_stats(struct dp_vdev *vdev,
struct cdp_txrx_stats_req *req,
struct dp_soc *soc)
{
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
enum cdp_host_txrx_stats type =
dp_stats_mapping_table[req->stats][STATS_HOST];
dp_aggregate_pdev_stats(pdev);
switch (type) {
case TXRX_CLEAR_STATS:
dp_txrx_host_stats_clr(vdev, soc);
break;
case TXRX_RX_RATE_STATS:
dp_print_rx_rates(vdev);
break;
case TXRX_TX_RATE_STATS:
dp_print_tx_rates(vdev);
break;
case TXRX_TX_HOST_STATS:
dp_print_pdev_tx_stats(pdev);
dp_print_soc_tx_stats(pdev->soc);
dp_print_global_desc_count();
break;
case TXRX_RX_HOST_STATS:
dp_print_pdev_rx_stats(pdev);
dp_print_soc_rx_stats(pdev->soc);
break;
case TXRX_AST_STATS:
dp_print_ast_stats(pdev->soc);
dp_print_mec_stats(pdev->soc);
dp_print_peer_table(vdev);
break;
case TXRX_SRNG_PTR_STATS:
dp_print_ring_stats(pdev);
break;
case TXRX_RX_MON_STATS:
dp_monitor_print_pdev_rx_mon_stats(pdev);
break;
case TXRX_REO_QUEUE_STATS:
dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
req->peer_addr);
break;
case TXRX_SOC_CFG_PARAMS:
dp_print_soc_cfg_params(pdev->soc);
break;
case TXRX_PDEV_CFG_PARAMS:
dp_print_pdev_cfg_params(pdev);
break;
case TXRX_NAPI_STATS:
dp_print_napi_stats(pdev->soc);
break;
case TXRX_SOC_INTERRUPT_STATS:
dp_print_soc_interrupt_stats(pdev->soc);
break;
case TXRX_SOC_FSE_STATS:
dp_rx_dump_fisa_table(pdev->soc);
break;
case TXRX_HAL_REG_WRITE_STATS:
hal_dump_reg_write_stats(pdev->soc->hal_soc);
hal_dump_reg_write_srng_stats(pdev->soc->hal_soc);
break;
case TXRX_SOC_REO_HW_DESC_DUMP:
dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
vdev->vdev_id);
break;
case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
dp_dump_wbm_idle_hptp(pdev->soc, pdev);
break;
case TXRX_SRNG_USAGE_WM_STATS:
/* Dump usage watermark stats for all SRNGs */
dp_dump_srng_high_wm_stats(soc, 0xFF);
break;
default:
dp_info("Wrong Input For TxRx Host Stats");
dp_txrx_stats_help();
break;
}
return 0;
}
/**
* dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
{
pdev->stats.tid_stats.ingress_stack += val;
}
/**
* dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
{
pdev->stats.tid_stats.osif_drop += val;
}
/**
* dp_get_fw_peer_stats()- function to print peer stats
* @soc: soc handle
* @pdev_id: id of the pdev handle
* @mac_addr: mac address of the peer
* @cap: Type of htt stats requested
* @is_wait: if set, wait on completion from firmware response
*
* Currently Supporting only MAC ID based requests Only
* 1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
* 2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
* 3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
uint8_t *mac_addr,
uint32_t cap, uint32_t is_wait)
{
int i;
uint32_t config_param0 = 0;
uint32_t config_param1 = 0;
uint32_t config_param2 = 0;
uint32_t config_param3 = 0;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
config_param0 |= (1 << (cap + 1));
for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
config_param1 |= (1 << i);
}
config_param2 |= (mac_addr[0] & 0x000000ff);
config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
config_param3 |= (mac_addr[4] & 0x000000ff);
config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
if (is_wait) {
qdf_event_reset(&pdev->fw_peer_stats_event);
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, DBG_STATS_COOKIE_DP_STATS, 0);
qdf_wait_single_event(&pdev->fw_peer_stats_event,
DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
} else {
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, DBG_STATS_COOKIE_DEFAULT, 0);
}
return QDF_STATUS_SUCCESS;
}
/* This struct definition will be removed from here
* once it get added in FW headers*/
struct httstats_cmd_req {
uint32_t config_param0;
uint32_t config_param1;
uint32_t config_param2;
uint32_t config_param3;
int cookie;
u_int8_t stats_id;
};
/**
* dp_get_htt_stats: function to process the httstas request
* @soc: DP soc handle
* @pdev_id: id of pdev handle
* @data: pointer to request data
* @data_len: length for request data
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
uint32_t data_len)
{
struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
req->config_param0, req->config_param1,
req->config_param2, req->config_param3,
req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
* @pdev: DP_PDEV handle
* @prio: tidmap priority value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
uint8_t prio)
{
struct dp_soc *soc = pdev->soc;
soc->tidmap_prty = prio;
hal_tx_set_tidmap_prty(soc->hal_soc, prio);
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_peer_param: function to get parameters in peer
* @cdp_soc: DP soc handle
* @vdev_id: id of vdev handle
* @peer_mac: peer mac address
* @param: parameter type to be set
* @val: address of buffer
*
* Return: val
*/
static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
uint8_t *peer_mac,
enum cdp_peer_param_type param,
cdp_config_param_type *val)
{
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_peer_param: function to set parameters in peer
* @cdp_soc: DP soc handle
* @vdev_id: id of vdev handle
* @peer_mac: peer mac address
* @param: parameter type to be set
* @val: value of parameter to be set
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
uint8_t *peer_mac,
enum cdp_peer_param_type param,
cdp_config_param_type val)
{
struct dp_peer *peer =
dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
struct dp_txrx_peer *txrx_peer;
if (!peer)
return QDF_STATUS_E_FAILURE;
txrx_peer = peer->txrx_peer;
if (!txrx_peer) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
switch (param) {
case CDP_CONFIG_NAWDS:
txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
break;
case CDP_CONFIG_ISOLATION:
dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
break;
case CDP_CONFIG_IN_TWT:
txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
break;
default:
break;
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_pdev_param() - function to get parameters from pdev
* @cdp_soc: DP soc handle
* @pdev_id: id of pdev handle
* @param: parameter type to be get
* @val: buffer for value
*
* Return: status
*/
static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
enum cdp_pdev_param_type param,
cdp_config_param_type *val)
{
struct cdp_pdev *pdev = (struct cdp_pdev *)
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_CONFIG_VOW:
val->cdp_pdev_param_cfg_vow =
((struct dp_pdev *)pdev)->delay_stats_flag;
break;
case CDP_TX_PENDING:
val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
break;
case CDP_FILTER_MCAST_DATA:
val->cdp_pdev_param_fltr_mcast =
dp_monitor_pdev_get_filter_mcast_data(pdev);
break;
case CDP_FILTER_NO_DATA:
val->cdp_pdev_param_fltr_none =
dp_monitor_pdev_get_filter_non_data(pdev);
break;
case CDP_FILTER_UCAST_DATA:
val->cdp_pdev_param_fltr_ucast =
dp_monitor_pdev_get_filter_ucast_data(pdev);
break;
case CDP_MONITOR_CHANNEL:
val->cdp_pdev_param_monitor_chan =
dp_monitor_get_chan_num((struct dp_pdev *)pdev);
break;
case CDP_MONITOR_FREQUENCY:
val->cdp_pdev_param_mon_freq =
dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
break;
default:
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_pdev_param() - function to set parameters in pdev
* @cdp_soc: DP soc handle
* @pdev_id: id of pdev handle
* @param: parameter type to be set
* @val: value of parameter to be set
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
enum cdp_pdev_param_type param,
cdp_config_param_type val)
{
int target_type;
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
pdev_id);
enum reg_wifi_band chan_band;
if (!pdev)
return QDF_STATUS_E_FAILURE;
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6750:
case TARGET_TYPE_WCN6450:
pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
break;
case TARGET_TYPE_KIWI:
case TARGET_TYPE_MANGO:
case TARGET_TYPE_PEACH:
pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
break;
default:
pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
break;
}
switch (param) {
case CDP_CONFIG_TX_CAPTURE:
return dp_monitor_config_debug_sniffer(pdev,
val.cdp_pdev_param_tx_capture);
case CDP_CONFIG_DEBUG_SNIFFER:
return dp_monitor_config_debug_sniffer(pdev,
val.cdp_pdev_param_dbg_snf);
case CDP_CONFIG_BPR_ENABLE:
return dp_monitor_set_bpr_enable(pdev,
val.cdp_pdev_param_bpr_enable);
case CDP_CONFIG_PRIMARY_RADIO:
pdev->is_primary = val.cdp_pdev_param_primary_radio;
break;
case CDP_CONFIG_CAPTURE_LATENCY:
pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
break;
case CDP_INGRESS_STATS:
dp_pdev_tid_stats_ingress_inc(pdev,
val.cdp_pdev_param_ingrs_stats);
break;
case CDP_OSIF_DROP:
dp_pdev_tid_stats_osif_drop(pdev,
val.cdp_pdev_param_osif_drop);
break;
case CDP_CONFIG_ENH_RX_CAPTURE:
return dp_monitor_config_enh_rx_capture(pdev,
val.cdp_pdev_param_en_rx_cap);
case CDP_CONFIG_ENH_TX_CAPTURE:
return dp_monitor_config_enh_tx_capture(pdev,
val.cdp_pdev_param_en_tx_cap);
case CDP_CONFIG_HMMC_TID_OVERRIDE:
pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
break;
case CDP_CONFIG_HMMC_TID_VALUE:
pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
break;
case CDP_CHAN_NOISE_FLOOR:
pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
break;
case CDP_TIDMAP_PRTY:
dp_set_pdev_tidmap_prty_wifi3(pdev,
val.cdp_pdev_param_tidmap_prty);
break;
case CDP_FILTER_NEIGH_PEERS:
dp_monitor_set_filter_neigh_peers(pdev,
val.cdp_pdev_param_fltr_neigh_peers);
break;
case CDP_MONITOR_CHANNEL:
dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
break;
case CDP_MONITOR_FREQUENCY:
chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
dp_monitor_set_chan_band(pdev, chan_band);
break;
case CDP_CONFIG_BSS_COLOR:
dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
break;
case CDP_SET_ATF_STATS_ENABLE:
dp_monitor_set_atf_stats_enable(pdev,
val.cdp_pdev_param_atf_stats_enable);
break;
case CDP_CONFIG_SPECIAL_VAP:
dp_monitor_pdev_config_scan_spcl_vap(pdev,
val.cdp_pdev_param_config_special_vap);
dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
break;
case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
break;
case CDP_CONFIG_ENHANCED_STATS_ENABLE:
pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
break;
case CDP_ISOLATION:
pdev->isolation = val.cdp_pdev_param_isolation;
break;
case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
return dp_monitor_config_undecoded_metadata_capture(pdev,
val.cdp_pdev_param_undecoded_metadata_enable);
break;
default:
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_UNDECODED_METADATA_SUPPORT
static
QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
uint8_t pdev_id, uint32_t mask,
uint32_t mask_cont)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
mask, mask_cont);
}
static
QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
uint8_t pdev_id, uint32_t *mask,
uint32_t *mask_cont)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
mask, mask_cont);
}
#endif
#ifdef QCA_PEER_EXT_STATS
static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
struct dp_peer *peer = NULL;
uint16_t peer_id, ring_id;
uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
struct dp_peer_delay_stats *delay_stats = NULL;
peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
if (peer_id > soc->max_peer_id)
return;
peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
if (qdf_unlikely(!peer))
return;
if (qdf_unlikely(!peer->txrx_peer)) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return;
}
if (qdf_likely(peer->txrx_peer->delay_stats)) {
delay_stats = peer->txrx_peer->delay_stats;
ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
nbuf);
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
#else
static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
qdf_nbuf_t nbuf)
{
}
#endif
/**
* dp_calculate_delay_stats() - function to get rx delay stats
* @cdp_soc: DP soc handle
* @vdev_id: id of DP vdev handle
* @nbuf: skb
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
qdf_nbuf_t nbuf)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_SUCCESS;
if (vdev->pdev->delay_stats_flag)
dp_rx_compute_delay(vdev, nbuf);
else
dp_rx_update_peer_delay_stats(soc, nbuf);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_vdev_param() - function to get parameters from vdev
* @cdp_soc: DP soc handle
* @vdev_id: id of DP vdev handle
* @param: parameter type to get value
* @val: buffer address
*
* Return: status
*/
static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
enum cdp_vdev_param_type param,
cdp_config_param_type *val)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_ENABLE_WDS:
val->cdp_vdev_param_wds = vdev->wds_enabled;
break;
case CDP_ENABLE_MEC:
val->cdp_vdev_param_mec = vdev->mec_enabled;
break;
case CDP_ENABLE_DA_WAR:
val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
break;
case CDP_ENABLE_IGMP_MCAST_EN:
val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
break;
case CDP_ENABLE_MCAST_EN:
val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
break;
case CDP_ENABLE_HLOS_TID_OVERRIDE:
val->cdp_vdev_param_hlos_tid_override =
dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
break;
case CDP_ENABLE_PEER_AUTHORIZE:
val->cdp_vdev_param_peer_authorize =
vdev->peer_authorize;
break;
case CDP_TX_ENCAP_TYPE:
val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
break;
case CDP_ENABLE_CIPHER:
val->cdp_vdev_param_cipher_en = vdev->sec_type;
break;
#ifdef WLAN_SUPPORT_MESH_LATENCY
case CDP_ENABLE_PEER_TID_LATENCY:
val->cdp_vdev_param_peer_tid_latency_enable =
vdev->peer_tid_latency_enabled;
break;
case CDP_SET_VAP_MESH_TID:
val->cdp_vdev_param_mesh_tid =
vdev->mesh_tid_latency_config.latency_tid;
break;
#endif
case CDP_DROP_3ADDR_MCAST:
val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
break;
case CDP_SET_MCAST_VDEV:
soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
break;
#ifdef QCA_SUPPORT_WDS_EXTENDED
case CDP_DROP_TX_MCAST:
val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
break;
#endif
#ifdef MESH_MODE_SUPPORT
case CDP_MESH_RX_FILTER:
val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
break;
case CDP_MESH_MODE:
val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
break;
#endif
case CDP_ENABLE_NAWDS:
val->cdp_vdev_param_nawds = vdev->nawds_enabled;
break;
case CDP_ENABLE_WRAP:
val->cdp_vdev_param_wrap = vdev->wrap_vdev;
break;
#ifdef DP_TRAFFIC_END_INDICATION
case CDP_ENABLE_TRAFFIC_END_INDICATION:
val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
break;
#endif
default:
dp_cdp_err("%pK: param value %d is wrong",
soc, param);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_param() - function to set parameters in vdev
* @cdp_soc: DP soc handle
* @vdev_id: id of DP vdev handle
* @param: parameter type to get value
* @val: value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
enum cdp_vdev_param_type param, cdp_config_param_type val)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
struct dp_vdev *vdev =
dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
uint32_t var = 0;
if (!vdev)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_ENABLE_WDS:
dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)\n",
dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
vdev->wds_enabled = val.cdp_vdev_param_wds;
break;
case CDP_ENABLE_MEC:
dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)\n",
dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
vdev->mec_enabled = val.cdp_vdev_param_mec;
break;
case CDP_ENABLE_DA_WAR:
dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)\n",
dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
vdev->pdev->soc));
break;
case CDP_ENABLE_NAWDS:
vdev->nawds_enabled = val.cdp_vdev_param_nawds;
break;
case CDP_ENABLE_MCAST_EN:
vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
break;
case CDP_ENABLE_IGMP_MCAST_EN:
vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
break;
case CDP_ENABLE_PROXYSTA:
vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
break;
case CDP_UPDATE_TDLS_FLAGS:
vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
break;
case CDP_CFG_WDS_AGING_TIMER:
var = val.cdp_vdev_param_aging_tmr;
if (!var)
qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
else if (var != vdev->wds_aging_timer_val)
qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
vdev->wds_aging_timer_val = var;
break;
case CDP_ENABLE_AP_BRIDGE:
if (wlan_op_mode_sta != vdev->opmode)
vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
else
vdev->ap_bridge_enabled = false;
break;
case CDP_ENABLE_CIPHER:
vdev->sec_type = val.cdp_vdev_param_cipher_en;
break;
case CDP_ENABLE_QWRAP_ISOLATION:
vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
break;
case CDP_UPDATE_MULTIPASS:
vdev->multipass_en = val.cdp_vdev_param_update_multipass;
break;
case CDP_TX_ENCAP_TYPE:
vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
break;
case CDP_RX_DECAP_TYPE:
vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
break;
case CDP_TID_VDEV_PRTY:
vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
break;
case CDP_TIDMAP_TBL_ID:
vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
break;
#ifdef MESH_MODE_SUPPORT
case CDP_MESH_RX_FILTER:
dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
val.cdp_vdev_param_mesh_rx_filter);
break;
case CDP_MESH_MODE:
dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
val.cdp_vdev_param_mesh_mode);
break;
#endif
case CDP_ENABLE_HLOS_TID_OVERRIDE:
dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
val.cdp_vdev_param_hlos_tid_override);
dp_vdev_set_hlos_tid_override(vdev,
val.cdp_vdev_param_hlos_tid_override);
break;
#ifdef QCA_SUPPORT_WDS_EXTENDED
case CDP_CFG_WDS_EXT:
if (vdev->opmode == wlan_op_mode_ap)
vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
break;
case CDP_DROP_TX_MCAST:
dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
val.cdp_drop_tx_mcast);
vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
break;
#endif
case CDP_ENABLE_PEER_AUTHORIZE:
vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
break;
#ifdef WLAN_SUPPORT_MESH_LATENCY
case CDP_ENABLE_PEER_TID_LATENCY:
dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
val.cdp_vdev_param_peer_tid_latency_enable);
vdev->peer_tid_latency_enabled =
val.cdp_vdev_param_peer_tid_latency_enable;
break;
case CDP_SET_VAP_MESH_TID:
dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
val.cdp_vdev_param_mesh_tid);
vdev->mesh_tid_latency_config.latency_tid
= val.cdp_vdev_param_mesh_tid;
break;
#endif
#ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
case CDP_SKIP_BAR_UPDATE_AP:
dp_info("vdev_id %d skip BAR update: %u", vdev_id,
val.cdp_skip_bar_update);
vdev->skip_bar_update = val.cdp_skip_bar_update;
vdev->skip_bar_update_last_ts = 0;
break;
#endif
case CDP_DROP_3ADDR_MCAST:
dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
val.cdp_drop_3addr_mcast);
vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
break;
case CDP_ENABLE_WRAP:
vdev->wrap_vdev = val.cdp_vdev_param_wrap;
break;
#ifdef DP_TRAFFIC_END_INDICATION
case CDP_ENABLE_TRAFFIC_END_INDICATION:
vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
break;
#endif
#ifdef FEATURE_DIRECT_LINK
case CDP_VDEV_TX_TO_FW:
dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
vdev->to_fw = val.cdp_vdev_tx_to_fw;
break;
#endif
default:
break;
}
dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
/* Update PDEV flags as VDEV flags are updated */
dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_psoc_param: function to set parameters in psoc
* @cdp_soc: DP soc handle
* @param: parameter type to be set
* @val: value of parameter to be set
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
enum cdp_psoc_param_type param, cdp_config_param_type val)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
switch (param) {
case CDP_ENABLE_RATE_STATS:
soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
break;
case CDP_SET_NSS_CFG:
wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
val.cdp_psoc_param_en_nss_cfg);
/*
* TODO: masked out based on the per offloaded radio
*/
switch (val.cdp_psoc_param_en_nss_cfg) {
case dp_nss_cfg_default:
break;
case dp_nss_cfg_first_radio:
/*
* This configuration is valid for single band radio which
* is also NSS offload.
*/
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
break;
default:
dp_cdp_err("%pK: Invalid offload config %d",
soc, val.cdp_psoc_param_en_nss_cfg);
}
dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
, soc);
break;
case CDP_SET_PREFERRED_HW_MODE:
soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
break;
case CDP_IPA_ENABLE:
soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
break;
case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
val.cdp_psoc_param_vdev_stats_hw_offload);
break;
case CDP_SAWF_ENABLE:
wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
break;
case CDP_UMAC_RST_SKEL_ENABLE:
dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
break;
case CDP_UMAC_RESET_STATS:
dp_umac_reset_stats_print(soc);
break;
case CDP_SAWF_STATS:
wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
val.cdp_sawf_stats);
break;
default:
break;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_psoc_param: function to get parameters in soc
* @cdp_soc: DP soc handle
* @param: parameter type to be set
* @val: address of buffer
*
* Return: status
*/
static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
enum cdp_psoc_param_type param,
cdp_config_param_type *val)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
if (!soc)
return QDF_STATUS_E_FAILURE;
switch (param) {
case CDP_CFG_PEER_EXT_STATS:
val->cdp_psoc_param_pext_stats =
wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx);
break;
case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
val->cdp_psoc_param_vdev_stats_hw_offload =
wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
break;
case CDP_UMAC_RST_SKEL_ENABLE:
val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
break;
case CDP_PPEDS_ENABLE:
val->cdp_psoc_param_ppeds_enabled =
wlan_cfg_get_dp_soc_is_ppeds_enabled(soc->wlan_cfg_ctx);
break;
default:
dp_warn("Invalid param");
break;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
* @cdp_soc: CDP SOC handle
* @vdev_id: id of DP_VDEV handle
* @map_id:ID of map that needs to be updated
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
uint8_t vdev_id,
uint8_t map_id)
{
cdp_config_param_type val;
struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (vdev) {
vdev->dscp_tid_map_id = map_id;
val.cdp_vdev_param_dscp_tid_map_id = map_id;
soc->arch_ops.txrx_set_vdev_param(soc,
vdev,
CDP_UPDATE_DSCP_TO_TID_MAP,
val);
/* Update flag for transmit tid classification */
if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
vdev->skip_sw_tid_classification |=
DP_TX_HW_DSCP_TID_MAP_VALID;
else
vdev->skip_sw_tid_classification &=
~DP_TX_HW_DSCP_TID_MAP_VALID;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
return QDF_STATUS_E_FAILURE;
}
#ifdef DP_RATETABLE_SUPPORT
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
uint32_t rix;
uint16_t ratecode;
enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
(uint8_t)preamb, 1, punc_mode,
&rix, &ratecode);
}
#else
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
return 0;
}
#endif
/**
* dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
* @soc: DP soc handle
* @pdev_id: id of DP pdev handle
* @pdev_stats: buffer to copy to
*
* Return: status success/failure
*/
static QDF_STATUS
dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
struct cdp_pdev_stats *pdev_stats)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
dp_aggregate_pdev_stats(pdev);
qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
* @vdev: DP vdev handle
* @buf: buffer containing specific stats structure
*
* Return: void
*/
static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
void *buf)
{
struct cdp_tx_ingress_stats *host_stats = NULL;
if (!buf) {
dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
return;
}
host_stats = (struct cdp_tx_ingress_stats *)buf;
DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
host_stats->mcast_en.mcast_pkt.num,
host_stats->mcast_en.mcast_pkt.bytes);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
host_stats->mcast_en.dropped_map_error);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
host_stats->mcast_en.dropped_self_mac);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
host_stats->mcast_en.dropped_send_fail);
DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
host_stats->mcast_en.ucast);
DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
host_stats->mcast_en.fail_seg_alloc);
DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
host_stats->mcast_en.clone_fail);
}
/**
* dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
* @vdev: DP vdev handle
* @buf: buffer containing specific stats structure
*
* Return: void
*/
static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
void *buf)
{
struct cdp_tx_ingress_stats *host_stats = NULL;
if (!buf) {
dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
return;
}
host_stats = (struct cdp_tx_ingress_stats *)buf;
DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_rcvd,
host_stats->igmp_mcast_en.igmp_rcvd);
DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_ucast_converted,
host_stats->igmp_mcast_en.igmp_ucast_converted);
}
/**
* dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
* @soc_hdl: DP soc handle
* @vdev_id: id of DP vdev handle
* @buf: buffer containing specific stats structure
* @stats_id: stats type
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
void *buf,
uint16_t stats_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
dp_cdp_err("%pK: Invalid vdev handle", soc);
return QDF_STATUS_E_FAILURE;
}
switch (stats_id) {
case DP_VDEV_STATS_PKT_CNT_ONLY:
break;
case DP_VDEV_STATS_TX_ME:
dp_txrx_update_vdev_me_stats(vdev, buf);
dp_txrx_update_vdev_igmp_me_stats(vdev, buf);
break;
default:
qdf_info("Invalid stats_id %d", stats_id);
break;
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_get_peer_stats() - will return cdp_peer_stats
* @soc: soc handle
* @vdev_id: id of vdev handle
* @peer_mac: mac of DP_PEER handle
* @peer_stats: buffer to copy to
*
* Return: status success/failure
*/
static QDF_STATUS
dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
{
struct dp_peer *peer = NULL;
struct cdp_peer_info peer_info = { 0 };
DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
CDP_WILD_PEER_TYPE);
peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
DP_MOD_ID_CDP);
qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
if (!peer)
return QDF_STATUS_E_FAILURE;
dp_get_peer_stats(peer, peer_stats);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
* @soc: soc handle
* @vdev_id: vdev_id of vdev object
* @peer_mac: mac address of the peer
* @type: enum of required stats
* @buf: buffer to hold the value
*
* Return: status success/failure
*/
static QDF_STATUS
dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac, enum cdp_peer_stats_type type,
cdp_peer_stats_param_t *buf)
{
QDF_STATUS ret;
struct dp_peer *peer = NULL;
struct cdp_peer_info peer_info = { 0 };
DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
CDP_WILD_PEER_TYPE);
peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
DP_MOD_ID_CDP);
if (!peer) {
dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
soc, QDF_MAC_ADDR_REF(peer_mac));
return QDF_STATUS_E_FAILURE;
}
if (type >= cdp_peer_per_pkt_stats_min &&
type < cdp_peer_per_pkt_stats_max) {
ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
} else if (type >= cdp_peer_extd_stats_min &&
type < cdp_peer_extd_stats_max) {
ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
} else {
dp_err("%pK: Invalid stat type requested", soc);
ret = QDF_STATUS_E_FAILURE;
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return ret;
}
/**
* dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
* @soc_hdl: soc handle
* @vdev_id: id of vdev handle
* @peer_mac: mac of DP_PEER handle
*
* Return: QDF_STATUS
*/
#ifdef WLAN_FEATURE_11BE_MLO
static QDF_STATUS
dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer =
dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
vdev_id, DP_MOD_ID_CDP);
if (!peer)
return QDF_STATUS_E_FAILURE;
DP_STATS_CLR(peer);
dp_txrx_peer_stats_clr(peer->txrx_peer);
if (IS_MLO_DP_MLD_PEER(peer)) {
uint8_t i;
struct dp_peer *link_peer;
struct dp_soc *link_peer_soc;
struct dp_mld_link_peers link_peers_info;
dp_get_link_peers_ref_from_mld_peer(soc, peer,
&link_peers_info,
DP_MOD_ID_CDP);
for (i = 0; i < link_peers_info.num_links; i++) {
link_peer = link_peers_info.link_peers[i];
link_peer_soc = link_peer->vdev->pdev->soc;
DP_STATS_CLR(link_peer);
dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
}
dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
} else {
dp_monitor_peer_reset_stats(soc, peer);
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
#else
static QDF_STATUS
dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
uint8_t *peer_mac)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer)
return QDF_STATUS_E_FAILURE;
DP_STATS_CLR(peer);
dp_txrx_peer_stats_clr(peer->txrx_peer);
dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
#endif
/**
* dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
* @soc_hdl: CDP SoC handle
* @vdev_id: vdev Id
* @buf: buffer for vdev stats
* @is_aggregate: are aggregate stats being collected
*
* Return: int
*/
static int dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
void *buf, bool is_aggregate)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct cdp_vdev_stats *vdev_stats;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return 1;
vdev_stats = (struct cdp_vdev_stats *)buf;
if (is_aggregate) {
dp_aggregate_vdev_stats(vdev, buf);
} else {
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return 0;
}
/**
* dp_get_total_per() - get total per
* @soc: DP soc handle
* @pdev_id: id of DP_PDEV handle
*
* Return: % error rate using retries per packet and success packets
*/
static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return 0;
dp_aggregate_pdev_stats(pdev);
if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
return 0;
return ((pdev->stats.tx.retries * 100) /
((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
}
/**
* dp_txrx_stats_publish() - publish pdev stats into a buffer
* @soc: DP soc handle
* @pdev_id: id of DP_PDEV handle
* @buf: to hold pdev_stats
*
* Return: int
*/
static int
dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
struct cdp_stats_extd *buf)
{
struct cdp_txrx_stats_req req = {0,};
QDF_STATUS status;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return TXRX_STATS_LEVEL_OFF;
if (pdev->pending_fw_stats_response)
return TXRX_STATS_LEVEL_OFF;
dp_aggregate_pdev_stats(pdev);
pdev->pending_fw_stats_response = true;
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
pdev->fw_stats_tlv_bitmap_rcvd = 0;
qdf_event_reset(&pdev->fw_stats_event);
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
status =
qdf_wait_single_event(&pdev->fw_stats_event, DP_MAX_SLEEP_TIME);
if (status != QDF_STATUS_SUCCESS) {
if (status == QDF_STATUS_E_TIMEOUT)
qdf_debug("TIMEOUT_OCCURS");
pdev->pending_fw_stats_response = false;
return TXRX_STATS_LEVEL_OFF;
}
qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
pdev->pending_fw_stats_response = false;
return TXRX_STATS_LEVEL;
}
/**
* dp_get_obss_stats() - Get Pdev OBSS stats from Fw
* @soc: DP soc handle
* @pdev_id: id of DP_PDEV handle
* @buf: to hold pdev obss stats
* @req: Pointer to CDP TxRx stats
*
* Return: status
*/
static QDF_STATUS
dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
struct cdp_pdev_obss_pd_stats_tlv *buf,
struct cdp_txrx_stats_req *req)
{
QDF_STATUS status;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_INVAL;
if (pdev->pending_fw_obss_stats_response)
return QDF_STATUS_E_AGAIN;
pdev->pending_fw_obss_stats_response = true;
req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
qdf_event_reset(&pdev->fw_obss_stats_event);
status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
req->param1, req->param2,
req->param3, 0, req->cookie_val,
req->mac_id);
if (QDF_IS_STATUS_ERROR(status)) {
pdev->pending_fw_obss_stats_response = false;
return status;
}
status =
qdf_wait_single_event(&pdev->fw_obss_stats_event,
DP_MAX_SLEEP_TIME);
if (status != QDF_STATUS_SUCCESS) {
if (status == QDF_STATUS_E_TIMEOUT)
qdf_debug("TIMEOUT_OCCURS");
pdev->pending_fw_obss_stats_response = false;
return QDF_STATUS_E_TIMEOUT;
}
qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
sizeof(struct cdp_pdev_obss_pd_stats_tlv));
pdev->pending_fw_obss_stats_response = false;
return status;
}
/**
* dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
* @soc: DP soc handle
* @pdev_id: id of DP_PDEV handle
* @req: Pointer to CDP TxRx stats request mac_id will be
* pre-filled and should not be overwritten
*
* Return: status
*/
static QDF_STATUS
dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
struct cdp_txrx_stats_req *req)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
if (!pdev)
return QDF_STATUS_E_INVAL;
/*
* For HTT_DBG_EXT_STATS_RESET command, FW need to config
* from param0 to param3 according to below rule:
*
* PARAM:
* - config_param0 : start_offset (stats type)
* - config_param1 : stats bmask from start offset
* - config_param2 : stats bmask from start offset + 32
* - config_param3 : stats bmask from start offset + 64
*/
req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
req->param1 = 0x00000001;
return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
req->param1, req->param2, req->param3, 0,
cookie_val, req->mac_id);
}
/**
* dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
* @soc_handle: soc handle
* @pdev_id: id of DP_PDEV handle
* @map_id: ID of map that needs to be updated
* @tos: index value in map
* @tid: tid value passed by the user
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
uint8_t pdev_id,
uint8_t map_id,
uint8_t tos, uint8_t tid)
{
uint8_t dscp;
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
pdev->dscp_tid_map[map_id][dscp] = tid;
if (map_id < soc->num_hw_dscp_tid_map)
hal_tx_update_dscp_tid(soc->hal_soc, tid,
map_id, dscp);
else
return QDF_STATUS_E_FAILURE;
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_SYSFS_DP_STATS
/**
* dp_sysfs_event_trigger() - Trigger event to wait for firmware
* stats request response.
* @soc: soc handle
* @cookie_val: cookie value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
/* wait for firmware response for sysfs stats request */
if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
if (!soc) {
dp_cdp_err("soc is NULL");
return QDF_STATUS_E_FAILURE;
}
/* wait for event completion */
status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
WLAN_SYSFS_STAT_REQ_WAIT_MS);
if (status == QDF_STATUS_SUCCESS)
dp_cdp_info("sysfs_txrx_fw_request_done event completed");
else if (status == QDF_STATUS_E_TIMEOUT)
dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
else
dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
}
return status;
}
#else /* WLAN_SYSFS_DP_STATS */
static QDF_STATUS
dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SYSFS_DP_STATS */
/**
* dp_fw_stats_process() - Process TXRX FW stats request.
* @vdev: DP VDEV handle
* @req: stats request
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_fw_stats_process(struct dp_vdev *vdev,
struct cdp_txrx_stats_req *req)
{
struct dp_pdev *pdev = NULL;
struct dp_soc *soc = NULL;
uint32_t stats = req->stats;
uint8_t mac_id = req->mac_id;
uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
if (!vdev) {
DP_TRACE(NONE, "VDEV not found");
return QDF_STATUS_E_FAILURE;
}
pdev = vdev->pdev;
if (!pdev) {
DP_TRACE(NONE, "PDEV not found");
return QDF_STATUS_E_FAILURE;
}
soc = pdev->soc;
if (!soc) {
DP_TRACE(NONE, "soc not found");
return QDF_STATUS_E_FAILURE;
}
/* In case request is from host sysfs for displaying stats on console */
if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
cookie_val = DBG_SYSFS_STATS_COOKIE;
/*
* For HTT_DBG_EXT_STATS_RESET command, FW need to config
* from param0 to param3 according to below rule:
*
* PARAM:
* - config_param0 : start_offset (stats type)
* - config_param1 : stats bmask from start offset
* - config_param2 : stats bmask from start offset + 32
* - config_param3 : stats bmask from start offset + 64
*/
if (req->stats == CDP_TXRX_STATS_0) {
req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
req->param1 = 0xFFFFFFFF;
req->param2 = 0xFFFFFFFF;
req->param3 = 0xFFFFFFFF;
} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
}
if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
dp_h2t_ext_stats_msg_send(pdev,
HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
req->param0, req->param1, req->param2,
req->param3, 0, cookie_val,
mac_id);
} else {
dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
req->param1, req->param2, req->param3,
0, cookie_val, mac_id);
}
dp_sysfs_event_trigger(soc, cookie_val);
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_stats_request - function to map to firmware and host stats
* @soc_handle: soc handle
* @vdev_id: virtual device ID
* @req: stats request
*
* Return: QDF_STATUS
*/
static
QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
uint8_t vdev_id,
struct cdp_txrx_stats_req *req)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
int host_stats;
int fw_stats;
enum cdp_stats stats;
int num_stats;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
QDF_STATUS status = QDF_STATUS_E_INVAL;
if (!vdev || !req) {
dp_cdp_err("%pK: Invalid vdev/req instance", soc);
status = QDF_STATUS_E_INVAL;
goto fail0;
}
if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
dp_err("Invalid mac id request");
status = QDF_STATUS_E_INVAL;
goto fail0;
}
stats = req->stats;
if (stats >= CDP_TXRX_MAX_STATS) {
status = QDF_STATUS_E_INVAL;
goto fail0;
}
/*
* DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
* has to be updated if new FW HTT stats added
*/
if (stats > CDP_TXRX_STATS_HTT_MAX)
stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
if (stats >= num_stats) {
dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
status = QDF_STATUS_E_INVAL;
goto fail0;
}
req->stats = stats;
fw_stats = dp_stats_mapping_table[stats][STATS_FW];
host_stats = dp_stats_mapping_table[stats][STATS_HOST];
dp_info("stats: %u fw_stats_type: %d host_stats: %d",
stats, fw_stats, host_stats);
if (fw_stats != TXRX_FW_STATS_INVALID) {
/* update request with FW stats type */
req->stats = fw_stats;
status = dp_fw_stats_process(vdev, req);
} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
(host_stats <= TXRX_HOST_STATS_MAX))
status = dp_print_host_stats(vdev, req, soc);
else
dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
fail0:
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return status;
}
/**
* dp_soc_notify_asserted_soc() - API to notify asserted soc info
* @psoc: CDP soc handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
if (!soc) {
dp_cdp_err("%pK: soc is NULL", soc);
return QDF_STATUS_E_INVAL;
}
return dp_umac_reset_notify_asserted_soc(soc);
}
/**
* dp_txrx_dump_stats() - Dump statistics
* @psoc: CDP soc handle
* @value: Statistics option
* @level: verbosity level
*/
static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
enum qdf_stats_verbosity_level level)
{
struct dp_soc *soc =
(struct dp_soc *)psoc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
dp_cdp_err("%pK: soc is NULL", soc);
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_PATH_STATS:
dp_txrx_path_stats(soc);
dp_print_soc_interrupt_stats(soc);
hal_dump_reg_write_stats(soc->hal_soc);
dp_pdev_print_tx_delay_stats(soc);
/* Dump usage watermark stats for core TX/RX SRNGs */
dp_dump_srng_high_wm_stats(soc, (1 << REO_DST));
dp_print_fisa_stats(soc);
break;
case CDP_RX_RING_STATS:
dp_print_per_ring_stats(soc);
break;
case CDP_TXRX_TSO_STATS:
dp_print_tso_stats(soc, level);
break;
case CDP_DUMP_TX_FLOW_POOL_INFO:
if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
else
dp_tx_dump_flow_pool_info_compact(soc);
break;
case CDP_DP_NAPI_STATS:
dp_print_napi_stats(soc);
break;
case CDP_TXRX_DESC_STATS:
/* TODO: NOT IMPLEMENTED */
break;
case CDP_DP_RX_FISA_STATS:
dp_rx_dump_fisa_stats(soc);
break;
case CDP_DP_SWLM_STATS:
dp_print_swlm_stats(soc);
break;
case CDP_DP_TX_HW_LATENCY_STATS:
dp_pdev_print_tx_delay_stats(soc);
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
#ifdef WLAN_SYSFS_DP_STATS
static
void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
uint32_t *stat_type)
{
qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
*stat_type = soc->sysfs_config->stat_type_requested;
*mac_id = soc->sysfs_config->mac_id;
qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
}
static
void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
uint32_t curr_len,
uint32_t max_buf_len,
char *buf)
{
qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
/* set sysfs_config parameters */
soc->sysfs_config->buf = buf;
soc->sysfs_config->curr_buffer_length = curr_len;
soc->sysfs_config->max_buffer_length = max_buf_len;
qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
}
static
QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
char *buf, uint32_t buf_size)
{
uint32_t mac_id = 0;
uint32_t stat_type = 0;
uint32_t fw_stats = 0;
uint32_t host_stats = 0;
enum cdp_stats stats;
struct cdp_txrx_stats_req req;
uint32_t num_stats;
struct dp_soc *soc = NULL;
if (!soc_hdl) {
dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
return QDF_STATUS_E_INVAL;
}
soc = cdp_soc_t_to_dp_soc(soc_hdl);
if (!soc) {
dp_cdp_err("%pK: soc is NULL", soc);
return QDF_STATUS_E_INVAL;
}
dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
stats = stat_type;
if (stats >= CDP_TXRX_MAX_STATS) {
dp_cdp_info("sysfs stat type requested is invalid");
return QDF_STATUS_E_INVAL;
}
/*
* DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
* has to be updated if new FW HTT stats added
*/
if (stats > CDP_TXRX_MAX_STATS)
stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
if (stats >= num_stats) {
dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
soc, stats, num_stats);
return QDF_STATUS_E_INVAL;
}
/* build request */
fw_stats = dp_stats_mapping_table[stats][STATS_FW];
host_stats = dp_stats_mapping_table[stats][STATS_HOST];
req.stats = stat_type;
req.mac_id = mac_id;
/* request stats to be printed */
qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
if (fw_stats != TXRX_FW_STATS_INVALID) {
/* update request with FW stats type */
req.cookie_val = DBG_SYSFS_STATS_COOKIE;
} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
(host_stats <= TXRX_HOST_STATS_MAX)) {
req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
soc->sysfs_config->process_id = qdf_get_current_pid();
soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
}
dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
dp_txrx_stats_request(soc_hdl, mac_id, &req);
soc->sysfs_config->process_id = 0;
soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
return QDF_STATUS_SUCCESS;
}
static
QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
uint32_t stat_type, uint32_t mac_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
if (!soc_hdl) {
dp_cdp_err("%pK: soc is NULL", soc);
return QDF_STATUS_E_INVAL;
}
qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
soc->sysfs_config->stat_type_requested = stat_type;
soc->sysfs_config->mac_id = mac_id;
qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
return QDF_STATUS_SUCCESS;
}
static
QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
{
struct dp_soc *soc;
QDF_STATUS status;
if (!soc_hdl) {
dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
return QDF_STATUS_E_INVAL;
}
soc = soc_hdl;
soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
if (!soc->sysfs_config) {
dp_cdp_err("failed to allocate memory for sysfs_config no memory");
return QDF_STATUS_E_NOMEM;
}
status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
/* create event for fw stats request from sysfs */
if (status != QDF_STATUS_SUCCESS) {
dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
qdf_mem_free(soc->sysfs_config);
soc->sysfs_config = NULL;
return QDF_STATUS_E_FAILURE;
}
qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
return QDF_STATUS_SUCCESS;
}
static
QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
{
struct dp_soc *soc;
QDF_STATUS status;
if (!soc_hdl) {
dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
return QDF_STATUS_E_INVAL;
}
soc = soc_hdl;
if (!soc->sysfs_config) {
dp_cdp_err("soc->sysfs_config is NULL");
return QDF_STATUS_E_FAILURE;
}
status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
if (status != QDF_STATUS_SUCCESS)
dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
qdf_mem_free(soc->sysfs_config);
return QDF_STATUS_SUCCESS;
}
#else /* WLAN_SYSFS_DP_STATS */
static
QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
{
return QDF_STATUS_SUCCESS;
}
static
QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SYSFS_DP_STATS */
/**
* dp_txrx_clear_dump_stats() - clear dumpStats
* @soc_hdl: soc handle
* @pdev_id: pdev ID
* @value: stats option
*
* Return: 0 - Success, non-zero - failure
*/
static
QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
uint8_t value)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
dp_err("soc is NULL");
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_TSO_STATS:
dp_txrx_clear_tso_stats(soc);
break;
case CDP_DP_TX_HW_LATENCY_STATS:
dp_pdev_clear_tx_delay_stats(soc);
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_update_flow_control_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @params: ini parameter handle
*
* Return: void
*/
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
params->tx_flow_stop_queue_threshold;
soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
params->tx_flow_start_queue_offset;
}
#else
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
}
#endif
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
/* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
#define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
/* Max packet limit for RX REAP Loop (dp_rx_process) */
#define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
static
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
params->tx_comp_loop_pkt_limit;
if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
params->rx_reap_loop_pkt_limit;
if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
params->rx_hp_oos_update_limit;
dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
soc->wlan_cfg_ctx->rx_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
}
#else
static inline
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{ }
#endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
/**
* dp_update_config_parameters() - API to store datapath
* config parameters
* @psoc: soc handle
* @params: ini parameter handle
*
* Return: status
*/
static
QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
struct cdp_config_params *params)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
if (!(soc)) {
dp_cdp_err("%pK: Invalid handle", soc);
return QDF_STATUS_E_INVAL;
}
soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
params->p2p_tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
params->nan_tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
params->tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
dp_update_rx_soft_irq_limit_params(soc, params);
dp_update_flow_control_parameters(soc, params);
return QDF_STATUS_SUCCESS;
}
static struct cdp_wds_ops dp_ops_wds = {
.vdev_set_wds = dp_vdev_set_wds,
#ifdef WDS_VENDOR_EXTENSION
.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
#endif
};
/**
* dp_txrx_data_tx_cb_set() - set the callback for non standard tx
* @soc_hdl: datapath soc handle
* @vdev_id: virtual interface id
* @callback: callback function
* @ctxt: callback context
*
*/
static void
dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
ol_txrx_data_tx_cb callback, void *ctxt)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return;
vdev->tx_non_std_data_callback.func = callback;
vdev->tx_non_std_data_callback.ctxt = ctxt;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
/**
* dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
* @soc: datapath soc handle
* @pdev_id: id of datapath pdev handle
*
* Return: opaque pointer to dp txrx handle
*/
static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (qdf_unlikely(!pdev))
return NULL;
return pdev->dp_txrx_handle;
}
/**
* dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
* @soc: datapath soc handle
* @pdev_id: id of datapath pdev handle
* @dp_txrx_hdl: opaque pointer for dp_txrx_handle
*
* Return: void
*/
static void
dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
void *dp_txrx_hdl)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return;
pdev->dp_txrx_handle = dp_txrx_hdl;
}
/**
* dp_vdev_get_dp_ext_handle() - get dp handle from vdev
* @soc_hdl: datapath soc handle
* @vdev_id: vdev id
*
* Return: opaque pointer to dp txrx handle
*/
static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
void *dp_ext_handle;
if (!vdev)
return NULL;
dp_ext_handle = vdev->vdev_dp_ext_handle;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return dp_ext_handle;
}
/**
* dp_vdev_set_dp_ext_handle() - set dp handle in vdev
* @soc_hdl: datapath soc handle
* @vdev_id: vdev id
* @size: size of advance dp handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
uint16_t size)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
void *dp_ext_handle;
if (!vdev)
return QDF_STATUS_E_FAILURE;
dp_ext_handle = qdf_mem_malloc(size);
if (!dp_ext_handle) {
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_E_FAILURE;
}
vdev->vdev_dp_ext_handle = dp_ext_handle;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
/**
* dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
* connection for this vdev
* @soc_hdl: CDP soc handle
* @vdev_id: vdev ID
* @action: Add/Delete action
*
* Return: QDF_STATUS.
*/
static QDF_STATUS
dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
enum vdev_ll_conn_actions action)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
dp_err("LL connection action for invalid vdev %d", vdev_id);
return QDF_STATUS_E_FAILURE;
}
switch (action) {
case CDP_VDEV_LL_CONN_ADD:
vdev->num_latency_critical_conn++;
break;
case CDP_VDEV_LL_CONN_DEL:
vdev->num_latency_critical_conn--;
break;
default:
dp_err("LL connection action invalid %d", action);
break;
}
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
/**
* dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
* @soc_hdl: CDP Soc handle
* @value: Enable/Disable value
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
uint8_t value)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
if (!soc->swlm.is_init) {
dp_err("SWLM is not initialized");
return QDF_STATUS_E_FAILURE;
}
soc->swlm.is_enabled = !!value;
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
* @soc_hdl: CDP Soc handle
*
* Return: QDF_STATUS
*/
static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
return soc->swlm.is_enabled;
}
#endif
/**
* dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
* @soc_handle: datapath soc handle
*
* Return: opaque pointer to external dp (non-core DP)
*/
static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->external_txrx_handle;
}
/**
* dp_soc_set_dp_txrx_handle() - set external dp handle in soc
* @soc_handle: datapath soc handle
* @txrx_handle: opaque pointer to external dp (non-core DP)
*
* Return: void
*/
static void
dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->external_txrx_handle = txrx_handle;
}
/**
* dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
* @soc_hdl: datapath soc handle
* @pdev_id: id of the datapath pdev handle
* @lmac_id: lmac id
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_soc_map_pdev_to_lmac
(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
uint32_t lmac_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
pdev_id,
lmac_id);
/*Set host PDEV ID for lmac_id*/
wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
pdev_id,
lmac_id);
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
* @soc_hdl: datapath soc handle
* @pdev_id: id of the datapath pdev handle
* @lmac_id: lmac id
*
* In the event of a dynamic mode change, update the pdev to lmac mapping
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_soc_handle_pdev_mode_change
(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
uint32_t lmac_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_vdev *vdev = NULL;
uint8_t hw_pdev_id, mac_id;
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
pdev_id);
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
if (qdf_unlikely(!pdev))
return QDF_STATUS_E_FAILURE;
pdev->lmac_id = lmac_id;
pdev->target_pdev_id =
dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
dp_info(" mode change %d %d\n", pdev->pdev_id, pdev->lmac_id);
/*Set host PDEV ID for lmac_id*/
wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
pdev->pdev_id,
lmac_id);
hw_pdev_id =
dp_get_target_pdev_id_for_host_pdev_id(soc,
pdev->pdev_id);
/*
* When NSS offload is enabled, send pdev_id->lmac_id
* and pdev_id to hw_pdev_id to NSS FW
*/
if (nss_config) {
mac_id = pdev->lmac_id;
if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
soc->cdp_soc.ol_ops->
pdev_update_lmac_n_target_pdev_id(
soc->ctrl_psoc,
&pdev_id, &mac_id, &hw_pdev_id);
}
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
hw_pdev_id);
vdev->lmac_id = pdev->lmac_id;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_set_pdev_status_down() - set pdev down/up status
* @soc: datapath soc handle
* @pdev_id: id of datapath pdev handle
* @is_pdev_down: pdev down/up status
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
bool is_pdev_down)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
pdev->is_pdev_down = is_pdev_down;
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_cfg_capabilities() - get dp capabilities
* @soc_handle: datapath soc handle
* @dp_caps: enum for dp capabilities
*
* Return: bool to determine if dp caps is enabled
*/
static bool
dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
enum cdp_capabilities dp_caps)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
}
#ifdef FEATURE_AST
static QDF_STATUS
dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_peer *peer =
dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
/* Peer can be null for monitor vap mac address */
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: Invalid peer\n", __func__);
return QDF_STATUS_E_FAILURE;
}
dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_send_wds_disconnect(soc, peer);
dp_peer_delete_ast_entries(soc, peer);
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
#endif
#ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
/**
* dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
* given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
* @soc: cdp_soc handle
* @pdev_id: id of cdp_pdev handle
* @protocol_type: protocol type for which stats should be displayed
*
* Return: none
*/
static inline void
dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
uint16_t protocol_type)
{
}
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
#ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
/**
* dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
* applied to the desired protocol type packets
* @soc: soc handle
* @pdev_id: id of cdp_pdev handle
* @enable_rx_protocol_tag: bitmask that indicates what protocol types
* are enabled for tagging. zero indicates disable feature, non-zero indicates
* enable feature
* @protocol_type: new protocol type for which the tag is being added
* @tag: user configured tag for the new protocol
*
* Return: Success
*/
static inline QDF_STATUS
dp_update_pdev_rx_protocol_tag(struct cdp_soc_t *soc, uint8_t pdev_id,
uint32_t enable_rx_protocol_tag,
uint16_t protocol_type,
uint16_t tag)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
#ifndef WLAN_SUPPORT_RX_FLOW_TAG
/**
* dp_set_rx_flow_tag() - add/delete a flow
* @cdp_soc: CDP soc handle
* @pdev_id: id of cdp_pdev handle
* @flow_info: flow tuple that is to be added to/deleted from flow search table
*
* Return: Success
*/
static inline QDF_STATUS
dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
struct cdp_rx_flow_info *flow_info)
{
return QDF_STATUS_SUCCESS;
}
/**
* dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
* given flow 5-tuple
* @cdp_soc: soc handle
* @pdev_id: id of cdp_pdev handle
* @flow_info: flow 5-tuple for which stats should be displayed
*
* Return: Success
*/
static inline QDF_STATUS
dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
struct cdp_rx_flow_info *flow_info)
{
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_FLOW_TAG */
static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t *soc_hdl,
uint32_t max_peers,
uint32_t max_ast_index,
uint8_t peer_map_unmap_versions)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
QDF_STATUS status;
soc->max_peers = max_peers;
wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
status = soc->arch_ops.txrx_peer_map_attach(soc);
if (!QDF_IS_STATUS_SUCCESS(status)) {
dp_err("failure in allocating peer tables");
return QDF_STATUS_E_FAILURE;
}
dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u\n",
max_peers, soc->max_peer_id, max_ast_index);
status = dp_peer_find_attach(soc);
if (!QDF_IS_STATUS_SUCCESS(status)) {
dp_err("Peer find attach failure");
goto fail;
}
soc->peer_map_unmap_versions = peer_map_unmap_versions;
soc->peer_map_attach_success = TRUE;
return QDF_STATUS_SUCCESS;
fail:
soc->arch_ops.txrx_peer_map_detach(soc);
return status;
}
static QDF_STATUS dp_soc_set_param(struct cdp_soc_t *soc_hdl,
enum cdp_soc_param_t param,
uint32_t value)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
switch (param) {
case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
soc->num_msdu_exception_desc = value;
dp_info("num_msdu exception_desc %u",
value);
break;
case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
soc->fst_in_cmem = !!value;
dp_info("FW supports CMEM FSE %u", value);
break;
case DP_SOC_PARAM_MAX_AST_AGEOUT:
soc->max_ast_ageout_count = value;
dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
break;
case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
soc->eapol_over_control_port = value;
dp_info("Eapol over control_port:%d",
soc->eapol_over_control_port);
break;
case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
soc->multi_peer_grp_cmd_supported = value;
dp_info("Multi Peer group command support:%d",
soc->multi_peer_grp_cmd_supported);
break;
case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
soc->features.rssi_dbm_conv_support = value;
dp_info("Rssi dbm conversion support:%u",
soc->features.rssi_dbm_conv_support);
break;
case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
soc->features.umac_hw_reset_support = value;
dp_info("UMAC HW reset support :%u",
soc->features.umac_hw_reset_support);
break;
default:
dp_info("not handled param %d ", param);
break;
}
return QDF_STATUS_SUCCESS;
}
static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
void *stats_ctx)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
/**
* dp_peer_flush_rate_stats_req() - Flush peer rate stats
* @soc: Datapath SOC handle
* @peer: Datapath peer
* @arg: argument to iter function
*
* Return: QDF_STATUS
*/
static void
dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
void *arg)
{
/* Skip self peer */
if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE))
return;
dp_wdi_event_handler(
WDI_EVENT_FLUSH_RATE_STATS_REQ,
soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
peer->peer_id,
WDI_NO_VAL, peer->vdev->pdev->pdev_id);
}
/**
* dp_flush_rate_stats_req() - Flush peer rate stats in pdev
* @soc_hdl: Datapath SOC handle
* @pdev_id: pdev_id
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (!pdev)
return QDF_STATUS_E_FAILURE;
dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#else
static inline QDF_STATUS
dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
return QDF_STATUS_SUCCESS;
}
#endif
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
#ifdef WLAN_FEATURE_11BE_MLO
/**
* dp_get_peer_extd_rate_link_stats() - function to get peer
* extended rate and link stats
* @soc_hdl: dp soc handler
* @mac_addr: mac address of peer
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
{
uint8_t i;
struct dp_peer *link_peer;
struct dp_soc *link_peer_soc;
struct dp_mld_link_peers link_peers_info;
struct dp_peer *peer = NULL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct cdp_peer_info peer_info = { 0 };
if (!mac_addr) {
dp_err("NULL peer mac addr\n");
return QDF_STATUS_E_FAILURE;
}
DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
CDP_WILD_PEER_TYPE);
peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
if (!peer) {
dp_err("Invalid peer\n");
return QDF_STATUS_E_FAILURE;
}
if (IS_MLO_DP_MLD_PEER(peer)) {
dp_get_link_peers_ref_from_mld_peer(soc, peer,
&link_peers_info,
DP_MOD_ID_CDP);
for (i = 0; i < link_peers_info.num_links; i++) {
link_peer = link_peers_info.link_peers[i];
link_peer_soc = link_peer->vdev->pdev->soc;
dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
link_peer_soc,
dp_monitor_peer_get_peerstats_ctx
(link_peer_soc, link_peer),
link_peer->peer_id,
WDI_NO_VAL,
link_peer->vdev->pdev->pdev_id);
}
dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
} else {
dp_wdi_event_handler(
WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
dp_monitor_peer_get_peerstats_ctx(soc, peer),
peer->peer_id,
WDI_NO_VAL, peer->vdev->pdev->pdev_id);
}
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS
dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
{
struct dp_peer *peer = NULL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
if (!mac_addr) {
dp_err("NULL peer mac addr\n");
return QDF_STATUS_E_FAILURE;
}
peer = dp_peer_find_hash_find(soc, mac_addr, 0,
DP_VDEV_ALL, DP_MOD_ID_CDP);
if (!peer) {
dp_err("Invalid peer\n");
return QDF_STATUS_E_FAILURE;
}
dp_wdi_event_handler(
WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
dp_monitor_peer_get_peerstats_ctx(soc, peer),
peer->peer_id,
WDI_NO_VAL, peer->vdev->pdev->pdev_id);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#endif
#else
static inline QDF_STATUS
dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
{
return QDF_STATUS_SUCCESS;
}
#endif
static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t *mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_peer *peer;
void *peerstats_ctx = NULL;
if (mac_addr) {
peer = dp_peer_find_hash_find(soc, mac_addr,
0, vdev_id,
DP_MOD_ID_CDP);
if (!peer)
return NULL;
if (!IS_MLO_DP_MLD_PEER(peer))
peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
peer);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
}
return peerstats_ctx;
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
uint8_t pdev_id,
void *buf)
{
dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
(struct dp_soc *)soc, buf, HTT_INVALID_PEER,
WDI_NO_VAL, pdev_id);
return QDF_STATUS_SUCCESS;
}
#else
static inline QDF_STATUS
dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
uint8_t pdev_id,
void *buf)
{
return QDF_STATUS_SUCCESS;
}
#endif
static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->rate_stats_ctx;
}
/**
* dp_get_cfg() - get dp cfg
* @soc: cdp soc handle
* @cfg: cfg enum
*
* Return: cfg value
*/
static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
{
struct dp_soc *dpsoc = (struct dp_soc *)soc;
uint32_t value = 0;
switch (cfg) {
case cfg_dp_enable_data_stall:
value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
break;
case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
break;
case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
break;
case cfg_dp_enable_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
break;
case cfg_dp_disable_legacy_mode_csum_offload:
value = dpsoc->wlan_cfg_ctx->
legacy_mode_checksumoffload_disable;
break;
case cfg_dp_tso_enable:
value = dpsoc->wlan_cfg_ctx->tso_enabled;
break;
case cfg_dp_lro_enable:
value = dpsoc->wlan_cfg_ctx->lro_enabled;
break;
case cfg_dp_gro_enable:
value = dpsoc->wlan_cfg_ctx->gro_enabled;
break;
case cfg_dp_tc_based_dyn_gro_enable:
value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
break;
case cfg_dp_tc_ingress_prio:
value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
break;
case cfg_dp_sg_enable:
value = dpsoc->wlan_cfg_ctx->sg_enabled;
break;
case cfg_dp_tx_flow_start_queue_offset:
value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
break;
case cfg_dp_tx_flow_stop_queue_threshold:
value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
break;
case cfg_dp_disable_intra_bss_fwd:
value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
break;
case cfg_dp_pktlog_buffer_size:
value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
break;
case cfg_dp_wow_check_rx_pending:
value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
break;
default:
value = 0;
}
return value;
}
#ifdef PEER_FLOW_CONTROL
/**
* dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
* @soc_handle: datapath soc handle
* @pdev_id: id of datapath pdev handle
* @param: ol ath params
* @value: value of the flag
* @buff: Buffer to be passed
*
* Implemented this function same as legacy function. In legacy code, single
* function is used to display stats and update pdev params.
*
* Return: 0 for success. nonzero for failure.
*/
static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
uint8_t pdev_id,
enum _dp_param_t param,
uint32_t value, void *buff)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
pdev_id);
if (qdf_unlikely(!pdev))
return 1;
soc = pdev->soc;
if (!soc)
return 1;
switch (param) {
#ifdef QCA_ENH_V3_STATS_SUPPORT
case DP_PARAM_VIDEO_DELAY_STATS_FC:
if (value)
pdev->delay_stats_flag = true;
else
pdev->delay_stats_flag = false;
break;
case DP_PARAM_VIDEO_STATS_FC:
qdf_print("------- TID Stats ------\n");
dp_pdev_print_tid_stats(pdev);
qdf_print("------ Delay Stats ------\n");
dp_pdev_print_delay_stats(pdev);
qdf_print("------ Rx Error Stats ------\n");
dp_pdev_print_rx_error_stats(pdev);
break;
#endif
case DP_PARAM_TOTAL_Q_SIZE:
{
uint32_t tx_min, tx_max;
tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
if (!buff) {
if ((value >= tx_min) && (value <= tx_max)) {
pdev->num_tx_allowed = value;
} else {
dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
soc, tx_min, tx_max);
break;
}
} else {
*(int *)buff = pdev->num_tx_allowed;
}
}
break;
default:
dp_tx_info("%pK: not handled param %d ", soc, param);
break;
}
return 0;
}
#endif
#ifdef DP_UMAC_HW_RESET_SUPPORT
/**
* dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
* @soc: dp soc handle
*
* Return: void
*/
static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
{
struct dp_intr_bkp *intr_bkp;
struct dp_intr *intr_ctx;
int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
int i;
intr_bkp =
(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
num_ctxt);
qdf_assert_always(intr_bkp);
soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
for (i = 0; i < num_ctxt; i++) {
intr_ctx = &soc->intr_ctx[i];
intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
intr_bkp->host2rxdma_mon_ring_mask =
intr_ctx->host2rxdma_mon_ring_mask;
intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
intr_ctx->tx_ring_mask = 0;
intr_ctx->rx_ring_mask = 0;
intr_ctx->rx_mon_ring_mask = 0;
intr_ctx->rx_err_ring_mask = 0;
intr_ctx->rx_wbm_rel_ring_mask = 0;
intr_ctx->reo_status_ring_mask = 0;
intr_ctx->rxdma2host_ring_mask = 0;
intr_ctx->host2rxdma_ring_mask = 0;
intr_ctx->host2rxdma_mon_ring_mask = 0;
intr_ctx->tx_mon_ring_mask = 0;
intr_bkp++;
}
}
/**
* dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
* @soc: dp soc handle
*
* Return: void
*/
static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
{
struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
struct dp_intr_bkp *intr_bkp_base = intr_bkp;
struct dp_intr *intr_ctx;
int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
int i;
if (!intr_bkp)
return;
for (i = 0; i < num_ctxt; i++) {
intr_ctx = &soc->intr_ctx[i];
intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
intr_ctx->host2rxdma_mon_ring_mask =
intr_bkp->host2rxdma_mon_ring_mask;
intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
intr_bkp++;
}
qdf_mem_free(intr_bkp_base);
soc->umac_reset_ctx.intr_ctx_bkp = NULL;
}
/**
* dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
* @soc: dp soc handle
*
* Return: void
*/
static void dp_resume_tx_hardstart(struct dp_soc *soc)
{
struct dp_vdev *vdev;
struct ol_txrx_hardtart_ctxt ctxt = {0};
struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
int i;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
uint8_t vdev_id = vdev->vdev_id;
dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
vdev_id,
&ctxt);
}
}
}
/**
* dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
* @soc: dp soc handle
*
* Return: void
*/
static void dp_pause_tx_hardstart(struct dp_soc *soc)
{
struct dp_vdev *vdev;
struct ol_txrx_hardtart_ctxt ctxt;
struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
int i;
ctxt.tx = &dp_tx_drop;
ctxt.tx_fast = &dp_tx_drop;
ctxt.tx_exception = &dp_tx_exc_drop;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
uint8_t vdev_id = vdev->vdev_id;
soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
vdev_id,
&ctxt);
}
}
}
/**
* dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
* @soc: dp soc handle
*
* Return: void
*/
static inline
void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
{
soc->notify_fw_callback = NULL;
}
/**
* dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
* @soc: dp soc handle
*
* Return: void
*/
static inline
void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
{
/* Some Cpu(s) is processing the umac rings*/
if (soc->service_rings_running)
return;
/* Notify the firmware that Umac pre reset is complete */
dp_umac_reset_notify_action_completion(soc,
UMAC_RESET_ACTION_DO_PRE_RESET);
/* Unregister the callback */
dp_unregister_notify_umac_pre_reset_fw_callback(soc);
}
/**
* dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
* @soc: dp soc handle
*
* Return: void
*/
static inline
void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
{
soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
}
#ifdef DP_UMAC_HW_HARD_RESET
/**
* dp_set_umac_regs() - Reinitialize host umac registers
* @soc: dp soc handle
*
* Return: void
*/
static void dp_set_umac_regs(struct dp_soc *soc)
{
int i;
struct hal_reo_params reo_params;
qdf_mem_zero(&reo_params, sizeof(reo_params));
if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
&reo_params.remap1,
&reo_params.remap2))
reo_params.rx_hash_enabled = true;
else
reo_params.rx_hash_enabled = false;
}
reo_params.reo_qref = &soc->reo_qref;
hal_reo_setup(soc->hal_soc, &reo_params, 0);
soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
for (i = 0; i < PCP_TID_MAP_MAX; i++)
hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_vdev *vdev = NULL;
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
hal_tx_set_dscp_tid_map(soc->hal_soc,
pdev->dscp_tid_map[i], i);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
soc->arch_ops.dp_bank_reconfig(soc, vdev);
soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
vdev);
}
}
}
#else
static void dp_set_umac_regs(struct dp_soc *soc)
{
}
#endif
/**
* dp_reinit_rings() - Reinitialize host managed rings
* @soc: dp soc handle
*
* Return: QDF_STATUS
*/
static void dp_reinit_rings(struct dp_soc *soc)
{
unsigned long end;
dp_soc_srng_deinit(soc);
dp_hw_link_desc_ring_deinit(soc);
/* Busy wait for 2 ms to make sure the rings are in idle state
* before we enable them again
*/
end = jiffies + msecs_to_jiffies(2);
while (time_before(jiffies, end))
;
dp_hw_link_desc_ring_init(soc);
dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
dp_soc_srng_init(soc);
}
/**
* dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
* @soc: dp soc handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
{
enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
return dp_umac_reset_notify_action_completion(soc, action);
}
#ifdef WLAN_SUPPORT_PPEDS
/**
* dp_umac_reset_service_handle_n_notify_done()
* Handle Umac pre reset for direct switch
* @soc: dp soc handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
{
if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
!soc->arch_ops.txrx_soc_ppeds_service_status_update ||
!soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
goto non_ppeds;
/*
* Check if ppeds is enabled on SoC.
*/
if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
goto non_ppeds;
/*
* Start the UMAC pre reset done service.
*/
soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
dp_register_notify_umac_pre_reset_fw_callback(soc);
soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
/*
* UMAC pre reset service complete
*/
soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
soc->umac_reset_ctx.nbuf_list = NULL;
return QDF_STATUS_SUCCESS;
non_ppeds:
dp_register_notify_umac_pre_reset_fw_callback(soc);
dp_check_n_notify_umac_prereset_done(soc);
soc->umac_reset_ctx.nbuf_list = NULL;
return QDF_STATUS_SUCCESS;
}
static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
qdf_nbuf_t *nbuf_list)
{
if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
!soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
return;
/*
* Deinit of PPEDS Tx desc rings.
*/
if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
}
static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
{
if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
!soc->arch_ops.txrx_soc_ppeds_start ||
!soc->arch_ops.txrx_soc_ppeds_interrupt_start)
return;
/*
* Start PPEDS node and enable interrupt.
*/
if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
soc->arch_ops.txrx_soc_ppeds_start(soc);
soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
}
}
#else
static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
{
dp_register_notify_umac_pre_reset_fw_callback(soc);
dp_check_n_notify_umac_prereset_done(soc);
soc->umac_reset_ctx.nbuf_list = NULL;
return QDF_STATUS_SUCCESS;
}
static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
qdf_nbuf_t *nbuf_list)
{
}
static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
{
}
#endif
/**
* dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
* @soc: dp soc handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
{
dp_reset_interrupt_ring_masks(soc);
dp_pause_tx_hardstart(soc);
dp_pause_reo_send_cmd(soc);
dp_umac_reset_service_handle_n_notify_done(soc);
return QDF_STATUS_SUCCESS;
}
/**
* dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
* @soc: dp soc handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
{
if (!soc->umac_reset_ctx.skel_enable) {
qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
dp_set_umac_regs(soc);
dp_reinit_rings(soc);
dp_rx_desc_reuse(soc, nbuf_list);
dp_cleanup_reo_cmd_module(soc);
dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
dp_tx_desc_pool_cleanup(soc, nbuf_list);
dp_reset_tid_q_setup(soc);
}
return dp_umac_reset_notify_action_completion(soc,
UMAC_RESET_ACTION_DO_POST_RESET_START);
}
/**
* dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
* interrupt from FW
* @soc: dp soc handle
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
{
QDF_STATUS status;
qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
soc->umac_reset_ctx.nbuf_list = NULL;
dp_resume_reo_send_cmd(soc);
dp_umac_reset_ppeds_start(soc);
dp_restore_interrupt_ring_masks(soc);
dp_resume_tx_hardstart(soc);
status = dp_umac_reset_notify_action_completion(soc,
UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
while (nbuf_list) {
qdf_nbuf_t nbuf = nbuf_list->next;
qdf_nbuf_free(nbuf_list);
nbuf_list = nbuf;
}
dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
"trigger done : %u us prereset : %u us\n"
"postreset : %u us \n postreset complete: %u us \n",
soc,
soc->umac_reset_ctx.ts.trigger_done -
soc->umac_reset_ctx.ts.trigger_start,
soc->umac_reset_ctx.ts.pre_reset_done -
soc->umac_reset_ctx.ts.pre_reset_start,
soc->umac_reset_ctx.ts.post_reset_done -
soc->umac_reset_ctx.ts.post_reset_start,
soc->umac_reset_ctx.ts.post_reset_complete_done -
soc->umac_reset_ctx.ts.post_reset_complete_start);
return status;
}
#endif
#ifdef WLAN_FEATURE_PKT_CAPTURE_V2
static void
dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->wlan_cfg_ctx->pkt_capture_mode = val;
}
#endif
#ifdef HW_TX_DELAY_STATS_ENABLE
/**
* dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
* @soc_hdl: DP soc handle
* @vdev_id: vdev id
* @value: value
*
* Return: None
*/
static void
dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t value)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = NULL;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return;
vdev->hw_tx_delay_stats_enabled = value;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
/**
* dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
* @soc_hdl: DP soc handle
* @vdev_id: vdev id
*
* Return: 1 if enabled, 0 if disabled
*/
static uint8_t
dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev;
uint8_t ret_val = 0;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return ret_val;
ret_val = vdev->hw_tx_delay_stats_enabled;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return ret_val;
}
#endif
#if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
static void
dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
uint8_t vdev_id,
bool mlo_peers_only)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
struct dp_vdev *vdev;
vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
if (!vdev)
return;
dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
}
#endif
#ifdef QCA_GET_TSF_VIA_REG
/**
* dp_get_tsf_time() - get tsf time
* @soc_hdl: Datapath soc handle
* @tsf_id: TSF identifier
* @mac_id: mac_id
* @tsf: pointer to update tsf value
* @tsf_sync_soc_time: pointer to update tsf sync time
*
* Return: None.
*/
static inline void
dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
uint64_t *tsf, uint64_t *tsf_sync_soc_time)
{
hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
tsf, tsf_sync_soc_time);
}
#else
static inline void
dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
uint64_t *tsf, uint64_t *tsf_sync_soc_time)
{
}
#endif
/**
* dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
* @soc_hdl: Datapath soc handle
* @mac_id: mac_id
* @value: pointer to update tsf2 offset value
*
* Return: None.
*/
static inline void
dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
uint64_t *value)
{
hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
}
/**
* dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
* @soc_hdl: Datapath soc handle
* @value: pointer to update tqm offset value
*
* Return: None.
*/
static inline void
dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
{
hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
}
/**
* dp_set_tx_pause() - Pause or resume tx path
* @soc_hdl: Datapath soc handle
* @flag: set or clear is_tx_pause
*
* Return: None.
*/
static inline
void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
soc->is_tx_pause = flag;
}
#ifdef DP_TX_PACKET_INSPECT_FOR_ILP
/**
* dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
* ILP configuration
* @soc_hdl: CDP SOC handle
* @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
* @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
*
* This function will check: (a) TX ILP INI configuration,
* (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
* only if both (a) and (b) condition is met, then TX ILP feature is
* considered to be enabled.
*
* Return: Final updated TX ILP enable result in dp_soc,
* true is enabled, false is not
*/
static
bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
uint8_t num_msdu_idx_map,
uint8_t *msdu_idx_map_arr)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
bool enable_tx_ilp = false;
/**
* Check INI configuration firstly, if it's disabled,
* then keep feature disabled.
*/
if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
dp_info("TX ILP INI is disabled already");
goto update_tx_ilp;
}
/* Check if the msdu index to qtype map table is valid */
if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
num_msdu_idx_map, msdu_idx_map_arr);
goto update_tx_ilp;
}
dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
if (HTT_MSDU_QTYPE_LATENCY_TOLERANT ==
msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
enable_tx_ilp = true;
update_tx_ilp:
soc->tx_ilp_enable = enable_tx_ilp;
dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
return soc->tx_ilp_enable;
}
#endif
static struct cdp_cmn_ops dp_ops_cmn = {
.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
.txrx_vdev_attach = dp_vdev_attach_wifi3,
.txrx_vdev_detach = dp_vdev_detach_wifi3,
.txrx_pdev_attach = dp_pdev_attach_wifi3,
.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
.txrx_pdev_detach = dp_pdev_detach_wifi3,
.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
.txrx_peer_create = dp_peer_create_wifi3,
.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
#ifdef FEATURE_AST
.txrx_peer_teardown = dp_peer_teardown_wifi3,
#else
.txrx_peer_teardown = NULL,
#endif
.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
.txrx_peer_get_ast_info_by_pdev =
dp_peer_get_ast_info_by_pdevid_wifi3,
.txrx_peer_ast_delete_by_soc =
dp_peer_ast_entry_del_by_soc,
.txrx_peer_ast_delete_by_pdev =
dp_peer_ast_entry_del_by_pdev,
.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
.txrx_peer_delete = dp_peer_delete_wifi3,
#ifdef DP_RX_UDP_OVER_PEER_ROAM
.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
#endif
.txrx_vdev_register = dp_vdev_register_wifi3,
.txrx_soc_detach = dp_soc_detach_wifi3,
.txrx_soc_deinit = dp_soc_deinit_wifi3,
.txrx_soc_init = dp_soc_init_wifi3,
#ifndef QCA_HOST_MODE_WIFI_DISABLED
.txrx_tso_soc_attach = dp_tso_soc_attach,
.txrx_tso_soc_detach = dp_tso_soc_detach,
.tx_send = dp_tx_send,
.tx_send_exc = dp_tx_send_exception,
#endif
.set_tx_pause = dp_set_tx_pause,
.txrx_pdev_init = dp_pdev_init_wifi3,
.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
.txrx_ath_getstats = dp_get_device_stats,
#ifndef WLAN_SOFTUMAC_SUPPORT
.addba_requestprocess = dp_addba_requestprocess_wifi3,
.addba_responsesetup = dp_addba_responsesetup_wifi3,
.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
.delba_process = dp_delba_process_wifi3,
.set_addba_response = dp_set_addba_response,
.flush_cache_rx_queue = NULL,
.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
#endif
/* TODO: get API's for dscp-tid need to be added*/
.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
.txrx_get_total_per = dp_get_total_per,
.txrx_stats_request = dp_txrx_stats_request,
.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
.display_stats = dp_txrx_dump_stats,
.notify_asserted_soc = dp_soc_notify_asserted_soc,
.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
.txrx_intr_detach = dp_soc_interrupt_detach,
.txrx_ppeds_stop = dp_soc_ppeds_stop,
.set_key_sec_type = dp_set_key_sec_type_wifi3,
.update_config_parameters = dp_update_config_parameters,
/* TODO: Add other functions */
.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
.handle_mode_change = dp_soc_handle_pdev_mode_change,
.set_pdev_status_down = dp_soc_set_pdev_status_down,
.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
.set_soc_param = dp_soc_set_param,
.txrx_get_os_rx_handles_from_vdev =
dp_get_os_rx_handles_from_vdev_wifi3,
#ifndef WLAN_SOFTUMAC_SUPPORT
.set_pn_check = dp_set_pn_check_wifi3,
.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
.delba_tx_completion = dp_delba_tx_completion_wifi3,
.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
#endif
.get_dp_capabilities = dp_get_cfg_capabilities,
.txrx_get_cfg = dp_get_cfg,
.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
#ifdef QCA_MULTIPASS_SUPPORT
.set_vlan_groupkey = dp_set_vlan_groupkey,
#endif
.get_peer_mac_list = dp_get_peer_mac_list,
.get_peer_id = dp_get_peer_id,
#ifdef QCA_SUPPORT_WDS_EXTENDED
.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
#endif /* QCA_SUPPORT_WDS_EXTENDED */
#if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
.txrx_drain = dp_drain_txrx,
#endif
#if defined(FEATURE_RUNTIME_PM)
.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
#endif
#ifdef WLAN_SYSFS_DP_STATS
.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
#endif /* WLAN_SYSFS_DP_STATS */
#ifdef WLAN_FEATURE_PKT_CAPTURE_V2
.set_pkt_capture_mode = dp_set_pkt_capture_mode,
#endif
#if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
#endif
.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
.txrx_get_tsf_time = dp_get_tsf_time,
.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
};
static struct cdp_ctrl_ops dp_ops_ctrl = {
.txrx_peer_authorize = dp_peer_authorize,
.txrx_peer_get_authorize = dp_peer_get_authorize,
#ifdef VDEV_PEER_PROTOCOL_COUNT
.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
.txrx_set_peer_protocol_drop_mask =
dp_enable_vdev_peer_protocol_drop_mask,
.txrx_is_peer_protocol_count_enabled =
dp_is_vdev_peer_protocol_count_enabled,
.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
#endif
.txrx_set_vdev_param = dp_set_vdev_param,
.txrx_set_psoc_param = dp_set_psoc_param,
.txrx_get_psoc_param = dp_get_psoc_param,
#ifndef WLAN_SOFTUMAC_SUPPORT
.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
#endif
.txrx_get_sec_type = dp_get_sec_type,
.txrx_wdi_event_sub = dp_wdi_event_sub,
.txrx_wdi_event_unsub = dp_wdi_event_unsub,
.txrx_set_pdev_param = dp_set_pdev_param,
.txrx_get_pdev_param = dp_get_pdev_param,
.txrx_set_peer_param = dp_set_peer_param,
.txrx_get_peer_param = dp_get_peer_param,
#ifdef VDEV_PEER_PROTOCOL_COUNT
.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
#endif
#ifdef WLAN_SUPPORT_MSCS
.txrx_record_mscs_params = dp_record_mscs_params,
#endif
.set_key = dp_set_michael_key,
.txrx_get_vdev_param = dp_get_vdev_param,
.calculate_delay_stats = dp_calculate_delay_stats,
#ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
#ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
.txrx_dump_pdev_rx_protocol_tag_stats =
dp_dump_pdev_rx_protocol_tag_stats,
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
#endif /* WLAN_SUPPORT_RX_FLOW_TAG */
#ifdef QCA_MULTIPASS_SUPPORT
.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
#endif /*QCA_MULTIPASS_SUPPORT*/
#if defined(WLAN_FEATURE_TSF_UPLINK_DELAY) || defined(WLAN_CONFIG_TX_DELAY)
.txrx_set_delta_tsf = dp_set_delta_tsf,
#endif
#ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
.txrx_get_uplink_delay = dp_get_uplink_delay,
#endif
#ifdef QCA_UNDECODED_METADATA_SUPPORT
.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
#endif
.txrx_peer_flush_frags = dp_peer_flush_frags,
};
static struct cdp_me_ops dp_ops_me = {
#ifndef QCA_HOST_MODE_WIFI_DISABLED
#ifdef ATH_SUPPORT_IQUE
.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
.tx_me_free_descriptor = dp_tx_me_free_descriptor,
.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
#endif
#endif
};
static struct cdp_host_stats_ops dp_ops_host_stats = {
.txrx_per_peer_stats = dp_get_host_peer_stats,
.get_fw_peer_stats = dp_get_fw_peer_stats,
.get_htt_stats = dp_get_htt_stats,
.txrx_stats_publish = dp_txrx_stats_publish,
.txrx_get_vdev_stats = dp_txrx_get_vdev_stats,
.txrx_get_peer_stats = dp_txrx_get_peer_stats,
.txrx_get_soc_stats = dp_txrx_get_soc_stats,
.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
#if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
.txrx_get_vdev_stats = dp_ipa_txrx_get_vdev_stats,
.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
#endif
.txrx_get_ratekbps = dp_txrx_get_ratekbps,
.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
#ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
#endif
#ifdef WLAN_TX_PKT_CAPTURE_ENH
.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
#endif /* WLAN_TX_PKT_CAPTURE_ENH */
#ifdef HW_TX_DELAY_STATS_ENABLE
.enable_disable_vdev_tx_delay_stats =
dp_enable_disable_vdev_tx_delay_stats,
.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
#endif
.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
#ifdef WLAN_CONFIG_TELEMETRY_AGENT
.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
.txrx_peer_deter_stats = dp_get_peer_deter_stats,
.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
#endif
.txrx_get_peer_extd_rate_link_stats =
dp_get_peer_extd_rate_link_stats,
.get_pdev_obss_stats = dp_get_obss_stats,
.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
/* TODO */
};
static struct cdp_raw_ops dp_ops_raw = {
/* TODO */
};
#ifdef PEER_FLOW_CONTROL
static struct cdp_pflow_ops dp_ops_pflow = {
dp_tx_flow_ctrl_configure_pdev,
};
#endif
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
static struct cdp_cfr_ops dp_ops_cfr = {
.txrx_get_cfr_rcc = dp_get_cfr_rcc,
.txrx_set_cfr_rcc = dp_set_cfr_rcc,
.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
};
#endif
#ifdef WLAN_SUPPORT_MSCS
static struct cdp_mscs_ops dp_ops_mscs = {
.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
};
#endif
#ifdef WLAN_SUPPORT_MESH_LATENCY
static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
.mesh_latency_update_peer_parameter =
dp_mesh_latency_update_peer_parameter,
};
#endif
#ifdef WLAN_SUPPORT_SCS
static struct cdp_scs_ops dp_ops_scs = {
.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
};
#endif
#ifdef CONFIG_SAWF_DEF_QUEUES
static struct cdp_sawf_ops dp_ops_sawf = {
.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
.sawf_def_queues_get_map_report =
dp_sawf_def_queues_get_map_report,
#ifdef CONFIG_SAWF_STATS
.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
.peer_config_ul = dp_sawf_peer_config_ul,
.swaf_peer_is_sla_configured = dp_swaf_peer_is_sla_configured,
#endif
};
#endif
#ifdef DP_TX_TRACKING
#define DP_TX_COMP_MAX_LATENCY_MS 60000
/**
* dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
* @tx_desc: tx descriptor
*
* Calculate time latency for tx completion per pkt and trigger self recovery
* when the delay is more than threshold value.
*
* Return: True if delay is more than threshold
*/
static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
{
uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
qdf_ktime_t current_time = qdf_ktime_real_get();
qdf_ktime_t timestamp = tx_desc->timestamp;
if (dp_tx_pkt_tracepoints_enabled()) {
if (!timestamp)
return false;
time_latency = qdf_ktime_to_ms(current_time) -
qdf_ktime_to_ms(timestamp);
if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
dp_err_rl("enqueued: %llu ms, current : %llu ms",
timestamp, current_time);
return true;
}
} else {
if (!timestamp_tick)
return false;
current_time = qdf_system_ticks();
time_latency = qdf_system_ticks_to_msecs(current_time -
timestamp_tick);
if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
dp_err_rl("enqueued: %u ms, current : %u ms",
qdf_system_ticks_to_msecs(timestamp_tick),
qdf_system_ticks_to_msecs(current_time));
return true;
}
}
return false;
}
void dp_find_missing_tx_comp(struct dp_soc *soc)
{
uint8_t i;
uint32_t j;
uint32_t num_desc, page_id, offset;
uint16_t num_desc_per_page;
struct dp_tx_desc_s *tx_desc = NULL;
struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
for (i = 0; i < MAX_TXDESC_POOLS; i++) {
tx_desc_pool = &soc->tx_desc[i];
if (!(tx_desc_pool->pool_size) ||
IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
!(tx_desc_pool->desc_pages.cacheable_pages))
continue;
num_desc = tx_desc_pool->pool_size;
num_desc_per_page =
tx_desc_pool->desc_pages.num_element_per_page;
for (j = 0; j < num_desc; j++) {
page_id = j / num_desc_per_page;
offset = j % num_desc_per_page;
if (qdf_unlikely(!(tx_desc_pool->
desc_pages.cacheable_pages)))
break;
tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
continue;
} else if (tx_desc->magic ==
DP_TX_MAGIC_PATTERN_INUSE) {
if (dp_tx_comp_delay_check(tx_desc)) {
dp_err_rl("Tx completion not rcvd for id: %u",
tx_desc->id);
if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
dp_err_rl("Freed tx_desc %u",
tx_desc->id);
dp_tx_comp_free_buf(soc,
tx_desc,
false);
dp_tx_desc_release(tx_desc, i);
DP_STATS_INC(soc,
tx.tx_comp_force_freed, 1);
}
}
} else {
dp_err_rl("tx desc %u corrupted, flags: 0x%x",
tx_desc->id, tx_desc->flags);
}
}
}
}
#else
inline void dp_find_missing_tx_comp(struct dp_soc *soc)
{
}
#endif
/**
* dp_tx_get_success_ack_stats() - get tx success completion count
* @soc_hdl: Datapath soc handle
* @vdev_id: vdev identifier
*
* Return: tx success ack count
*/
static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct cdp_vdev_stats *vdev_stats = NULL;
uint32_t tx_success;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev) {
dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
return 0;
}
vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return 0;
}
dp_aggregate_vdev_stats(vdev, vdev_stats);
tx_success = vdev_stats->tx.tx_success.num;
qdf_mem_free(vdev_stats);
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return tx_success;
}
#ifdef WLAN_SUPPORT_DATA_STALL
/**
* dp_register_data_stall_detect_cb() - register data stall callback
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static
QDF_STATUS dp_register_data_stall_detect_cb(
struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = data_stall_detect_callback;
return QDF_STATUS_SUCCESS;
}
/**
* dp_deregister_data_stall_detect_cb() - de-register data stall callback
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static
QDF_STATUS dp_deregister_data_stall_detect_cb(
struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = NULL;
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_post_data_stall_event() - post data stall event
* @soc_hdl: Datapath soc handle
* @indicator: Module triggering data stall
* @data_stall_type: data stall event type
* @pdev_id: pdev id
* @vdev_id_bitmap: vdev id bitmap
* @recovery_type: data stall recovery type
*
* Return: None
*/
static void
dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
enum data_stall_log_event_indicator indicator,
enum data_stall_log_event_type data_stall_type,
uint32_t pdev_id, uint32_t vdev_id_bitmap,
enum data_stall_log_recovery_type recovery_type)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct data_stall_event_info data_stall_info;
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev NULL!");
return;
}
if (!pdev->data_stall_detect_callback) {
dp_err("data stall cb not registered!");
return;
}
dp_info("data_stall_type: %x pdev_id: %d",
data_stall_type, pdev_id);
data_stall_info.indicator = indicator;
data_stall_info.data_stall_type = data_stall_type;
data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
data_stall_info.pdev_id = pdev_id;
data_stall_info.recovery_type = recovery_type;
pdev->data_stall_detect_callback(&data_stall_info);
}
#endif /* WLAN_SUPPORT_DATA_STALL */
#ifdef WLAN_FEATURE_STATS_EXT
/**
* dp_txrx_ext_stats_request() - request dp txrx extended stats request
* @soc_hdl: soc handle
* @pdev_id: pdev id
* @req: stats request
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
struct cdp_txrx_ext_stats *req)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
int i = 0;
int tcl_ring_full = 0;
if (!pdev) {
dp_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
dp_aggregate_pdev_stats(pdev);
for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
req->tx_msdu_overflow = tcl_ring_full;
/* Error rate at LMAC */
req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
pdev->stats.err.fw_reported_rxdma_error;
/* only count error source from RXDMA */
req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
/* Error rate at above the MAC */
req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
req->rx_mpdu_missed = pdev->stats.err.reo_error;
dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
"rx_mpdu_missed = %u, rx_mpdu_error = %u",
req->tx_msdu_enqueue,
req->tx_msdu_overflow,
req->rx_mpdu_received,
req->rx_mpdu_delivered,
req->rx_mpdu_missed,
req->rx_mpdu_error);
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_FEATURE_STATS_EXT */
#ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
/**
* dp_mark_first_wakeup_packet() - set flag to indicate that
* fw is compatible for marking first packet after wow wakeup
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @value: 1 for enabled/ 0 for disabled
*
* Return: None
*/
static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id, uint8_t value)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return;
}
pdev->is_first_wakeup_packet = value;
}
#endif
#ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
/**
* dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
* @soc_hdl: Opaque handle to the DP soc object
* @vdev_id: VDEV identifier
* @mac: MAC address of the peer
* @ac: access category mask
* @tid: TID mask
* @policy: Flush policy
*
* Return: 0 on success, errno on failure
*/
static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id, uint8_t *mac,
uint8_t ac, uint32_t tid,
enum cdp_peer_txq_flush_policy policy)
{
struct dp_soc *soc;
if (!soc_hdl) {
dp_err("soc is null");
return -EINVAL;
}
soc = cdp_soc_t_to_dp_soc(soc_hdl);
return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
mac, ac, tid, policy);
}
#endif
#ifdef CONNECTIVITY_PKTLOG
/**
* dp_register_packetdump_callback() - registers
* tx data packet, tx mgmt. packet and rx data packet
* dump callback handler.
*
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @dp_tx_packetdump_cb: tx packetdump cb
* @dp_rx_packetdump_cb: rx packetdump cb
*
* This function is used to register tx data pkt, tx mgmt.
* pkt and rx data pkt dump callback
*
* Return: None
*
*/
static inline
void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
ol_txrx_pktdump_cb dp_tx_packetdump_cb,
ol_txrx_pktdump_cb dp_rx_packetdump_cb)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL!");
return;
}
pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
}
/**
* dp_deregister_packetdump_callback() - deregidters
* tx data packet, tx mgmt. packet and rx data packet
* dump callback handler
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
*
* This function is used to deregidter tx data pkt.,
* tx mgmt. pkt and rx data pkt. dump callback
*
* Return: None
*
*/
static inline
void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL!");
return;
}
pdev->dp_tx_packetdump_cb = NULL;
pdev->dp_rx_packetdump_cb = NULL;
}
#endif
#ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
/**
* dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
* @soc_hdl: Datapath soc handle
* @high: whether the bus bw is high or not
*
* Return: void
*/
static void
dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
soc->high_throughput = high;
}
/**
* dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
* @soc_hdl: Datapath soc handle
*
* Return: bool
*/
static bool
dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
return soc->high_throughput;
}
#endif
#ifdef DP_PEER_EXTENDED_API
static struct cdp_misc_ops dp_ops_misc = {
#ifdef FEATURE_WLAN_TDLS
.tx_non_std = dp_tx_non_std,
#endif /* FEATURE_WLAN_TDLS */
.get_opmode = dp_get_opmode,
#ifdef FEATURE_RUNTIME_PM
.runtime_suspend = dp_runtime_suspend,
.runtime_resume = dp_runtime_resume,
#endif /* FEATURE_RUNTIME_PM */
.get_num_rx_contexts = dp_get_num_rx_contexts,
.get_tx_ack_stats = dp_tx_get_success_ack_stats,
#ifdef WLAN_SUPPORT_DATA_STALL
.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
#endif
#ifdef WLAN_FEATURE_STATS_EXT
.txrx_ext_stats_request = dp_txrx_ext_stats_request,
#ifndef WLAN_SOFTUMAC_SUPPORT
.request_rx_hw_stats = dp_request_rx_hw_stats,
.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
#endif
#endif /* WLAN_FEATURE_STATS_EXT */
.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
#ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
.set_swlm_enable = dp_soc_set_swlm_enable,
.is_swlm_enabled = dp_soc_is_swlm_enabled,
#endif
.display_txrx_hw_info = dp_display_srng_info,
#ifndef WLAN_SOFTUMAC_SUPPORT
.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
#endif
#ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
#endif
#ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
#endif
#ifdef CONNECTIVITY_PKTLOG
.register_pktdump_cb = dp_register_packetdump_callback,
.unregister_pktdump_cb = dp_deregister_packetdump_callback,
#endif
#ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
#endif
#ifdef DP_TX_PACKET_INSPECT_FOR_ILP
.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
#endif
};
#endif
#ifdef DP_FLOW_CTL
static struct cdp_flowctl_ops dp_ops_flowctl = {
/* WIFI 3.0 DP implement as required. */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
#ifndef WLAN_SOFTUMAC_SUPPORT
.flow_pool_map_handler = dp_tx_flow_pool_map,
.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
#endif /*WLAN_SOFTUMAC_SUPPORT */
.register_pause_cb = dp_txrx_register_pause_cb,
.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
#endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
};
static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#endif
#ifdef IPA_OFFLOAD
static struct cdp_ipa_ops dp_ops_ipa = {
.ipa_get_resource = dp_ipa_get_resource,
.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
.ipa_op_response = dp_ipa_op_response,
.ipa_register_op_cb = dp_ipa_register_op_cb,
.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
.ipa_get_stat = dp_ipa_get_stat,
.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
.ipa_enable_autonomy = dp_ipa_enable_autonomy,
.ipa_disable_autonomy = dp_ipa_disable_autonomy,
.ipa_setup = dp_ipa_setup,
.ipa_cleanup = dp_ipa_cleanup,
.ipa_setup_iface = dp_ipa_setup_iface,
.ipa_cleanup_iface = dp_ipa_cleanup_iface,
.ipa_enable_pipes = dp_ipa_enable_pipes,
.ipa_disable_pipes = dp_ipa_disable_pipes,
.ipa_set_perf_level = dp_ipa_set_perf_level,
.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
#ifdef QCA_ENHANCED_STATS_SUPPORT
.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
#endif
#ifdef IPA_OPT_WIFI_DP
.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
.ipa_pcie_link_up = dp_ipa_pcie_link_up,
.ipa_pcie_link_down = dp_ipa_pcie_link_down,
#endif
#ifdef IPA_WDS_EASYMESH_FEATURE
.ipa_ast_create = dp_ipa_ast_create,
#endif
.ipa_get_wdi_version = dp_ipa_get_wdi_version,
};
#endif
#ifdef DP_POWER_SAVE
static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
int timeout = SUSPEND_DRAIN_WAIT;
int drain_wait_delay = 50; /* 50 ms */
int32_t tx_pending;
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return QDF_STATUS_E_INVAL;
}
/* Abort if there are any pending TX packets */
while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
qdf_sleep(drain_wait_delay);
if (timeout <= 0) {
dp_info("TX frames are pending %d, abort suspend",
tx_pending);
dp_find_missing_tx_comp(soc);
return QDF_STATUS_E_TIMEOUT;
}
timeout = timeout - drain_wait_delay;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
/* Stop monitor reap timer and reap any pending frames in ring */
dp_monitor_reap_timer_suspend(soc);
dp_suspend_fse_cache_flush(soc);
dp_rx_fst_update_pm_suspend_status(soc, true);
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
uint8_t i;
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return QDF_STATUS_E_INVAL;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
/* Start monitor reap timer */
dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
dp_resume_fse_cache_flush(soc);
for (i = 0; i < soc->num_tcl_data_rings; i++)
dp_flush_ring_hptp(soc, soc->tcl_data_ring[i].hal_srng);
dp_flush_ring_hptp(soc, soc->reo_cmd_ring.hal_srng);
dp_rx_fst_update_pm_suspend_status(soc, false);
dp_rx_fst_requeue_wq(soc);
return QDF_STATUS_SUCCESS;
}
/**
* dp_process_wow_ack_rsp() - process wow ack response
* @soc_hdl: datapath soc handle
* @pdev_id: data path pdev handle id
*
* Return: none
*/
static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return;
}
/*
* As part of wow enable FW disables the mon status ring and in wow ack
* response from FW reap mon status ring to make sure no packets pending
* in the ring.
*/
dp_monitor_reap_timer_suspend(soc);
}
/**
* dp_process_target_suspend_req() - process target suspend request
* @soc_hdl: datapath soc handle
* @pdev_id: data path pdev handle id
*
* Return: none
*/
static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return;
}
/* Stop monitor reap timer and reap any pending frames in ring */
dp_monitor_reap_timer_suspend(soc);
}
static struct cdp_bus_ops dp_ops_bus = {
.bus_suspend = dp_bus_suspend,
.bus_resume = dp_bus_resume,
.process_wow_ack_rsp = dp_process_wow_ack_rsp,
.process_target_suspend_req = dp_process_target_suspend_req
};
#endif
#ifdef DP_FLOW_CTL
static struct cdp_throttle_ops dp_ops_throttle = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_cfg_ops dp_ops_cfg = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#endif
#ifdef DP_PEER_EXTENDED_API
static struct cdp_ocb_ops dp_ops_ocb = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_mob_stats_ops dp_ops_mob_stats = {
.clear_stats = dp_txrx_clear_dump_stats,
};
static struct cdp_peer_ops dp_ops_peer = {
.register_peer = dp_register_peer,
.clear_peer = dp_clear_peer,
.find_peer_exist = dp_find_peer_exist,
.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
.peer_state_update = dp_peer_state_update,
.get_vdevid = dp_get_vdevid,
.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
.get_peer_state = dp_get_peer_state,
.peer_flush_frags = dp_peer_flush_frags,
.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
};
#endif
static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
{
soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
soc->cdp_soc.ops->me_ops = &dp_ops_me;
soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
#ifdef PEER_FLOW_CONTROL
soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
#endif /* PEER_FLOW_CONTROL */
#ifdef DP_PEER_EXTENDED_API
soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
#endif
#ifdef DP_FLOW_CTL
soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
#endif
#ifdef IPA_OFFLOAD
soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
#endif
#ifdef DP_POWER_SAVE
soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
#endif
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
#endif
#ifdef WLAN_SUPPORT_MSCS
soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
#endif
#ifdef WLAN_SUPPORT_MESH_LATENCY
soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
#endif
#ifdef CONFIG_SAWF_DEF_QUEUES
soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
#endif
#ifdef WLAN_SUPPORT_SCS
soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
#endif
};
#if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
defined(QCA_WIFI_QCA5332)
/**
* dp_soc_attach_wifi3() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @params: SOC attach params
*
* Return: DP SOC handle on success, NULL on failure
*/
struct cdp_soc_t *
dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct cdp_soc_attach_params *params)
{
struct dp_soc *dp_soc = NULL;
dp_soc = dp_soc_attach(ctrl_psoc, params);
return dp_soc_to_cdp_soc_t(dp_soc);
}
static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
{
int lmac_id;
for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
/*Set default host PDEV ID for lmac_id*/
wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
INVALID_PDEV_ID, lmac_id);
}
}
static uint32_t
dp_get_link_desc_id_start(uint16_t arch_id)
{
switch (arch_id) {
case CDP_ARCH_TYPE_LI:
case CDP_ARCH_TYPE_RH:
return LINK_DESC_ID_START_21_BITS_COOKIE;
case CDP_ARCH_TYPE_BE:
return LINK_DESC_ID_START_20_BITS_COOKIE;
default:
dp_err("unknown arch_id 0x%x", arch_id);
QDF_BUG(0);
return LINK_DESC_ID_START_21_BITS_COOKIE;
}
}
#ifdef DP_TX_PACKET_INSPECT_FOR_ILP
static inline
void dp_soc_init_tx_ilp(struct dp_soc *soc)
{
soc->tx_ilp_enable = false;
}
#else
static inline
void dp_soc_init_tx_ilp(struct dp_soc *soc)
{
}
#endif
/**
* dp_soc_attach() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @params: SOC attach params
*
* Return: DP SOC handle on success, NULL on failure
*/
static struct dp_soc *
dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct cdp_soc_attach_params *params)
{
struct dp_soc *soc = NULL;
uint16_t arch_id;
struct hif_opaque_softc *hif_handle = params->hif_handle;
qdf_device_t qdf_osdev = params->qdf_osdev;
struct ol_if_ops *ol_ops = params->ol_ops;
uint16_t device_id = params->device_id;
if (!hif_handle) {
dp_err("HIF handle is NULL");
goto fail0;
}
arch_id = cdp_get_arch_type_from_devid(device_id);
soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
if (!soc) {
dp_err("DP SOC memory allocation failed");
goto fail0;
}
dp_info("soc memory allocated %pK", soc);
soc->hif_handle = hif_handle;
soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
if (!soc->hal_soc)
goto fail1;
hif_get_cmem_info(soc->hif_handle,
&soc->cmem_base,
&soc->cmem_total_size);
soc->cmem_avail_size = soc->cmem_total_size;
soc->device_id = device_id;
soc->cdp_soc.ops =
(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
if (!soc->cdp_soc.ops)
goto fail1;
dp_soc_txrx_ops_attach(soc);
soc->cdp_soc.ol_ops = ol_ops;
soc->ctrl_psoc = ctrl_psoc;
soc->osdev = qdf_osdev;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
dp_soc_init_tx_ilp(soc);
hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
&soc->rx_mon_pkt_tlv_size);
soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
params->mlo_chip_id);
soc->features.dmac_cmn_src_rxbuf_ring_enabled =
hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
soc->arch_id = arch_id;
soc->link_desc_id_start =
dp_get_link_desc_id_start(soc->arch_id);
dp_configure_arch_ops(soc);
/* Reset wbm sg list and flags */
dp_rx_wbm_sg_list_reset(soc);
dp_soc_cfg_history_attach(soc);
dp_soc_tx_hw_desc_history_attach(soc);
dp_soc_rx_history_attach(soc);
dp_soc_mon_status_ring_history_attach(soc);
dp_soc_tx_history_attach(soc);
wlan_set_srng_cfg(&soc->wlan_srng_cfg);
soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
if (!soc->wlan_cfg_ctx) {
dp_err("wlan_cfg_ctx failed\n");
goto fail2;
}
soc->arch_ops.soc_cfg_attach(soc);
if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
dp_err("failed to allocate link desc pool banks");
goto fail3;
}
if (dp_hw_link_desc_ring_alloc(soc)) {
dp_err("failed to allocate link_desc_ring");
goto fail4;
}
if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
params))) {
dp_err("unable to do target specific attach");
goto fail5;
}
if (dp_soc_srng_alloc(soc)) {
dp_err("failed to allocate soc srng rings");
goto fail6;
}
if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
goto fail7;
}
if (!dp_monitor_modularized_enable()) {
if (dp_mon_soc_attach_wrapper(soc)) {
dp_err("failed to attach monitor");
goto fail8;
}
}
if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
&soc->reo_qref)
!= QDF_STATUS_SUCCESS) {
dp_err("unable to setup reo shared qaddr");
goto fail9;
}
if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
dp_err("failed to initialize dp stats sysfs file");
dp_sysfs_deinitialize_stats(soc);
}
dp_soc_swlm_attach(soc);
dp_soc_set_interrupt_mode(soc);
dp_soc_set_def_pdev(soc);
dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
qdf_dma_mem_stats_read(),
qdf_heap_mem_stats_read(),
qdf_skb_total_mem_stats_read());
return soc;
fail9:
if (!dp_monitor_modularized_enable())
dp_mon_soc_detach_wrapper(soc);
fail8:
dp_soc_tx_desc_sw_pools_free(soc);
fail7:
dp_soc_srng_free(soc);
fail6:
soc->arch_ops.txrx_soc_detach(soc);
fail5:
dp_hw_link_desc_ring_free(soc);
fail4:
dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
fail3:
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
fail2:
qdf_mem_free(soc->cdp_soc.ops);
fail1:
qdf_mem_common_free(soc);
fail0:
return NULL;
}
void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
struct hif_opaque_softc *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
}
#endif
void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
{
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
/* Typically for MCL as there only 1 PDEV*/
return soc->pdev_list[0];
}
void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
int *max_mac_rings)
{
bool dbs_enable = false;
if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_capable((void *)soc->ctrl_psoc);
*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
dp_info("dbs_enable %d, max_mac_rings %d",
dbs_enable, *max_mac_rings);
}
qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
#if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
/**
* dp_get_cfr_rcc() - get cfr rcc config
* @soc_hdl: Datapath soc handle
* @pdev_id: id of objmgr pdev
*
* Return: true/false based on cfr mode setting
*/
static
bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = NULL;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return false;
}
return pdev->cfr_rcc_mode;
}
/**
* dp_set_cfr_rcc() - enable/disable cfr rcc config
* @soc_hdl: Datapath soc handle
* @pdev_id: id of objmgr pdev
* @enable: Enable/Disable cfr rcc mode
*
* Return: none
*/
static
void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = NULL;
pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("pdev is NULL");
return;
}
pdev->cfr_rcc_mode = enable;
}
/**
* dp_get_cfr_dbg_stats - Get the debug statistics for CFR
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
* @cfr_rcc_stats: CFR RCC debug statistics buffer
*
* Return: none
*/
static inline void
dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
struct cdp_cfr_rcc_stats *cfr_rcc_stats)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("Invalid pdev");
return;
}
qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
sizeof(struct cdp_cfr_rcc_stats));
}
/**
* dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
* @soc_hdl: Datapath soc handle
* @pdev_id: id of data path pdev handle
*
* Return: none
*/
static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("dp pdev is NULL");
return;
}
qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
}
#endif
/**
* dp_bucket_index() - Return index from array
*
* @delay: delay measured
* @array: array used to index corresponding delay
* @delay_in_us: flag to indicate whether the delay in ms or us
*
* Return: index
*/
static uint8_t
dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
{
uint8_t i = CDP_DELAY_BUCKET_0;
uint32_t thr_low, thr_high;
for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
thr_low = array[i];
thr_high = array[i + 1];
if (delay_in_us) {
thr_low = thr_low * USEC_PER_MSEC;
thr_high = thr_high * USEC_PER_MSEC;
}
if (delay >= thr_low && delay <= thr_high)
return i;
}
return (CDP_DELAY_BUCKET_MAX - 1);
}
#ifdef HW_TX_DELAY_STATS_ENABLE
/*
* cdp_fw_to_hw_delay_range
* Fw to hw delay ranges in milliseconds
*/
static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
#else
static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
#endif
/*
* cdp_sw_enq_delay_range
* Software enqueue delay ranges in milliseconds
*/
static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
/*
* cdp_intfrm_delay_range
* Interframe delay ranges in milliseconds
*/
static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
/**
* dp_fill_delay_buckets() - Fill delay statistics bucket for each
* type of delay
* @tstats: tid tx stats
* @rstats: tid rx stats
* @delay: delay in ms
* @tid: tid value
* @mode: type of tx delay mode
* @ring_id: ring number
* @delay_in_us: flag to indicate whether the delay in ms or us
*
* Return: pointer to cdp_delay_stats structure
*/
static struct cdp_delay_stats *
dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
struct cdp_tid_rx_stats *rstats, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id,
bool delay_in_us)
{
uint8_t delay_index = 0;
struct cdp_delay_stats *stats = NULL;
/*
* Update delay stats in proper bucket
*/
switch (mode) {
/* Software Enqueue delay ranges */
case CDP_DELAY_STATS_SW_ENQ:
if (!tstats)
break;
delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
delay_in_us);
tstats->swq_delay.delay_bucket[delay_index]++;
stats = &tstats->swq_delay;
break;
/* Tx Completion delay ranges */
case CDP_DELAY_STATS_FW_HW_TRANSMIT:
if (!tstats)
break;
delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
delay_in_us);
tstats->hwtx_delay.delay_bucket[delay_index]++;
stats = &tstats->hwtx_delay;
break;
/* Interframe tx delay ranges */
case CDP_DELAY_STATS_TX_INTERFRAME:
if (!tstats)
break;
delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
delay_in_us);
tstats->intfrm_delay.delay_bucket[delay_index]++;
stats = &tstats->intfrm_delay;
break;
/* Interframe rx delay ranges */
case CDP_DELAY_STATS_RX_INTERFRAME:
if (!rstats)
break;
delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
delay_in_us);
rstats->intfrm_delay.delay_bucket[delay_index]++;
stats = &rstats->intfrm_delay;
break;
/* Ring reap to indication to network stack */
case CDP_DELAY_STATS_REAP_STACK:
if (!rstats)
break;
delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
delay_in_us);
rstats->to_stack_delay.delay_bucket[delay_index]++;
stats = &rstats->to_stack_delay;
break;
default:
dp_debug("Incorrect delay mode: %d", mode);
}
return stats;
}
void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
struct cdp_tid_rx_stats *rstats, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id,
bool delay_in_us)
{
struct cdp_delay_stats *dstats = NULL;
/*
* Delay ranges are different for different delay modes
* Get the correct index to update delay bucket
*/
dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
ring_id, delay_in_us);
if (qdf_unlikely(!dstats))
return;
if (delay != 0) {
/*
* Compute minimum,average and maximum
* delay
*/
if (delay < dstats->min_delay)
dstats->min_delay = delay;
if (delay > dstats->max_delay)
dstats->max_delay = delay;
/*
* Average over delay measured till now
*/
if (!dstats->avg_delay)
dstats->avg_delay = delay;
else
dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
}
}
uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
u_int16_t mac_cnt, bool limit)
{
struct dp_soc *dp_soc = (struct dp_soc *)soc;
struct dp_vdev *vdev =
dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
struct dp_peer *peer;
uint16_t new_mac_cnt = 0;
if (!vdev)
return new_mac_cnt;
if (limit && (vdev->num_peers > mac_cnt))
return 0;
qdf_spin_lock_bh(&vdev->peer_list_lock);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (peer->bss_peer)
continue;
if (new_mac_cnt < mac_cnt) {
WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
new_mac_cnt++;
}
}
qdf_spin_unlock_bh(&vdev->peer_list_lock);
dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
return new_mac_cnt;
}
uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
{
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
mac, 0, vdev_id,
DP_MOD_ID_CDP);
uint16_t peer_id = HTT_INVALID_PEER;
if (!peer) {
dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
return peer_id;
}
peer_id = peer->peer_id;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return peer_id;
}
#ifdef QCA_SUPPORT_WDS_EXTENDED
QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
uint8_t vdev_id,
uint8_t *mac,
ol_txrx_rx_fp rx,
ol_osif_peer_handle osif_peer)
{
struct dp_txrx_peer *txrx_peer = NULL;
struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
mac, 0, vdev_id,
DP_MOD_ID_CDP);
QDF_STATUS status = QDF_STATUS_E_INVAL;
if (!peer) {
dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
return status;
}
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer) {
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
if (rx) {
if (txrx_peer->osif_rx) {
status = QDF_STATUS_E_ALREADY;
} else {
txrx_peer->osif_rx = rx;
status = QDF_STATUS_SUCCESS;
}
} else {
if (txrx_peer->osif_rx) {
txrx_peer->osif_rx = NULL;
status = QDF_STATUS_SUCCESS;
} else {
status = QDF_STATUS_E_ALREADY;
}
}
txrx_peer->wds_ext.osif_peer = osif_peer;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
QDF_STATUS dp_wds_ext_get_peer_osif_handle(
ol_txrx_soc_handle soc,
uint8_t vdev_id,
uint8_t *mac,
ol_osif_peer_handle *osif_peer)
{
struct dp_soc *dp_soc = (struct dp_soc *)soc;
struct dp_txrx_peer *txrx_peer = NULL;
struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
mac, 0, vdev_id,
DP_MOD_ID_CDP);
if (!peer) {
dp_cdp_debug("%pK: Peer is NULL!\n", dp_soc);
return QDF_STATUS_E_INVAL;
}
txrx_peer = dp_get_txrx_peer(peer);
if (!txrx_peer) {
dp_cdp_debug("%pK: TXRX Peer is NULL!\n", dp_soc);
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_E_INVAL;
}
*osif_peer = txrx_peer->wds_ext.osif_peer;
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#endif /* QCA_SUPPORT_WDS_EXTENDED */
/**
* dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
* monitor rings
* @pdev: Datapath pdev handle
*
*/
static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
uint8_t i;
if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
RXDMA_BUF,
pdev->lmac_id);
if (!soc->rxdma2sw_rings_not_supported) {
for (i = 0;
i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
pdev->pdev_id);
wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
base_vaddr_unaligned,
soc->rxdma_err_dst_ring[lmac_id].
alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
"rxdma_err_dst");
dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
RXDMA_DST, lmac_id);
}
}
}
/**
* dp_pdev_srng_init() - initialize all pdev srng rings including
* monitor rings
* @pdev: Datapath pdev handle
*
* Return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint32_t i;
soc_cfg_ctx = soc->wlan_cfg_ctx;
if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
RXDMA_BUF, 0, pdev->lmac_id)) {
dp_init_err("%pK: dp_srng_init failed rx refill ring",
soc);
goto fail1;
}
}
/* LMAC RxDMA to SW Rings configuration */
if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
/* Only valid for MCL */
pdev = soc->pdev_list[0];
if (!soc->rxdma2sw_rings_not_supported) {
for (i = 0;
i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
pdev->pdev_id);
struct dp_srng *srng =
&soc->rxdma_err_dst_ring[lmac_id];
if (srng->hal_srng)
continue;
if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
soc);
goto fail1;
}
wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
base_vaddr_unaligned,
soc->rxdma_err_dst_ring[lmac_id].
alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
"rxdma_err_dst");
}
}
return QDF_STATUS_SUCCESS;
fail1:
dp_pdev_srng_deinit(pdev);
return QDF_STATUS_E_NOMEM;
}
/**
* dp_pdev_srng_free() - free all pdev srng rings including monitor rings
* @pdev: Datapath pdev handle
*
*/
static void dp_pdev_srng_free(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
uint8_t i;
if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
if (!soc->rxdma2sw_rings_not_supported) {
for (i = 0;
i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
pdev->pdev_id);
dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
}
}
}
/**
* dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
* monitor rings
* @pdev: Datapath pdev handle
*
* Return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint32_t ring_size;
uint32_t i;
soc_cfg_ctx = soc->wlan_cfg_ctx;
ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
RXDMA_BUF, ring_size, 0)) {
dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
soc);
goto fail1;
}
}
ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
/* LMAC RxDMA to SW Rings configuration */
if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
/* Only valid for MCL */
pdev = soc->pdev_list[0];
if (!soc->rxdma2sw_rings_not_supported) {
for (i = 0;
i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
pdev->pdev_id);
struct dp_srng *srng =
&soc->rxdma_err_dst_ring[lmac_id];
if (srng->base_vaddr_unaligned)
continue;
if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
soc);
goto fail1;
}
}
}
return QDF_STATUS_SUCCESS;
fail1:
dp_pdev_srng_free(pdev);
return QDF_STATUS_E_NOMEM;
}
static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int nss_cfg;
void *sojourn_buf;
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = soc->pdev_list[pdev_id];
soc_cfg_ctx = soc->wlan_cfg_ctx;
pdev->soc = soc;
pdev->pdev_id = pdev_id;
/*
* Variable to prevent double pdev deinitialization during
* radio detach execution .i.e. in the absence of any vdev.
*/
pdev->pdev_deinit = 0;
if (dp_wdi_event_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_wdi_evet_attach failed");
goto fail0;
}
if (dp_pdev_srng_init(pdev)) {
dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
goto fail1;
}
/* Initialize descriptors in TCL Rings used by IPA */
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
hal_tx_init_data_ring(soc->hal_soc,
soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
dp_ipa_hal_tx_init_alt_data_ring(soc);
}
/*
* Initialize command/credit ring descriptor
* Command/CREDIT ring also used for sending DATA cmds
*/
dp_tx_init_cmd_credit_ring(soc);
dp_tx_pdev_init(pdev);
/*
* set nss pdev config based on soc config
*/
nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(nss_cfg & (1 << pdev_id)));
pdev->target_pdev_id =
dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
pdev->lmac_id == PHYB_2G_LMAC_ID) {
pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
}
/* Reset the cpu ring map if radio is NSS offloaded */
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
dp_soc_reset_cpu_ring_map(soc);
dp_soc_reset_intr_mask(soc);
}
/* Reset the cpu ring map if radio is NSS offloaded */
dp_soc_reset_ipa_vlan_intr_mask(soc);
TAILQ_INIT(&pdev->vdev_list);
qdf_spinlock_create(&pdev->vdev_list_lock);
pdev->vdev_count = 0;
pdev->is_lro_hash_configured = 0;
qdf_spinlock_create(&pdev->tx_mutex);
pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
DP_STATS_INIT(pdev);
dp_local_peer_id_pool_init(pdev);
dp_dscp_tid_map_setup(pdev);
dp_pcp_tid_map_setup(pdev);
/* set the reo destination during initialization */
dp_pdev_set_default_reo(pdev);
qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
sizeof(struct cdp_tx_sojourn_stats), 0, 4,
TRUE);
if (!pdev->sojourn_buf) {
dp_init_err("%pK: Failed to allocate sojourn buf", soc);
goto fail2;
}
sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
qdf_event_create(&pdev->fw_peer_stats_event);
qdf_event_create(&pdev->fw_stats_event);
qdf_event_create(&pdev->fw_obss_stats_event);
pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
pdev->num_tx_spl_allowed =
wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
pdev->num_reg_tx_allowed =
pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
if (dp_rxdma_ring_setup(soc, pdev)) {
dp_init_err("%pK: RXDMA ring config failed", soc);
goto fail3;
}
if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
goto fail3;
if (dp_ipa_ring_resource_setup(soc, pdev))
goto fail4;
if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
goto fail4;
}
if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_pdev_bkp_stats_attach failed"));
goto fail5;
}
if (dp_monitor_pdev_init(pdev)) {
dp_init_err("%pK: dp_monitor_pdev_init failed\n", soc);
goto fail6;
}
/* initialize sw rx descriptors */
dp_rx_pdev_desc_pool_init(pdev);
/* allocate buffers and replenish the RxDMA ring */
dp_rx_pdev_buffers_alloc(pdev);
dp_init_tso_stats(pdev);
pdev->rx_fast_flag = false;
dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
qdf_dma_mem_stats_read(),
qdf_heap_mem_stats_read(),
qdf_skb_total_mem_stats_read());
return QDF_STATUS_SUCCESS;
fail6:
dp_pdev_bkp_stats_detach(pdev);
fail5:
dp_ipa_uc_detach(soc, pdev);
fail4:
dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
fail3:
dp_rxdma_ring_cleanup(soc, pdev);
qdf_nbuf_free(pdev->sojourn_buf);
fail2:
qdf_spinlock_destroy(&pdev->tx_mutex);
qdf_spinlock_destroy(&pdev->vdev_list_lock);
dp_pdev_srng_deinit(pdev);
fail1:
dp_wdi_event_detach(pdev);
fail0:
return QDF_STATUS_E_FAILURE;
}
/**
* dp_pdev_init_wifi3() - Init txrx pdev
* @txrx_soc:
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @pdev_id: pdev Id
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
HTC_HANDLE htc_handle,
qdf_device_t qdf_osdev,
uint8_t pdev_id)
{
return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
}
#ifdef FEATURE_DIRECT_LINK
struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("DP pdev is NULL");
return NULL;
}
if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
dp_err("SRNG alloc failed for rx_refill_buf_ring4");
return NULL;
}
if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
dp_err("SRNG init failed for rx_refill_buf_ring4");
dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
return NULL;
}
if (htt_srng_setup(soc->htt_handle, pdev_id,
pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
DIRECT_LINK_REFILL_RING_IDX);
dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
return NULL;
}
return &pdev->rx_refill_buf_ring4;
}
void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
uint8_t pdev_id)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
if (!pdev) {
dp_err("DP pdev is NULL");
return;
}
dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
}
#endif