Files
android_kernel_samsung_sm86…/dp/wifi3.0/dp_rings_main.c
Yeshwanth Sriram Guntuka 4dc955351e qcacmn: Move prealloc DP descriptor types to QDF
Move prealloc DP descriptor types to QDF so that
the macros can be used in HIF layer.

Change-Id: I3de60876735e5aa37d80e9e698a86503b18574c1
CRs-Fixed: 3502615
2023-05-26 16:06:57 -07:00

5262 lines
143 KiB
C

/*
* Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <wlan_ipa_obj_mgmt_api.h>
#include <qdf_types.h>
#include <qdf_lock.h>
#include <qdf_net_types.h>
#include <qdf_lro.h>
#include <qdf_module.h>
#include <hal_hw_headers.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_types.h"
#include "dp_rings.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_rx.h"
#ifdef DP_RATETABLE_SUPPORT
#include "dp_ratetable.h"
#endif
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#include <wlan_utility.h>
#include "cdp_txrx_cmn_struct.h"
#include "cdp_txrx_stats_struct.h"
#include "cdp_txrx_cmn_reg.h"
#include <qdf_util.h>
#include "dp_peer.h"
#include "htt_stats.h"
#include "dp_htt.h"
#include "htt_ppdu_stats.h"
#include "qdf_mem.h" /* qdf_mem_malloc,free */
#include "cfg_ucfg_api.h"
#include <wlan_module_ids.h>
#ifdef WIFI_MONITOR_SUPPORT
#include <dp_mon.h>
#endif
#ifdef WLAN_FEATURE_STATS_EXT
#define INIT_RX_HW_STATS_LOCK(_soc) \
qdf_spinlock_create(&(_soc)->rx_hw_stats_lock)
#define DEINIT_RX_HW_STATS_LOCK(_soc) \
qdf_spinlock_destroy(&(_soc)->rx_hw_stats_lock)
#else
#define INIT_RX_HW_STATS_LOCK(_soc) /* no op */
#define DEINIT_RX_HW_STATS_LOCK(_soc) /* no op */
#endif
#ifdef QCA_DP_ENABLE_TX_COMP_RING4
#define TXCOMP_RING4_NUM 3
#else
#define TXCOMP_RING4_NUM WBM2SW_TXCOMP_RING4_NUM
#endif
static QDF_STATUS dp_init_tx_ring_pair_by_index(struct dp_soc *soc,
uint8_t index);
static void dp_deinit_tx_pair_by_index(struct dp_soc *soc, int index);
static void dp_free_tx_ring_pair_by_index(struct dp_soc *soc, uint8_t index);
static QDF_STATUS dp_alloc_tx_ring_pair_by_index(struct dp_soc *soc,
uint8_t index);
/* default_dscp_tid_map - Default DSCP-TID mapping
*
* DSCP TID
* 000000 0
* 001000 1
* 010000 2
* 011000 3
* 100000 4
* 101000 5
* 110000 6
* 111000 7
*/
static uint8_t default_dscp_tid_map[DSCP_TID_MAP_MAX] = {
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
};
/* default_pcp_tid_map - Default PCP-TID mapping
*
* PCP TID
* 000 0
* 001 1
* 010 2
* 011 3
* 100 4
* 101 5
* 110 6
* 111 7
*/
static uint8_t default_pcp_tid_map[PCP_TID_MAP_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7,
};
uint8_t
dp_cpu_ring_map[DP_NSS_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS_MAX] = {
{0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2},
{0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1},
{0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0},
{0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2},
{0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3},
#ifdef WLAN_TX_PKT_CAPTURE_ENH
{0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1}
#endif
};
qdf_export_symbol(dp_cpu_ring_map);
/**
* dp_soc_ring_if_nss_offloaded() - find if ring is offloaded to NSS
* @soc: DP soc handle
* @ring_type: ring type
* @ring_num: ring_num
*
* Return: 0 if the ring is not offloaded, non-0 if it is offloaded
*/
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
uint8_t nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint8_t status = 0;
switch (ring_type) {
case WBM2SW_RELEASE:
case REO_DST:
case RXDMA_BUF:
case REO_EXCEPTION:
status = ((nss_config) & (1 << ring_num));
break;
default:
break;
}
return status;
}
/* MCL specific functions */
#if defined(DP_CON_MON)
#ifdef DP_CON_MON_MSI_ENABLED
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* For MCL, monitor mode rings are being processed in timer contexts (polled).
* This function is returning 0, since in interrupt mode(softirq based RX),
* we donot want to process monitor mode rings in a softirq.
*
* So, in case packet log is enabled for SAP/STA/P2P modes,
* regular interrupt processing will not process monitor mode rings. It would be
* done in a separate timer context.
*
* Return: 0
*/
static inline uint32_t
dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
}
#else
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* For MCL, monitor mode rings are being processed in timer contexts (polled).
* This function is returning 0, since in interrupt mode(softirq based RX),
* we donot want to process monitor mode rings in a softirq.
*
* So, in case packet log is enabled for SAP/STA/P2P modes,
* regular interrupt processing will not process monitor mode rings. It would be
* done in a separate timer context.
*
* Return: 0
*/
static inline uint32_t
dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return 0;
}
#endif
#else
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* Return: mon mask value
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc,
int intr_ctx_num)
{
return wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
}
void dp_soc_reset_mon_intr_mask(struct dp_soc *soc)
{
int i;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].rx_mon_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_mon_ring_mask = 0;
}
}
qdf_export_symbol(dp_soc_reset_mon_intr_mask);
void dp_service_lmac_rings(void *arg)
{
struct dp_soc *soc = (struct dp_soc *)arg;
int ring = 0, i;
struct dp_pdev *pdev = NULL;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
int mac_for_pdev = ring;
struct dp_srng *rx_refill_buf_ring;
pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
if (!pdev)
continue;
rx_refill_buf_ring = &soc->rx_refill_buf_ring[mac_for_pdev];
dp_monitor_process(soc, NULL, mac_for_pdev,
QCA_NAPI_BUDGET);
for (i = 0;
i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
dp_rxdma_err_process(&soc->intr_ctx[i], soc,
mac_for_pdev,
QCA_NAPI_BUDGET);
if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF,
mac_for_pdev))
dp_rx_buffers_replenish(soc, mac_for_pdev,
rx_refill_buf_ring,
&soc->rx_desc_buf[mac_for_pdev],
0, &desc_list, &tail, false);
}
qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
}
#endif
/**
* dp_srng_find_ring_in_mask() - find which ext_group a ring belongs
* @ring_num: ring num of the ring being queried
* @grp_mask: the grp_mask array for the ring type in question.
*
* The grp_mask array is indexed by group number and the bit fields correspond
* to ring numbers. We are finding which interrupt group a ring belongs to.
*
* Return: the index in the grp_mask array with the ring number.
* -QDF_STATUS_E_NOENT if no entry is found
*/
static int dp_srng_find_ring_in_mask(int ring_num, uint8_t *grp_mask)
{
int ext_group_num;
uint8_t mask = 1 << ring_num;
for (ext_group_num = 0; ext_group_num < WLAN_CFG_INT_NUM_CONTEXTS;
ext_group_num++) {
if (mask & grp_mask[ext_group_num])
return ext_group_num;
}
return -QDF_STATUS_E_NOENT;
}
/**
* dp_is_msi_group_number_invalid() - check msi_group_number valid or not
* @soc: dp_soc
* @msi_group_number: MSI group number.
* @msi_data_count: MSI data count.
*
* Return: true if msi_group_number is invalid.
*/
static bool dp_is_msi_group_number_invalid(struct dp_soc *soc,
int msi_group_number,
int msi_data_count)
{
if (soc && soc->osdev && soc->osdev->dev &&
pld_is_one_msi(soc->osdev->dev))
return false;
return msi_group_number > msi_data_count;
}
#ifdef WLAN_FEATURE_NEAR_FULL_IRQ
/**
* dp_is_reo_ring_num_in_nf_grp1() - Check if the current reo ring is part of
* rx_near_full_grp1 mask
* @soc: Datapath SoC Handle
* @ring_num: REO ring number
*
* Return: 1 if the ring_num belongs to reo_nf_grp1,
* 0, otherwise.
*/
static inline int
dp_is_reo_ring_num_in_nf_grp1(struct dp_soc *soc, int ring_num)
{
return (WLAN_CFG_RX_NEAR_FULL_IRQ_MASK_1 & (1 << ring_num));
}
/**
* dp_is_reo_ring_num_in_nf_grp2() - Check if the current reo ring is part of
* rx_near_full_grp2 mask
* @soc: Datapath SoC Handle
* @ring_num: REO ring number
*
* Return: 1 if the ring_num belongs to reo_nf_grp2,
* 0, otherwise.
*/
static inline int
dp_is_reo_ring_num_in_nf_grp2(struct dp_soc *soc, int ring_num)
{
return (WLAN_CFG_RX_NEAR_FULL_IRQ_MASK_2 & (1 << ring_num));
}
/**
* dp_srng_get_near_full_irq_mask() - Get near-full irq mask for a particular
* ring type and number
* @soc: Datapath SoC handle
* @ring_type: SRNG type
* @ring_num: ring num
*
* Return: near-full irq mask pointer
*/
static inline
uint8_t *dp_srng_get_near_full_irq_mask(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
struct wlan_cfg_dp_soc_ctxt *cfg_ctx = soc->wlan_cfg_ctx;
uint8_t wbm2_sw_rx_rel_ring_id;
uint8_t *nf_irq_mask = NULL;
switch (ring_type) {
case WBM2SW_RELEASE:
wbm2_sw_rx_rel_ring_id =
wlan_cfg_get_rx_rel_ring_id(cfg_ctx);
if (ring_num != wbm2_sw_rx_rel_ring_id) {
nf_irq_mask = &soc->wlan_cfg_ctx->
int_tx_ring_near_full_irq_mask[0];
}
break;
case REO_DST:
if (dp_is_reo_ring_num_in_nf_grp1(soc, ring_num))
nf_irq_mask =
&soc->wlan_cfg_ctx->int_rx_ring_near_full_irq_1_mask[0];
else if (dp_is_reo_ring_num_in_nf_grp2(soc, ring_num))
nf_irq_mask =
&soc->wlan_cfg_ctx->int_rx_ring_near_full_irq_2_mask[0];
else
qdf_assert(0);
break;
default:
break;
}
return nf_irq_mask;
}
/**
* dp_srng_set_msi2_ring_params() - Set the msi2 addr/data in the ring params
* @soc: Datapath SoC handle
* @ring_params: srng params handle
* @msi2_addr: MSI2 addr to be set for the SRNG
* @msi2_data: MSI2 data to be set for the SRNG
*
* Return: None
*/
static inline
void dp_srng_set_msi2_ring_params(struct dp_soc *soc,
struct hal_srng_params *ring_params,
qdf_dma_addr_t msi2_addr,
uint32_t msi2_data)
{
ring_params->msi2_addr = msi2_addr;
ring_params->msi2_data = msi2_data;
}
/**
* dp_srng_msi2_setup() - Setup MSI2 details for near full IRQ of an SRNG
* @soc: Datapath SoC handle
* @ring_params: ring_params for SRNG
* @ring_type: SENG type
* @ring_num: ring number for the SRNG
* @nf_msi_grp_num: near full msi group number
*
* Return: None
*/
static inline void
dp_srng_msi2_setup(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num, int nf_msi_grp_num)
{
uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
int msi_data_count, ret;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret)
return;
if (nf_msi_grp_num < 0) {
dp_init_info("%pK: ring near full IRQ not part of an ext_group; ring_type: %d,ring_num %d",
soc, ring_type, ring_num);
ring_params->msi2_addr = 0;
ring_params->msi2_data = 0;
return;
}
if (dp_is_msi_group_number_invalid(soc, nf_msi_grp_num,
msi_data_count)) {
dp_init_warn("%pK: 2 msi_groups will share an msi for near full IRQ; msi_group_num %d",
soc, nf_msi_grp_num);
QDF_ASSERT(0);
}
pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
ring_params->nf_irq_support = 1;
ring_params->msi2_addr = addr_low;
ring_params->msi2_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
ring_params->msi2_data = (nf_msi_grp_num % msi_data_count)
+ msi_data_start;
ring_params->flags |= HAL_SRNG_MSI_INTR;
}
/* Percentage of ring entries considered as nearly full */
#define DP_NF_HIGH_THRESH_PERCENTAGE 75
/* Percentage of ring entries considered as critically full */
#define DP_NF_CRIT_THRESH_PERCENTAGE 90
/* Percentage of ring entries considered as safe threshold */
#define DP_NF_SAFE_THRESH_PERCENTAGE 50
/**
* dp_srng_configure_nf_interrupt_thresholds() - Configure the thresholds for
* near full irq
* @soc: Datapath SoC handle
* @ring_params: ring params for SRNG
* @ring_type: ring type
*/
static inline void
dp_srng_configure_nf_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type)
{
if (ring_params->nf_irq_support) {
ring_params->high_thresh = (ring_params->num_entries *
DP_NF_HIGH_THRESH_PERCENTAGE) / 100;
ring_params->crit_thresh = (ring_params->num_entries *
DP_NF_CRIT_THRESH_PERCENTAGE) / 100;
ring_params->safe_thresh = (ring_params->num_entries *
DP_NF_SAFE_THRESH_PERCENTAGE) /100;
}
}
/**
* dp_srng_set_nf_thresholds() - Set the near full thresholds to srng data
* structure from the ring params
* @soc: Datapath SoC handle
* @srng: SRNG handle
* @ring_params: ring params for a SRNG
*
* Return: None
*/
static inline void
dp_srng_set_nf_thresholds(struct dp_soc *soc, struct dp_srng *srng,
struct hal_srng_params *ring_params)
{
srng->crit_thresh = ring_params->crit_thresh;
srng->safe_thresh = ring_params->safe_thresh;
}
#else
static inline
uint8_t *dp_srng_get_near_full_irq_mask(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
return NULL;
}
static inline
void dp_srng_set_msi2_ring_params(struct dp_soc *soc,
struct hal_srng_params *ring_params,
qdf_dma_addr_t msi2_addr,
uint32_t msi2_data)
{
}
static inline void
dp_srng_msi2_setup(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num, int nf_msi_grp_num)
{
}
static inline void
dp_srng_configure_nf_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type)
{
}
static inline void
dp_srng_set_nf_thresholds(struct dp_soc *soc, struct dp_srng *srng,
struct hal_srng_params *ring_params)
{
}
#endif
static int dp_srng_calculate_msi_group(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num,
int *reg_msi_grp_num,
bool nf_irq_support,
int *nf_msi_grp_num)
{
struct wlan_cfg_dp_soc_ctxt *cfg_ctx = soc->wlan_cfg_ctx;
uint8_t *grp_mask, *nf_irq_mask = NULL;
bool nf_irq_enabled = false;
uint8_t wbm2_sw_rx_rel_ring_id;
switch (ring_type) {
case WBM2SW_RELEASE:
wbm2_sw_rx_rel_ring_id =
wlan_cfg_get_rx_rel_ring_id(cfg_ctx);
if (ring_num == wbm2_sw_rx_rel_ring_id) {
/* dp_rx_wbm_err_process - soc->rx_rel_ring */
grp_mask = &cfg_ctx->int_rx_wbm_rel_ring_mask[0];
ring_num = 0;
} else if (ring_num == WBM2_SW_PPE_REL_RING_ID) {
grp_mask = &cfg_ctx->int_ppeds_wbm_release_ring_mask[0];
ring_num = 0;
} else { /* dp_tx_comp_handler - soc->tx_comp_ring */
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
nf_irq_mask = dp_srng_get_near_full_irq_mask(soc,
ring_type,
ring_num);
if (nf_irq_mask)
nf_irq_enabled = true;
/*
* Using ring 4 as 4th tx completion ring since ring 3
* is Rx error ring
*/
if (ring_num == WBM2SW_TXCOMP_RING4_NUM)
ring_num = TXCOMP_RING4_NUM;
}
break;
case REO_EXCEPTION:
/* dp_rx_err_process - &soc->reo_exception_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
break;
case REO_DST:
/* dp_rx_process - soc->reo_dest_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
nf_irq_mask = dp_srng_get_near_full_irq_mask(soc, ring_type,
ring_num);
if (nf_irq_mask)
nf_irq_enabled = true;
break;
case REO_STATUS:
/* dp_reo_status_ring_handler - soc->reo_status_ring */
grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
break;
/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
case RXDMA_MONITOR_STATUS:
/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
case RXDMA_MONITOR_DST:
/* dp_mon_process */
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
break;
case TX_MONITOR_DST:
/* dp_tx_mon_process */
grp_mask = &soc->wlan_cfg_ctx->int_tx_mon_ring_mask[0];
break;
case RXDMA_DST:
/* dp_rxdma_err_process */
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
break;
case RXDMA_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
break;
case RXDMA_MONITOR_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
break;
case TX_MONITOR_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2txmon_ring_mask[0];
break;
case REO2PPE:
grp_mask = &soc->wlan_cfg_ctx->int_reo2ppe_ring_mask[0];
break;
case PPE2TCL:
grp_mask = &soc->wlan_cfg_ctx->int_ppe2tcl_ring_mask[0];
break;
case TCL_DATA:
/* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */
case TCL_CMD_CREDIT:
case REO_CMD:
case SW2WBM_RELEASE:
case WBM_IDLE_LINK:
/* normally empty SW_TO_HW rings */
return -QDF_STATUS_E_NOENT;
break;
case TCL_STATUS:
case REO_REINJECT:
/* misc unused rings */
return -QDF_STATUS_E_NOENT;
break;
case CE_SRC:
case CE_DST:
case CE_DST_STATUS:
/* CE_rings - currently handled by hif */
default:
return -QDF_STATUS_E_NOENT;
break;
}
*reg_msi_grp_num = dp_srng_find_ring_in_mask(ring_num, grp_mask);
if (nf_irq_support && nf_irq_enabled) {
*nf_msi_grp_num = dp_srng_find_ring_in_mask(ring_num,
nf_irq_mask);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_num_msi_available()- API to get number of MSIs available
* @soc: DP soc Handle
* @interrupt_mode: Mode of interrupts
*
* Return: Number of MSIs available or 0 in case of integrated
*/
#if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
static int dp_get_num_msi_available(struct dp_soc *soc, int interrupt_mode)
{
return 0;
}
#else
static int dp_get_num_msi_available(struct dp_soc *soc, int interrupt_mode)
{
int msi_data_count;
int msi_data_start;
int msi_irq_start;
int ret;
if (interrupt_mode == DP_INTR_INTEGRATED) {
return 0;
} else if (interrupt_mode == DP_INTR_MSI || interrupt_mode ==
DP_INTR_POLL) {
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count,
&msi_data_start,
&msi_irq_start);
if (ret) {
qdf_err("Unable to get DP MSI assignment %d",
interrupt_mode);
return -EINVAL;
}
return msi_data_count;
}
qdf_err("Interrupt mode invalid %d", interrupt_mode);
return -EINVAL;
}
#endif
#if defined(IPA_OFFLOAD) && defined(IPA_WDI3_VLAN_SUPPORT)
static void
dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
int ring_num)
{
if (wlan_ipa_is_vlan_enabled()) {
if ((ring_type == REO_DST) &&
(ring_num == IPA_ALT_REO_DEST_RING_IDX)) {
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
ring_params->flags &= ~HAL_SRNG_MSI_INTR;
}
}
}
#else
static inline void
dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
int ring_num)
{
}
#endif
static void dp_srng_msi_setup(struct dp_soc *soc, struct dp_srng *srng,
struct hal_srng_params *ring_params,
int ring_type, int ring_num)
{
int reg_msi_grp_num;
/*
* nf_msi_grp_num needs to be initialized with negative value,
* to avoid configuring near-full msi for WBM2SW3 ring
*/
int nf_msi_grp_num = -1;
int msi_data_count;
int ret;
uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
bool nf_irq_support;
int vector;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret)
return;
nf_irq_support = hal_srng_is_near_full_irq_supported(soc->hal_soc,
ring_type,
ring_num);
ret = dp_srng_calculate_msi_group(soc, ring_type, ring_num,
&reg_msi_grp_num,
nf_irq_support,
&nf_msi_grp_num);
if (ret < 0) {
dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
soc, ring_type, ring_num);
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
return;
}
if (reg_msi_grp_num < 0) {
dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
soc, ring_type, ring_num);
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
goto configure_msi2;
}
if (dp_is_msi_group_number_invalid(soc, reg_msi_grp_num,
msi_data_count)) {
dp_init_warn("%pK: 2 msi_groups will share an msi; msi_group_num %d",
soc, reg_msi_grp_num);
QDF_ASSERT(0);
}
pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
ring_params->msi_addr = addr_low;
ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
ring_params->msi_data = (reg_msi_grp_num % msi_data_count)
+ msi_data_start;
ring_params->flags |= HAL_SRNG_MSI_INTR;
dp_ipa_vlan_srng_msi_setup(ring_params, ring_type, ring_num);
dp_debug("ring type %u ring_num %u msi->data %u msi_addr %llx",
ring_type, ring_num, ring_params->msi_data,
(uint64_t)ring_params->msi_addr);
vector = msi_irq_start + (reg_msi_grp_num % msi_data_count);
/*
* During umac reset ppeds interrupts free is not called.
* Avoid registering interrupts again.
*
*/
if (dp_check_umac_reset_in_progress(soc))
goto configure_msi2;
if (soc->arch_ops.dp_register_ppeds_interrupts)
if (soc->arch_ops.dp_register_ppeds_interrupts(soc, srng,
vector,
ring_type,
ring_num))
return;
configure_msi2:
if (!nf_irq_support) {
dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
return;
}
dp_srng_msi2_setup(soc, ring_params, ring_type, ring_num,
nf_msi_grp_num);
}
/**
* dp_srng_configure_pointer_update_thresholds() - Retrieve pointer
* update threshold value from wlan_cfg_ctx
* @soc: device handle
* @ring_params: per ring specific parameters
* @ring_type: Ring type
* @ring_num: Ring number for a given ring type
* @num_entries: number of entries to fill
*
* Fill the ring params with the pointer update threshold
* configuration parameters available in wlan_cfg_ctx
*
* Return: None
*/
static void
dp_srng_configure_pointer_update_thresholds(
struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
if (ring_type == REO_DST) {
ring_params->pointer_timer_threshold =
wlan_cfg_get_pointer_timer_threshold_rx(
soc->wlan_cfg_ctx);
ring_params->pointer_num_threshold =
wlan_cfg_get_pointer_num_threshold_rx(
soc->wlan_cfg_ctx);
}
}
#ifdef WLAN_DP_PER_RING_TYPE_CONFIG
/**
* dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
* threshold values from the wlan_srng_cfg table for each ring type
* @soc: device handle
* @ring_params: per ring specific parameters
* @ring_type: Ring type
* @ring_num: Ring number for a given ring type
* @num_entries: number of entries to fill
*
* Fill the ring params with the interrupt threshold
* configuration parameters available in the per ring type wlan_srng_cfg
* table.
*
* Return: None
*/
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
uint8_t wbm2_sw_rx_rel_ring_id;
wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
if (ring_type == REO_DST) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE &&
(ring_num == wbm2_sw_rx_rel_ring_id)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
} else {
ring_params->intr_timer_thres_us =
soc->wlan_srng_cfg[ring_type].timer_threshold;
ring_params->intr_batch_cntr_thres_entries =
soc->wlan_srng_cfg[ring_type].batch_count_threshold;
}
ring_params->low_threshold =
soc->wlan_srng_cfg[ring_type].low_threshold;
if (ring_params->low_threshold)
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
dp_srng_configure_nf_interrupt_thresholds(soc, ring_params, ring_type);
}
#else
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
uint8_t wbm2_sw_rx_rel_ring_id;
bool rx_refill_lt_disable;
wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
if (ring_type == REO_DST || ring_type == REO2PPE) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE &&
(ring_num < wbm2_sw_rx_rel_ring_id ||
ring_num == WBM2SW_TXCOMP_RING4_NUM ||
ring_num == WBM2_SW_PPE_REL_RING_ID)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
} else if (ring_type == RXDMA_BUF) {
rx_refill_lt_disable =
wlan_cfg_get_dp_soc_rxdma_refill_lt_disable
(soc->wlan_cfg_ctx);
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
if (!rx_refill_lt_disable) {
ring_params->low_threshold = num_entries >> 3;
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
ring_params->intr_batch_cntr_thres_entries = 0;
}
} else {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
}
/* These rings donot require interrupt to host. Make them zero */
switch (ring_type) {
case REO_REINJECT:
case REO_CMD:
case TCL_DATA:
case TCL_CMD_CREDIT:
case TCL_STATUS:
case WBM_IDLE_LINK:
case SW2WBM_RELEASE:
case SW2RXDMA_NEW:
ring_params->intr_timer_thres_us = 0;
ring_params->intr_batch_cntr_thres_entries = 0;
break;
case PPE2TCL:
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_ppe2tcl(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_ppe2tcl(soc->wlan_cfg_ctx);
break;
}
/* Enable low threshold interrupts for rx buffer rings (regular and
* monitor buffer rings.
* TODO: See if this is required for any other ring
*/
if ((ring_type == RXDMA_MONITOR_BUF) ||
(ring_type == RXDMA_MONITOR_STATUS ||
(ring_type == TX_MONITOR_BUF))) {
/* TODO: Setting low threshold to 1/8th of ring size
* see if this needs to be configurable
*/
ring_params->low_threshold = num_entries >> 3;
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
ring_params->intr_batch_cntr_thres_entries = 0;
}
/* During initialisation monitor rings are only filled with
* MON_BUF_MIN_ENTRIES entries. So low threshold needs to be set to
* a value less than that. Low threshold value is reconfigured again
* to 1/8th of the ring size when monitor vap is created.
*/
if (ring_type == RXDMA_MONITOR_BUF)
ring_params->low_threshold = MON_BUF_MIN_ENTRIES >> 1;
/* In case of PCI chipsets, we dont have PPDU end interrupts,
* so MONITOR STATUS ring is reaped by receiving MSI from srng.
* Keep batch threshold as 8 so that interrupt is received for
* every 4 packets in MONITOR_STATUS ring
*/
if ((ring_type == RXDMA_MONITOR_STATUS) &&
(soc->intr_mode == DP_INTR_MSI))
ring_params->intr_batch_cntr_thres_entries = 4;
}
#endif
#ifdef DISABLE_MON_RING_MSI_CFG
/**
* dp_skip_msi_cfg() - Check if msi cfg has to be skipped for ring_type
* @soc: DP SoC context
* @ring_type: sring type
*
* Return: True if msi cfg should be skipped for srng type else false
*/
static inline bool dp_skip_msi_cfg(struct dp_soc *soc, int ring_type)
{
if (ring_type == RXDMA_MONITOR_STATUS)
return true;
return false;
}
#else
#ifdef DP_CON_MON_MSI_ENABLED
static inline bool dp_skip_msi_cfg(struct dp_soc *soc, int ring_type)
{
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE) {
if (ring_type == REO_DST || ring_type == RXDMA_DST)
return true;
} else if (ring_type == RXDMA_MONITOR_STATUS &&
!wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx)) {
return true;
}
return false;
}
#else
static inline bool dp_skip_msi_cfg(struct dp_soc *soc, int ring_type)
{
return false;
}
#endif /* DP_CON_MON_MSI_ENABLED */
#endif /* DISABLE_MON_RING_MSI_CFG */
QDF_STATUS dp_srng_init_idx(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num, int mac_id,
uint32_t idx)
{
bool idle_check;
hal_soc_handle_t hal_soc = soc->hal_soc;
struct hal_srng_params ring_params;
if (srng->hal_srng) {
dp_init_err("%pK: Ring type: %d, num:%d is already initialized",
soc, ring_type, ring_num);
return QDF_STATUS_SUCCESS;
}
/* memset the srng ring to zero */
qdf_mem_zero(srng->base_vaddr_unaligned, srng->alloc_size);
qdf_mem_zero(&ring_params, sizeof(struct hal_srng_params));
ring_params.ring_base_paddr = srng->base_paddr_aligned;
ring_params.ring_base_vaddr = srng->base_vaddr_aligned;
ring_params.num_entries = srng->num_entries;
dp_info("Ring type: %d, num:%d vaddr %pK paddr %pK entries %u",
ring_type, ring_num,
(void *)ring_params.ring_base_vaddr,
(void *)ring_params.ring_base_paddr,
ring_params.num_entries);
if (soc->intr_mode == DP_INTR_MSI && !dp_skip_msi_cfg(soc, ring_type)) {
dp_srng_msi_setup(soc, srng, &ring_params, ring_type, ring_num);
dp_verbose_debug("Using MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
} else {
ring_params.msi_data = 0;
ring_params.msi_addr = 0;
dp_srng_set_msi2_ring_params(soc, &ring_params, 0, 0);
dp_verbose_debug("Skipping MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
}
dp_srng_configure_interrupt_thresholds(soc, &ring_params,
ring_type, ring_num,
srng->num_entries);
dp_srng_set_nf_thresholds(soc, srng, &ring_params);
dp_srng_configure_pointer_update_thresholds(soc, &ring_params,
ring_type, ring_num,
srng->num_entries);
if (srng->cached)
ring_params.flags |= HAL_SRNG_CACHED_DESC;
idle_check = dp_check_umac_reset_in_progress(soc);
srng->hal_srng = hal_srng_setup_idx(hal_soc, ring_type, ring_num,
mac_id, &ring_params, idle_check,
idx);
if (!srng->hal_srng) {
dp_srng_free(soc, srng);
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(dp_srng_init_idx);
static int dp_process_rxdma_dst_ring(struct dp_soc *soc,
struct dp_intr *int_ctx,
int mac_for_pdev,
int total_budget)
{
uint32_t target_type;
target_type = hal_get_target_type(soc->hal_soc);
if (target_type == TARGET_TYPE_QCN9160)
return dp_monitor_process(soc, int_ctx,
mac_for_pdev, total_budget);
else
return dp_rxdma_err_process(int_ctx, soc, mac_for_pdev,
total_budget);
}
/**
* dp_process_lmac_rings() - Process LMAC rings
* @int_ctx: interrupt context
* @total_budget: budget of work which can be done
*
* Return: work done
*/
static int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
{
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
uint32_t remaining_quota = total_budget;
struct dp_pdev *pdev = NULL;
uint32_t work_done = 0;
int budget = total_budget;
int ring = 0;
bool rx_refill_lt_disable;
rx_refill_lt_disable =
wlan_cfg_get_dp_soc_rxdma_refill_lt_disable(soc->wlan_cfg_ctx);
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
int mac_for_pdev = ring;
pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
if (!pdev)
continue;
if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
work_done = dp_monitor_process(soc, int_ctx,
mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rx_mon_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->tx_mon_ring_mask & (1 << mac_for_pdev)) {
work_done = dp_tx_mon_process(soc, int_ctx,
mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_tx_mon_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->rxdma2host_ring_mask &
(1 << mac_for_pdev)) {
work_done = dp_process_rxdma_dst_ring(soc, int_ctx,
mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rxdma2host_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->host2rxdma_ring_mask & (1 << mac_for_pdev)) {
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
struct dp_srng *rx_refill_buf_ring;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
rx_refill_buf_ring =
&soc->rx_refill_buf_ring[mac_for_pdev];
else
rx_refill_buf_ring =
&soc->rx_refill_buf_ring[pdev->lmac_id];
intr_stats->num_host2rxdma_ring_masks++;
if (!rx_refill_lt_disable)
dp_rx_buffers_lt_replenish_simple(soc,
mac_for_pdev,
rx_refill_buf_ring,
rx_desc_pool,
0,
&desc_list,
&tail);
}
}
if (int_ctx->host2rxdma_mon_ring_mask)
dp_rx_mon_buf_refill(int_ctx);
if (int_ctx->host2txmon_ring_mask)
dp_tx_mon_buf_refill(int_ctx);
budget_done:
return total_budget - budget;
}
#ifdef WLAN_FEATURE_NEAR_FULL_IRQ
/**
* dp_service_near_full_srngs() - Bottom half handler to process the near
* full IRQ on a SRNG
* @dp_ctx: Datapath SoC handle
* @dp_budget: Number of SRNGs which can be processed in a single attempt
* without rescheduling
* @cpu: cpu id
*
* Return: remaining budget/quota for the soc device
*/
static
uint32_t dp_service_near_full_srngs(void *dp_ctx, uint32_t dp_budget, int cpu)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_soc *soc = int_ctx->soc;
/*
* dp_service_near_full_srngs arch ops should be initialized always
* if the NEAR FULL IRQ feature is enabled.
*/
return soc->arch_ops.dp_service_near_full_srngs(soc, int_ctx,
dp_budget);
}
#endif
#ifndef QCA_HOST_MODE_WIFI_DISABLED
uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget, int cpu)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
int ring = 0;
int index;
uint32_t work_done = 0;
int budget = dp_budget;
uint32_t remaining_quota = dp_budget;
uint8_t tx_mask = 0;
uint8_t rx_mask = 0;
uint8_t rx_err_mask = 0;
uint8_t rx_wbm_rel_mask = 0;
uint8_t reo_status_mask = 0;
qdf_atomic_set_bit(cpu, &soc->service_rings_running);
tx_mask = int_ctx->tx_ring_mask;
rx_mask = int_ctx->rx_ring_mask;
rx_err_mask = int_ctx->rx_err_ring_mask;
rx_wbm_rel_mask = int_ctx->rx_wbm_rel_ring_mask;
reo_status_mask = int_ctx->reo_status_ring_mask;
dp_verbose_debug("tx %x rx %x rx_err %x rx_wbm_rel %x reo_status %x rx_mon_ring %x host2rxdma %x rxdma2host %x",
tx_mask, rx_mask, rx_err_mask, rx_wbm_rel_mask,
reo_status_mask,
int_ctx->rx_mon_ring_mask,
int_ctx->host2rxdma_ring_mask,
int_ctx->rxdma2host_ring_mask);
/* Process Tx completion interrupts first to return back buffers */
for (index = 0; index < soc->num_tx_comp_rings; index++) {
if (!(1 << wlan_cfg_get_wbm_ring_num_for_index(soc->wlan_cfg_ctx, index) & tx_mask))
continue;
work_done = dp_tx_comp_handler(int_ctx,
soc,
soc->tx_comp_ring[index].hal_srng,
index, remaining_quota);
if (work_done) {
intr_stats->num_tx_ring_masks[index]++;
dp_verbose_debug("tx mask 0x%x index %d, budget %d, work_done %d",
tx_mask, index, budget,
work_done);
}
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
/* Process REO Exception ring interrupt */
if (rx_err_mask) {
work_done = dp_rx_err_process(int_ctx, soc,
soc->reo_exception_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_err_ring_masks++;
dp_verbose_debug("REO Exception Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx WBM release ring interrupt */
if (rx_wbm_rel_mask) {
work_done = dp_rx_wbm_err_process(int_ctx, soc,
soc->rx_rel_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_wbm_rel_ring_masks++;
dp_verbose_debug("WBM Release Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx interrupts */
if (rx_mask) {
for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
if (!(rx_mask & (1 << ring)))
continue;
work_done = soc->arch_ops.dp_rx_process(int_ctx,
soc->reo_dest_ring[ring].hal_srng,
ring,
remaining_quota);
if (work_done) {
intr_stats->num_rx_ring_masks[ring]++;
dp_verbose_debug("rx mask 0x%x ring %d, work_done %d budget %d",
rx_mask, ring,
work_done, budget);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
}
if (reo_status_mask) {
if (dp_reo_status_ring_handler(int_ctx, soc))
int_ctx->intr_stats.num_reo_status_ring_masks++;
}
if (qdf_unlikely(!dp_monitor_is_vdev_timer_running(soc))) {
work_done = dp_process_lmac_rings(int_ctx, remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
qdf_lro_flush(int_ctx->lro_ctx);
intr_stats->num_masks++;
budget_done:
qdf_atomic_clear_bit(cpu, &soc->service_rings_running);
if (soc->notify_fw_callback)
soc->notify_fw_callback(soc);
return dp_budget - budget;
}
#else /* QCA_HOST_MODE_WIFI_DISABLED */
uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget, int cpu)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
uint32_t remaining_quota = dp_budget;
uint32_t work_done = 0;
int budget = dp_budget;
uint8_t reo_status_mask = int_ctx->reo_status_ring_mask;
if (reo_status_mask) {
if (dp_reo_status_ring_handler(int_ctx, soc))
int_ctx->intr_stats.num_reo_status_ring_masks++;
}
if (qdf_unlikely(!dp_monitor_is_vdev_timer_running(soc))) {
work_done = dp_process_lmac_rings(int_ctx, remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
qdf_lro_flush(int_ctx->lro_ctx);
intr_stats->num_masks++;
budget_done:
return dp_budget - budget;
}
#endif /* QCA_HOST_MODE_WIFI_DISABLED */
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
static inline bool dp_is_mon_mask_valid(struct dp_soc *soc,
struct dp_intr *intr_ctx)
{
if (intr_ctx->rx_mon_ring_mask)
return true;
return false;
}
#else
static inline bool dp_is_mon_mask_valid(struct dp_soc *soc,
struct dp_intr *intr_ctx)
{
return false;
}
#endif
QDF_STATUS dp_soc_attach_poll(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
int lmac_id = 0;
qdf_mem_set(&soc->mon_intr_id_lmac_map,
sizeof(soc->mon_intr_id_lmac_map), DP_MON_INVALID_LMAC_ID);
soc->intr_mode = DP_INTR_POLL;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_ring_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_mon_ring_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].soc = soc;
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
if (dp_is_mon_mask_valid(soc, &soc->intr_ctx[i])) {
hif_event_history_init(soc->hif_handle, i);
soc->mon_intr_id_lmac_map[lmac_id] = i;
lmac_id++;
}
}
qdf_timer_init(soc->osdev, &soc->int_timer,
dp_interrupt_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
return QDF_STATUS_SUCCESS;
}
void dp_soc_set_interrupt_mode(struct dp_soc *soc)
{
uint32_t msi_base_data, msi_vector_start;
int msi_vector_count, ret;
soc->intr_mode = DP_INTR_INTEGRATED;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(dp_is_monitor_mode_using_poll(soc) &&
soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
soc->intr_mode = DP_INTR_POLL;
} else {
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return;
soc->intr_mode = DP_INTR_MSI;
}
}
#ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
/**
* dp_soc_interrupt_map_calculate_wifi3_pci_legacy() -
* Calculate interrupt map for legacy interrupts
* @soc: DP soc handle
* @intr_ctx_num: Interrupt context number
* @irq_id_map: IRQ map
* @num_irq_r: Number of interrupts assigned for this context
*
* Return: void
*/
static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
int intr_ctx_num,
int *irq_id_map,
int *num_irq_r)
{
int j;
int num_irq = 0;
int tx_mask = wlan_cfg_get_tx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask = wlan_cfg_get_rx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
soc->intr_mode = DP_INTR_LEGACY_VIRTUAL_IRQ;
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j))
irq_id_map[num_irq++] = (wbm2sw0_release - j);
if (rx_mask & (1 << j))
irq_id_map[num_irq++] = (reo2sw1_intr - j);
if (rx_mon_mask & (1 << j))
irq_id_map[num_irq++] = (rxmon2sw_p0_dest0 - j);
if (rx_err_ring_mask & (1 << j))
irq_id_map[num_irq++] = (reo2sw0_intr - j);
if (rx_wbm_rel_ring_mask & (1 << j))
irq_id_map[num_irq++] = (wbm2sw5_release - j);
if (reo_status_ring_mask & (1 << j))
irq_id_map[num_irq++] = (reo_status - j);
if (rxdma2host_ring_mask & (1 << j))
irq_id_map[num_irq++] = (rxdma2sw_dst_ring0 - j);
if (host2rxdma_ring_mask & (1 << j))
irq_id_map[num_irq++] = (sw2rxdma_0 - j);
if (host2rxdma_mon_ring_mask & (1 << j))
irq_id_map[num_irq++] = (sw2rxmon_src_ring - j);
if (host2txmon_ring_mask & (1 << j))
irq_id_map[num_irq++] = sw2txmon_src_ring;
if (txmon2host_mon_ring_mask & (1 << j))
irq_id_map[num_irq++] = (txmon2sw_p0_dest0 - j);
}
*num_irq_r = num_irq;
}
#else
static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
int intr_ctx_num,
int *irq_id_map,
int *num_irq_r)
{
}
#endif
static void dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r)
{
int j;
int num_irq = 0;
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
soc->intr_mode = DP_INTR_INTEGRATED;
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(wbm2host_tx_completions_ring1 - j);
}
if (rx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(reo2host_destination_ring1 - j);
}
if (rxdma2host_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
rxdma2host_destination_ring_mac1 - j;
}
if (host2rxdma_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_host_buf_ring_mac1 - j;
}
if (host2rxdma_mon_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_monitor_ring1 - j;
}
if (rx_mon_mask & (1 << j)) {
irq_id_map[num_irq++] =
ppdu_end_interrupts_mac1 - j;
irq_id_map[num_irq++] =
rxdma2host_monitor_status_ring_mac1 - j;
irq_id_map[num_irq++] =
rxdma2host_monitor_destination_mac1 - j;
}
if (rx_wbm_rel_ring_mask & (1 << j))
irq_id_map[num_irq++] = wbm2host_rx_release;
if (rx_err_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_exception;
if (reo_status_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_status;
if (host2txmon_ring_mask & (1 << j))
irq_id_map[num_irq++] = host2tx_monitor_ring1;
if (txmon2host_mon_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
(txmon2host_monitor_destination_mac1 - j);
}
}
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r,
int msi_vector_count, int msi_vector_start)
{
int tx_mask = wlan_cfg_get_tx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask = wlan_cfg_get_rx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int tx_mon_mask = wlan_cfg_get_tx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_near_full_grp_1_mask =
wlan_cfg_get_rx_near_full_grp_1_mask(soc->wlan_cfg_ctx,
intr_ctx_num);
int rx_near_full_grp_2_mask =
wlan_cfg_get_rx_near_full_grp_2_mask(soc->wlan_cfg_ctx,
intr_ctx_num);
int tx_ring_near_full_mask =
wlan_cfg_get_tx_ring_near_full_mask(soc->wlan_cfg_ctx,
intr_ctx_num);
int host2txmon_ring_mask =
wlan_cfg_get_host2txmon_ring_mask(soc->wlan_cfg_ctx,
intr_ctx_num);
unsigned int vector =
(intr_ctx_num % msi_vector_count) + msi_vector_start;
int num_irq = 0;
soc->intr_mode = DP_INTR_MSI;
if (tx_mask | rx_mask | rx_mon_mask | tx_mon_mask | rx_err_ring_mask |
rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask |
host2rxdma_ring_mask | host2rxdma_mon_ring_mask |
rx_near_full_grp_1_mask | rx_near_full_grp_2_mask |
tx_ring_near_full_mask | host2txmon_ring_mask)
irq_id_map[num_irq++] =
pld_get_msi_irq(soc->osdev->dev, vector);
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
int *irq_id_map, int *num_irq)
{
int msi_vector_count, ret;
uint32_t msi_base_data, msi_vector_start;
if (pld_get_enable_intx(soc->osdev->dev)) {
return dp_soc_interrupt_map_calculate_wifi3_pci_legacy(soc,
intr_ctx_num, irq_id_map, num_irq);
}
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return dp_soc_interrupt_map_calculate_integrated(soc,
intr_ctx_num, irq_id_map, num_irq);
else
dp_soc_interrupt_map_calculate_msi(soc,
intr_ctx_num, irq_id_map, num_irq,
msi_vector_count, msi_vector_start);
}
#ifdef WLAN_FEATURE_NEAR_FULL_IRQ
/**
* dp_soc_near_full_interrupt_attach() - Register handler for DP near fill irq
* @soc: DP soc handle
* @num_irq: IRQ number
* @irq_id_map: IRQ map
* @intr_id: interrupt context ID
*
* Return: 0 for success. nonzero for failure.
*/
static inline int
dp_soc_near_full_interrupt_attach(struct dp_soc *soc, int num_irq,
int irq_id_map[], int intr_id)
{
return hif_register_ext_group(soc->hif_handle,
num_irq, irq_id_map,
dp_service_near_full_srngs,
&soc->intr_ctx[intr_id], "dp_nf_intr",
HIF_EXEC_NAPI_TYPE,
QCA_NAPI_DEF_SCALE_BIN_SHIFT);
}
#else
static inline int
dp_soc_near_full_interrupt_attach(struct dp_soc *soc, int num_irq,
int *irq_id_map, int intr_id)
{
return 0;
}
#endif
#ifdef DP_CON_MON_MSI_SKIP_SET
static inline bool dp_skip_rx_mon_ring_mask_set(struct dp_soc *soc)
{
return !!(soc->cdp_soc.ol_ops->get_con_mode() !=
QDF_GLOBAL_MONITOR_MODE &&
!wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx));
}
#else
static inline bool dp_skip_rx_mon_ring_mask_set(struct dp_soc *soc)
{
return false;
}
#endif
void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
if (soc->intr_mode == DP_INTR_POLL) {
qdf_timer_free(&soc->int_timer);
} else {
hif_deconfigure_ext_group_interrupts(soc->hif_handle);
hif_deregister_exec_group(soc->hif_handle, "dp_intr");
hif_deregister_exec_group(soc->hif_handle, "dp_nf_intr");
}
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0;
soc->intr_ctx[i].rx_ring_mask = 0;
soc->intr_ctx[i].rx_mon_ring_mask = 0;
soc->intr_ctx[i].rx_err_ring_mask = 0;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0;
soc->intr_ctx[i].reo_status_ring_mask = 0;
soc->intr_ctx[i].rxdma2host_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_mon_ring_mask = 0;
soc->intr_ctx[i].rx_near_full_grp_1_mask = 0;
soc->intr_ctx[i].rx_near_full_grp_2_mask = 0;
soc->intr_ctx[i].tx_ring_near_full_mask = 0;
soc->intr_ctx[i].tx_mon_ring_mask = 0;
soc->intr_ctx[i].host2txmon_ring_mask = 0;
soc->intr_ctx[i].umac_reset_intr_mask = 0;
hif_event_history_deinit(soc->hif_handle, i);
qdf_lro_deinit(soc->intr_ctx[i].lro_ctx);
}
qdf_mem_set(&soc->mon_intr_id_lmac_map,
sizeof(soc->mon_intr_id_lmac_map),
DP_MON_INVALID_LMAC_ID);
}
QDF_STATUS dp_soc_interrupt_attach(struct cdp_soc_t *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i = 0;
int num_irq = 0;
int rx_err_ring_intr_ctxt_id = HIF_MAX_GROUP;
int lmac_id = 0;
int napi_scale;
qdf_mem_set(&soc->mon_intr_id_lmac_map,
sizeof(soc->mon_intr_id_lmac_map), DP_MON_INVALID_LMAC_ID);
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
int ret = 0;
/* Map of IRQ ids registered with one interrupt context */
int irq_id_map[HIF_MAX_GRP_IRQ];
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mon_mask =
dp_soc_get_mon_mask_for_interrupt_mode(soc, i);
int tx_mon_ring_mask =
wlan_cfg_get_tx_mon_ring_mask(soc->wlan_cfg_ctx, i);
int rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
int rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
int reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
int rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_ring_mask =
wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_mon_ring_mask =
wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, i);
int rx_near_full_grp_1_mask =
wlan_cfg_get_rx_near_full_grp_1_mask(soc->wlan_cfg_ctx,
i);
int rx_near_full_grp_2_mask =
wlan_cfg_get_rx_near_full_grp_2_mask(soc->wlan_cfg_ctx,
i);
int tx_ring_near_full_mask =
wlan_cfg_get_tx_ring_near_full_mask(soc->wlan_cfg_ctx,
i);
int host2txmon_ring_mask =
wlan_cfg_get_host2txmon_ring_mask(soc->wlan_cfg_ctx, i);
int umac_reset_intr_mask =
wlan_cfg_get_umac_reset_intr_mask(soc->wlan_cfg_ctx, i);
if (dp_skip_rx_mon_ring_mask_set(soc))
rx_mon_mask = 0;
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask = tx_mask;
soc->intr_ctx[i].rx_ring_mask = rx_mask;
soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask;
soc->intr_ctx[i].rx_err_ring_mask = rx_err_ring_mask;
soc->intr_ctx[i].rxdma2host_ring_mask = rxdma2host_ring_mask;
soc->intr_ctx[i].host2rxdma_ring_mask = host2rxdma_ring_mask;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = rx_wbm_rel_ring_mask;
soc->intr_ctx[i].reo_status_ring_mask = reo_status_ring_mask;
soc->intr_ctx[i].host2rxdma_mon_ring_mask =
host2rxdma_mon_ring_mask;
soc->intr_ctx[i].rx_near_full_grp_1_mask =
rx_near_full_grp_1_mask;
soc->intr_ctx[i].rx_near_full_grp_2_mask =
rx_near_full_grp_2_mask;
soc->intr_ctx[i].tx_ring_near_full_mask =
tx_ring_near_full_mask;
soc->intr_ctx[i].tx_mon_ring_mask = tx_mon_ring_mask;
soc->intr_ctx[i].host2txmon_ring_mask = host2txmon_ring_mask;
soc->intr_ctx[i].umac_reset_intr_mask = umac_reset_intr_mask;
soc->intr_ctx[i].soc = soc;
num_irq = 0;
dp_soc_interrupt_map_calculate(soc, i, &irq_id_map[0],
&num_irq);
if (rx_near_full_grp_1_mask | rx_near_full_grp_2_mask |
tx_ring_near_full_mask) {
dp_soc_near_full_interrupt_attach(soc, num_irq,
irq_id_map, i);
} else {
napi_scale = wlan_cfg_get_napi_scale_factor(
soc->wlan_cfg_ctx);
if (!napi_scale)
napi_scale = QCA_NAPI_DEF_SCALE_BIN_SHIFT;
ret = hif_register_ext_group(soc->hif_handle,
num_irq, irq_id_map, dp_service_srngs,
&soc->intr_ctx[i], "dp_intr",
HIF_EXEC_NAPI_TYPE, napi_scale);
}
dp_debug(" int ctx %u num_irq %u irq_id_map %u %u",
i, num_irq, irq_id_map[0], irq_id_map[1]);
if (ret) {
dp_init_err("%pK: failed, ret = %d", soc, ret);
dp_soc_interrupt_detach(txrx_soc);
return QDF_STATUS_E_FAILURE;
}
hif_event_history_init(soc->hif_handle, i);
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
if (rx_err_ring_mask)
rx_err_ring_intr_ctxt_id = i;
if (dp_is_mon_mask_valid(soc, &soc->intr_ctx[i])) {
soc->mon_intr_id_lmac_map[lmac_id] = i;
lmac_id++;
}
}
hif_configure_ext_group_interrupts(soc->hif_handle);
if (rx_err_ring_intr_ctxt_id != HIF_MAX_GROUP)
hif_config_irq_clear_cpu_affinity(soc->hif_handle,
rx_err_ring_intr_ctxt_id, 0);
return QDF_STATUS_SUCCESS;
}
#define AVG_MAX_MPDUS_PER_TID 128
#define AVG_TIDS_PER_CLIENT 2
#define AVG_FLOWS_PER_TID 2
#define AVG_MSDUS_PER_FLOW 128
#define AVG_MSDUS_PER_MPDU 4
void dp_hw_link_desc_pool_banks_free(struct dp_soc *soc, uint32_t mac_id)
{
struct qdf_mem_multi_page_t *pages;
if (mac_id != WLAN_INVALID_PDEV_ID) {
pages = dp_monitor_get_link_desc_pages(soc, mac_id);
} else {
pages = &soc->link_desc_pages;
}
if (!pages) {
dp_err("can not get link desc pages");
QDF_ASSERT(0);
return;
}
if (pages->dma_pages) {
wlan_minidump_remove((void *)
pages->dma_pages->page_v_addr_start,
pages->num_pages * pages->page_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_IDLE_LINK,
"hw_link_desc_bank");
dp_desc_multi_pages_mem_free(soc, QDF_DP_HW_LINK_DESC_TYPE,
pages, 0, false);
}
}
qdf_export_symbol(dp_hw_link_desc_pool_banks_free);
QDF_STATUS dp_hw_link_desc_pool_banks_alloc(struct dp_soc *soc, uint32_t mac_id)
{
hal_soc_handle_t hal_soc = soc->hal_soc;
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
int link_desc_align = hal_get_link_desc_align(soc->hal_soc);
uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx);
uint32_t num_mpdus_per_link_desc = hal_num_mpdus_per_link_desc(hal_soc);
uint32_t num_msdus_per_link_desc = hal_num_msdus_per_link_desc(hal_soc);
uint32_t num_mpdu_links_per_queue_desc =
hal_num_mpdu_links_per_queue_desc(hal_soc);
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t *total_link_descs, total_mem_size;
uint32_t num_mpdu_link_descs, num_mpdu_queue_descs;
uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs;
uint32_t num_entries;
struct qdf_mem_multi_page_t *pages;
struct dp_srng *dp_srng;
uint8_t minidump_str[MINIDUMP_STR_SIZE];
/* Only Tx queue descriptors are allocated from common link descriptor
* pool Rx queue descriptors are not included in this because (REO queue
* extension descriptors) they are expected to be allocated contiguously
* with REO queue descriptors
*/
if (mac_id != WLAN_INVALID_PDEV_ID) {
pages = dp_monitor_get_link_desc_pages(soc, mac_id);
/* dp_monitor_get_link_desc_pages returns NULL only
* if monitor SOC is NULL
*/
if (!pages) {
dp_err("can not get link desc pages");
QDF_ASSERT(0);
return QDF_STATUS_E_FAULT;
}
dp_srng = &soc->rxdma_mon_desc_ring[mac_id];
num_entries = dp_srng->alloc_size /
hal_srng_get_entrysize(soc->hal_soc,
RXDMA_MONITOR_DESC);
total_link_descs = dp_monitor_get_total_link_descs(soc, mac_id);
qdf_str_lcopy(minidump_str, "mon_link_desc_bank",
MINIDUMP_STR_SIZE);
} else {
num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc;
num_mpdu_queue_descs = num_mpdu_link_descs /
num_mpdu_links_per_queue_desc;
num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) /
num_msdus_per_link_desc;
num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6;
num_entries = num_mpdu_link_descs + num_mpdu_queue_descs +
num_tx_msdu_link_descs + num_rx_msdu_link_descs;
pages = &soc->link_desc_pages;
total_link_descs = &soc->total_link_descs;
qdf_str_lcopy(minidump_str, "link_desc_bank",
MINIDUMP_STR_SIZE);
}
/* If link descriptor banks are allocated, return from here */
if (pages->num_pages)
return QDF_STATUS_SUCCESS;
/* Round up to power of 2 */
*total_link_descs = 1;
while (*total_link_descs < num_entries)
*total_link_descs <<= 1;
dp_init_info("%pK: total_link_descs: %u, link_desc_size: %d",
soc, *total_link_descs, link_desc_size);
total_mem_size = *total_link_descs * link_desc_size;
total_mem_size += link_desc_align;
dp_init_info("%pK: total_mem_size: %d",
soc, total_mem_size);
dp_set_max_page_size(pages, max_alloc_size);
dp_desc_multi_pages_mem_alloc(soc, QDF_DP_HW_LINK_DESC_TYPE,
pages,
link_desc_size,
*total_link_descs,
0, false);
if (!pages->num_pages) {
dp_err("Multi page alloc fail for hw link desc pool");
return QDF_STATUS_E_FAULT;
}
wlan_minidump_log(pages->dma_pages->page_v_addr_start,
pages->num_pages * pages->page_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_IDLE_LINK,
"hw_link_desc_bank");
return QDF_STATUS_SUCCESS;
}
void dp_hw_link_desc_ring_free(struct dp_soc *soc)
{
uint32_t i;
uint32_t size = soc->wbm_idle_scatter_buf_size;
void *vaddr = soc->wbm_idle_link_ring.base_vaddr_unaligned;
qdf_dma_addr_t paddr;
if (soc->wbm_idle_scatter_buf_base_vaddr[0]) {
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
vaddr = soc->wbm_idle_scatter_buf_base_vaddr[i];
paddr = soc->wbm_idle_scatter_buf_base_paddr[i];
if (vaddr) {
qdf_mem_free_consistent(soc->osdev,
soc->osdev->dev,
size,
vaddr,
paddr,
0);
vaddr = NULL;
}
}
} else {
wlan_minidump_remove(soc->wbm_idle_link_ring.base_vaddr_unaligned,
soc->wbm_idle_link_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_IDLE_LINK,
"wbm_idle_link_ring");
dp_srng_free(soc, &soc->wbm_idle_link_ring);
}
}
QDF_STATUS dp_hw_link_desc_ring_alloc(struct dp_soc *soc)
{
uint32_t entry_size, i;
uint32_t total_mem_size;
qdf_dma_addr_t *baseaddr = NULL;
struct dp_srng *dp_srng;
uint32_t ring_type;
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t tlds;
ring_type = WBM_IDLE_LINK;
dp_srng = &soc->wbm_idle_link_ring;
tlds = soc->total_link_descs;
entry_size = hal_srng_get_entrysize(soc->hal_soc, ring_type);
total_mem_size = entry_size * tlds;
if (total_mem_size <= max_alloc_size) {
if (dp_srng_alloc(soc, dp_srng, ring_type, tlds, 0)) {
dp_init_err("%pK: Link desc idle ring setup failed",
soc);
goto fail;
}
wlan_minidump_log(soc->wbm_idle_link_ring.base_vaddr_unaligned,
soc->wbm_idle_link_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_IDLE_LINK,
"wbm_idle_link_ring");
} else {
uint32_t num_scatter_bufs;
uint32_t buf_size = 0;
soc->wbm_idle_scatter_buf_size =
hal_idle_list_scatter_buf_size(soc->hal_soc);
hal_idle_scatter_buf_num_entries(
soc->hal_soc,
soc->wbm_idle_scatter_buf_size);
num_scatter_bufs = hal_idle_list_num_scatter_bufs(
soc->hal_soc, total_mem_size,
soc->wbm_idle_scatter_buf_size);
if (num_scatter_bufs > MAX_IDLE_SCATTER_BUFS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("scatter bufs size out of bounds"));
goto fail;
}
for (i = 0; i < num_scatter_bufs; i++) {
baseaddr = &soc->wbm_idle_scatter_buf_base_paddr[i];
buf_size = soc->wbm_idle_scatter_buf_size;
soc->wbm_idle_scatter_buf_base_vaddr[i] =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
buf_size,
baseaddr);
if (!soc->wbm_idle_scatter_buf_base_vaddr[i]) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Scatter lst memory alloc fail"));
goto fail;
}
}
soc->num_scatter_bufs = num_scatter_bufs;
}
return QDF_STATUS_SUCCESS;
fail:
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
void *vaddr = soc->wbm_idle_scatter_buf_base_vaddr[i];
qdf_dma_addr_t paddr = soc->wbm_idle_scatter_buf_base_paddr[i];
if (vaddr) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
vaddr,
paddr, 0);
vaddr = NULL;
}
}
return QDF_STATUS_E_NOMEM;
}
qdf_export_symbol(dp_hw_link_desc_pool_banks_alloc);
QDF_STATUS dp_hw_link_desc_ring_init(struct dp_soc *soc)
{
struct dp_srng *dp_srng = &soc->wbm_idle_link_ring;
if (dp_srng->base_vaddr_unaligned) {
if (dp_srng_init(soc, dp_srng, WBM_IDLE_LINK, 0, 0))
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
void dp_hw_link_desc_ring_deinit(struct dp_soc *soc)
{
dp_srng_deinit(soc, &soc->wbm_idle_link_ring, WBM_IDLE_LINK, 0);
}
void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
{
uint32_t cookie = 0;
uint32_t page_idx = 0;
struct qdf_mem_multi_page_t *pages;
struct qdf_mem_dma_page_t *dma_pages;
uint32_t offset = 0;
uint32_t count = 0;
uint32_t desc_id = 0;
void *desc_srng;
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
uint32_t *total_link_descs_addr;
uint32_t total_link_descs;
uint32_t scatter_buf_num;
uint32_t num_entries_per_buf = 0;
uint32_t rem_entries;
uint32_t num_descs_per_page;
uint32_t num_scatter_bufs = 0;
uint8_t *scatter_buf_ptr;
void *desc;
num_scatter_bufs = soc->num_scatter_bufs;
if (mac_id == WLAN_INVALID_PDEV_ID) {
pages = &soc->link_desc_pages;
total_link_descs = soc->total_link_descs;
desc_srng = soc->wbm_idle_link_ring.hal_srng;
} else {
pages = dp_monitor_get_link_desc_pages(soc, mac_id);
/* dp_monitor_get_link_desc_pages returns NULL only
* if monitor SOC is NULL
*/
if (!pages) {
dp_err("can not get link desc pages");
QDF_ASSERT(0);
return;
}
total_link_descs_addr =
dp_monitor_get_total_link_descs(soc, mac_id);
total_link_descs = *total_link_descs_addr;
desc_srng = soc->rxdma_mon_desc_ring[mac_id].hal_srng;
}
dma_pages = pages->dma_pages;
do {
qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
pages->page_size);
page_idx++;
} while (page_idx < pages->num_pages);
if (desc_srng) {
hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
page_idx = 0;
count = 0;
offset = 0;
while ((desc = hal_srng_src_get_next(soc->hal_soc,
desc_srng)) &&
(count < total_link_descs)) {
page_idx = count / pages->num_element_per_page;
if (desc_id == pages->num_element_per_page)
desc_id = 0;
offset = count % pages->num_element_per_page;
cookie = LINK_DESC_COOKIE(desc_id, page_idx,
soc->link_desc_id_start);
hal_set_link_desc_addr(soc->hal_soc, desc, cookie,
dma_pages[page_idx].page_p_addr
+ (offset * link_desc_size),
soc->idle_link_bm_id);
count++;
desc_id++;
}
hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
} else {
/* Populate idle list scatter buffers with link descriptor
* pointers
*/
scatter_buf_num = 0;
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc,
soc->wbm_idle_scatter_buf_size);
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
rem_entries = num_entries_per_buf;
page_idx = 0; count = 0;
offset = 0;
num_descs_per_page = pages->num_element_per_page;
while (count < total_link_descs) {
page_idx = count / num_descs_per_page;
offset = count % num_descs_per_page;
if (desc_id == pages->num_element_per_page)
desc_id = 0;
cookie = LINK_DESC_COOKIE(desc_id, page_idx,
soc->link_desc_id_start);
hal_set_link_desc_addr(soc->hal_soc,
(void *)scatter_buf_ptr,
cookie,
dma_pages[page_idx].page_p_addr +
(offset * link_desc_size),
soc->idle_link_bm_id);
rem_entries--;
if (rem_entries) {
scatter_buf_ptr += link_desc_size;
} else {
rem_entries = num_entries_per_buf;
scatter_buf_num++;
if (scatter_buf_num >= num_scatter_bufs)
break;
scatter_buf_ptr = (uint8_t *)
(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num]);
}
count++;
desc_id++;
}
/* Setup link descriptor idle list in HW */
hal_setup_link_idle_list(soc->hal_soc,
soc->wbm_idle_scatter_buf_base_paddr,
soc->wbm_idle_scatter_buf_base_vaddr,
num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
(uint32_t)(scatter_buf_ptr -
(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num-1])), total_link_descs);
}
}
qdf_export_symbol(dp_link_desc_ring_replenish);
#ifdef IPA_OFFLOAD
#define USE_1_IPA_RX_REO_RING 1
#define USE_2_IPA_RX_REO_RINGS 2
#define REO_DST_RING_SIZE_QCA6290 1023
#ifndef CONFIG_WIFI_EMULATION_WIFI_3_0
#define REO_DST_RING_SIZE_QCA8074 1023
#define REO_DST_RING_SIZE_QCN9000 2048
#else
#define REO_DST_RING_SIZE_QCA8074 8
#define REO_DST_RING_SIZE_QCN9000 8
#endif /* CONFIG_WIFI_EMULATION_WIFI_3_0 */
#ifdef IPA_WDI3_TX_TWO_PIPES
#ifdef DP_MEMORY_OPT
static int dp_ipa_init_alt_tx_ring(struct dp_soc *soc)
{
return dp_init_tx_ring_pair_by_index(soc, IPA_TX_ALT_RING_IDX);
}
static void dp_ipa_deinit_alt_tx_ring(struct dp_soc *soc)
{
dp_deinit_tx_pair_by_index(soc, IPA_TX_ALT_RING_IDX);
}
static int dp_ipa_alloc_alt_tx_ring(struct dp_soc *soc)
{
return dp_alloc_tx_ring_pair_by_index(soc, IPA_TX_ALT_RING_IDX);
}
static void dp_ipa_free_alt_tx_ring(struct dp_soc *soc)
{
dp_free_tx_ring_pair_by_index(soc, IPA_TX_ALT_RING_IDX);
}
#else /* !DP_MEMORY_OPT */
static int dp_ipa_init_alt_tx_ring(struct dp_soc *soc)
{
return 0;
}
static void dp_ipa_deinit_alt_tx_ring(struct dp_soc *soc)
{
}
static int dp_ipa_alloc_alt_tx_ring(struct dp_soc *soc)
{
return 0;
}
static void dp_ipa_free_alt_tx_ring(struct dp_soc *soc)
{
}
#endif /* DP_MEMORY_OPT */
void dp_ipa_hal_tx_init_alt_data_ring(struct dp_soc *soc)
{
hal_tx_init_data_ring(soc->hal_soc,
soc->tcl_data_ring[IPA_TX_ALT_RING_IDX].hal_srng);
}
#else /* !IPA_WDI3_TX_TWO_PIPES */
static int dp_ipa_init_alt_tx_ring(struct dp_soc *soc)
{
return 0;
}
static void dp_ipa_deinit_alt_tx_ring(struct dp_soc *soc)
{
}
static int dp_ipa_alloc_alt_tx_ring(struct dp_soc *soc)
{
return 0;
}
static void dp_ipa_free_alt_tx_ring(struct dp_soc *soc)
{
}
void dp_ipa_hal_tx_init_alt_data_ring(struct dp_soc *soc)
{
}
#endif /* IPA_WDI3_TX_TWO_PIPES */
#else
#define REO_DST_RING_SIZE_QCA6290 1024
static int dp_ipa_init_alt_tx_ring(struct dp_soc *soc)
{
return 0;
}
static void dp_ipa_deinit_alt_tx_ring(struct dp_soc *soc)
{
}
static int dp_ipa_alloc_alt_tx_ring(struct dp_soc *soc)
{
return 0;
}
static void dp_ipa_free_alt_tx_ring(struct dp_soc *soc)
{
}
void dp_ipa_hal_tx_init_alt_data_ring(struct dp_soc *soc)
{
}
#endif /* IPA_OFFLOAD */
/**
* dp_soc_reset_cpu_ring_map() - Reset cpu ring map
* @soc: Datapath soc handler
*
* This api resets the default cpu ring map
*/
void dp_soc_reset_cpu_ring_map(struct dp_soc *soc)
{
uint8_t i;
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
switch (nss_config) {
case dp_nss_cfg_first_radio:
/*
* Setting Tx ring map for one nss offloaded radio
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_FIRST_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_second_radio:
/*
* Setting Tx ring for two nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_SECOND_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbdc:
/*
* Setting Tx ring map for 2 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBDC_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbtc:
/*
* Setting Tx ring map for 3 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBTC_OFFLOADED_MAP][i];
break;
default:
dp_err("tx_ring_map failed due to invalid nss cfg");
break;
}
}
}
/**
* dp_soc_disable_unused_mac_intr_mask() - reset interrupt mask for
* unused WMAC hw rings
* @soc: DP Soc handle
* @mac_num: wmac num
*
* Return: Return void
*/
static void dp_soc_disable_unused_mac_intr_mask(struct dp_soc *soc,
int mac_num)
{
uint8_t *grp_mask = NULL;
int group_number;
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_rx_mon_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_rxdma2host_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(mac_num, grp_mask);
wlan_cfg_set_host2rxdma_mon_ring_mask(soc->wlan_cfg_ctx,
group_number, 0x0);
}
#ifdef IPA_OFFLOAD
#ifdef IPA_WDI3_VLAN_SUPPORT
/**
* dp_soc_reset_ipa_vlan_intr_mask() - reset interrupt mask for IPA offloaded
* ring for vlan tagged traffic
* @soc: DP Soc handle
*
* Return: Return void
*/
void dp_soc_reset_ipa_vlan_intr_mask(struct dp_soc *soc)
{
uint8_t *grp_mask = NULL;
int group_number, mask;
if (!wlan_ipa_is_vlan_enabled())
return;
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
group_number = dp_srng_find_ring_in_mask(IPA_ALT_REO_DEST_RING_IDX, grp_mask);
if (group_number < 0) {
dp_init_debug("%pK: ring not part of any group; ring_type: %d,ring_num %d",
soc, REO_DST, IPA_ALT_REO_DEST_RING_IDX);
return;
}
mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, group_number);
/* reset the interrupt mask for offloaded ring */
mask &= (~(1 << IPA_ALT_REO_DEST_RING_IDX));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
#else
inline
void dp_soc_reset_ipa_vlan_intr_mask(struct dp_soc *soc)
{ }
#endif /* IPA_WDI3_VLAN_SUPPORT */
#else
inline
void dp_soc_reset_ipa_vlan_intr_mask(struct dp_soc *soc)
{ }
#endif /* IPA_OFFLOAD */
/**
* dp_soc_reset_intr_mask() - reset interrupt mask
* @soc: DP Soc handle
*
* Return: Return void
*/
void dp_soc_reset_intr_mask(struct dp_soc *soc)
{
uint8_t j;
uint8_t *grp_mask = NULL;
int group_number, mask, num_ring;
/* number of tx ring */
num_ring = soc->num_tcl_data_rings;
/*
* group mask for tx completion ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < WLAN_CFG_NUM_TCL_DATA_RINGS; j++) {
/*
* Group number corresponding to tx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
dp_init_debug("%pK: ring not part of any group; ring_type: %d,ring_num %d",
soc, WBM2SW_RELEASE, j);
continue;
}
mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, group_number);
if (!dp_soc_ring_if_nss_offloaded(soc, WBM2SW_RELEASE, j) &&
(!mask)) {
continue;
}
/* reset the tx mask for offloaded ring */
mask &= (~(1 << j));
/*
* reset the interrupt mask for offloaded ring.
*/
wlan_cfg_set_tx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/* number of rx rings */
num_ring = soc->num_reo_dest_rings;
/*
* group mask for reo destination ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < WLAN_CFG_NUM_REO_DEST_RING; j++) {
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
dp_init_debug("%pK: ring not part of any group; ring_type: %d,ring_num %d",
soc, REO_DST, j);
continue;
}
mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, group_number);
if (!dp_soc_ring_if_nss_offloaded(soc, REO_DST, j) &&
(!mask)) {
continue;
}
/* reset the interrupt mask for offloaded ring */
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/*
* group mask for Rx buffer refill ring
*/
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < MAX_PDEV_CNT; j++) {
int lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(lmac_id, grp_mask);
if (group_number < 0) {
dp_init_debug("%pK: ring not part of any group; ring_type: %d,ring_num %d",
soc, REO_DST, lmac_id);
continue;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number);
mask &= (~(1 << lmac_id));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, mask);
}
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, REO_EXCEPTION, j)) {
continue;
}
/*
* Group number corresponding to rx err ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
dp_init_debug("%pK: ring not part of any group; ring_type: %d,ring_num %d",
soc, REO_EXCEPTION, j);
continue;
}
wlan_cfg_set_rx_err_ring_mask(soc->wlan_cfg_ctx,
group_number, 0);
}
}
#ifdef IPA_OFFLOAD
bool dp_reo_remap_config(struct dp_soc *soc, uint32_t *remap0,
uint32_t *remap1, uint32_t *remap2)
{
uint32_t ring[WLAN_CFG_NUM_REO_DEST_RING_MAX] = {
REO_REMAP_SW1, REO_REMAP_SW2, REO_REMAP_SW3,
REO_REMAP_SW5, REO_REMAP_SW6, REO_REMAP_SW7};
switch (soc->arch_id) {
case CDP_ARCH_TYPE_BE:
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
soc->num_reo_dest_rings -
USE_2_IPA_RX_REO_RINGS, remap1,
remap2);
break;
case CDP_ARCH_TYPE_LI:
if (wlan_ipa_is_vlan_enabled()) {
hal_compute_reo_remap_ix2_ix3(
soc->hal_soc, ring,
soc->num_reo_dest_rings -
USE_2_IPA_RX_REO_RINGS, remap1,
remap2);
} else {
hal_compute_reo_remap_ix2_ix3(
soc->hal_soc, ring,
soc->num_reo_dest_rings -
USE_1_IPA_RX_REO_RING, remap1,
remap2);
}
hal_compute_reo_remap_ix0(soc->hal_soc, remap0);
break;
default:
dp_err("unknown arch_id 0x%x", soc->arch_id);
QDF_BUG(0);
}
dp_debug("remap1 %x remap2 %x", *remap1, *remap2);
return true;
}
#ifdef IPA_WDI3_TX_TWO_PIPES
static bool dp_ipa_is_alt_tx_ring(int index)
{
return index == IPA_TX_ALT_RING_IDX;
}
static bool dp_ipa_is_alt_tx_comp_ring(int index)
{
return index == IPA_TX_ALT_COMP_RING_IDX;
}
#else /* !IPA_WDI3_TX_TWO_PIPES */
static bool dp_ipa_is_alt_tx_ring(int index)
{
return false;
}
static bool dp_ipa_is_alt_tx_comp_ring(int index)
{
return false;
}
#endif /* IPA_WDI3_TX_TWO_PIPES */
/**
* dp_ipa_get_tx_ring_size() - Get Tx ring size for IPA
*
* @tx_ring_num: Tx ring number
* @tx_ipa_ring_sz: Return param only updated for IPA.
* @soc_cfg_ctx: dp soc cfg context
*
* Return: None
*/
static void dp_ipa_get_tx_ring_size(int tx_ring_num, int *tx_ipa_ring_sz,
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx)
{
if (!soc_cfg_ctx->ipa_enabled)
return;
if (tx_ring_num == IPA_TCL_DATA_RING_IDX)
*tx_ipa_ring_sz = wlan_cfg_ipa_tx_ring_size(soc_cfg_ctx);
else if (dp_ipa_is_alt_tx_ring(tx_ring_num))
*tx_ipa_ring_sz = wlan_cfg_ipa_tx_alt_ring_size(soc_cfg_ctx);
}
/**
* dp_ipa_get_tx_comp_ring_size() - Get Tx comp ring size for IPA
*
* @tx_comp_ring_num: Tx comp ring number
* @tx_comp_ipa_ring_sz: Return param only updated for IPA.
* @soc_cfg_ctx: dp soc cfg context
*
* Return: None
*/
static void dp_ipa_get_tx_comp_ring_size(int tx_comp_ring_num,
int *tx_comp_ipa_ring_sz,
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx)
{
if (!soc_cfg_ctx->ipa_enabled)
return;
if (tx_comp_ring_num == IPA_TCL_DATA_RING_IDX)
*tx_comp_ipa_ring_sz =
wlan_cfg_ipa_tx_comp_ring_size(soc_cfg_ctx);
else if (dp_ipa_is_alt_tx_comp_ring(tx_comp_ring_num))
*tx_comp_ipa_ring_sz =
wlan_cfg_ipa_tx_alt_comp_ring_size(soc_cfg_ctx);
}
#else
static uint8_t dp_reo_ring_selection(uint32_t value, uint32_t *ring)
{
uint8_t num = 0;
switch (value) {
/* should we have all the different possible ring configs */
case 0xFF:
num = 8;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW3;
ring[3] = REO_REMAP_SW4;
ring[4] = REO_REMAP_SW5;
ring[5] = REO_REMAP_SW6;
ring[6] = REO_REMAP_SW7;
ring[7] = REO_REMAP_SW8;
break;
case 0x3F:
num = 6;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW3;
ring[3] = REO_REMAP_SW4;
ring[4] = REO_REMAP_SW5;
ring[5] = REO_REMAP_SW6;
break;
case 0xF:
num = 4;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW3;
ring[3] = REO_REMAP_SW4;
break;
case 0xE:
num = 3;
ring[0] = REO_REMAP_SW2;
ring[1] = REO_REMAP_SW3;
ring[2] = REO_REMAP_SW4;
break;
case 0xD:
num = 3;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW3;
ring[2] = REO_REMAP_SW4;
break;
case 0xC:
num = 2;
ring[0] = REO_REMAP_SW3;
ring[1] = REO_REMAP_SW4;
break;
case 0xB:
num = 3;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW4;
break;
case 0xA:
num = 2;
ring[0] = REO_REMAP_SW2;
ring[1] = REO_REMAP_SW4;
break;
case 0x9:
num = 2;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW4;
break;
case 0x8:
num = 1;
ring[0] = REO_REMAP_SW4;
break;
case 0x7:
num = 3;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
ring[2] = REO_REMAP_SW3;
break;
case 0x6:
num = 2;
ring[0] = REO_REMAP_SW2;
ring[1] = REO_REMAP_SW3;
break;
case 0x5:
num = 2;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW3;
break;
case 0x4:
num = 1;
ring[0] = REO_REMAP_SW3;
break;
case 0x3:
num = 2;
ring[0] = REO_REMAP_SW1;
ring[1] = REO_REMAP_SW2;
break;
case 0x2:
num = 1;
ring[0] = REO_REMAP_SW2;
break;
case 0x1:
num = 1;
ring[0] = REO_REMAP_SW1;
break;
default:
dp_err("unknown reo ring map 0x%x", value);
QDF_BUG(0);
}
return num;
}
bool dp_reo_remap_config(struct dp_soc *soc,
uint32_t *remap0,
uint32_t *remap1,
uint32_t *remap2)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint32_t reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
uint8_t num;
uint32_t ring[WLAN_CFG_NUM_REO_DEST_RING_MAX];
uint32_t value;
switch (offload_radio) {
case dp_nss_cfg_default:
value = reo_config & WLAN_CFG_NUM_REO_RINGS_MAP_MAX;
num = dp_reo_ring_selection(value, ring);
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
num, remap1, remap2);
hal_compute_reo_remap_ix0(soc->hal_soc, remap0);
break;
case dp_nss_cfg_first_radio:
value = reo_config & 0xE;
num = dp_reo_ring_selection(value, ring);
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
num, remap1, remap2);
break;
case dp_nss_cfg_second_radio:
value = reo_config & 0xD;
num = dp_reo_ring_selection(value, ring);
hal_compute_reo_remap_ix2_ix3(soc->hal_soc, ring,
num, remap1, remap2);
break;
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
/* return false if both or all are offloaded to NSS */
return false;
}
dp_debug("remap1 %x remap2 %x offload_radio %u",
*remap1, *remap2, offload_radio);
return true;
}
static void dp_ipa_get_tx_ring_size(int ring_num, int *tx_ipa_ring_sz,
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx)
{
}
static void dp_ipa_get_tx_comp_ring_size(int tx_comp_ring_num,
int *tx_comp_ipa_ring_sz,
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx)
{
}
#endif /* IPA_OFFLOAD */
/**
* dp_reo_frag_dst_set() - configure reo register to set the
* fragment destination ring
* @soc: Datapath soc
* @frag_dst_ring: output parameter to set fragment destination ring
*
* Based on offload_radio below fragment destination rings is selected
* 0 - TCL
* 1 - SW1
* 2 - SW2
* 3 - SW3
* 4 - SW4
* 5 - Release
* 6 - FW
* 7 - alternate select
*
* Return: void
*/
void dp_reo_frag_dst_set(struct dp_soc *soc, uint8_t *frag_dst_ring)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
switch (offload_radio) {
case dp_nss_cfg_default:
*frag_dst_ring = REO_REMAP_TCL;
break;
case dp_nss_cfg_first_radio:
/*
* This configuration is valid for single band radio which
* is also NSS offload.
*/
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
*frag_dst_ring = HAL_SRNG_REO_ALTERNATE_SELECT;
break;
default:
dp_init_err("%pK: dp_reo_frag_dst_set invalid offload radio config", soc);
break;
}
}
#ifdef WLAN_FEATURE_STATS_EXT
static inline void dp_create_ext_stats_event(struct dp_soc *soc)
{
qdf_event_create(&soc->rx_hw_stats_event);
}
#else
static inline void dp_create_ext_stats_event(struct dp_soc *soc)
{
}
#endif
static void dp_deinit_tx_pair_by_index(struct dp_soc *soc, int index)
{
int tcl_ring_num, wbm_ring_num;
wlan_cfg_get_tcl_wbm_ring_num_for_index(soc->wlan_cfg_ctx,
index,
&tcl_ring_num,
&wbm_ring_num);
if (tcl_ring_num == -1) {
dp_err("incorrect tcl ring num for index %u", index);
return;
}
wlan_minidump_remove(soc->tcl_data_ring[index].base_vaddr_unaligned,
soc->tcl_data_ring[index].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TCL_DATA,
"tcl_data_ring");
dp_info("index %u tcl %u wbm %u", index, tcl_ring_num, wbm_ring_num);
dp_srng_deinit(soc, &soc->tcl_data_ring[index], TCL_DATA,
tcl_ring_num);
if (wbm_ring_num == INVALID_WBM_RING_NUM)
return;
wlan_minidump_remove(soc->tx_comp_ring[index].base_vaddr_unaligned,
soc->tx_comp_ring[index].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TX_COMP,
"tcl_comp_ring");
dp_srng_deinit(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE,
wbm_ring_num);
}
/**
* dp_init_tx_ring_pair_by_index() - The function inits tcl data/wbm completion
* ring pair
* @soc: DP soc pointer
* @index: index of soc->tcl_data or soc->tx_comp to initialize
*
* Return: QDF_STATUS_SUCCESS on success, error code otherwise.
*/
static QDF_STATUS dp_init_tx_ring_pair_by_index(struct dp_soc *soc,
uint8_t index)
{
int tcl_ring_num, wbm_ring_num;
uint8_t bm_id;
if (index >= MAX_TCL_DATA_RINGS) {
dp_err("unexpected index!");
QDF_BUG(0);
goto fail1;
}
wlan_cfg_get_tcl_wbm_ring_num_for_index(soc->wlan_cfg_ctx,
index,
&tcl_ring_num,
&wbm_ring_num);
if (tcl_ring_num == -1) {
dp_err("incorrect tcl ring num for index %u", index);
goto fail1;
}
dp_info("index %u tcl %u wbm %u", index, tcl_ring_num, wbm_ring_num);
if (dp_srng_init(soc, &soc->tcl_data_ring[index], TCL_DATA,
tcl_ring_num, 0)) {
dp_err("dp_srng_init failed for tcl_data_ring");
goto fail1;
}
wlan_minidump_log(soc->tcl_data_ring[index].base_vaddr_unaligned,
soc->tcl_data_ring[index].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TCL_DATA,
"tcl_data_ring");
if (wbm_ring_num == INVALID_WBM_RING_NUM)
goto set_rbm;
if (dp_srng_init(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE,
wbm_ring_num, 0)) {
dp_err("dp_srng_init failed for tx_comp_ring");
goto fail1;
}
wlan_minidump_log(soc->tx_comp_ring[index].base_vaddr_unaligned,
soc->tx_comp_ring[index].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TX_COMP,
"tcl_comp_ring");
set_rbm:
bm_id = wlan_cfg_get_rbm_id_for_index(soc->wlan_cfg_ctx, tcl_ring_num);
soc->arch_ops.tx_implicit_rbm_set(soc, tcl_ring_num, bm_id);
return QDF_STATUS_SUCCESS;
fail1:
return QDF_STATUS_E_FAILURE;
}
static void dp_free_tx_ring_pair_by_index(struct dp_soc *soc, uint8_t index)
{
dp_debug("index %u", index);
dp_srng_free(soc, &soc->tcl_data_ring[index]);
dp_srng_free(soc, &soc->tx_comp_ring[index]);
}
/**
* dp_alloc_tx_ring_pair_by_index() - The function allocs tcl data/wbm2sw
* ring pair for the given "index"
* @soc: DP soc pointer
* @index: index of soc->tcl_data or soc->tx_comp to initialize
*
* Return: QDF_STATUS_SUCCESS on success, error code otherwise.
*/
static QDF_STATUS dp_alloc_tx_ring_pair_by_index(struct dp_soc *soc,
uint8_t index)
{
int tx_ring_size;
int tx_comp_ring_size;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
int cached = 0;
if (index >= MAX_TCL_DATA_RINGS) {
dp_err("unexpected index!");
QDF_BUG(0);
goto fail1;
}
dp_debug("index %u", index);
tx_ring_size = wlan_cfg_tx_ring_size(soc_cfg_ctx);
dp_ipa_get_tx_ring_size(index, &tx_ring_size, soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->tcl_data_ring[index], TCL_DATA,
tx_ring_size, cached)) {
dp_err("dp_srng_alloc failed for tcl_data_ring");
goto fail1;
}
tx_comp_ring_size = wlan_cfg_tx_comp_ring_size(soc_cfg_ctx);
dp_ipa_get_tx_comp_ring_size(index, &tx_comp_ring_size, soc_cfg_ctx);
/* Enable cached TCL desc if NSS offload is disabled */
if (!wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx))
cached = WLAN_CFG_DST_RING_CACHED_DESC;
if (wlan_cfg_get_wbm_ring_num_for_index(soc->wlan_cfg_ctx, index) ==
INVALID_WBM_RING_NUM)
return QDF_STATUS_SUCCESS;
if (dp_srng_alloc(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE,
tx_comp_ring_size, cached)) {
dp_err("dp_srng_alloc failed for tx_comp_ring");
goto fail1;
}
return QDF_STATUS_SUCCESS;
fail1:
return QDF_STATUS_E_FAILURE;
}
/**
* dp_dscp_tid_map_setup() - Initialize the dscp-tid maps
* @pdev: DP_PDEV handle
*
* Return: void
*/
void
dp_dscp_tid_map_setup(struct dp_pdev *pdev)
{
uint8_t map_id;
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
for (map_id = 0; map_id < DP_MAX_TID_MAPS; map_id++) {
qdf_mem_copy(pdev->dscp_tid_map[map_id],
default_dscp_tid_map,
sizeof(default_dscp_tid_map));
}
for (map_id = 0; map_id < soc->num_hw_dscp_tid_map; map_id++) {
hal_tx_set_dscp_tid_map(soc->hal_soc,
default_dscp_tid_map,
map_id);
}
}
/**
* dp_pcp_tid_map_setup() - Initialize the pcp-tid maps
* @pdev: DP_PDEV handle
*
* Return: void
*/
void
dp_pcp_tid_map_setup(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
qdf_mem_copy(soc->pcp_tid_map, default_pcp_tid_map,
sizeof(default_pcp_tid_map));
hal_tx_set_pcp_tid_map_default(soc->hal_soc, default_pcp_tid_map);
}
#ifndef DP_UMAC_HW_RESET_SUPPORT
static inline
#endif
void dp_reo_desc_freelist_destroy(struct dp_soc *soc)
{
struct reo_desc_list_node *desc;
struct dp_rx_tid *rx_tid;
qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
while (qdf_list_remove_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) {
rx_tid = &desc->rx_tid;
qdf_mem_unmap_nbytes_single(soc->osdev,
rx_tid->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
rx_tid->hw_qdesc_alloc_size);
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
qdf_list_destroy(&soc->reo_desc_freelist);
qdf_spinlock_destroy(&soc->reo_desc_freelist_lock);
}
#ifdef WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY
/**
* dp_reo_desc_deferred_freelist_create() - Initialize the resources used
* for deferred reo desc list
* @soc: Datapath soc handle
*
* Return: void
*/
static void dp_reo_desc_deferred_freelist_create(struct dp_soc *soc)
{
qdf_spinlock_create(&soc->reo_desc_deferred_freelist_lock);
qdf_list_create(&soc->reo_desc_deferred_freelist,
REO_DESC_DEFERRED_FREELIST_SIZE);
soc->reo_desc_deferred_freelist_init = true;
}
/**
* dp_reo_desc_deferred_freelist_destroy() - loop the deferred free list &
* free the leftover REO QDESCs
* @soc: Datapath soc handle
*
* Return: void
*/
static void dp_reo_desc_deferred_freelist_destroy(struct dp_soc *soc)
{
struct reo_desc_deferred_freelist_node *desc;
qdf_spin_lock_bh(&soc->reo_desc_deferred_freelist_lock);
soc->reo_desc_deferred_freelist_init = false;
while (qdf_list_remove_front(&soc->reo_desc_deferred_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) {
qdf_mem_unmap_nbytes_single(soc->osdev,
desc->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
desc->hw_qdesc_alloc_size);
qdf_mem_free(desc->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_deferred_freelist_lock);
qdf_list_destroy(&soc->reo_desc_deferred_freelist);
qdf_spinlock_destroy(&soc->reo_desc_deferred_freelist_lock);
}
#else
static inline void dp_reo_desc_deferred_freelist_create(struct dp_soc *soc)
{
}
static inline void dp_reo_desc_deferred_freelist_destroy(struct dp_soc *soc)
{
}
#endif /* !WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY */
/**
* dp_soc_reset_txrx_ring_map() - reset tx ring map
* @soc: DP SOC handle
*
*/
static void dp_soc_reset_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++)
soc->tx_ring_map[i] = 0;
}
/**
* dp_soc_deinit() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
void dp_soc_deinit(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct htt_soc *htt_soc = soc->htt_handle;
dp_monitor_soc_deinit(soc);
/* free peer tables & AST tables allocated during peer_map_attach */
if (soc->peer_map_attach_success) {
dp_peer_find_detach(soc);
soc->arch_ops.txrx_peer_map_detach(soc);
soc->peer_map_attach_success = FALSE;
}
qdf_flush_work(&soc->htt_stats.work);
qdf_disable_work(&soc->htt_stats.work);
qdf_spinlock_destroy(&soc->htt_stats.lock);
dp_soc_reset_txrx_ring_map(soc);
dp_reo_desc_freelist_destroy(soc);
dp_reo_desc_deferred_freelist_destroy(soc);
DEINIT_RX_HW_STATS_LOCK(soc);
qdf_spinlock_destroy(&soc->ast_lock);
dp_peer_mec_spinlock_destroy(soc);
qdf_nbuf_queue_free(&soc->htt_stats.msg);
qdf_nbuf_queue_free(&soc->invalid_buf_queue);
qdf_spinlock_destroy(&soc->rx.defrag.defrag_lock);
qdf_spinlock_destroy(&soc->vdev_map_lock);
dp_reo_cmdlist_destroy(soc);
qdf_spinlock_destroy(&soc->rx.reo_cmd_lock);
dp_soc_tx_desc_sw_pools_deinit(soc);
dp_soc_srng_deinit(soc);
dp_hw_link_desc_ring_deinit(soc);
dp_soc_print_inactive_objects(soc);
qdf_spinlock_destroy(&soc->inactive_peer_list_lock);
qdf_spinlock_destroy(&soc->inactive_vdev_list_lock);
htt_soc_htc_dealloc(soc->htt_handle);
htt_soc_detach(htt_soc);
/* Free wbm sg list and reset flags in down path */
dp_rx_wbm_sg_list_deinit(soc);
wlan_minidump_remove(soc, sizeof(*soc), soc->ctrl_psoc,
WLAN_MD_DP_SOC, "dp_soc");
}
#ifdef QCA_HOST2FW_RXBUF_RING
void
dp_htt_setup_rxdma_err_dst_ring(struct dp_soc *soc, int mac_id,
int lmac_id)
{
if (soc->rxdma_err_dst_ring[lmac_id].hal_srng)
htt_srng_setup(soc->htt_handle, mac_id,
soc->rxdma_err_dst_ring[lmac_id].hal_srng,
RXDMA_DST);
}
#endif
void dp_vdev_get_default_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
/*
* hash based steering is disabled for Radios which are offloaded
* to NSS
*/
if (!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx))
*hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx);
/*
* Below line of code will ensure the proper reo_dest ring is chosen
* for cases where toeplitz hash cannot be generated (ex: non TCP/UDP)
*/
*reo_dest = pdev->reo_dest;
}
#ifdef IPA_OFFLOAD
/**
* dp_is_vdev_subtype_p2p() - Check if the subtype for vdev is P2P
* @vdev: Virtual device
*
* Return: true if the vdev is of subtype P2P
* false if the vdev is of any other subtype
*/
static inline bool dp_is_vdev_subtype_p2p(struct dp_vdev *vdev)
{
if (vdev->subtype == wlan_op_subtype_p2p_device ||
vdev->subtype == wlan_op_subtype_p2p_cli ||
vdev->subtype == wlan_op_subtype_p2p_go)
return true;
return false;
}
/**
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @setup_info:
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
* @lmac_peer_id_msb:
*
* If IPA is enabled in ini, for SAP mode, disable hash based
* steering, use default reo_dst ring for RX. Use config values for other modes.
*
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
struct cdp_peer_setup_info *setup_info,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based,
uint8_t *lmac_peer_id_msb)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
/* For P2P-GO interfaces we do not need to change the REO
* configuration even if IPA config is enabled
*/
if (dp_is_vdev_subtype_p2p(vdev))
return;
/*
* If IPA is enabled, disable hash-based flow steering and set
* reo_dest_ring_4 as the REO ring to receive packets on.
* IPA is configured to reap reo_dest_ring_4.
*
* Note - REO DST indexes are from 0 - 3, while cdp_host_reo_dest_ring
* value enum value is from 1 - 4.
* Hence, *reo_dest = IPA_REO_DEST_RING_IDX + 1
*/
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (dp_ipa_is_mdm_platform()) {
*reo_dest = IPA_REO_DEST_RING_IDX + 1;
if (vdev->opmode == wlan_op_mode_ap)
*hash_based = 0;
} else {
dp_debug("opt_dp: default HOST reo ring is set");
}
}
}
#else
/**
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @setup_info:
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
* @lmac_peer_id_msb:
*
* Use system config values for hash based steering.
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
struct cdp_peer_setup_info *setup_info,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based,
uint8_t *lmac_peer_id_msb)
{
struct dp_soc *soc = vdev->pdev->soc;
soc->arch_ops.peer_get_reo_hash(vdev, setup_info, reo_dest, hash_based,
lmac_peer_id_msb);
}
#endif /* IPA_OFFLOAD */
/**
* dp_peer_setup_wifi3() - initialize the peer
* @soc_hdl: soc handle object
* @vdev_id: vdev_id of vdev object
* @peer_mac: Peer's mac address
* @setup_info: peer setup info for MLO
*
* Return: QDF_STATUS
*/
QDF_STATUS
dp_peer_setup_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
uint8_t *peer_mac,
struct cdp_peer_setup_info *setup_info)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev;
bool hash_based = 0;
enum cdp_host_reo_dest_ring reo_dest;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct dp_vdev *vdev = NULL;
struct dp_peer *peer =
dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
DP_MOD_ID_CDP);
struct dp_peer *mld_peer = NULL;
enum wlan_op_mode vdev_opmode;
uint8_t lmac_peer_id_msb = 0;
if (!peer)
return QDF_STATUS_E_FAILURE;
vdev = peer->vdev;
if (!vdev) {
status = QDF_STATUS_E_FAILURE;
goto fail;
}
/* save vdev related member in case vdev freed */
vdev_opmode = vdev->opmode;
pdev = vdev->pdev;
dp_peer_setup_get_reo_hash(vdev, setup_info,
&reo_dest, &hash_based,
&lmac_peer_id_msb);
dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_PEER_SETUP,
peer, vdev, vdev->vdev_id,
setup_info);
dp_info("pdev: %d vdev :%d opmode:%u peer %pK (" QDF_MAC_ADDR_FMT ") "
"hash-based-steering:%d default-reo_dest:%u",
pdev->pdev_id, vdev->vdev_id,
vdev->opmode, peer,
QDF_MAC_ADDR_REF(peer->mac_addr.raw), hash_based, reo_dest);
/*
* There are corner cases where the AD1 = AD2 = "VAPs address"
* i.e both the devices have same MAC address. In these
* cases we want such pkts to be processed in NULL Q handler
* which is REO2TCL ring. for this reason we should
* not setup reo_queues and default route for bss_peer.
*/
if (!IS_MLO_DP_MLD_PEER(peer))
dp_monitor_peer_tx_init(pdev, peer);
if (!setup_info)
if (dp_peer_legacy_setup(soc, peer) !=
QDF_STATUS_SUCCESS) {
status = QDF_STATUS_E_RESOURCES;
goto fail;
}
if (peer->bss_peer && vdev->opmode == wlan_op_mode_ap) {
status = QDF_STATUS_E_FAILURE;
goto fail;
}
if (soc->cdp_soc.ol_ops->peer_set_default_routing) {
/* TODO: Check the destination ring number to be passed to FW */
soc->cdp_soc.ol_ops->peer_set_default_routing(
soc->ctrl_psoc,
peer->vdev->pdev->pdev_id,
peer->mac_addr.raw,
peer->vdev->vdev_id, hash_based, reo_dest,
lmac_peer_id_msb);
}
qdf_atomic_set(&peer->is_default_route_set, 1);
status = dp_peer_mlo_setup(soc, peer, vdev->vdev_id, setup_info);
if (QDF_IS_STATUS_ERROR(status)) {
dp_peer_err("peer mlo setup failed");
qdf_assert_always(0);
}
if (vdev_opmode != wlan_op_mode_monitor) {
/* In case of MLD peer, switch peer to mld peer and
* do peer_rx_init.
*/
if (hal_reo_shared_qaddr_is_enable(soc->hal_soc) &&
IS_MLO_DP_LINK_PEER(peer)) {
if (setup_info && setup_info->is_first_link) {
mld_peer = DP_GET_MLD_PEER_FROM_PEER(peer);
if (mld_peer)
dp_peer_rx_init(pdev, mld_peer);
else
dp_peer_err("MLD peer null. Primary link peer:%pK", peer);
}
} else {
dp_peer_rx_init(pdev, peer);
}
}
if (!IS_MLO_DP_MLD_PEER(peer))
dp_peer_ppdu_delayed_ba_init(peer);
fail:
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
return status;
}
/**
* dp_set_ba_aging_timeout() - set ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: Access category
* @value: timeout value in millisec
*
* Return: void
*/
void dp_set_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_set_ba_aging_timeout(soc->hal_soc, ac, value);
}
/**
* dp_get_ba_aging_timeout() - get ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: access category
* @value: timeout value in millisec
*
* Return: void
*/
void dp_get_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t *value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_get_ba_aging_timeout(soc->hal_soc, ac, value);
}
/**
* dp_set_pdev_reo_dest() - set the reo destination ring for this pdev
* @txrx_soc: cdp soc handle
* @pdev_id: id of physical device object
* @val: reo destination ring index (1 - 4)
*
* Return: QDF_STATUS
*/
QDF_STATUS
dp_set_pdev_reo_dest(struct cdp_soc_t *txrx_soc, uint8_t pdev_id,
enum cdp_host_reo_dest_ring val)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)txrx_soc,
pdev_id);
if (pdev) {
pdev->reo_dest = val;
return QDF_STATUS_SUCCESS;
}
return QDF_STATUS_E_FAILURE;
}
/**
* dp_get_pdev_reo_dest() - get the reo destination for this pdev
* @txrx_soc: cdp soc handle
* @pdev_id: id of physical device object
*
* Return: reo destination ring index
*/
enum cdp_host_reo_dest_ring
dp_get_pdev_reo_dest(struct cdp_soc_t *txrx_soc, uint8_t pdev_id)
{
struct dp_pdev *pdev =
dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)txrx_soc,
pdev_id);
if (pdev)
return pdev->reo_dest;
else
return cdp_host_reo_dest_ring_unknown;
}
void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_pdev *pdev = (struct dp_pdev *)cb_ctxt;
struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
if (!dp_check_pdev_exists(soc, pdev)) {
dp_err_rl("pdev doesn't exist");
return;
}
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
DP_PRINT_STATS("REO stats failure %d",
queue_status->header.status);
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
return;
}
pdev->stats.rx.bar_recv_cnt += queue_status->bar_rcvd_cnt;
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
}
/**
* dp_dump_wbm_idle_hptp() - dump wbm idle ring, hw hp tp info.
* @soc: dp soc.
* @pdev: dp pdev.
*
* Return: None.
*/
void
dp_dump_wbm_idle_hptp(struct dp_soc *soc, struct dp_pdev *pdev)
{
uint32_t hw_head;
uint32_t hw_tail;
struct dp_srng *srng;
if (!soc) {
dp_err("soc is NULL");
return;
}
if (!pdev) {
dp_err("pdev is NULL");
return;
}
srng = &pdev->soc->wbm_idle_link_ring;
if (!srng) {
dp_err("wbm_idle_link_ring srng is NULL");
return;
}
hal_get_hw_hptp(soc->hal_soc, srng->hal_srng, &hw_head,
&hw_tail, WBM_IDLE_LINK);
dp_debug("WBM_IDLE_LINK: HW hp: %d, HW tp: %d",
hw_head, hw_tail);
}
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
static void dp_update_soft_irq_limits(struct dp_soc *soc, uint32_t tx_limit,
uint32_t rx_limit)
{
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit = tx_limit;
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit = rx_limit;
}
#else
static inline
void dp_update_soft_irq_limits(struct dp_soc *soc, uint32_t tx_limit,
uint32_t rx_limit)
{
}
#endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
/**
* dp_display_srng_info() - Dump the srng HP TP info
* @soc_hdl: CDP Soc handle
*
* This function dumps the SW hp/tp values for the important rings.
* HW hp/tp values are not being dumped, since it can lead to
* READ NOC error when UMAC is in low power state. MCC does not have
* device force wake working yet.
*
* Return: none
*/
void dp_display_srng_info(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
hal_soc_handle_t hal_soc = soc->hal_soc;
uint32_t hp, tp, i;
dp_info("SRNG HP-TP data:");
for (i = 0; i < soc->num_tcl_data_rings; i++) {
hal_get_sw_hptp(hal_soc, soc->tcl_data_ring[i].hal_srng,
&tp, &hp);
dp_info("TCL DATA ring[%d]: hp=0x%x, tp=0x%x", i, hp, tp);
if (wlan_cfg_get_wbm_ring_num_for_index(soc->wlan_cfg_ctx, i) ==
INVALID_WBM_RING_NUM)
continue;
hal_get_sw_hptp(hal_soc, soc->tx_comp_ring[i].hal_srng,
&tp, &hp);
dp_info("TX comp ring[%d]: hp=0x%x, tp=0x%x", i, hp, tp);
}
for (i = 0; i < soc->num_reo_dest_rings; i++) {
hal_get_sw_hptp(hal_soc, soc->reo_dest_ring[i].hal_srng,
&tp, &hp);
dp_info("REO DST ring[%d]: hp=0x%x, tp=0x%x", i, hp, tp);
}
hal_get_sw_hptp(hal_soc, soc->reo_exception_ring.hal_srng, &tp, &hp);
dp_info("REO exception ring: hp=0x%x, tp=0x%x", hp, tp);
hal_get_sw_hptp(hal_soc, soc->rx_rel_ring.hal_srng, &tp, &hp);
dp_info("WBM RX release ring: hp=0x%x, tp=0x%x", hp, tp);
hal_get_sw_hptp(hal_soc, soc->wbm_desc_rel_ring.hal_srng, &tp, &hp);
dp_info("WBM desc release ring: hp=0x%x, tp=0x%x", hp, tp);
}
/**
* dp_set_pdev_pcp_tid_map_wifi3() - update pcp tid map in pdev
* @psoc: dp soc handle
* @pdev_id: id of DP_PDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
QDF_STATUS dp_set_pdev_pcp_tid_map_wifi3(ol_txrx_soc_handle psoc,
uint8_t pdev_id,
uint8_t pcp, uint8_t tid)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
soc->pcp_tid_map[pcp] = tid;
hal_tx_update_pcp_tid_map(soc->hal_soc, pcp, tid);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_pcp_tid_map_wifi3() - update pcp tid map in vdev
* @soc_hdl: DP soc handle
* @vdev_id: id of DP_VDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
QDF_STATUS dp_set_vdev_pcp_tid_map_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t vdev_id,
uint8_t pcp, uint8_t tid)
{
struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
if (!vdev)
return QDF_STATUS_E_FAILURE;
vdev->pcp_tid_map[pcp] = tid;
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
return QDF_STATUS_SUCCESS;
}
#if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
void dp_drain_txrx(struct cdp_soc_t *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
uint32_t cur_tx_limit, cur_rx_limit;
uint32_t budget = 0xffff;
uint32_t val;
int i;
int cpu = dp_srng_get_cpu();
cur_tx_limit = soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit;
cur_rx_limit = soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit;
/* Temporarily increase soft irq limits when going to drain
* the UMAC/LMAC SRNGs and restore them after polling.
* Though the budget is on higher side, the TX/RX reaping loops
* will not execute longer as both TX and RX would be suspended
* by the time this API is called.
*/
dp_update_soft_irq_limits(soc, budget, budget);
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
dp_service_srngs(&soc->intr_ctx[i], budget, cpu);
dp_update_soft_irq_limits(soc, cur_tx_limit, cur_rx_limit);
/* Do a dummy read at offset 0; this will ensure all
* pendings writes(HP/TP) are flushed before read returns.
*/
val = HAL_REG_READ((struct hal_soc *)soc->hal_soc, 0);
dp_debug("Register value at offset 0: %u", val);
}
#endif
#if defined(DP_POWER_SAVE) || defined(FEATURE_RUNTIME_PM)
/**
* dp_flush_ring_hptp() - Update ring shadow
* register HP/TP address when runtime
* resume
* @soc: DP soc context
* @hal_srng: srng
*
* Return: None
*/
static void dp_flush_ring_hptp(struct dp_soc *soc, hal_ring_handle_t hal_srng)
{
if (hal_srng && hal_srng_get_clear_event(hal_srng,
HAL_SRNG_FLUSH_EVENT)) {
/* Acquire the lock */
hal_srng_access_start(soc->hal_soc, hal_srng);
hal_srng_access_end(soc->hal_soc, hal_srng);
hal_srng_set_flush_last_ts(hal_srng);
dp_debug("flushed");
}
}
void dp_update_ring_hptp(struct dp_soc *soc, bool force_flush_tx)
{
uint8_t i;
if (force_flush_tx) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
hal_srng_set_event(soc->tcl_data_ring[i].hal_srng,
HAL_SRNG_FLUSH_EVENT);
dp_flush_ring_hptp(soc, soc->tcl_data_ring[i].hal_srng);
}
return;
}
for (i = 0; i < soc->num_tcl_data_rings; i++)
dp_flush_ring_hptp(soc, soc->tcl_data_ring[i].hal_srng);
dp_flush_ring_hptp(soc, soc->reo_cmd_ring.hal_srng);
}
#endif
#ifdef WLAN_FEATURE_STATS_EXT
/* rx hw stats event wait timeout in ms */
#define DP_REO_STATUS_STATS_TIMEOUT 100
/**
* dp_rx_hw_stats_cb() - request rx hw stats response callback
* @soc: soc handle
* @cb_ctxt: callback context
* @reo_status: reo command response status
*
* Return: None
*/
static void dp_rx_hw_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_req_rx_hw_stats_t *rx_hw_stats = cb_ctxt;
struct hal_reo_queue_status *queue_status = &reo_status->queue_status;
bool is_query_timeout;
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
is_query_timeout = rx_hw_stats->is_query_timeout;
/* free the cb_ctxt if all pending tid stats query is received */
if (qdf_atomic_dec_and_test(&rx_hw_stats->pending_tid_stats_cnt)) {
if (!is_query_timeout) {
qdf_event_set(&soc->rx_hw_stats_event);
soc->is_last_stats_ctx_init = false;
}
qdf_mem_free(rx_hw_stats);
}
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
dp_info("REO stats failure %d",
queue_status->header.status);
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
return;
}
if (!is_query_timeout) {
soc->ext_stats.rx_mpdu_received +=
queue_status->mpdu_frms_cnt;
soc->ext_stats.rx_mpdu_missed +=
queue_status->hole_cnt;
}
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
}
/**
* dp_request_rx_hw_stats() - request rx hardware stats
* @soc_hdl: soc handle
* @vdev_id: vdev id
*
* Return: None
*/
QDF_STATUS
dp_request_rx_hw_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
DP_MOD_ID_CDP);
struct dp_peer *peer = NULL;
QDF_STATUS status;
struct dp_req_rx_hw_stats_t *rx_hw_stats;
int rx_stats_sent_cnt = 0;
uint32_t last_rx_mpdu_received;
uint32_t last_rx_mpdu_missed;
if (!vdev) {
dp_err("vdev is null for vdev_id: %u", vdev_id);
status = QDF_STATUS_E_INVAL;
goto out;
}
peer = dp_vdev_bss_peer_ref_n_get(soc, vdev, DP_MOD_ID_CDP);
if (!peer) {
dp_err("Peer is NULL");
status = QDF_STATUS_E_INVAL;
goto out;
}
rx_hw_stats = qdf_mem_malloc(sizeof(*rx_hw_stats));
if (!rx_hw_stats) {
dp_err("malloc failed for hw stats structure");
status = QDF_STATUS_E_INVAL;
goto out;
}
qdf_event_reset(&soc->rx_hw_stats_event);
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
/* save the last soc cumulative stats and reset it to 0 */
last_rx_mpdu_received = soc->ext_stats.rx_mpdu_received;
last_rx_mpdu_missed = soc->ext_stats.rx_mpdu_missed;
soc->ext_stats.rx_mpdu_received = 0;
soc->ext_stats.rx_mpdu_missed = 0;
dp_debug("HW stats query start");
rx_stats_sent_cnt =
dp_peer_rxtid_stats(peer, dp_rx_hw_stats_cb, rx_hw_stats);
if (!rx_stats_sent_cnt) {
dp_err("no tid stats sent successfully");
qdf_mem_free(rx_hw_stats);
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
status = QDF_STATUS_E_INVAL;
goto out;
}
qdf_atomic_set(&rx_hw_stats->pending_tid_stats_cnt,
rx_stats_sent_cnt);
rx_hw_stats->is_query_timeout = false;
soc->is_last_stats_ctx_init = true;
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
status = qdf_wait_single_event(&soc->rx_hw_stats_event,
DP_REO_STATUS_STATS_TIMEOUT);
dp_debug("HW stats query end with %d", rx_stats_sent_cnt);
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
if (status != QDF_STATUS_SUCCESS) {
dp_info("partial rx hw stats event collected with %d",
qdf_atomic_read(
&rx_hw_stats->pending_tid_stats_cnt));
if (soc->is_last_stats_ctx_init)
rx_hw_stats->is_query_timeout = true;
/*
* If query timeout happened, use the last saved stats
* for this time query.
*/
soc->ext_stats.rx_mpdu_received = last_rx_mpdu_received;
soc->ext_stats.rx_mpdu_missed = last_rx_mpdu_missed;
DP_STATS_INC(soc, rx.rx_hw_stats_timeout, 1);
}
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
out:
if (peer)
dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
if (vdev)
dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
DP_STATS_INC(soc, rx.rx_hw_stats_requested, 1);
return status;
}
/**
* dp_reset_rx_hw_ext_stats() - Reset rx hardware ext stats
* @soc_hdl: soc handle
*
* Return: None
*/
void dp_reset_rx_hw_ext_stats(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
soc->ext_stats.rx_mpdu_received = 0;
soc->ext_stats.rx_mpdu_missed = 0;
}
#endif /* WLAN_FEATURE_STATS_EXT */
uint32_t dp_get_tx_rings_grp_bitmap(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
return soc->wlan_cfg_ctx->tx_rings_grp_bitmap;
}
void dp_soc_set_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_DEFAULT_MAP][i];
}
}
qdf_export_symbol(dp_soc_set_txrx_ring_map);
static void dp_soc_cfg_dump(struct dp_soc *soc, uint32_t target_type)
{
dp_init_info("DP soc Dump for Target = %d", target_type);
dp_init_info("ast_override_support = %d da_war_enabled = %d",
soc->ast_override_support, soc->da_war_enabled);
wlan_cfg_dp_soc_ctx_dump(soc->wlan_cfg_ctx);
}
/**
* dp_soc_cfg_init() - initialize target specific configuration
* during dp_soc_init
* @soc: dp soc handle
*/
static void dp_soc_cfg_init(struct dp_soc *soc)
{
uint32_t target_type;
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6290:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
soc->ast_override_support = 1;
soc->da_war_enabled = false;
break;
case TARGET_TYPE_QCA6390:
case TARGET_TYPE_QCA6490:
case TARGET_TYPE_QCA6750:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->ast_override_support = 1;
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE) {
int int_ctx;
for (int_ctx = 0; int_ctx < WLAN_CFG_INT_NUM_CONTEXTS; int_ctx++) {
soc->wlan_cfg_ctx->int_rx_ring_mask[int_ctx] = 0;
soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[int_ctx] = 0;
}
}
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
case TARGET_TYPE_KIWI:
case TARGET_TYPE_MANGO:
case TARGET_TYPE_PEACH:
soc->ast_override_support = 1;
soc->per_tid_basize_max_tid = 8;
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE) {
int int_ctx;
for (int_ctx = 0; int_ctx < WLAN_CFG_INT_NUM_CONTEXTS;
int_ctx++) {
soc->wlan_cfg_ctx->int_rx_ring_mask[int_ctx] = 0;
if (dp_is_monitor_mode_using_poll(soc))
soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[int_ctx] = 0;
}
}
soc->wlan_cfg_ctx->rxdma1_enable = 0;
soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev = 1;
break;
case TARGET_TYPE_QCA8074:
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->da_war_enabled = true;
soc->is_rx_fse_full_cache_invalidate_war_enabled = true;
break;
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6018:
case TARGET_TYPE_QCA9574:
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->ast_override_support = 1;
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
soc->da_war_enabled = false;
soc->is_rx_fse_full_cache_invalidate_war_enabled = true;
break;
case TARGET_TYPE_QCN9000:
soc->ast_override_support = 1;
soc->da_war_enabled = false;
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
soc->lmac_polled_mode = 0;
soc->wbm_release_desc_rx_sg_support = 1;
soc->is_rx_fse_full_cache_invalidate_war_enabled = true;
break;
case TARGET_TYPE_QCA5018:
case TARGET_TYPE_QCN6122:
case TARGET_TYPE_QCN9160:
soc->ast_override_support = 1;
soc->da_war_enabled = false;
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS_11AX;
soc->disable_mac1_intr = 1;
soc->disable_mac2_intr = 1;
soc->wbm_release_desc_rx_sg_support = 1;
break;
case TARGET_TYPE_QCN9224:
soc->ast_override_support = 1;
soc->da_war_enabled = false;
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->per_tid_basize_max_tid = 8;
soc->wbm_release_desc_rx_sg_support = 1;
soc->rxdma2sw_rings_not_supported = 1;
soc->wbm_sg_last_msdu_war = 1;
soc->ast_offload_support = AST_OFFLOAD_ENABLE_STATUS;
soc->mec_fw_offload = FW_MEC_FW_OFFLOAD_ENABLED;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
wlan_cfg_set_txmon_hw_support(soc->wlan_cfg_ctx, true);
soc->host_ast_db_enable = cfg_get(soc->ctrl_psoc,
CFG_DP_HOST_AST_DB_ENABLE);
soc->features.wds_ext_ast_override_enable = true;
break;
case TARGET_TYPE_QCA5332:
case TARGET_TYPE_QCN6432:
soc->ast_override_support = 1;
soc->da_war_enabled = false;
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->per_tid_basize_max_tid = 8;
soc->wbm_release_desc_rx_sg_support = 1;
soc->rxdma2sw_rings_not_supported = 1;
soc->wbm_sg_last_msdu_war = 1;
soc->ast_offload_support = AST_OFFLOAD_ENABLE_STATUS;
soc->mec_fw_offload = FW_MEC_FW_OFFLOAD_ENABLED;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS_5332;
wlan_cfg_set_txmon_hw_support(soc->wlan_cfg_ctx, true);
soc->host_ast_db_enable = cfg_get(soc->ctrl_psoc,
CFG_DP_HOST_AST_DB_ENABLE);
soc->features.wds_ext_ast_override_enable = true;
break;
default:
qdf_print("%s: Unknown tgt type %d\n", __func__, target_type);
qdf_assert_always(0);
break;
}
dp_soc_cfg_dump(soc, target_type);
}
/**
* dp_soc_get_ap_mld_mode() - store ap mld mode from ini
* @soc: Opaque DP SOC handle
*
* Return: none
*/
#if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
static inline void dp_soc_get_ap_mld_mode(struct dp_soc *soc)
{
if (soc->cdp_soc.ol_ops->get_dp_cfg_param) {
soc->mld_mode_ap =
soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_MLD_NETDEV_MODE_AP);
}
qdf_info("DP mld_mode_ap-%u\n", soc->mld_mode_ap);
}
#else
static inline void dp_soc_get_ap_mld_mode(struct dp_soc *soc)
{
(void)soc;
}
#endif
/**
* dp_soc_init() - Initialize txrx SOC
* @soc: Opaque DP SOC handle
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_init(struct dp_soc *soc, HTC_HANDLE htc_handle,
struct hif_opaque_softc *hif_handle)
{
struct htt_soc *htt_soc = (struct htt_soc *)soc->htt_handle;
bool is_monitor_mode = false;
uint8_t i;
int num_dp_msi;
bool ppeds_attached = false;
htt_soc = htt_soc_attach(soc, htc_handle);
if (!htt_soc)
goto fail1;
soc->htt_handle = htt_soc;
if (htt_soc_htc_prealloc(htt_soc) != QDF_STATUS_SUCCESS)
goto fail2;
htt_set_htc_handle(htt_soc, htc_handle);
dp_soc_cfg_init(soc);
dp_monitor_soc_cfg_init(soc);
/* Reset/Initialize wbm sg list and flags */
dp_rx_wbm_sg_list_reset(soc);
/* Note: Any SRNG ring initialization should happen only after
* Interrupt mode is set and followed by filling up the
* interrupt mask. IT SHOULD ALWAYS BE IN THIS ORDER.
*/
dp_soc_set_interrupt_mode(soc);
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE) {
is_monitor_mode = true;
soc->curr_rx_pkt_tlv_size = soc->rx_mon_pkt_tlv_size;
} else {
soc->curr_rx_pkt_tlv_size = soc->rx_pkt_tlv_size;
}
num_dp_msi = dp_get_num_msi_available(soc, soc->intr_mode);
if (num_dp_msi < 0) {
dp_init_err("%pK: dp_interrupt assignment failed", soc);
goto fail3;
}
if (soc->arch_ops.ppeds_handle_attached)
ppeds_attached = soc->arch_ops.ppeds_handle_attached(soc);
wlan_cfg_fill_interrupt_mask(soc->wlan_cfg_ctx, num_dp_msi,
soc->intr_mode, is_monitor_mode,
ppeds_attached);
/* initialize WBM_IDLE_LINK ring */
if (dp_hw_link_desc_ring_init(soc)) {
dp_init_err("%pK: dp_hw_link_desc_ring_init failed", soc);
goto fail3;
}
dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
if (dp_soc_srng_init(soc)) {
dp_init_err("%pK: dp_soc_srng_init failed", soc);
goto fail4;
}
if (htt_soc_initialize(soc->htt_handle, soc->ctrl_psoc,
htt_get_htc_handle(htt_soc),
soc->hal_soc, soc->osdev) == NULL)
goto fail5;
/* Initialize descriptors in TCL Rings */
for (i = 0; i < soc->num_tcl_data_rings; i++) {
hal_tx_init_data_ring(soc->hal_soc,
soc->tcl_data_ring[i].hal_srng);
}
if (dp_soc_tx_desc_sw_pools_init(soc)) {
dp_init_err("%pK: dp_tx_soc_attach failed", soc);
goto fail6;
}
if (soc->arch_ops.txrx_soc_ppeds_start) {
if (soc->arch_ops.txrx_soc_ppeds_start(soc)) {
dp_init_err("%pK: ppeds start failed", soc);
goto fail7;
}
}
wlan_cfg_set_rx_hash(soc->wlan_cfg_ctx,
cfg_get(soc->ctrl_psoc, CFG_DP_RX_HASH));
#ifdef WLAN_SUPPORT_RX_FLOW_TAG
wlan_cfg_set_rx_rr(soc->wlan_cfg_ctx,
cfg_get(soc->ctrl_psoc, CFG_DP_RX_RR));
#endif
soc->cce_disable = false;
soc->max_ast_ageout_count = MAX_AST_AGEOUT_COUNT;
soc->sta_mode_search_policy = DP_TX_ADDR_SEARCH_ADDR_POLICY;
qdf_mem_zero(&soc->vdev_id_map, sizeof(soc->vdev_id_map));
qdf_spinlock_create(&soc->vdev_map_lock);
qdf_atomic_init(&soc->num_tx_outstanding);
qdf_atomic_init(&soc->num_tx_exception);
soc->num_tx_allowed =
wlan_cfg_get_dp_soc_tx_device_limit(soc->wlan_cfg_ctx);
soc->num_tx_spl_allowed =
wlan_cfg_get_dp_soc_tx_spl_device_limit(soc->wlan_cfg_ctx);
soc->num_reg_tx_allowed = soc->num_tx_allowed - soc->num_tx_spl_allowed;
if (soc->cdp_soc.ol_ops->get_dp_cfg_param) {
int ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_MAX_PEER_ID);
if (ret != -EINVAL)
wlan_cfg_set_max_peer_id(soc->wlan_cfg_ctx, ret);
ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_CCE_DISABLE);
if (ret == 1)
soc->cce_disable = true;
}
/*
* Skip registering hw ring interrupts for WMAC2 on IPQ6018
* and IPQ5018 WMAC2 is not there in these platforms.
*/
if (hal_get_target_type(soc->hal_soc) == TARGET_TYPE_QCA6018 ||
soc->disable_mac2_intr)
dp_soc_disable_unused_mac_intr_mask(soc, 0x2);
/*
* Skip registering hw ring interrupts for WMAC1 on IPQ5018
* WMAC1 is not there in this platform.
*/
if (soc->disable_mac1_intr)
dp_soc_disable_unused_mac_intr_mask(soc, 0x1);
/* setup the global rx defrag waitlist */
TAILQ_INIT(&soc->rx.defrag.waitlist);
soc->rx.defrag.timeout_ms =
wlan_cfg_get_rx_defrag_min_timeout(soc->wlan_cfg_ctx);
soc->rx.defrag.next_flush_ms = 0;
soc->rx.flags.defrag_timeout_check =
wlan_cfg_get_defrag_timeout_check(soc->wlan_cfg_ctx);
qdf_spinlock_create(&soc->rx.defrag.defrag_lock);
dp_monitor_soc_init(soc);
qdf_atomic_set(&soc->cmn_init_done, 1);
qdf_nbuf_queue_init(&soc->htt_stats.msg);
qdf_spinlock_create(&soc->ast_lock);
dp_peer_mec_spinlock_create(soc);
qdf_spinlock_create(&soc->reo_desc_freelist_lock);
qdf_list_create(&soc->reo_desc_freelist, REO_DESC_FREELIST_SIZE);
INIT_RX_HW_STATS_LOCK(soc);
qdf_nbuf_queue_init(&soc->invalid_buf_queue);
/* fill the tx/rx cpu ring map*/
dp_soc_set_txrx_ring_map(soc);
TAILQ_INIT(&soc->inactive_peer_list);
qdf_spinlock_create(&soc->inactive_peer_list_lock);
TAILQ_INIT(&soc->inactive_vdev_list);
qdf_spinlock_create(&soc->inactive_vdev_list_lock);
qdf_spinlock_create(&soc->htt_stats.lock);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
dp_reo_desc_deferred_freelist_create(soc);
dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
qdf_dma_mem_stats_read(),
qdf_heap_mem_stats_read(),
qdf_skb_total_mem_stats_read());
soc->vdev_stats_id_map = 0;
dp_soc_get_ap_mld_mode(soc);
return soc;
fail7:
dp_soc_tx_desc_sw_pools_deinit(soc);
fail6:
htt_soc_htc_dealloc(soc->htt_handle);
fail5:
dp_soc_srng_deinit(soc);
fail4:
dp_hw_link_desc_ring_deinit(soc);
fail3:
htt_htc_pkt_pool_free(htt_soc);
fail2:
htt_soc_detach(htt_soc);
fail1:
return NULL;
}
#ifndef WLAN_DP_DISABLE_TCL_CMD_CRED_SRNG
static inline QDF_STATUS dp_soc_tcl_cmd_cred_srng_init(struct dp_soc *soc)
{
QDF_STATUS status;
if (soc->init_tcl_cmd_cred_ring) {
status = dp_srng_init(soc, &soc->tcl_cmd_credit_ring,
TCL_CMD_CREDIT, 0, 0);
if (QDF_IS_STATUS_ERROR(status))
return status;
wlan_minidump_log(soc->tcl_cmd_credit_ring.base_vaddr_unaligned,
soc->tcl_cmd_credit_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TCL_CMD,
"wbm_desc_rel_ring");
}
return QDF_STATUS_SUCCESS;
}
static inline void dp_soc_tcl_cmd_cred_srng_deinit(struct dp_soc *soc)
{
if (soc->init_tcl_cmd_cred_ring) {
wlan_minidump_remove(soc->tcl_cmd_credit_ring.base_vaddr_unaligned,
soc->tcl_cmd_credit_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_TCL_CMD,
"wbm_desc_rel_ring");
dp_srng_deinit(soc, &soc->tcl_cmd_credit_ring,
TCL_CMD_CREDIT, 0);
}
}
static inline QDF_STATUS dp_soc_tcl_cmd_cred_srng_alloc(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
uint32_t entries;
QDF_STATUS status;
entries = wlan_cfg_get_dp_soc_tcl_cmd_credit_ring_size(soc_cfg_ctx);
if (soc->init_tcl_cmd_cred_ring) {
status = dp_srng_alloc(soc, &soc->tcl_cmd_credit_ring,
TCL_CMD_CREDIT, entries, 0);
if (QDF_IS_STATUS_ERROR(status))
return status;
}
return QDF_STATUS_SUCCESS;
}
static inline void dp_soc_tcl_cmd_cred_srng_free(struct dp_soc *soc)
{
if (soc->init_tcl_cmd_cred_ring)
dp_srng_free(soc, &soc->tcl_cmd_credit_ring);
}
inline void dp_tx_init_cmd_credit_ring(struct dp_soc *soc)
{
if (soc->init_tcl_cmd_cred_ring)
hal_tx_init_cmd_credit_ring(soc->hal_soc,
soc->tcl_cmd_credit_ring.hal_srng);
}
#else
static inline QDF_STATUS dp_soc_tcl_cmd_cred_srng_init(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static inline void dp_soc_tcl_cmd_cred_srng_deinit(struct dp_soc *soc)
{
}
static inline QDF_STATUS dp_soc_tcl_cmd_cred_srng_alloc(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static inline void dp_soc_tcl_cmd_cred_srng_free(struct dp_soc *soc)
{
}
inline void dp_tx_init_cmd_credit_ring(struct dp_soc *soc)
{
}
#endif
#ifndef WLAN_DP_DISABLE_TCL_STATUS_SRNG
static inline QDF_STATUS dp_soc_tcl_status_srng_init(struct dp_soc *soc)
{
QDF_STATUS status;
status = dp_srng_init(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0);
if (QDF_IS_STATUS_ERROR(status))
return status;
wlan_minidump_log(soc->tcl_status_ring.base_vaddr_unaligned,
soc->tcl_status_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_TCL_STATUS,
"wbm_desc_rel_ring");
return QDF_STATUS_SUCCESS;
}
static inline void dp_soc_tcl_status_srng_deinit(struct dp_soc *soc)
{
wlan_minidump_remove(soc->tcl_status_ring.base_vaddr_unaligned,
soc->tcl_status_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_TCL_STATUS,
"wbm_desc_rel_ring");
dp_srng_deinit(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
}
static inline QDF_STATUS dp_soc_tcl_status_srng_alloc(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
uint32_t entries;
QDF_STATUS status = QDF_STATUS_SUCCESS;
entries = wlan_cfg_get_dp_soc_tcl_status_ring_size(soc_cfg_ctx);
status = dp_srng_alloc(soc, &soc->tcl_status_ring,
TCL_STATUS, entries, 0);
return status;
}
static inline void dp_soc_tcl_status_srng_free(struct dp_soc *soc)
{
dp_srng_free(soc, &soc->tcl_status_ring);
}
#else
static inline QDF_STATUS dp_soc_tcl_status_srng_init(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static inline void dp_soc_tcl_status_srng_deinit(struct dp_soc *soc)
{
}
static inline QDF_STATUS dp_soc_tcl_status_srng_alloc(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
static inline void dp_soc_tcl_status_srng_free(struct dp_soc *soc)
{
}
#endif
/**
* dp_soc_srng_deinit() - de-initialize soc srng rings
* @soc: Datapath soc handle
*
*/
void dp_soc_srng_deinit(struct dp_soc *soc)
{
uint32_t i;
if (soc->arch_ops.txrx_soc_srng_deinit)
soc->arch_ops.txrx_soc_srng_deinit(soc);
/* Free the ring memories */
/* Common rings */
wlan_minidump_remove(soc->wbm_desc_rel_ring.base_vaddr_unaligned,
soc->wbm_desc_rel_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_WBM_DESC_REL,
"wbm_desc_rel_ring");
dp_srng_deinit(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
/* Tx data rings */
for (i = 0; i < soc->num_tcl_data_rings; i++)
dp_deinit_tx_pair_by_index(soc, i);
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
dp_deinit_tx_pair_by_index(soc, IPA_TCL_DATA_RING_IDX);
dp_ipa_deinit_alt_tx_ring(soc);
}
/* TCL command and status rings */
dp_soc_tcl_cmd_cred_srng_deinit(soc);
dp_soc_tcl_status_srng_deinit(soc);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
wlan_minidump_remove(soc->reo_dest_ring[i].base_vaddr_unaligned,
soc->reo_dest_ring[i].alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_DEST,
"reo_dest_ring");
dp_srng_deinit(soc, &soc->reo_dest_ring[i], REO_DST, i);
}
/* REO reinjection ring */
wlan_minidump_remove(soc->reo_reinject_ring.base_vaddr_unaligned,
soc->reo_reinject_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_REINJECT,
"reo_reinject_ring");
dp_srng_deinit(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
wlan_minidump_remove(soc->rx_rel_ring.base_vaddr_unaligned,
soc->rx_rel_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_RX_REL,
"reo_release_ring");
dp_srng_deinit(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
wlan_minidump_remove(soc->reo_exception_ring.base_vaddr_unaligned,
soc->reo_exception_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_EXCEPTION,
"reo_exception_ring");
dp_srng_deinit(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
wlan_minidump_remove(soc->reo_cmd_ring.base_vaddr_unaligned,
soc->reo_cmd_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_CMD,
"reo_cmd_ring");
dp_srng_deinit(soc, &soc->reo_cmd_ring, REO_CMD, 0);
wlan_minidump_remove(soc->reo_status_ring.base_vaddr_unaligned,
soc->reo_status_ring.alloc_size,
soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_STATUS,
"reo_status_ring");
dp_srng_deinit(soc, &soc->reo_status_ring, REO_STATUS, 0);
}
/**
* dp_soc_srng_init() - Initialize soc level srng rings
* @soc: Datapath soc handle
*
* Return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_FAILURE on failure
*/
QDF_STATUS dp_soc_srng_init(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint8_t i;
uint8_t wbm2_sw_rx_rel_ring_id;
soc_cfg_ctx = soc->wlan_cfg_ctx;
dp_enable_verbose_debug(soc);
/* WBM descriptor release ring */
if (dp_srng_init(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0)) {
dp_init_err("%pK: dp_srng_init failed for wbm_desc_rel_ring", soc);
goto fail1;
}
wlan_minidump_log(soc->wbm_desc_rel_ring.base_vaddr_unaligned,
soc->wbm_desc_rel_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_WBM_DESC_REL,
"wbm_desc_rel_ring");
/* TCL command and status rings */
if (dp_soc_tcl_cmd_cred_srng_init(soc)) {
dp_init_err("%pK: dp_srng_init failed for tcl_cmd_ring", soc);
goto fail1;
}
if (dp_soc_tcl_status_srng_init(soc)) {
dp_init_err("%pK: dp_srng_init failed for tcl_status_ring", soc);
goto fail1;
}
/* REO reinjection ring */
if (dp_srng_init(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0)) {
dp_init_err("%pK: dp_srng_init failed for reo_reinject_ring", soc);
goto fail1;
}
wlan_minidump_log(soc->reo_reinject_ring.base_vaddr_unaligned,
soc->reo_reinject_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_REINJECT,
"reo_reinject_ring");
wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc_cfg_ctx);
/* Rx release ring */
if (dp_srng_init(soc, &soc->rx_rel_ring, WBM2SW_RELEASE,
wbm2_sw_rx_rel_ring_id, 0)) {
dp_init_err("%pK: dp_srng_init failed for rx_rel_ring", soc);
goto fail1;
}
wlan_minidump_log(soc->rx_rel_ring.base_vaddr_unaligned,
soc->rx_rel_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_RX_REL,
"reo_release_ring");
/* Rx exception ring */
if (dp_srng_init(soc, &soc->reo_exception_ring,
REO_EXCEPTION, 0, MAX_REO_DEST_RINGS)) {
dp_init_err("%pK: dp_srng_init failed - reo_exception", soc);
goto fail1;
}
wlan_minidump_log(soc->reo_exception_ring.base_vaddr_unaligned,
soc->reo_exception_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_EXCEPTION,
"reo_exception_ring");
/* REO command and status rings */
if (dp_srng_init(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0)) {
dp_init_err("%pK: dp_srng_init failed for reo_cmd_ring", soc);
goto fail1;
}
wlan_minidump_log(soc->reo_cmd_ring.base_vaddr_unaligned,
soc->reo_cmd_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_CMD,
"reo_cmd_ring");
hal_reo_init_cmd_ring(soc->hal_soc, soc->reo_cmd_ring.hal_srng);
TAILQ_INIT(&soc->rx.reo_cmd_list);
qdf_spinlock_create(&soc->rx.reo_cmd_lock);
if (dp_srng_init(soc, &soc->reo_status_ring, REO_STATUS, 0, 0)) {
dp_init_err("%pK: dp_srng_init failed for reo_status_ring", soc);
goto fail1;
}
wlan_minidump_log(soc->reo_status_ring.base_vaddr_unaligned,
soc->reo_status_ring.alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_STATUS,
"reo_status_ring");
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_init_tx_ring_pair_by_index(soc, i))
goto fail1;
}
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (dp_init_tx_ring_pair_by_index(soc, IPA_TCL_DATA_RING_IDX))
goto fail1;
if (dp_ipa_init_alt_tx_ring(soc))
goto fail1;
}
dp_create_ext_stats_event(soc);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* Initialize REO destination ring */
if (dp_srng_init(soc, &soc->reo_dest_ring[i], REO_DST, i, 0)) {
dp_init_err("%pK: dp_srng_init failed for reo_dest_ringn", soc);
goto fail1;
}
wlan_minidump_log(soc->reo_dest_ring[i].base_vaddr_unaligned,
soc->reo_dest_ring[i].alloc_size,
soc->ctrl_psoc,
WLAN_MD_DP_SRNG_REO_DEST,
"reo_dest_ring");
}
if (soc->arch_ops.txrx_soc_srng_init) {
if (soc->arch_ops.txrx_soc_srng_init(soc)) {
dp_init_err("%pK: dp_srng_init failed for arch rings",
soc);
goto fail1;
}
}
return QDF_STATUS_SUCCESS;
fail1:
/*
* Cleanup will be done as part of soc_detach, which will
* be called on pdev attach failure
*/
dp_soc_srng_deinit(soc);
return QDF_STATUS_E_FAILURE;
}
/**
* dp_soc_srng_free() - free soc level srng rings
* @soc: Datapath soc handle
*
*/
void dp_soc_srng_free(struct dp_soc *soc)
{
uint32_t i;
if (soc->arch_ops.txrx_soc_srng_free)
soc->arch_ops.txrx_soc_srng_free(soc);
dp_srng_free(soc, &soc->wbm_desc_rel_ring);
for (i = 0; i < soc->num_tcl_data_rings; i++)
dp_free_tx_ring_pair_by_index(soc, i);
/* Free IPA rings for TCL_TX and TCL_COMPL ring */
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
dp_free_tx_ring_pair_by_index(soc, IPA_TCL_DATA_RING_IDX);
dp_ipa_free_alt_tx_ring(soc);
}
dp_soc_tcl_cmd_cred_srng_free(soc);
dp_soc_tcl_status_srng_free(soc);
for (i = 0; i < soc->num_reo_dest_rings; i++)
dp_srng_free(soc, &soc->reo_dest_ring[i]);
dp_srng_free(soc, &soc->reo_reinject_ring);
dp_srng_free(soc, &soc->rx_rel_ring);
dp_srng_free(soc, &soc->reo_exception_ring);
dp_srng_free(soc, &soc->reo_cmd_ring);
dp_srng_free(soc, &soc->reo_status_ring);
}
/**
* dp_soc_srng_alloc() - Allocate memory for soc level srng rings
* @soc: Datapath soc handle
*
* Return: QDF_STATUS_SUCCESS on success
* QDF_STATUS_E_NOMEM on failure
*/
QDF_STATUS dp_soc_srng_alloc(struct dp_soc *soc)
{
uint32_t entries;
uint32_t i;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
uint32_t cached = WLAN_CFG_DST_RING_CACHED_DESC;
uint32_t reo_dst_ring_size;
soc_cfg_ctx = soc->wlan_cfg_ctx;
/* sw2wbm link descriptor release ring */
entries = wlan_cfg_get_dp_soc_wbm_release_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE,
entries, 0)) {
dp_init_err("%pK: dp_srng_alloc failed for wbm_desc_rel_ring", soc);
goto fail1;
}
/* TCL command and status rings */
if (dp_soc_tcl_cmd_cred_srng_alloc(soc)) {
dp_init_err("%pK: dp_srng_alloc failed for tcl_cmd_ring", soc);
goto fail1;
}
if (dp_soc_tcl_status_srng_alloc(soc)) {
dp_init_err("%pK: dp_srng_alloc failed for tcl_status_ring", soc);
goto fail1;
}
/* REO reinjection ring */
entries = wlan_cfg_get_dp_soc_reo_reinject_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_reinject_ring, REO_REINJECT,
entries, 0)) {
dp_init_err("%pK: dp_srng_alloc failed for reo_reinject_ring", soc);
goto fail1;
}
/* Rx release ring */
entries = wlan_cfg_get_dp_soc_rx_release_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->rx_rel_ring, WBM2SW_RELEASE,
entries, 0)) {
dp_init_err("%pK: dp_srng_alloc failed for rx_rel_ring", soc);
goto fail1;
}
/* Rx exception ring */
entries = wlan_cfg_get_dp_soc_reo_exception_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_exception_ring, REO_EXCEPTION,
entries, 0)) {
dp_init_err("%pK: dp_srng_alloc failed - reo_exception", soc);
goto fail1;
}
/* REO command and status rings */
entries = wlan_cfg_get_dp_soc_reo_cmd_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_cmd_ring, REO_CMD, entries, 0)) {
dp_init_err("%pK: dp_srng_alloc failed for reo_cmd_ring", soc);
goto fail1;
}
entries = wlan_cfg_get_dp_soc_reo_status_ring_size(soc_cfg_ctx);
if (dp_srng_alloc(soc, &soc->reo_status_ring, REO_STATUS,
entries, 0)) {
dp_init_err("%pK: dp_srng_alloc failed for reo_status_ring", soc);
goto fail1;
}
reo_dst_ring_size = wlan_cfg_get_reo_dst_ring_size(soc_cfg_ctx);
/* Disable cached desc if NSS offload is enabled */
if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx))
cached = 0;
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_alloc_tx_ring_pair_by_index(soc, i))
goto fail1;
}
/* IPA rings for TCL_TX and TX_COMP will be allocated here */
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (dp_alloc_tx_ring_pair_by_index(soc, IPA_TCL_DATA_RING_IDX))
goto fail1;
if (dp_ipa_alloc_alt_tx_ring(soc))
goto fail1;
}
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* Setup REO destination ring */
if (dp_srng_alloc(soc, &soc->reo_dest_ring[i], REO_DST,
reo_dst_ring_size, cached)) {
dp_init_err("%pK: dp_srng_alloc failed for reo_dest_ring", soc);
goto fail1;
}
}
if (soc->arch_ops.txrx_soc_srng_alloc) {
if (soc->arch_ops.txrx_soc_srng_alloc(soc)) {
dp_init_err("%pK: dp_srng_alloc failed for arch rings",
soc);
goto fail1;
}
}
return QDF_STATUS_SUCCESS;
fail1:
dp_soc_srng_free(soc);
return QDF_STATUS_E_NOMEM;
}
/**
* dp_soc_cfg_attach() - set target specific configuration in
* dp soc cfg.
* @soc: dp soc handle
*/
void dp_soc_cfg_attach(struct dp_soc *soc)
{
int target_type;
int nss_cfg = 0;
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6290:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
break;
case TARGET_TYPE_QCA6390:
case TARGET_TYPE_QCA6490:
case TARGET_TYPE_QCA6750:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
case TARGET_TYPE_KIWI:
case TARGET_TYPE_MANGO:
case TARGET_TYPE_PEACH:
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
case TARGET_TYPE_QCA8074:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
break;
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6018:
case TARGET_TYPE_QCA9574:
case TARGET_TYPE_QCN6122:
case TARGET_TYPE_QCA5018:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
wlan_cfg_set_rxdma1_enable(soc->wlan_cfg_ctx);
break;
case TARGET_TYPE_QCN9160:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
case TARGET_TYPE_QCN9000:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
wlan_cfg_set_rxdma1_enable(soc->wlan_cfg_ctx);
break;
case TARGET_TYPE_QCN9224:
case TARGET_TYPE_QCA5332:
case TARGET_TYPE_QCN6432:
wlan_cfg_set_tso_desc_attach_defer(soc->wlan_cfg_ctx, 1);
wlan_cfg_set_rxdma1_enable(soc->wlan_cfg_ctx);
break;
default:
qdf_print("%s: Unknown tgt type %d\n", __func__, target_type);
qdf_assert_always(0);
break;
}
if (soc->cdp_soc.ol_ops->get_soc_nss_cfg)
nss_cfg = soc->cdp_soc.ol_ops->get_soc_nss_cfg(soc->ctrl_psoc);
wlan_cfg_set_dp_soc_nss_cfg(soc->wlan_cfg_ctx, nss_cfg);
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
wlan_cfg_set_num_tx_desc_pool(soc->wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc_pool(soc->wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_desc(soc->wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc(soc->wlan_cfg_ctx, 0);
soc->init_tcl_cmd_cred_ring = false;
soc->num_tcl_data_rings =
wlan_cfg_num_nss_tcl_data_rings(soc->wlan_cfg_ctx);
soc->num_reo_dest_rings =
wlan_cfg_num_nss_reo_dest_rings(soc->wlan_cfg_ctx);
} else {
soc->init_tcl_cmd_cred_ring = true;
soc->num_tx_comp_rings =
wlan_cfg_num_tx_comp_rings(soc->wlan_cfg_ctx);
soc->num_tcl_data_rings =
wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
}
}
void dp_pdev_set_default_reo(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
switch (pdev->pdev_id) {
case 0:
pdev->reo_dest =
wlan_cfg_radio0_default_reo_get(soc->wlan_cfg_ctx);
break;
case 1:
pdev->reo_dest =
wlan_cfg_radio1_default_reo_get(soc->wlan_cfg_ctx);
break;
case 2:
pdev->reo_dest =
wlan_cfg_radio2_default_reo_get(soc->wlan_cfg_ctx);
break;
default:
dp_init_err("%pK: Invalid pdev_id %d for reo selection",
soc, pdev->pdev_id);
break;
}
}