Files
android_kernel_samsung_sm86…/msm/eva/cvp_hfi.c
George Shen 26396dd79a msm: eva: Enable EVA power colapse
Remove temporary changes for RUMI bring up.

Change-Id: Ibad6025fcc9b18d062cd46bf33f6c7e051dbf91d
Signed-off-by: George Shen <quic_sqiao@quicinc.com>
2022-02-17 10:08:39 -08:00

4811 lines
119 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
*/
#include <asm/memory.h>
#include <linux/coresight-stm.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/hash.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/pm_qos.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/soc/qcom/llcc-qcom.h>
#include <linux/qcom_scm.h>
#include <linux/soc/qcom/smem.h>
#include <linux/dma-mapping.h>
#include <linux/reset.h>
#include <linux/pm_wakeup.h>
#include "hfi_packetization.h"
#include "msm_cvp_debug.h"
#include "cvp_core_hfi.h"
#include "cvp_hfi_helper.h"
#include "cvp_hfi_io.h"
#include "msm_cvp_dsp.h"
#include "msm_cvp_clocks.h"
#include "cvp_dump.h"
#define FIRMWARE_SIZE 0X00A00000
#define REG_ADDR_OFFSET_BITMASK 0x000FFFFF
#define QDSS_IOVA_START 0x80001000
#define MIN_PAYLOAD_SIZE 3
struct cvp_tzbsp_memprot {
u32 cp_start;
u32 cp_size;
u32 cp_nonpixel_start;
u32 cp_nonpixel_size;
};
#define TZBSP_PIL_SET_STATE 0xA
#define TZBSP_CVP_PAS_ID 26
/* Poll interval in uS */
#define POLL_INTERVAL_US 50
enum tzbsp_subsys_state {
TZ_SUBSYS_STATE_SUSPEND = 0,
TZ_SUBSYS_STATE_RESUME = 1,
TZ_SUBSYS_STATE_RESTORE_THRESHOLD = 2,
};
const struct msm_cvp_gov_data CVP_DEFAULT_BUS_VOTE = {
.data = NULL,
.data_count = 0,
};
const int cvp_max_packets = 32;
static void iris_hfi_pm_handler(struct work_struct *work);
static DECLARE_DELAYED_WORK(iris_hfi_pm_work, iris_hfi_pm_handler);
static inline int __resume(struct iris_hfi_device *device);
static inline int __suspend(struct iris_hfi_device *device);
static int __disable_regulator(struct iris_hfi_device *device,
const char *name);
static int __enable_regulator(struct iris_hfi_device *device,
const char *name);
static void __flush_debug_queue(struct iris_hfi_device *device, u8 *packet);
static int __initialize_packetization(struct iris_hfi_device *device);
static struct cvp_hal_session *__get_session(struct iris_hfi_device *device,
u32 session_id);
static bool __is_session_valid(struct iris_hfi_device *device,
struct cvp_hal_session *session, const char *func);
static int __iface_cmdq_write(struct iris_hfi_device *device,
void *pkt);
static int __load_fw(struct iris_hfi_device *device);
static void __unload_fw(struct iris_hfi_device *device);
static int __tzbsp_set_cvp_state(enum tzbsp_subsys_state state);
static int __enable_subcaches(struct iris_hfi_device *device);
static int __set_subcaches(struct iris_hfi_device *device);
static int __release_subcaches(struct iris_hfi_device *device);
static int __disable_subcaches(struct iris_hfi_device *device);
static int __power_collapse(struct iris_hfi_device *device, bool force);
static int iris_hfi_noc_error_info(void *dev);
static void interrupt_init_iris2(struct iris_hfi_device *device);
static void setup_dsp_uc_memmap_vpu5(struct iris_hfi_device *device);
static void clock_config_on_enable_vpu5(struct iris_hfi_device *device);
static int reset_ahb2axi_bridge(struct iris_hfi_device *device);
static void power_off_iris2(struct iris_hfi_device *device);
static int __set_ubwc_config(struct iris_hfi_device *device);
static void __noc_error_info_iris2(struct iris_hfi_device *device);
static int __enable_hw_power_collapse(struct iris_hfi_device *device);
static int __power_off_controller(struct iris_hfi_device *device);
static struct iris_hfi_vpu_ops iris2_ops = {
.interrupt_init = interrupt_init_iris2,
.setup_dsp_uc_memmap = setup_dsp_uc_memmap_vpu5,
.clock_config_on_enable = clock_config_on_enable_vpu5,
.reset_ahb2axi_bridge = reset_ahb2axi_bridge,
.power_off = power_off_iris2,
.noc_error_info = __noc_error_info_iris2,
};
/**
* Utility function to enforce some of our assumptions. Spam calls to this
* in hotspots in code to double check some of the assumptions that we hold.
*/
static inline void __strict_check(struct iris_hfi_device *device)
{
msm_cvp_res_handle_fatal_hw_error(device->res,
!mutex_is_locked(&device->lock));
}
static inline void __set_state(struct iris_hfi_device *device,
enum iris_hfi_state state)
{
device->state = state;
}
static inline bool __core_in_valid_state(struct iris_hfi_device *device)
{
return device->state != IRIS_STATE_DEINIT;
}
static inline bool is_sys_cache_present(struct iris_hfi_device *device)
{
return device->res->sys_cache_present;
}
#define ROW_SIZE 32
int get_hfi_version(void)
{
struct msm_cvp_core *core;
struct iris_hfi_device *hfi;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
hfi = (struct iris_hfi_device *)core->device->hfi_device_data;
return hfi->version;
}
unsigned int get_msg_size(struct cvp_hfi_msg_session_hdr *hdr)
{
struct msm_cvp_core *core;
struct iris_hfi_device *device;
u32 minor_ver;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
if (core)
device = core->device->hfi_device_data;
else
return 0;
if (!device) {
dprintk(CVP_ERR, "%s: NULL device\n", __func__);
return 0;
}
minor_ver = (device->version & HFI_VERSION_MINOR_MASK) >>
HFI_VERSION_MINOR_SHIFT;
if (minor_ver < 2)
return sizeof(struct cvp_hfi_msg_session_hdr);
if (hdr->packet_type == HFI_MSG_SESSION_CVP_FD)
return sizeof(struct cvp_hfi_msg_session_hdr_ext);
else
return sizeof(struct cvp_hfi_msg_session_hdr);
}
unsigned int get_msg_session_id(void *msg)
{
struct cvp_hfi_msg_session_hdr *hdr =
(struct cvp_hfi_msg_session_hdr *)msg;
return hdr->session_id;
}
unsigned int get_msg_errorcode(void *msg)
{
struct cvp_hfi_msg_session_hdr *hdr =
(struct cvp_hfi_msg_session_hdr *)msg;
return hdr->error_type;
}
int get_msg_opconfigs(void *msg, unsigned int *session_id,
unsigned int *error_type, unsigned int *config_id)
{
struct cvp_hfi_msg_session_op_cfg_packet *cfg =
(struct cvp_hfi_msg_session_op_cfg_packet *)msg;
*session_id = cfg->session_id;
*error_type = cfg->error_type;
*config_id = cfg->op_conf_id;
return 0;
}
static void __dump_packet(u8 *packet, enum cvp_msg_prio log_level)
{
u32 c = 0, packet_size = *(u32 *)packet;
/*
* row must contain enough for 0xdeadbaad * 8 to be converted into
* "de ad ba ab " * 8 + '\0'
*/
char row[3 * ROW_SIZE];
for (c = 0; c * ROW_SIZE < packet_size; ++c) {
int bytes_to_read = ((c + 1) * ROW_SIZE > packet_size) ?
packet_size % ROW_SIZE : ROW_SIZE;
hex_dump_to_buffer(packet + c * ROW_SIZE, bytes_to_read,
ROW_SIZE, 4, row, sizeof(row), false);
dprintk(log_level, "%s\n", row);
}
}
static int __dsp_suspend(struct iris_hfi_device *device, bool force, u32 flags)
{
int rc;
struct cvp_hal_session *temp;
if (msm_cvp_dsp_disable)
return 0;
list_for_each_entry(temp, &device->sess_head, list) {
/* if forceful suspend, don't check session pause info */
if (force)
continue;
/* don't suspend if cvp session is not paused */
if (!(temp->flags & SESSION_PAUSE)) {
dprintk(CVP_DSP,
"%s: cvp session %x not paused\n",
__func__, hash32_ptr(temp));
return -EBUSY;
}
}
dprintk(CVP_DSP, "%s: suspend dsp\n", __func__);
rc = cvp_dsp_suspend(flags);
if (rc) {
dprintk(CVP_ERR, "%s: dsp suspend failed with error %d\n",
__func__, rc);
return -EINVAL;
}
dprintk(CVP_DSP, "%s: dsp suspended\n", __func__);
return 0;
}
static int __dsp_resume(struct iris_hfi_device *device, u32 flags)
{
int rc;
if (msm_cvp_dsp_disable)
return 0;
dprintk(CVP_DSP, "%s: resume dsp\n", __func__);
rc = cvp_dsp_resume(flags);
if (rc) {
dprintk(CVP_ERR,
"%s: dsp resume failed with error %d\n",
__func__, rc);
return rc;
}
dprintk(CVP_DSP, "%s: dsp resumed\n", __func__);
return rc;
}
static int __dsp_shutdown(struct iris_hfi_device *device, u32 flags)
{
int rc;
if (msm_cvp_dsp_disable)
return 0;
dprintk(CVP_DSP, "%s: shutdown dsp\n", __func__);
rc = cvp_dsp_shutdown(flags);
if (rc) {
dprintk(CVP_ERR,
"%s: dsp shutdown failed with error %d\n",
__func__, rc);
WARN_ON(1);
}
dprintk(CVP_DSP, "%s: dsp shutdown successful\n", __func__);
return rc;
}
static int __acquire_regulator(struct regulator_info *rinfo,
struct iris_hfi_device *device)
{
int rc = 0;
if (rinfo->has_hw_power_collapse) {
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_NORMAL);
if (rc) {
/*
* This is somewhat fatal, but nothing we can do
* about it. We can't disable the regulator w/o
* getting it back under s/w control
*/
dprintk(CVP_WARN,
"Failed to acquire regulator control: %s\n",
rinfo->name);
} else {
dprintk(CVP_PWR,
"Acquire regulator control from HW: %s\n",
rinfo->name);
}
}
if (!regulator_is_enabled(rinfo->regulator)) {
dprintk(CVP_WARN, "Regulator is not enabled %s\n",
rinfo->name);
msm_cvp_res_handle_fatal_hw_error(device->res, true);
}
return rc;
}
static int __hand_off_regulator(struct regulator_info *rinfo)
{
int rc = 0;
if (rinfo->has_hw_power_collapse) {
rc = regulator_set_mode(rinfo->regulator,
REGULATOR_MODE_FAST);
if (rc) {
dprintk(CVP_WARN,
"Failed to hand off regulator control: %s\n",
rinfo->name);
} else {
dprintk(CVP_PWR,
"Hand off regulator control to HW: %s\n",
rinfo->name);
}
}
return rc;
}
static int __hand_off_regulators(struct iris_hfi_device *device)
{
struct regulator_info *rinfo;
int rc = 0, c = 0;
iris_hfi_for_each_regulator(device, rinfo) {
rc = __hand_off_regulator(rinfo);
/*
* If one regulator hand off failed, driver should take
* the control for other regulators back.
*/
if (rc)
goto err_reg_handoff_failed;
c++;
}
return rc;
err_reg_handoff_failed:
iris_hfi_for_each_regulator_reverse_continue(device, rinfo, c)
__acquire_regulator(rinfo, device);
return rc;
}
static int __write_queue(struct cvp_iface_q_info *qinfo, u8 *packet,
bool *rx_req_is_set)
{
struct cvp_hfi_queue_header *queue;
u32 packet_size_in_words, new_write_idx;
u32 empty_space, read_idx, write_idx;
u32 *write_ptr;
if (!qinfo || !packet) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
} else if (!qinfo->q_array.align_virtual_addr) {
dprintk(CVP_WARN, "Queues have already been freed\n");
return -EINVAL;
}
queue = (struct cvp_hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(CVP_ERR, "queue not present\n");
return -ENOENT;
}
if (msm_cvp_debug & CVP_PKT) {
dprintk(CVP_PKT, "%s: %pK\n", __func__, qinfo);
__dump_packet(packet, CVP_PKT);
}
packet_size_in_words = (*(u32 *)packet) >> 2;
if (!packet_size_in_words || packet_size_in_words >
qinfo->q_array.mem_size>>2) {
dprintk(CVP_ERR, "Invalid packet size\n");
return -ENODATA;
}
spin_lock(&qinfo->hfi_lock);
read_idx = queue->qhdr_read_idx;
write_idx = queue->qhdr_write_idx;
empty_space = (write_idx >= read_idx) ?
((qinfo->q_array.mem_size>>2) - (write_idx - read_idx)) :
(read_idx - write_idx);
if (empty_space <= packet_size_in_words) {
queue->qhdr_tx_req = 1;
spin_unlock(&qinfo->hfi_lock);
dprintk(CVP_ERR, "Insufficient size (%d) to write (%d)\n",
empty_space, packet_size_in_words);
return -ENOTEMPTY;
}
queue->qhdr_tx_req = 0;
new_write_idx = write_idx + packet_size_in_words;
write_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(write_idx << 2));
if (write_ptr < (u32 *)qinfo->q_array.align_virtual_addr ||
write_ptr > (u32 *)(qinfo->q_array.align_virtual_addr +
qinfo->q_array.mem_size)) {
spin_unlock(&qinfo->hfi_lock);
dprintk(CVP_ERR, "Invalid write index\n");
return -ENODATA;
}
if (new_write_idx < (qinfo->q_array.mem_size >> 2)) {
memcpy(write_ptr, packet, packet_size_in_words << 2);
} else {
new_write_idx -= qinfo->q_array.mem_size >> 2;
memcpy(write_ptr, packet, (packet_size_in_words -
new_write_idx) << 2);
memcpy((void *)qinfo->q_array.align_virtual_addr,
packet + ((packet_size_in_words - new_write_idx) << 2),
new_write_idx << 2);
}
/*
* Memory barrier to make sure packet is written before updating the
* write index
*/
mb();
queue->qhdr_write_idx = new_write_idx;
if (rx_req_is_set)
*rx_req_is_set = queue->qhdr_rx_req == 1;
/*
* Memory barrier to make sure write index is updated before an
* interrupt is raised.
*/
mb();
spin_unlock(&qinfo->hfi_lock);
return 0;
}
static int __read_queue(struct cvp_iface_q_info *qinfo, u8 *packet,
u32 *pb_tx_req_is_set)
{
struct cvp_hfi_queue_header *queue;
u32 packet_size_in_words, new_read_idx;
u32 *read_ptr;
u32 receive_request = 0;
u32 read_idx, write_idx;
int rc = 0;
if (!qinfo || !packet || !pb_tx_req_is_set) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
} else if (!qinfo->q_array.align_virtual_addr) {
dprintk(CVP_WARN, "Queues have already been freed\n");
return -EINVAL;
}
/*
* Memory barrier to make sure data is valid before
*reading it
*/
mb();
queue = (struct cvp_hfi_queue_header *) qinfo->q_hdr;
if (!queue) {
dprintk(CVP_ERR, "Queue memory is not allocated\n");
return -ENOMEM;
}
/*
* Do not set receive request for debug queue, if set,
* Iris generates interrupt for debug messages even
* when there is no response message available.
* In general debug queue will not become full as it
* is being emptied out for every interrupt from Iris.
* Iris will anyway generates interrupt if it is full.
*/
spin_lock(&qinfo->hfi_lock);
if (queue->qhdr_type & HFI_Q_ID_CTRL_TO_HOST_MSG_Q)
receive_request = 1;
read_idx = queue->qhdr_read_idx;
write_idx = queue->qhdr_write_idx;
if (read_idx == write_idx) {
queue->qhdr_rx_req = receive_request;
/*
* mb() to ensure qhdr is updated in main memory
* so that iris reads the updated header values
*/
mb();
*pb_tx_req_is_set = 0;
if (write_idx != queue->qhdr_write_idx) {
queue->qhdr_rx_req = 0;
} else {
spin_unlock(&qinfo->hfi_lock);
dprintk(CVP_HFI,
"%s queue is empty, rx_req = %u, tx_req = %u, read_idx = %u\n",
receive_request ? "message" : "debug",
queue->qhdr_rx_req, queue->qhdr_tx_req,
queue->qhdr_read_idx);
return -ENODATA;
}
}
read_ptr = (u32 *)((qinfo->q_array.align_virtual_addr) +
(read_idx << 2));
if (read_ptr < (u32 *)qinfo->q_array.align_virtual_addr ||
read_ptr > (u32 *)(qinfo->q_array.align_virtual_addr +
qinfo->q_array.mem_size - sizeof(*read_ptr))) {
spin_unlock(&qinfo->hfi_lock);
dprintk(CVP_ERR, "Invalid read index\n");
return -ENODATA;
}
packet_size_in_words = (*read_ptr) >> 2;
if (!packet_size_in_words) {
spin_unlock(&qinfo->hfi_lock);
dprintk(CVP_ERR, "Zero packet size\n");
return -ENODATA;
}
new_read_idx = read_idx + packet_size_in_words;
if (((packet_size_in_words << 2) <= CVP_IFACEQ_VAR_HUGE_PKT_SIZE)
&& read_idx <= (qinfo->q_array.mem_size >> 2)) {
if (new_read_idx < (qinfo->q_array.mem_size >> 2)) {
memcpy(packet, read_ptr,
packet_size_in_words << 2);
} else {
new_read_idx -= (qinfo->q_array.mem_size >> 2);
memcpy(packet, read_ptr,
(packet_size_in_words - new_read_idx) << 2);
memcpy(packet + ((packet_size_in_words -
new_read_idx) << 2),
(u8 *)qinfo->q_array.align_virtual_addr,
new_read_idx << 2);
}
} else {
dprintk(CVP_WARN,
"BAD packet received, read_idx: %#x, pkt_size: %d\n",
read_idx, packet_size_in_words << 2);
dprintk(CVP_WARN, "Dropping this packet\n");
new_read_idx = write_idx;
rc = -ENODATA;
}
if (new_read_idx != queue->qhdr_write_idx)
queue->qhdr_rx_req = 0;
else
queue->qhdr_rx_req = receive_request;
queue->qhdr_read_idx = new_read_idx;
/*
* mb() to ensure qhdr is updated in main memory
* so that iris reads the updated header values
*/
mb();
*pb_tx_req_is_set = (queue->qhdr_tx_req == 1) ? 1 : 0;
spin_unlock(&qinfo->hfi_lock);
if ((msm_cvp_debug & CVP_PKT) &&
!(queue->qhdr_type & HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q)) {
dprintk(CVP_PKT, "%s: %pK\n", __func__, qinfo);
__dump_packet(packet, CVP_PKT);
}
return rc;
}
static int __smem_alloc(struct iris_hfi_device *dev, struct cvp_mem_addr *mem,
u32 size, u32 align, u32 flags)
{
struct msm_cvp_smem *alloc = &mem->mem_data;
int rc = 0;
if (!dev || !mem || !size) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
}
dprintk(CVP_INFO, "start to alloc size: %d, flags: %d\n", size, flags);
alloc->flags = flags;
rc = msm_cvp_smem_alloc(size, align, 1, (void *)dev->res, alloc);
if (rc) {
dprintk(CVP_ERR, "Alloc failed\n");
rc = -ENOMEM;
goto fail_smem_alloc;
}
dprintk(CVP_MEM, "%s: ptr = %pK, size = %d\n", __func__,
alloc->kvaddr, size);
mem->mem_size = alloc->size;
mem->align_virtual_addr = alloc->kvaddr;
mem->align_device_addr = alloc->device_addr;
return rc;
fail_smem_alloc:
return rc;
}
static void __smem_free(struct iris_hfi_device *dev, struct msm_cvp_smem *mem)
{
if (!dev || !mem) {
dprintk(CVP_ERR, "invalid param %pK %pK\n", dev, mem);
return;
}
msm_cvp_smem_free(mem);
}
static void __write_register(struct iris_hfi_device *device,
u32 reg, u32 value)
{
u32 hwiosymaddr = reg;
u8 *base_addr;
if (!device) {
dprintk(CVP_ERR, "Invalid params: %pK\n", device);
return;
}
__strict_check(device);
if (!device->power_enabled) {
dprintk(CVP_WARN,
"HFI Write register failed : Power is OFF\n");
msm_cvp_res_handle_fatal_hw_error(device->res, true);
return;
}
base_addr = device->cvp_hal_data->register_base;
dprintk(CVP_REG, "Base addr: %pK, written to: %#x, Value: %#x...\n",
base_addr, hwiosymaddr, value);
base_addr += hwiosymaddr;
writel_relaxed(value, base_addr);
/*
* Memory barrier to make sure value is written into the register.
*/
wmb();
}
static int __read_gcc_register(struct iris_hfi_device *device, u32 reg)
{
int rc = 0;
u8 *base_addr;
if (!device) {
dprintk(CVP_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
__strict_check(device);
if (!device->power_enabled) {
dprintk(CVP_WARN,
"%s HFI Read register failed : Power is OFF\n",
__func__);
msm_cvp_res_handle_fatal_hw_error(device->res, true);
return -EINVAL;
}
base_addr = device->cvp_hal_data->gcc_reg_base;
rc = readl_relaxed(base_addr + reg);
/*
* Memory barrier to make sure value is read correctly from the
* register.
*/
rmb();
dprintk(CVP_REG,
"GCC Base addr: %pK, read from: %#x, value: %#x...\n",
base_addr, reg, rc);
return rc;
}
static int __read_register(struct iris_hfi_device *device, u32 reg)
{
int rc = 0;
u8 *base_addr;
if (!device) {
dprintk(CVP_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
}
__strict_check(device);
if (!device->power_enabled) {
dprintk(CVP_WARN,
"HFI Read register failed : Power is OFF\n");
msm_cvp_res_handle_fatal_hw_error(device->res, true);
return -EINVAL;
}
base_addr = device->cvp_hal_data->register_base;
rc = readl_relaxed(base_addr + reg);
/*
* Memory barrier to make sure value is read correctly from the
* register.
*/
rmb();
dprintk(CVP_REG, "Base addr: %pK, read from: %#x, value: %#x...\n",
base_addr, reg, rc);
return rc;
}
static void __set_registers(struct iris_hfi_device *device)
{
struct msm_cvp_core *core;
struct msm_cvp_platform_data *pdata;
struct reg_set *reg_set;
int i;
if (!device->res) {
dprintk(CVP_ERR,
"device resources null, cannot set registers\n");
return;
}
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
pdata = core->platform_data;
reg_set = &device->res->reg_set;
for (i = 0; i < reg_set->count; i++) {
__write_register(device, reg_set->reg_tbl[i].reg,
reg_set->reg_tbl[i].value);
dprintk(CVP_REG, "write_reg offset=%x, val=%x\n",
reg_set->reg_tbl[i].reg,
reg_set->reg_tbl[i].value);
}
__write_register(device, CVP_CPU_CS_AXI4_QOS,
pdata->noc_qos->axi_qos);
__write_register(device, CVP_NOC_PRIORITYLUT_LOW,
pdata->noc_qos->prioritylut_low);
__write_register(device, CVP_NOC_PRIORITYLUT_HIGH,
pdata->noc_qos->prioritylut_high);
__write_register(device, CVP_NOC_URGENCY_LOW,
pdata->noc_qos->urgency_low);
__write_register(device, CVP_NOC_DANGERLUT_LOW,
pdata->noc_qos->dangerlut_low);
__write_register(device, CVP_NOC_SAFELUT_LOW,
pdata->noc_qos->safelut_low);
}
/*
* The existence of this function is a hack for 8996 (or certain Iris versions)
* to overcome a hardware bug. Whenever the GDSCs momentarily power collapse
* (after calling __hand_off_regulators()), the values of the threshold
* registers (typically programmed by TZ) are incorrectly reset. As a result
* reprogram these registers at certain agreed upon points.
*/
static void __set_threshold_registers(struct iris_hfi_device *device)
{
u32 version = __read_register(device, CVP_WRAPPER_HW_VERSION);
version &= ~GENMASK(15, 0);
if (version != (0x3 << 28 | 0x43 << 16))
return;
if (__tzbsp_set_cvp_state(TZ_SUBSYS_STATE_RESTORE_THRESHOLD))
dprintk(CVP_ERR, "Failed to restore threshold values\n");
}
static int __unvote_buses(struct iris_hfi_device *device)
{
int rc = 0;
struct bus_info *bus = NULL;
kfree(device->bus_vote.data);
device->bus_vote.data = NULL;
device->bus_vote.data_count = 0;
iris_hfi_for_each_bus(device, bus) {
rc = msm_cvp_set_bw(bus, 0);
if (rc) {
dprintk(CVP_ERR,
"%s: Failed unvoting bus\n", __func__);
goto err_unknown_device;
}
}
err_unknown_device:
return rc;
}
static int __vote_buses(struct iris_hfi_device *device,
struct cvp_bus_vote_data *data, int num_data)
{
int rc = 0;
struct bus_info *bus = NULL;
struct cvp_bus_vote_data *new_data = NULL;
if (!num_data) {
dprintk(CVP_PWR, "No vote data available\n");
goto no_data_count;
} else if (!data) {
dprintk(CVP_ERR, "Invalid voting data\n");
return -EINVAL;
}
new_data = kmemdup(data, num_data * sizeof(*new_data), GFP_KERNEL);
if (!new_data) {
dprintk(CVP_ERR, "Can't alloc memory to cache bus votes\n");
rc = -ENOMEM;
goto err_no_mem;
}
no_data_count:
kfree(device->bus_vote.data);
device->bus_vote.data = new_data;
device->bus_vote.data_count = num_data;
iris_hfi_for_each_bus(device, bus) {
if (bus) {
rc = msm_cvp_set_bw(bus, bus->range[1]);
if (rc)
dprintk(CVP_ERR,
"Failed voting bus %s to ab %u\n",
bus->name, bus->range[1]*1000);
}
}
err_no_mem:
return rc;
}
static int iris_hfi_vote_buses(void *dev, struct cvp_bus_vote_data *d, int n)
{
int rc = 0;
struct iris_hfi_device *device = dev;
if (!device)
return -EINVAL;
mutex_lock(&device->lock);
rc = __vote_buses(device, d, n);
mutex_unlock(&device->lock);
return rc;
}
static int __core_set_resource(struct iris_hfi_device *device,
struct cvp_resource_hdr *resource_hdr, void *resource_value)
{
struct cvp_hfi_cmd_sys_set_resource_packet *pkt;
u8 packet[CVP_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
if (!device || !resource_hdr || !resource_value) {
dprintk(CVP_ERR, "set_res: Invalid Params\n");
return -EINVAL;
}
pkt = (struct cvp_hfi_cmd_sys_set_resource_packet *) packet;
rc = call_hfi_pkt_op(device, sys_set_resource,
pkt, resource_hdr, resource_value);
if (rc) {
dprintk(CVP_ERR, "set_res: failed to create packet\n");
goto err_create_pkt;
}
rc = __iface_cmdq_write(device, pkt);
if (rc)
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int __core_release_resource(struct iris_hfi_device *device,
struct cvp_resource_hdr *resource_hdr)
{
struct cvp_hfi_cmd_sys_release_resource_packet *pkt;
u8 packet[CVP_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
if (!device || !resource_hdr) {
dprintk(CVP_ERR, "release_res: Invalid Params\n");
return -EINVAL;
}
pkt = (struct cvp_hfi_cmd_sys_release_resource_packet *) packet;
rc = call_hfi_pkt_op(device, sys_release_resource,
pkt, resource_hdr);
if (rc) {
dprintk(CVP_ERR, "release_res: failed to create packet\n");
goto err_create_pkt;
}
rc = __iface_cmdq_write(device, pkt);
if (rc)
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int __tzbsp_set_cvp_state(enum tzbsp_subsys_state state)
{
int rc = 0;
rc = qcom_scm_set_remote_state(state, TZBSP_CVP_PAS_ID);
dprintk(CVP_CORE, "Set state %d, resp %d\n", state, rc);
if (rc) {
dprintk(CVP_ERR, "Failed qcom_scm_set_remote_state %d\n", rc);
return rc;
}
return 0;
}
static inline int __boot_firmware(struct iris_hfi_device *device)
{
int rc = 0, loop = 10;
u32 ctrl_init_val = 0, ctrl_status = 0, count = 0, max_tries = 1000;
u32 reg_gdsc;
/*
* Hand off control of regulators to h/w _after_ enabling clocks.
* Note that the GDSC will turn off when switching from normal
* (s/w triggered) to fast (HW triggered) unless the h/w vote is
* present. Since Iris isn't up yet, the GDSC will be off briefly.
*/
if (__enable_hw_power_collapse(device))
dprintk(CVP_ERR, "Failed to enabled inter-frame PC\n");
while (loop) {
reg_gdsc = __read_register(device, CVP_CC_MVS1_GDSCR);
if (reg_gdsc & 0x80000000) {
usleep_range(100, 200);
loop--;
} else {
break;
}
}
if (!loop)
dprintk(CVP_ERR, "fail to power off CORE during resume\n");
ctrl_init_val = BIT(0);
__write_register(device, CVP_CTRL_INIT, ctrl_init_val);
while (!ctrl_status && count < max_tries) {
ctrl_status = __read_register(device, CVP_CTRL_STATUS);
if ((ctrl_status & CVP_CTRL_ERROR_STATUS__M) == 0x4) {
dprintk(CVP_ERR, "invalid setting for UC_REGION\n");
rc = -ENODATA;
break;
}
/* Reduce to 500, 1000 on silicon */
usleep_range(500, 1000);
count++;
}
if (!(ctrl_status & CVP_CTRL_INIT_STATUS__M)) {
dprintk(CVP_ERR, "Failed to boot FW status: %x\n",
ctrl_status);
rc = -ENODEV;
}
/* Enable interrupt before sending commands to tensilica */
__write_register(device, CVP_CPU_CS_H2XSOFTINTEN, 0x1);
__write_register(device, CVP_CPU_CS_X2RPMh, 0x0);
return rc;
}
static int iris_hfi_resume(void *dev)
{
int rc = 0;
struct iris_hfi_device *device = (struct iris_hfi_device *) dev;
if (!device) {
dprintk(CVP_ERR, "%s invalid device\n", __func__);
return -EINVAL;
}
dprintk(CVP_CORE, "Resuming Iris\n");
mutex_lock(&device->lock);
rc = __resume(device);
mutex_unlock(&device->lock);
return rc;
}
static int iris_hfi_suspend(void *dev)
{
int rc = 0;
struct iris_hfi_device *device = (struct iris_hfi_device *) dev;
if (!device) {
dprintk(CVP_ERR, "%s invalid device\n", __func__);
return -EINVAL;
} else if (!device->res->sw_power_collapsible) {
return -ENOTSUPP;
}
dprintk(CVP_CORE, "Suspending Iris\n");
mutex_lock(&device->lock);
rc = __power_collapse(device, true);
if (rc) {
dprintk(CVP_WARN, "%s: Iris is busy\n", __func__);
rc = -EBUSY;
}
mutex_unlock(&device->lock);
/* Cancel pending delayed works if any */
if (!rc)
cancel_delayed_work(&iris_hfi_pm_work);
return rc;
}
static void cvp_dump_csr(struct iris_hfi_device *dev)
{
u32 reg;
if (!dev)
return;
if (!dev->power_enabled || dev->reg_dumped)
return;
reg = __read_register(dev, CVP_WRAPPER_CPU_STATUS);
dprintk(CVP_ERR, "CVP_WRAPPER_CPU_STATUS: %x\n", reg);
reg = __read_register(dev, CVP_CPU_CS_SCIACMDARG0);
dprintk(CVP_ERR, "CVP_CPU_CS_SCIACMDARG0: %x\n", reg);
reg = __read_register(dev, CVP_WRAPPER_CPU_CLOCK_CONFIG);
dprintk(CVP_ERR, "CVP_WRAPPER_CPU_CLOCK_CONFIG: %x\n", reg);
reg = __read_register(dev, CVP_WRAPPER_CORE_CLOCK_CONFIG);
dprintk(CVP_ERR, "CVP_WRAPPER_CORE_CLOCK_CONFIG: %x\n", reg);
reg = __read_register(dev, CVP_WRAPPER_INTR_STATUS);
dprintk(CVP_ERR, "CVP_WRAPPER_INTR_STATUS: %x\n", reg);
reg = __read_register(dev, CVP_CPU_CS_H2ASOFTINT);
dprintk(CVP_ERR, "CVP_CPU_CS_H2ASOFTINT: %x\n", reg);
reg = __read_register(dev, CVP_CPU_CS_A2HSOFTINT);
dprintk(CVP_ERR, "CVP_CPU_CS_A2HSOFTINT: %x\n", reg);
reg = __read_register(dev, CVP_CC_MVS1C_GDSCR);
dprintk(CVP_ERR, "CVP_CC_MVS1C_GDSCR: %x\n", reg);
reg = __read_register(dev, CVP_CC_MVS1C_CBCR);
dprintk(CVP_ERR, "CVP_CC_MVS1C_CBCR: %x\n", reg);
dev->reg_dumped = true;
}
static int iris_hfi_flush_debug_queue(void *dev)
{
int rc = 0;
struct iris_hfi_device *device = (struct iris_hfi_device *) dev;
if (!device) {
dprintk(CVP_ERR, "%s invalid device\n", __func__);
return -EINVAL;
}
cvp_dump_csr(device);
mutex_lock(&device->lock);
if (!device->power_enabled) {
dprintk(CVP_WARN, "%s: iris power off\n", __func__);
rc = -EINVAL;
goto exit;
}
__flush_debug_queue(device, NULL);
exit:
mutex_unlock(&device->lock);
return rc;
}
static int iris_hfi_scale_clocks(void *dev, u32 freq)
{
int rc = 0;
struct iris_hfi_device *device = dev;
if (!device) {
dprintk(CVP_ERR, "Invalid args: %pK\n", device);
return -EINVAL;
}
mutex_lock(&device->lock);
if (__resume(device)) {
dprintk(CVP_ERR, "Resume from power collapse failed\n");
rc = -ENODEV;
goto exit;
}
rc = msm_cvp_set_clocks_impl(device, freq);
exit:
mutex_unlock(&device->lock);
return rc;
}
/* Writes into cmdq without raising an interrupt */
static int __iface_cmdq_write_relaxed(struct iris_hfi_device *device,
void *pkt, bool *requires_interrupt)
{
struct cvp_iface_q_info *q_info;
struct cvp_hal_cmd_pkt_hdr *cmd_packet;
int result = -E2BIG;
if (!device || !pkt) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
if (!__core_in_valid_state(device)) {
dprintk(CVP_ERR, "%s - fw not in init state\n", __func__);
result = -EINVAL;
goto err_q_null;
}
cmd_packet = (struct cvp_hal_cmd_pkt_hdr *)pkt;
device->last_packet_type = cmd_packet->packet_type;
q_info = &device->iface_queues[CVP_IFACEQ_CMDQ_IDX];
if (!q_info) {
dprintk(CVP_ERR, "cannot write to shared Q's\n");
goto err_q_null;
}
if (!q_info->q_array.align_virtual_addr) {
dprintk(CVP_ERR, "cannot write to shared CMD Q's\n");
result = -ENODATA;
goto err_q_null;
}
if (__resume(device)) {
dprintk(CVP_ERR, "%s: Power on failed\n", __func__);
goto err_q_write;
}
if (!__write_queue(q_info, (u8 *)pkt, requires_interrupt)) {
if (device->res->sw_power_collapsible) {
cancel_delayed_work(&iris_hfi_pm_work);
if (!queue_delayed_work(device->iris_pm_workq,
&iris_hfi_pm_work,
msecs_to_jiffies(
device->res->msm_cvp_pwr_collapse_delay))) {
dprintk(CVP_PWR,
"PM work already scheduled\n");
}
}
result = 0;
} else {
dprintk(CVP_ERR, "__iface_cmdq_write: queue full\n");
}
err_q_write:
err_q_null:
return result;
}
static int __iface_cmdq_write(struct iris_hfi_device *device, void *pkt)
{
bool needs_interrupt = false;
int rc = __iface_cmdq_write_relaxed(device, pkt, &needs_interrupt);
if (!rc && needs_interrupt) {
/* Consumer of cmdq prefers that we raise an interrupt */
rc = 0;
__write_register(device, CVP_CPU_CS_H2ASOFTINT, 1);
}
return rc;
}
static int __iface_msgq_read(struct iris_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct cvp_iface_q_info *q_info;
if (!pkt) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
if (!__core_in_valid_state(device)) {
dprintk(CVP_WARN, "%s - fw not in init state\n", __func__);
rc = -EINVAL;
goto read_error_null;
}
q_info = &device->iface_queues[CVP_IFACEQ_MSGQ_IDX];
if (q_info->q_array.align_virtual_addr == NULL) {
dprintk(CVP_ERR, "cannot read from shared MSG Q's\n");
rc = -ENODATA;
goto read_error_null;
}
if (!__read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
if (tx_req_is_set)
__write_register(device, CVP_CPU_CS_H2ASOFTINT, 1);
rc = 0;
} else
rc = -ENODATA;
read_error_null:
return rc;
}
static int __iface_dbgq_read(struct iris_hfi_device *device, void *pkt)
{
u32 tx_req_is_set = 0;
int rc = 0;
struct cvp_iface_q_info *q_info;
if (!pkt) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
}
__strict_check(device);
q_info = &device->iface_queues[CVP_IFACEQ_DBGQ_IDX];
if (q_info->q_array.align_virtual_addr == NULL) {
dprintk(CVP_ERR, "cannot read from shared DBG Q's\n");
rc = -ENODATA;
goto dbg_error_null;
}
if (!__read_queue(q_info, (u8 *)pkt, &tx_req_is_set)) {
if (tx_req_is_set)
__write_register(device, CVP_CPU_CS_H2ASOFTINT, 1);
rc = 0;
} else
rc = -ENODATA;
dbg_error_null:
return rc;
}
static void __set_queue_hdr_defaults(struct cvp_hfi_queue_header *q_hdr)
{
q_hdr->qhdr_status = 0x1;
q_hdr->qhdr_type = CVP_IFACEQ_DFLT_QHDR;
q_hdr->qhdr_q_size = CVP_IFACEQ_QUEUE_SIZE / 4;
q_hdr->qhdr_pkt_size = 0;
q_hdr->qhdr_rx_wm = 0x1;
q_hdr->qhdr_tx_wm = 0x1;
q_hdr->qhdr_rx_req = 0x1;
q_hdr->qhdr_tx_req = 0x0;
q_hdr->qhdr_rx_irq_status = 0x0;
q_hdr->qhdr_tx_irq_status = 0x0;
q_hdr->qhdr_read_idx = 0x0;
q_hdr->qhdr_write_idx = 0x0;
}
static void __interface_dsp_queues_release(struct iris_hfi_device *device)
{
int i;
struct msm_cvp_smem *mem_data = &device->dsp_iface_q_table.mem_data;
struct context_bank_info *cb = mem_data->mapping_info.cb_info;
if (!device->dsp_iface_q_table.align_virtual_addr) {
dprintk(CVP_ERR, "%s: already released\n", __func__);
return;
}
dma_unmap_single_attrs(cb->dev, mem_data->device_addr,
mem_data->size, DMA_BIDIRECTIONAL, 0);
dma_free_coherent(device->res->mem_cdsp.dev, mem_data->size,
mem_data->kvaddr, mem_data->dma_handle);
for (i = 0; i < CVP_IFACEQ_NUMQ; i++) {
device->dsp_iface_queues[i].q_hdr = NULL;
device->dsp_iface_queues[i].q_array.align_virtual_addr = NULL;
device->dsp_iface_queues[i].q_array.align_device_addr = 0;
}
device->dsp_iface_q_table.align_virtual_addr = NULL;
device->dsp_iface_q_table.align_device_addr = 0;
}
static int __interface_dsp_queues_init(struct iris_hfi_device *dev)
{
int rc = 0;
u32 i;
struct cvp_iface_q_info *iface_q;
int offset = 0;
phys_addr_t fw_bias = 0;
size_t q_size;
struct msm_cvp_smem *mem_data;
void *kvaddr;
dma_addr_t dma_handle;
dma_addr_t iova;
struct context_bank_info *cb;
q_size = ALIGN(QUEUE_SIZE, SZ_1M);
mem_data = &dev->dsp_iface_q_table.mem_data;
/* Allocate dsp queues from CDSP device memory */
kvaddr = dma_alloc_coherent(dev->res->mem_cdsp.dev, q_size,
&dma_handle, GFP_KERNEL);
if (IS_ERR_OR_NULL(kvaddr)) {
dprintk(CVP_ERR, "%s: failed dma allocation\n", __func__);
goto fail_dma_alloc;
}
cb = msm_cvp_smem_get_context_bank(dev->res, 0);
if (!cb) {
dprintk(CVP_ERR,
"%s: failed to get context bank\n", __func__);
goto fail_dma_map;
}
iova = dma_map_single_attrs(cb->dev, phys_to_virt(dma_handle),
q_size, DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(cb->dev, iova)) {
dprintk(CVP_ERR, "%s: failed dma mapping\n", __func__);
goto fail_dma_map;
}
dprintk(CVP_DSP,
"%s: kvaddr %pK dma_handle %#llx iova %#llx size %zd\n",
__func__, kvaddr, dma_handle, iova, q_size);
memset(mem_data, 0, sizeof(struct msm_cvp_smem));
mem_data->kvaddr = kvaddr;
mem_data->device_addr = iova;
mem_data->dma_handle = dma_handle;
mem_data->size = q_size;
mem_data->mapping_info.cb_info = cb;
if (!is_iommu_present(dev->res))
fw_bias = dev->cvp_hal_data->firmware_base;
dev->dsp_iface_q_table.align_virtual_addr = kvaddr;
dev->dsp_iface_q_table.align_device_addr = iova - fw_bias;
dev->dsp_iface_q_table.mem_size = CVP_IFACEQ_TABLE_SIZE;
offset = dev->dsp_iface_q_table.mem_size;
for (i = 0; i < CVP_IFACEQ_NUMQ; i++) {
iface_q = &dev->dsp_iface_queues[i];
iface_q->q_array.align_device_addr = iova + offset - fw_bias;
iface_q->q_array.align_virtual_addr = kvaddr + offset;
iface_q->q_array.mem_size = CVP_IFACEQ_QUEUE_SIZE;
offset += iface_q->q_array.mem_size;
spin_lock_init(&iface_q->hfi_lock);
}
cvp_dsp_init_hfi_queue_hdr(dev);
return rc;
fail_dma_map:
dma_free_coherent(dev->res->mem_cdsp.dev, q_size, kvaddr, dma_handle);
fail_dma_alloc:
return -ENOMEM;
}
static void __interface_queues_release(struct iris_hfi_device *device)
{
int i;
struct cvp_hfi_mem_map_table *qdss;
struct cvp_hfi_mem_map *mem_map;
int num_entries = device->res->qdss_addr_set.count;
unsigned long mem_map_table_base_addr;
struct context_bank_info *cb;
if (device->qdss.align_virtual_addr) {
qdss = (struct cvp_hfi_mem_map_table *)
device->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
mem_map_table_base_addr =
device->qdss.align_device_addr +
sizeof(struct cvp_hfi_mem_map_table);
qdss->mem_map_table_base_addr =
(u32)mem_map_table_base_addr;
if ((unsigned long)qdss->mem_map_table_base_addr !=
mem_map_table_base_addr) {
dprintk(CVP_ERR,
"Invalid mem_map_table_base_addr %#lx",
mem_map_table_base_addr);
}
mem_map = (struct cvp_hfi_mem_map *)(qdss + 1);
cb = msm_cvp_smem_get_context_bank(device->res, 0);
for (i = 0; cb && i < num_entries; i++) {
iommu_unmap(cb->domain,
mem_map[i].virtual_addr,
mem_map[i].size);
}
__smem_free(device, &device->qdss.mem_data);
}
__smem_free(device, &device->iface_q_table.mem_data);
__smem_free(device, &device->sfr.mem_data);
for (i = 0; i < CVP_IFACEQ_NUMQ; i++) {
device->iface_queues[i].q_hdr = NULL;
device->iface_queues[i].q_array.align_virtual_addr = NULL;
device->iface_queues[i].q_array.align_device_addr = 0;
}
device->iface_q_table.align_virtual_addr = NULL;
device->iface_q_table.align_device_addr = 0;
device->qdss.align_virtual_addr = NULL;
device->qdss.align_device_addr = 0;
device->sfr.align_virtual_addr = NULL;
device->sfr.align_device_addr = 0;
device->mem_addr.align_virtual_addr = NULL;
device->mem_addr.align_device_addr = 0;
__interface_dsp_queues_release(device);
}
static int __get_qdss_iommu_virtual_addr(struct iris_hfi_device *dev,
struct cvp_hfi_mem_map *mem_map,
struct iommu_domain *domain)
{
int i;
int rc = 0;
dma_addr_t iova = QDSS_IOVA_START;
int num_entries = dev->res->qdss_addr_set.count;
struct addr_range *qdss_addr_tbl = dev->res->qdss_addr_set.addr_tbl;
if (!num_entries)
return -ENODATA;
for (i = 0; i < num_entries; i++) {
if (domain) {
rc = iommu_map(domain, iova,
qdss_addr_tbl[i].start,
qdss_addr_tbl[i].size,
IOMMU_READ | IOMMU_WRITE);
if (rc) {
dprintk(CVP_ERR,
"IOMMU QDSS mapping failed for addr %#x\n",
qdss_addr_tbl[i].start);
rc = -ENOMEM;
break;
}
} else {
iova = qdss_addr_tbl[i].start;
}
mem_map[i].virtual_addr = (u32)iova;
mem_map[i].physical_addr = qdss_addr_tbl[i].start;
mem_map[i].size = qdss_addr_tbl[i].size;
mem_map[i].attr = 0x0;
iova += mem_map[i].size;
}
if (i < num_entries) {
dprintk(CVP_ERR,
"QDSS mapping failed, Freeing other entries %d\n", i);
for (--i; domain && i >= 0; i--) {
iommu_unmap(domain,
mem_map[i].virtual_addr,
mem_map[i].size);
}
}
return rc;
}
static void __setup_ucregion_memory_map(struct iris_hfi_device *device)
{
__write_register(device, CVP_UC_REGION_ADDR,
(u32)device->iface_q_table.align_device_addr);
__write_register(device, CVP_UC_REGION_SIZE, SHARED_QSIZE);
__write_register(device, CVP_QTBL_ADDR,
(u32)device->iface_q_table.align_device_addr);
__write_register(device, CVP_QTBL_INFO, 0x01);
if (device->sfr.align_device_addr)
__write_register(device, CVP_SFR_ADDR,
(u32)device->sfr.align_device_addr);
if (device->qdss.align_device_addr)
__write_register(device, CVP_MMAP_ADDR,
(u32)device->qdss.align_device_addr);
call_iris_op(device, setup_dsp_uc_memmap, device);
}
static int __interface_queues_init(struct iris_hfi_device *dev)
{
struct cvp_hfi_queue_table_header *q_tbl_hdr;
struct cvp_hfi_queue_header *q_hdr;
u32 i;
int rc = 0;
struct cvp_hfi_mem_map_table *qdss;
struct cvp_hfi_mem_map *mem_map;
struct cvp_iface_q_info *iface_q;
struct cvp_hfi_sfr_struct *vsfr;
struct cvp_mem_addr *mem_addr;
int offset = 0;
int num_entries = dev->res->qdss_addr_set.count;
phys_addr_t fw_bias = 0;
size_t q_size;
unsigned long mem_map_table_base_addr;
struct context_bank_info *cb;
q_size = SHARED_QSIZE - ALIGNED_SFR_SIZE - ALIGNED_QDSS_SIZE;
mem_addr = &dev->mem_addr;
if (!is_iommu_present(dev->res))
fw_bias = dev->cvp_hal_data->firmware_base;
rc = __smem_alloc(dev, mem_addr, q_size, 1, SMEM_UNCACHED);
if (rc) {
dprintk(CVP_ERR, "iface_q_table_alloc_fail\n");
goto fail_alloc_queue;
}
dev->iface_q_table.align_virtual_addr = mem_addr->align_virtual_addr;
dev->iface_q_table.align_device_addr = mem_addr->align_device_addr -
fw_bias;
dev->iface_q_table.mem_size = CVP_IFACEQ_TABLE_SIZE;
dev->iface_q_table.mem_data = mem_addr->mem_data;
offset += dev->iface_q_table.mem_size;
for (i = 0; i < CVP_IFACEQ_NUMQ; i++) {
iface_q = &dev->iface_queues[i];
iface_q->q_array.align_device_addr = mem_addr->align_device_addr
+ offset - fw_bias;
iface_q->q_array.align_virtual_addr =
mem_addr->align_virtual_addr + offset;
iface_q->q_array.mem_size = CVP_IFACEQ_QUEUE_SIZE;
offset += iface_q->q_array.mem_size;
iface_q->q_hdr = CVP_IFACEQ_GET_QHDR_START_ADDR(
dev->iface_q_table.align_virtual_addr, i);
__set_queue_hdr_defaults(iface_q->q_hdr);
spin_lock_init(&iface_q->hfi_lock);
}
if ((msm_cvp_fw_debug_mode & HFI_DEBUG_MODE_QDSS) && num_entries) {
rc = __smem_alloc(dev, mem_addr, ALIGNED_QDSS_SIZE, 1,
SMEM_UNCACHED);
if (rc) {
dprintk(CVP_WARN,
"qdss_alloc_fail: QDSS messages logging will not work\n");
dev->qdss.align_device_addr = 0;
} else {
dev->qdss.align_device_addr =
mem_addr->align_device_addr - fw_bias;
dev->qdss.align_virtual_addr =
mem_addr->align_virtual_addr;
dev->qdss.mem_size = ALIGNED_QDSS_SIZE;
dev->qdss.mem_data = mem_addr->mem_data;
}
}
rc = __smem_alloc(dev, mem_addr, ALIGNED_SFR_SIZE, 1, SMEM_UNCACHED);
if (rc) {
dprintk(CVP_WARN, "sfr_alloc_fail: SFR not will work\n");
dev->sfr.align_device_addr = 0;
} else {
dev->sfr.align_device_addr = mem_addr->align_device_addr -
fw_bias;
dev->sfr.align_virtual_addr = mem_addr->align_virtual_addr;
dev->sfr.mem_size = ALIGNED_SFR_SIZE;
dev->sfr.mem_data = mem_addr->mem_data;
}
q_tbl_hdr = (struct cvp_hfi_queue_table_header *)
dev->iface_q_table.align_virtual_addr;
q_tbl_hdr->qtbl_version = 0;
q_tbl_hdr->device_addr = (void *)dev;
strlcpy(q_tbl_hdr->name, "msm_cvp", sizeof(q_tbl_hdr->name));
q_tbl_hdr->qtbl_size = CVP_IFACEQ_TABLE_SIZE;
q_tbl_hdr->qtbl_qhdr0_offset =
sizeof(struct cvp_hfi_queue_table_header);
q_tbl_hdr->qtbl_qhdr_size = sizeof(struct cvp_hfi_queue_header);
q_tbl_hdr->qtbl_num_q = CVP_IFACEQ_NUMQ;
q_tbl_hdr->qtbl_num_active_q = CVP_IFACEQ_NUMQ;
iface_q = &dev->iface_queues[CVP_IFACEQ_CMDQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_HOST_TO_CTRL_CMD_Q;
iface_q = &dev->iface_queues[CVP_IFACEQ_MSGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_MSG_Q;
iface_q = &dev->iface_queues[CVP_IFACEQ_DBGQ_IDX];
q_hdr = iface_q->q_hdr;
q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q;
/*
* Set receive request to zero on debug queue as there is no
* need of interrupt from cvp hardware for debug messages
*/
q_hdr->qhdr_rx_req = 0;
if (dev->qdss.align_virtual_addr) {
qdss =
(struct cvp_hfi_mem_map_table *)dev->qdss.align_virtual_addr;
qdss->mem_map_num_entries = num_entries;
mem_map_table_base_addr = dev->qdss.align_device_addr +
sizeof(struct cvp_hfi_mem_map_table);
qdss->mem_map_table_base_addr = mem_map_table_base_addr;
mem_map = (struct cvp_hfi_mem_map *)(qdss + 1);
cb = msm_cvp_smem_get_context_bank(dev->res, 0);
if (!cb) {
dprintk(CVP_ERR,
"%s: failed to get context bank\n", __func__);
return -EINVAL;
}
rc = __get_qdss_iommu_virtual_addr(dev, mem_map, cb->domain);
if (rc) {
dprintk(CVP_ERR,
"IOMMU mapping failed, Freeing qdss memdata\n");
__smem_free(dev, &dev->qdss.mem_data);
dev->qdss.align_virtual_addr = NULL;
dev->qdss.align_device_addr = 0;
}
}
vsfr = (struct cvp_hfi_sfr_struct *) dev->sfr.align_virtual_addr;
if (vsfr)
vsfr->bufSize = ALIGNED_SFR_SIZE;
rc = __interface_dsp_queues_init(dev);
if (rc) {
dprintk(CVP_ERR, "dsp_queues_init failed\n");
goto fail_alloc_queue;
}
__setup_ucregion_memory_map(dev);
return 0;
fail_alloc_queue:
return -ENOMEM;
}
static int __sys_set_debug(struct iris_hfi_device *device, u32 debug)
{
u8 packet[CVP_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct cvp_hfi_cmd_sys_set_property_packet *pkt =
(struct cvp_hfi_cmd_sys_set_property_packet *) &packet;
rc = call_hfi_pkt_op(device, sys_debug_config, pkt, debug);
if (rc) {
dprintk(CVP_WARN,
"Debug mode setting to FW failed\n");
return -ENOTEMPTY;
}
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int __sys_set_idle_indicator(struct iris_hfi_device *device,
bool enable)
{
u8 packet[CVP_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct cvp_hfi_cmd_sys_set_property_packet *pkt =
(struct cvp_hfi_cmd_sys_set_property_packet *) &packet;
rc = call_hfi_pkt_op(device, sys_set_idle_indicator, pkt, enable);
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static int __sys_set_coverage(struct iris_hfi_device *device, u32 mode)
{
u8 packet[CVP_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct cvp_hfi_cmd_sys_set_property_packet *pkt =
(struct cvp_hfi_cmd_sys_set_property_packet *) &packet;
rc = call_hfi_pkt_op(device, sys_coverage_config,
pkt, mode);
if (rc) {
dprintk(CVP_WARN,
"Coverage mode setting to FW failed\n");
return -ENOTEMPTY;
}
if (__iface_cmdq_write(device, pkt)) {
dprintk(CVP_WARN, "Failed to send coverage pkt to f/w\n");
return -ENOTEMPTY;
}
return 0;
}
static int __sys_set_power_control(struct iris_hfi_device *device,
bool enable)
{
struct regulator_info *rinfo;
bool supported = false;
u8 packet[CVP_IFACEQ_VAR_SMALL_PKT_SIZE];
struct cvp_hfi_cmd_sys_set_property_packet *pkt =
(struct cvp_hfi_cmd_sys_set_property_packet *) &packet;
iris_hfi_for_each_regulator(device, rinfo) {
if (rinfo->has_hw_power_collapse) {
supported = true;
break;
}
}
if (!supported)
return 0;
call_hfi_pkt_op(device, sys_power_control, pkt, enable);
if (__iface_cmdq_write(device, pkt))
return -ENOTEMPTY;
return 0;
}
static void cvp_pm_qos_update(struct iris_hfi_device *device, bool vote_on)
{
u32 latency, off_vote_cnt;
int i, err = 0;
spin_lock(&device->res->pm_qos.lock);
off_vote_cnt = device->res->pm_qos.off_vote_cnt;
spin_unlock(&device->res->pm_qos.lock);
if (vote_on && off_vote_cnt)
return;
latency = vote_on ? device->res->pm_qos.latency_us :
PM_QOS_RESUME_LATENCY_DEFAULT_VALUE;
if (device->res->pm_qos.latency_us && device->res->pm_qos.pm_qos_hdls)
for (i = 0; i < device->res->pm_qos.silver_count; i++) {
err = dev_pm_qos_update_request(
&device->res->pm_qos.pm_qos_hdls[i],
latency);
if (err < 0) {
if (vote_on) {
dprintk(CVP_WARN,
"pm qos on failed %d\n", err);
} else {
dprintk(CVP_WARN,
"pm qos off failed %d\n", err);
}
}
}
}
static int iris_pm_qos_update(void *device)
{
struct iris_hfi_device *dev;
if (!device) {
dprintk(CVP_ERR, "%s Invalid device\n", __func__);
return -ENODEV;
}
dev = device;
mutex_lock(&dev->lock);
cvp_pm_qos_update(dev, true);
mutex_unlock(&dev->lock);
return 0;
}
static int iris_hfi_core_init(void *device)
{
int rc = 0;
u32 ipcc_iova;
struct cvp_hfi_cmd_sys_init_packet pkt;
struct cvp_hfi_cmd_sys_get_property_packet version_pkt;
struct iris_hfi_device *dev;
if (!device) {
dprintk(CVP_ERR, "Invalid device\n");
return -ENODEV;
}
dev = device;
dprintk(CVP_CORE, "Core initializing\n");
pm_stay_awake(dev->res->pdev->dev.parent);
mutex_lock(&dev->lock);
dev->bus_vote.data =
kzalloc(sizeof(struct cvp_bus_vote_data), GFP_KERNEL);
if (!dev->bus_vote.data) {
dprintk(CVP_ERR, "Bus vote data memory is not allocated\n");
rc = -ENOMEM;
goto err_no_mem;
}
dev->bus_vote.data_count = 1;
dev->bus_vote.data->power_mode = CVP_POWER_TURBO;
rc = __load_fw(dev);
if (rc) {
dprintk(CVP_ERR, "Failed to load Iris FW\n");
goto err_load_fw;
}
/* mmrm registration */
if (msm_cvp_mmrm_enabled) {
rc = msm_cvp_mmrm_register(device);
if (rc) {
dprintk(CVP_ERR, "Failed to register mmrm client\n");
goto err_core_init;
}
}
__set_state(dev, IRIS_STATE_INIT);
dev->reg_dumped = false;
dprintk(CVP_CORE, "Dev_Virt: %pa, Reg_Virt: %pK\n",
&dev->cvp_hal_data->firmware_base,
dev->cvp_hal_data->register_base);
rc = __interface_queues_init(dev);
if (rc) {
dprintk(CVP_ERR, "failed to init queues\n");
rc = -ENOMEM;
goto err_core_init;
}
cvp_register_va_md_region();
// Add node for dev struct
add_va_node_to_list(CVP_QUEUE_DUMP, dev,
sizeof(struct iris_hfi_device),
"iris_hfi_device-dev", false);
add_queue_header_to_va_md_list((void*)dev);
add_hfi_queue_to_va_md_list((void*)dev);
rc = msm_cvp_map_ipcc_regs(&ipcc_iova);
if (!rc) {
dprintk(CVP_CORE, "IPCC iova 0x%x\n", ipcc_iova);
__write_register(dev, CVP_MMAP_ADDR, ipcc_iova);
}
rc = __boot_firmware(dev);
if (rc) {
dprintk(CVP_ERR, "Failed to start core\n");
rc = -ENODEV;
goto err_core_init;
}
dev->version = __read_register(dev, CVP_VERSION_INFO);
rc = call_hfi_pkt_op(dev, sys_init, &pkt, 0);
if (rc) {
dprintk(CVP_ERR, "Failed to create sys init pkt\n");
goto err_core_init;
}
if (__iface_cmdq_write(dev, &pkt)) {
rc = -ENOTEMPTY;
goto err_core_init;
}
rc = call_hfi_pkt_op(dev, sys_image_version, &version_pkt);
if (rc || __iface_cmdq_write(dev, &version_pkt))
dprintk(CVP_WARN, "Failed to send image version pkt to f/w\n");
__sys_set_debug(device, msm_cvp_fw_debug);
__enable_subcaches(device);
__set_subcaches(device);
__set_ubwc_config(device);
__sys_set_idle_indicator(device, true);
if (dev->res->pm_qos.latency_us) {
int err = 0;
u32 i, cpu;
dev->res->pm_qos.pm_qos_hdls = kcalloc(
dev->res->pm_qos.silver_count,
sizeof(struct dev_pm_qos_request),
GFP_KERNEL);
if (!dev->res->pm_qos.pm_qos_hdls) {
dprintk(CVP_WARN, "Failed allocate pm_qos_hdls\n");
goto pm_qos_bail;
}
for (i = 0; i < dev->res->pm_qos.silver_count; i++) {
cpu = dev->res->pm_qos.silver_cores[i];
err = dev_pm_qos_add_request(
get_cpu_device(cpu),
&dev->res->pm_qos.pm_qos_hdls[i],
DEV_PM_QOS_RESUME_LATENCY,
dev->res->pm_qos.latency_us);
if (err < 0)
dprintk(CVP_WARN,
"%s pm_qos_add_req %d failed\n",
__func__, i);
}
}
pm_qos_bail:
mutex_unlock(&dev->lock);
cvp_dsp_send_hfi_queue();
pm_relax(dev->res->pdev->dev.parent);
dprintk(CVP_CORE, "Core inited successfully\n");
return 0;
err_core_init:
__set_state(dev, IRIS_STATE_DEINIT);
__unload_fw(dev);
if (dev->mmrm_cvp)
{
msm_cvp_mmrm_deregister(dev);
}
err_load_fw:
err_no_mem:
dprintk(CVP_ERR, "Core init failed\n");
mutex_unlock(&dev->lock);
pm_relax(dev->res->pdev->dev.parent);
return rc;
}
static int iris_hfi_core_release(void *dev)
{
int rc = 0, i;
struct iris_hfi_device *device = dev;
struct cvp_hal_session *session, *next;
struct dev_pm_qos_request *qos_hdl;
if (!device) {
dprintk(CVP_ERR, "invalid device\n");
return -ENODEV;
}
mutex_lock(&device->lock);
dprintk(CVP_WARN, "Core releasing\n");
if (device->res->pm_qos.latency_us &&
device->res->pm_qos.pm_qos_hdls) {
for (i = 0; i < device->res->pm_qos.silver_count; i++) {
qos_hdl = &device->res->pm_qos.pm_qos_hdls[i];
if ((qos_hdl != NULL) && dev_pm_qos_request_active(qos_hdl))
dev_pm_qos_remove_request(qos_hdl);
}
kfree(device->res->pm_qos.pm_qos_hdls);
device->res->pm_qos.pm_qos_hdls = NULL;
}
__resume(device);
__set_state(device, IRIS_STATE_DEINIT);
__dsp_shutdown(device, 0);
__disable_subcaches(device);
__unload_fw(device);
if (msm_cvp_mmrm_enabled) {
rc = msm_cvp_mmrm_deregister(device);
if (rc) {
dprintk(CVP_ERR,
"%s: Failed msm_cvp_mmrm_deregister:%d\n",
__func__, rc);
}
}
/* unlink all sessions from device */
list_for_each_entry_safe(session, next, &device->sess_head, list) {
list_del(&session->list);
session->device = NULL;
}
dprintk(CVP_CORE, "Core released successfully\n");
mutex_unlock(&device->lock);
return rc;
}
static void __core_clear_interrupt(struct iris_hfi_device *device)
{
u32 intr_status = 0, mask = 0;
if (!device) {
dprintk(CVP_ERR, "%s: NULL device\n", __func__);
return;
}
intr_status = __read_register(device, CVP_WRAPPER_INTR_STATUS);
mask = (CVP_WRAPPER_INTR_MASK_A2HCPU_BMSK | CVP_FATAL_INTR_BMSK);
if (intr_status & mask) {
device->intr_status |= intr_status;
device->reg_count++;
dprintk(CVP_CORE,
"INTERRUPT for device: %pK: times: %d status: %d\n",
device, device->reg_count, intr_status);
} else {
device->spur_count++;
}
__write_register(device, CVP_CPU_CS_A2HSOFTINTCLR, 1);
}
static int iris_hfi_core_trigger_ssr(void *device,
enum hal_ssr_trigger_type type)
{
struct cvp_hfi_cmd_sys_test_ssr_packet pkt;
int rc = 0;
struct iris_hfi_device *dev;
cvp_free_va_md_list();
if (!device) {
dprintk(CVP_ERR, "invalid device\n");
return -ENODEV;
}
dev = device;
if (mutex_trylock(&dev->lock)) {
rc = call_hfi_pkt_op(dev, ssr_cmd, type, &pkt);
if (rc) {
dprintk(CVP_ERR, "%s: failed to create packet\n",
__func__);
goto err_create_pkt;
}
if (__iface_cmdq_write(dev, &pkt))
rc = -ENOTEMPTY;
} else {
return -EAGAIN;
}
err_create_pkt:
mutex_unlock(&dev->lock);
return rc;
}
static void __set_default_sys_properties(struct iris_hfi_device *device)
{
if (__sys_set_debug(device, msm_cvp_fw_debug))
dprintk(CVP_WARN, "Setting fw_debug msg ON failed\n");
if (__sys_set_power_control(device, msm_cvp_fw_low_power_mode))
dprintk(CVP_WARN, "Setting h/w power collapse ON failed\n");
}
static void __session_clean(struct cvp_hal_session *session)
{
struct cvp_hal_session *temp, *next;
struct iris_hfi_device *device;
if (!session || !session->device) {
dprintk(CVP_WARN, "%s: invalid params\n", __func__);
return;
}
device = session->device;
dprintk(CVP_SESS, "deleted the session: %pK\n", session);
/*
* session might have been removed from the device list in
* core_release, so check and remove if it is in the list
*/
list_for_each_entry_safe(temp, next, &device->sess_head, list) {
if (session == temp) {
list_del(&session->list);
break;
}
}
/* Poison the session handle with zeros */
*session = (struct cvp_hal_session){ {0} };
kfree(session);
}
static int iris_hfi_session_clean(void *session)
{
struct cvp_hal_session *sess_close;
struct iris_hfi_device *device;
if (!session) {
dprintk(CVP_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess_close = session;
device = sess_close->device;
if (!device) {
dprintk(CVP_ERR, "Invalid device handle %s\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
__session_clean(sess_close);
mutex_unlock(&device->lock);
return 0;
}
static int iris_hfi_session_init(void *device, void *session_id,
void **new_session)
{
struct cvp_hfi_cmd_sys_session_init_packet pkt;
struct iris_hfi_device *dev;
struct cvp_hal_session *s;
if (!device || !new_session) {
dprintk(CVP_ERR, "%s - invalid input\n", __func__);
return -EINVAL;
}
dev = device;
mutex_lock(&dev->lock);
s = kzalloc(sizeof(*s), GFP_KERNEL);
if (!s) {
dprintk(CVP_ERR, "new session fail: Out of memory\n");
goto err_session_init_fail;
}
s->session_id = session_id;
s->device = dev;
dprintk(CVP_SESS,
"%s: inst %pK, session %pK\n", __func__, session_id, s);
list_add_tail(&s->list, &dev->sess_head);
__set_default_sys_properties(device);
if (call_hfi_pkt_op(dev, session_init, &pkt, s)) {
dprintk(CVP_ERR, "session_init: failed to create packet\n");
goto err_session_init_fail;
}
*new_session = s;
if (__iface_cmdq_write(dev, &pkt))
goto err_session_init_fail;
mutex_unlock(&dev->lock);
return 0;
err_session_init_fail:
if (s)
__session_clean(s);
*new_session = NULL;
mutex_unlock(&dev->lock);
return -EINVAL;
}
static int __send_session_cmd(struct cvp_hal_session *session, int pkt_type)
{
struct cvp_hal_session_cmd_pkt pkt;
int rc = 0;
struct iris_hfi_device *device = session->device;
if (!__is_session_valid(device, session, __func__))
return -ECONNRESET;
rc = call_hfi_pkt_op(device, session_cmd,
&pkt, pkt_type, session);
if (rc == -EPERM)
return 0;
if (rc) {
dprintk(CVP_ERR, "send session cmd: create pkt failed\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
return rc;
}
static int iris_hfi_session_end(void *session)
{
struct cvp_hal_session *sess;
struct iris_hfi_device *device;
int rc = 0;
if (!session) {
dprintk(CVP_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
sess = session;
device = sess->device;
if (!device) {
dprintk(CVP_ERR, "Invalid session %s\n", __func__);
return -EINVAL;
}
mutex_lock(&device->lock);
if (msm_cvp_fw_coverage) {
if (__sys_set_coverage(sess->device, msm_cvp_fw_coverage))
dprintk(CVP_WARN, "Fw_coverage msg ON failed\n");
}
rc = __send_session_cmd(session, HFI_CMD_SYS_SESSION_END);
mutex_unlock(&device->lock);
return rc;
}
static int iris_hfi_session_abort(void *sess)
{
struct cvp_hal_session *session = sess;
struct iris_hfi_device *device;
int rc = 0;
if (!session || !session->device) {
dprintk(CVP_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(session, HFI_CMD_SYS_SESSION_ABORT);
mutex_unlock(&device->lock);
return rc;
}
static int iris_hfi_session_set_buffers(void *sess, u32 iova, u32 size)
{
struct cvp_hfi_cmd_session_set_buffers_packet pkt;
int rc = 0;
struct cvp_hal_session *session = sess;
struct iris_hfi_device *device;
if (!session || !session->device || !iova || !size) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -ECONNRESET;
goto err_create_pkt;
}
rc = call_hfi_pkt_op(device, session_set_buffers,
&pkt, session, iova, size);
if (rc) {
dprintk(CVP_ERR, "set buffers: failed to create packet\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int iris_hfi_session_release_buffers(void *sess)
{
struct cvp_session_release_buffers_packet pkt;
int rc = 0;
struct cvp_hal_session *session = sess;
struct iris_hfi_device *device;
if (!session || !session->device) {
dprintk(CVP_ERR, "Invalid Params\n");
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -ECONNRESET;
goto err_create_pkt;
}
rc = call_hfi_pkt_op(device, session_release_buffers, &pkt, session);
if (rc) {
dprintk(CVP_ERR, "release buffers: failed to create packet\n");
goto err_create_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_create_pkt:
mutex_unlock(&device->lock);
return rc;
}
static int iris_hfi_session_send(void *sess,
struct eva_kmd_hfi_packet *in_pkt)
{
int rc = 0;
struct eva_kmd_hfi_packet pkt;
struct cvp_hal_session *session = sess;
struct iris_hfi_device *device;
if (!session || !session->device) {
dprintk(CVP_ERR, "invalid session");
return -ENODEV;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, __func__)) {
rc = -ECONNRESET;
goto err_send_pkt;
}
rc = call_hfi_pkt_op(device, session_send,
&pkt, session, in_pkt);
if (rc) {
dprintk(CVP_ERR,
"failed to create pkt\n");
goto err_send_pkt;
}
if (__iface_cmdq_write(session->device, &pkt))
rc = -ENOTEMPTY;
err_send_pkt:
mutex_unlock(&device->lock);
return rc;
return rc;
}
static int iris_hfi_session_flush(void *sess)
{
struct cvp_hal_session *session = sess;
struct iris_hfi_device *device;
int rc = 0;
if (!session || !session->device) {
dprintk(CVP_ERR, "Invalid Params %s\n", __func__);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
rc = __send_session_cmd(session, HFI_CMD_SESSION_CVP_FLUSH);
mutex_unlock(&device->lock);
return rc;
}
static int __check_core_registered(struct iris_hfi_device *device,
phys_addr_t fw_addr, u8 *reg_addr, u32 reg_size,
phys_addr_t irq)
{
struct cvp_hal_data *cvp_hal_data;
if (!device) {
dprintk(CVP_INFO, "no device Registered\n");
return -EINVAL;
}
cvp_hal_data = device->cvp_hal_data;
if (!cvp_hal_data)
return -EINVAL;
if (cvp_hal_data->irq == irq &&
(CONTAINS(cvp_hal_data->firmware_base,
FIRMWARE_SIZE, fw_addr) ||
CONTAINS(fw_addr, FIRMWARE_SIZE,
cvp_hal_data->firmware_base) ||
CONTAINS(cvp_hal_data->register_base,
reg_size, reg_addr) ||
CONTAINS(reg_addr, reg_size,
cvp_hal_data->register_base) ||
OVERLAPS(cvp_hal_data->register_base,
reg_size, reg_addr, reg_size) ||
OVERLAPS(reg_addr, reg_size,
cvp_hal_data->register_base,
reg_size) ||
OVERLAPS(cvp_hal_data->firmware_base,
FIRMWARE_SIZE, fw_addr,
FIRMWARE_SIZE) ||
OVERLAPS(fw_addr, FIRMWARE_SIZE,
cvp_hal_data->firmware_base,
FIRMWARE_SIZE))) {
return 0;
}
dprintk(CVP_INFO, "Device not registered\n");
return -EINVAL;
}
static void __process_fatal_error(
struct iris_hfi_device *device)
{
struct msm_cvp_cb_cmd_done cmd_done = {0};
cmd_done.device_id = device->device_id;
device->callback(HAL_SYS_ERROR, &cmd_done);
}
static int __prepare_pc(struct iris_hfi_device *device)
{
int rc = 0;
struct cvp_hfi_cmd_sys_pc_prep_packet pkt;
rc = call_hfi_pkt_op(device, sys_pc_prep, &pkt);
if (rc) {
dprintk(CVP_ERR, "Failed to create sys pc prep pkt\n");
goto err_pc_prep;
}
if (__iface_cmdq_write(device, &pkt))
rc = -ENOTEMPTY;
if (rc)
dprintk(CVP_ERR, "Failed to prepare iris for power off");
err_pc_prep:
return rc;
}
static void iris_hfi_pm_handler(struct work_struct *work)
{
int rc = 0;
struct msm_cvp_core *core;
struct iris_hfi_device *device;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
if (core)
device = core->device->hfi_device_data;
else
return;
if (!device) {
dprintk(CVP_ERR, "%s: NULL device\n", __func__);
return;
}
dprintk(CVP_PWR,
"Entering %s\n", __func__);
/*
* It is ok to check this variable outside the lock since
* it is being updated in this context only
*/
if (device->skip_pc_count >= CVP_MAX_PC_SKIP_COUNT) {
dprintk(CVP_WARN, "Failed to PC for %d times\n",
device->skip_pc_count);
device->skip_pc_count = 0;
__process_fatal_error(device);
return;
}
mutex_lock(&device->lock);
if (gfa_cv.state == DSP_SUSPEND)
rc = __power_collapse(device, true);
else
rc = __power_collapse(device, false);
mutex_unlock(&device->lock);
switch (rc) {
case 0:
device->skip_pc_count = 0;
/* Cancel pending delayed works if any */
cancel_delayed_work(&iris_hfi_pm_work);
dprintk(CVP_PWR, "%s: power collapse successful!\n",
__func__);
break;
case -EBUSY:
device->skip_pc_count = 0;
dprintk(CVP_PWR, "%s: retry PC as cvp is busy\n", __func__);
queue_delayed_work(device->iris_pm_workq,
&iris_hfi_pm_work, msecs_to_jiffies(
device->res->msm_cvp_pwr_collapse_delay));
break;
case -EAGAIN:
device->skip_pc_count++;
dprintk(CVP_WARN, "%s: retry power collapse (count %d)\n",
__func__, device->skip_pc_count);
queue_delayed_work(device->iris_pm_workq,
&iris_hfi_pm_work, msecs_to_jiffies(
device->res->msm_cvp_pwr_collapse_delay));
break;
default:
dprintk(CVP_ERR, "%s: power collapse failed\n", __func__);
break;
}
}
static int __power_collapse(struct iris_hfi_device *device, bool force)
{
int rc = 0;
u32 wfi_status = 0, idle_status = 0, pc_ready = 0;
u32 flags = 0;
int count = 0;
const int max_tries = 150;
if (!device) {
dprintk(CVP_ERR, "%s: invalid params\n", __func__);
return -EINVAL;
}
if (!device->power_enabled) {
dprintk(CVP_PWR, "%s: Power already disabled\n",
__func__);
goto exit;
}
rc = __core_in_valid_state(device);
if (!rc) {
dprintk(CVP_WARN,
"Core is in bad state, Skipping power collapse\n");
return -EINVAL;
}
rc = __dsp_suspend(device, force, flags);
if (rc == -EBUSY)
goto exit;
else if (rc)
goto skip_power_off;
__flush_debug_queue(device, device->raw_packet);
pc_ready = __read_register(device, CVP_CTRL_STATUS) &
CVP_CTRL_STATUS_PC_READY;
if (!pc_ready) {
wfi_status = __read_register(device,
CVP_WRAPPER_CPU_STATUS);
idle_status = __read_register(device,
CVP_CTRL_STATUS);
if (!(wfi_status & BIT(0))) {
dprintk(CVP_WARN,
"Skipping PC as wfi_status (%#x) bit not set\n",
wfi_status);
goto skip_power_off;
}
if (!(idle_status & BIT(30))) {
dprintk(CVP_WARN,
"Skipping PC as idle_status (%#x) bit not set\n",
idle_status);
goto skip_power_off;
}
rc = __prepare_pc(device);
if (rc) {
dprintk(CVP_WARN, "Failed PC %d\n", rc);
goto skip_power_off;
}
while (count < max_tries) {
wfi_status = __read_register(device,
CVP_WRAPPER_CPU_STATUS);
pc_ready = __read_register(device,
CVP_CTRL_STATUS);
if ((wfi_status & BIT(0)) && (pc_ready &
CVP_CTRL_STATUS_PC_READY))
break;
usleep_range(150, 250);
count++;
}
if (count == max_tries) {
dprintk(CVP_ERR,
"Skip PC. Core is not ready (%#x, %#x)\n",
wfi_status, pc_ready);
goto skip_power_off;
}
} else {
wfi_status = __read_register(device, CVP_WRAPPER_CPU_STATUS);
if (!(wfi_status & BIT(0))) {
dprintk(CVP_WARN,
"Skip PC as wfi_status (%#x) bit not set\n",
wfi_status);
goto skip_power_off;
}
}
rc = __suspend(device);
if (rc)
dprintk(CVP_ERR, "Failed __suspend\n");
exit:
return rc;
skip_power_off:
dprintk(CVP_PWR, "Skip PC(%#x, %#x, %#x)\n",
wfi_status, idle_status, pc_ready);
__flush_debug_queue(device, device->raw_packet);
return -EAGAIN;
}
static void __process_sys_error(struct iris_hfi_device *device)
{
struct cvp_hfi_sfr_struct *vsfr = NULL;
vsfr = (struct cvp_hfi_sfr_struct *)device->sfr.align_virtual_addr;
if (vsfr) {
void *p = memchr(vsfr->rg_data, '\0', vsfr->bufSize);
/*
* SFR isn't guaranteed to be NULL terminated
* since SYS_ERROR indicates that Iris is in the
* process of crashing.
*/
if (p == NULL)
vsfr->rg_data[vsfr->bufSize - 1] = '\0';
dprintk(CVP_ERR, "SFR Message from FW: %s\n",
vsfr->rg_data);
}
}
static void __flush_debug_queue(struct iris_hfi_device *device, u8 *packet)
{
bool local_packet = false;
enum cvp_msg_prio log_level = CVP_FW;
if (!device) {
dprintk(CVP_ERR, "%s: Invalid params\n", __func__);
return;
}
if (!packet) {
packet = kzalloc(CVP_IFACEQ_VAR_HUGE_PKT_SIZE, GFP_KERNEL);
if (!packet) {
dprintk(CVP_ERR, "In %s() Fail to allocate mem\n",
__func__);
return;
}
local_packet = true;
/*
* Local packek is used when something FATAL occurred.
* It is good to print these logs by default.
*/
log_level = CVP_ERR;
}
#define SKIP_INVALID_PKT(pkt_size, payload_size, pkt_hdr_size) ({ \
if (pkt_size < pkt_hdr_size || \
payload_size < MIN_PAYLOAD_SIZE || \
payload_size > \
(pkt_size - pkt_hdr_size + sizeof(u8))) { \
dprintk(CVP_ERR, \
"%s: invalid msg size - %d\n", \
__func__, pkt->msg_size); \
continue; \
} \
})
while (!__iface_dbgq_read(device, packet)) {
struct cvp_hfi_packet_header *pkt =
(struct cvp_hfi_packet_header *) packet;
if (pkt->size < sizeof(struct cvp_hfi_packet_header)) {
dprintk(CVP_ERR, "Invalid pkt size - %s\n",
__func__);
continue;
}
if (pkt->packet_type == HFI_MSG_SYS_DEBUG) {
struct cvp_hfi_msg_sys_debug_packet *pkt =
(struct cvp_hfi_msg_sys_debug_packet *) packet;
SKIP_INVALID_PKT(pkt->size,
pkt->msg_size, sizeof(*pkt));
/*
* All fw messages starts with new line character. This
* causes dprintk to print this message in two lines
* in the kernel log. Ignoring the first character
* from the message fixes this to print it in a single
* line.
*/
pkt->rg_msg_data[pkt->msg_size-1] = '\0';
dprintk(log_level, "%s", &pkt->rg_msg_data[1]);
}
}
#undef SKIP_INVALID_PKT
if (local_packet)
kfree(packet);
}
static bool __is_session_valid(struct iris_hfi_device *device,
struct cvp_hal_session *session, const char *func)
{
struct cvp_hal_session *temp = NULL;
if (!device || !session)
goto invalid;
list_for_each_entry(temp, &device->sess_head, list)
if (session == temp)
return true;
invalid:
dprintk(CVP_WARN, "%s: device %pK, invalid session %pK\n",
func, device, session);
return false;
}
static struct cvp_hal_session *__get_session(struct iris_hfi_device *device,
u32 session_id)
{
struct cvp_hal_session *temp = NULL;
list_for_each_entry(temp, &device->sess_head, list) {
if (session_id == hash32_ptr(temp))
return temp;
}
return NULL;
}
#define _INVALID_MSG_ "Unrecognized MSG (%#x) session (%pK), discarding\n"
#define _INVALID_STATE_ "Ignore responses from %d to %d invalid state\n"
#define _DEVFREQ_FAIL_ "Failed to add devfreq device bus %s governor %s: %d\n"
static void process_system_msg(struct msm_cvp_cb_info *info,
struct iris_hfi_device *device,
void *raw_packet)
{
struct cvp_hal_sys_init_done sys_init_done = {0};
switch (info->response_type) {
case HAL_SYS_ERROR:
__process_sys_error(device);
break;
case HAL_SYS_RELEASE_RESOURCE_DONE:
dprintk(CVP_CORE, "Received SYS_RELEASE_RESOURCE\n");
break;
case HAL_SYS_INIT_DONE:
dprintk(CVP_CORE, "Received SYS_INIT_DONE\n");
sys_init_done.capabilities =
device->sys_init_capabilities;
cvp_hfi_process_sys_init_done_prop_read(
(struct cvp_hfi_msg_sys_init_done_packet *)
raw_packet, &sys_init_done);
info->response.cmd.data.sys_init_done = sys_init_done;
break;
default:
break;
}
}
static void **get_session_id(struct msm_cvp_cb_info *info)
{
void **session_id = NULL;
/* For session-related packets, validate session */
switch (info->response_type) {
case HAL_SESSION_INIT_DONE:
case HAL_SESSION_END_DONE:
case HAL_SESSION_ABORT_DONE:
case HAL_SESSION_STOP_DONE:
case HAL_SESSION_FLUSH_DONE:
case HAL_SESSION_SET_BUFFER_DONE:
case HAL_SESSION_SUSPEND_DONE:
case HAL_SESSION_RESUME_DONE:
case HAL_SESSION_SET_PROP_DONE:
case HAL_SESSION_GET_PROP_DONE:
case HAL_SESSION_RELEASE_BUFFER_DONE:
case HAL_SESSION_REGISTER_BUFFER_DONE:
case HAL_SESSION_UNREGISTER_BUFFER_DONE:
case HAL_SESSION_PROPERTY_INFO:
case HAL_SESSION_EVENT_CHANGE:
case HAL_SESSION_DUMP_NOTIFY:
session_id = &info->response.cmd.session_id;
break;
case HAL_SESSION_ERROR:
session_id = &info->response.data.session_id;
break;
case HAL_RESPONSE_UNUSED:
default:
session_id = NULL;
break;
}
return session_id;
}
static void print_msg_hdr(void *hdr)
{
struct cvp_hfi_msg_session_hdr *new_hdr =
(struct cvp_hfi_msg_session_hdr *)hdr;
dprintk(CVP_HFI, "HFI MSG received: %x %x %x %x %x %x %x\n",
new_hdr->size, new_hdr->packet_type,
new_hdr->session_id,
new_hdr->client_data.transaction_id,
new_hdr->client_data.data1,
new_hdr->client_data.data2,
new_hdr->error_type);
}
static int __response_handler(struct iris_hfi_device *device)
{
struct msm_cvp_cb_info *packets;
int packet_count = 0;
u8 *raw_packet = NULL;
bool requeue_pm_work = true;
if (!device || device->state != IRIS_STATE_INIT)
return 0;
packets = device->response_pkt;
raw_packet = device->raw_packet;
if (!raw_packet || !packets) {
dprintk(CVP_ERR,
"%s: Invalid args : Res pkt = %pK, Raw pkt = %pK\n",
__func__, packets, raw_packet);
return 0;
}
if (device->intr_status & CVP_FATAL_INTR_BMSK) {
struct cvp_hfi_sfr_struct *vsfr = (struct cvp_hfi_sfr_struct *)
device->sfr.align_virtual_addr;
struct msm_cvp_cb_info info = {
.response_type = HAL_SYS_WATCHDOG_TIMEOUT,
.response.cmd = {
.device_id = device->device_id,
}
};
if (vsfr)
dprintk(CVP_ERR, "SFR Message from FW: %s\n",
vsfr->rg_data);
if (device->intr_status & CVP_WRAPPER_INTR_MASK_CPU_NOC_BMSK)
dprintk(CVP_ERR, "Received Xtensa NOC error\n");
if (device->intr_status & CVP_WRAPPER_INTR_MASK_CORE_NOC_BMSK)
dprintk(CVP_ERR, "Received CVP core NOC error\n");
if (device->intr_status & CVP_WRAPPER_INTR_MASK_A2HWD_BMSK)
dprintk(CVP_ERR, "Received CVP watchdog timeout\n");
packets[packet_count++] = info;
goto exit;
}
/* Bleed the msg queue dry of packets */
while (!__iface_msgq_read(device, raw_packet)) {
void **session_id = NULL;
struct msm_cvp_cb_info *info = &packets[packet_count++];
struct cvp_hfi_msg_session_hdr *hdr =
(struct cvp_hfi_msg_session_hdr *)raw_packet;
int rc = 0;
print_msg_hdr(hdr);
rc = cvp_hfi_process_msg_packet(device->device_id,
raw_packet, info);
if (rc) {
dprintk(CVP_WARN,
"Corrupt/unknown packet found, discarding\n");
--packet_count;
continue;
} else if (info->response_type == HAL_NO_RESP) {
--packet_count;
continue;
}
/* Process the packet types that we're interested in */
process_system_msg(info, device, raw_packet);
session_id = get_session_id(info);
/*
* hfi_process_msg_packet provides a session_id that's a hashed
* value of struct cvp_hal_session, we need to coerce the hashed
* value back to pointer that we can use. Ideally, hfi_process\
* _msg_packet should take care of this, but it doesn't have
* required information for it
*/
if (session_id) {
struct cvp_hal_session *session = NULL;
if (upper_32_bits((uintptr_t)*session_id) != 0) {
dprintk(CVP_ERR,
"Upper 32-bits != 0 for sess_id=%pK\n",
*session_id);
}
session = __get_session(device,
(u32)(uintptr_t)*session_id);
if (!session) {
dprintk(CVP_ERR, _INVALID_MSG_,
info->response_type,
*session_id);
--packet_count;
continue;
}
*session_id = session->session_id;
}
if (packet_count >= cvp_max_packets) {
dprintk(CVP_WARN,
"Too many packets in message queue!\n");
break;
}
/* do not read packets after sys error packet */
if (info->response_type == HAL_SYS_ERROR)
break;
}
if (requeue_pm_work && device->res->sw_power_collapsible) {
cancel_delayed_work(&iris_hfi_pm_work);
if (!queue_delayed_work(device->iris_pm_workq,
&iris_hfi_pm_work,
msecs_to_jiffies(
device->res->msm_cvp_pwr_collapse_delay))) {
dprintk(CVP_ERR, "PM work already scheduled\n");
}
}
exit:
__flush_debug_queue(device, raw_packet);
return packet_count;
}
static void iris_hfi_core_work_handler(struct work_struct *work)
{
struct msm_cvp_core *core;
struct iris_hfi_device *device;
int num_responses = 0, i = 0;
u32 intr_status;
static bool warning_on = true;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
if (core)
device = core->device->hfi_device_data;
else
return;
mutex_lock(&device->lock);
if (!__core_in_valid_state(device)) {
if (warning_on) {
dprintk(CVP_WARN, "%s Core not in init state\n",
__func__);
warning_on = false;
}
goto err_no_work;
}
warning_on = true;
if (!device->callback) {
dprintk(CVP_ERR, "No interrupt callback function: %pK\n",
device);
goto err_no_work;
}
if (__resume(device)) {
dprintk(CVP_ERR, "%s: Power enable failed\n", __func__);
goto err_no_work;
}
__core_clear_interrupt(device);
num_responses = __response_handler(device);
dprintk(CVP_HFI, "%s:: cvp_driver_debug num_responses = %d ",
__func__, num_responses);
err_no_work:
/* Keep the interrupt status before releasing device lock */
intr_status = device->intr_status;
mutex_unlock(&device->lock);
/*
* Issue the callbacks outside of the locked contex to preserve
* re-entrancy.
*/
for (i = 0; !IS_ERR_OR_NULL(device->response_pkt) &&
i < num_responses; ++i) {
struct msm_cvp_cb_info *r = &device->response_pkt[i];
void *rsp = (void *)&r->response;
if (!__core_in_valid_state(device)) {
dprintk(CVP_ERR,
_INVALID_STATE_, (i + 1), num_responses);
break;
}
dprintk(CVP_HFI, "Processing response %d of %d, type %d\n",
(i + 1), num_responses, r->response_type);
device->callback(r->response_type, rsp);
}
/* We need re-enable the irq which was disabled in ISR handler */
if (!(intr_status & CVP_WRAPPER_INTR_STATUS_A2HWD_BMSK))
enable_irq(device->cvp_hal_data->irq);
/*
* XXX: Don't add any code beyond here. Reacquiring locks after release
* it above doesn't guarantee the atomicity that we're aiming for.
*/
}
static DECLARE_WORK(iris_hfi_work, iris_hfi_core_work_handler);
static irqreturn_t iris_hfi_isr(int irq, void *dev)
{
struct iris_hfi_device *device = dev;
disable_irq_nosync(irq);
queue_work(device->cvp_workq, &iris_hfi_work);
return IRQ_HANDLED;
}
static int __init_regs_and_interrupts(struct iris_hfi_device *device,
struct msm_cvp_platform_resources *res)
{
struct cvp_hal_data *hal = NULL;
int rc = 0;
rc = __check_core_registered(device, res->firmware_base,
(u8 *)(uintptr_t)res->register_base,
res->register_size, res->irq);
if (!rc) {
dprintk(CVP_ERR, "Core present/Already added\n");
rc = -EEXIST;
goto err_core_init;
}
hal = kzalloc(sizeof(*hal), GFP_KERNEL);
if (!hal) {
dprintk(CVP_ERR, "Failed to alloc\n");
rc = -ENOMEM;
goto err_core_init;
}
hal->irq = res->irq;
hal->firmware_base = res->firmware_base;
hal->register_base = devm_ioremap(&res->pdev->dev,
res->register_base, res->register_size);
hal->register_size = res->register_size;
if (!hal->register_base) {
dprintk(CVP_ERR,
"could not map reg addr %pa of size %d\n",
&res->register_base, res->register_size);
goto error_irq_fail;
}
if (res->gcc_reg_base) {
hal->gcc_reg_base = devm_ioremap(&res->pdev->dev,
res->gcc_reg_base, res->gcc_reg_size);
hal->gcc_reg_size = res->gcc_reg_size;
if (!hal->gcc_reg_base)
dprintk(CVP_ERR,
"could not map gcc reg addr %pa of size %d\n",
&res->gcc_reg_base, res->gcc_reg_size);
}
device->cvp_hal_data = hal;
rc = request_irq(res->irq, iris_hfi_isr, IRQF_TRIGGER_HIGH,
"msm_cvp", device);
if (unlikely(rc)) {
dprintk(CVP_ERR, "() :request_irq failed\n");
goto error_irq_fail;
}
disable_irq_nosync(res->irq);
dprintk(CVP_INFO,
"firmware_base = %pa, register_base = %pa, register_size = %d\n",
&res->firmware_base, &res->register_base,
res->register_size);
return rc;
error_irq_fail:
kfree(hal);
err_core_init:
return rc;
}
static int __handle_reset_clk(struct msm_cvp_platform_resources *res,
int reset_index, enum reset_state state,
enum power_state pwr_state)
{
int rc = 0;
struct reset_control *rst;
struct reset_info rst_info;
struct reset_set *rst_set = &res->reset_set;
if (!rst_set->reset_tbl)
return 0;
rst_info = rst_set->reset_tbl[reset_index];
rst = rst_info.rst;
dprintk(CVP_PWR, "reset_clk: name %s reset_state %d rst %pK ps=%d\n",
rst_set->reset_tbl[reset_index].name, state, rst, pwr_state);
switch (state) {
case INIT:
if (rst)
goto skip_reset_init;
rst = devm_reset_control_get(&res->pdev->dev,
rst_set->reset_tbl[reset_index].name);
if (IS_ERR(rst))
rc = PTR_ERR(rst);
rst_set->reset_tbl[reset_index].rst = rst;
break;
case ASSERT:
if (!rst) {
rc = PTR_ERR(rst);
goto failed_to_reset;
}
if (pwr_state != CVP_POWER_IGNORED &&
pwr_state != rst_info.required_state)
break;
rc = reset_control_assert(rst);
break;
case DEASSERT:
if (!rst) {
rc = PTR_ERR(rst);
goto failed_to_reset;
}
if (pwr_state != CVP_POWER_IGNORED &&
pwr_state != rst_info.required_state)
break;
rc = reset_control_deassert(rst);
break;
default:
dprintk(CVP_ERR, "Invalid reset request\n");
if (rc)
goto failed_to_reset;
}
return 0;
skip_reset_init:
failed_to_reset:
return rc;
}
static int reset_ahb2axi_bridge(struct iris_hfi_device *device)
{
int rc, i;
enum power_state s;
if (!device) {
dprintk(CVP_ERR, "NULL device\n");
rc = -EINVAL;
goto failed_to_reset;
}
if (device->power_enabled)
s = CVP_POWER_ON;
else
s = CVP_POWER_OFF;
#ifdef CONFIG_EVA_WAIPIO
s = CVP_POWER_IGNORED;
#endif
for (i = 0; i < device->res->reset_set.count; i++) {
rc = __handle_reset_clk(device->res, i, ASSERT, s);
if (rc) {
dprintk(CVP_ERR,
"failed to assert reset clocks\n");
goto failed_to_reset;
}
}
/* wait for deassert */
usleep_range(1000, 1050);
for (i = 0; i < device->res->reset_set.count; i++) {
rc = __handle_reset_clk(device->res, i, DEASSERT, s);
if (rc) {
dprintk(CVP_ERR,
"failed to deassert reset clocks\n");
goto failed_to_reset;
}
}
return 0;
failed_to_reset:
return rc;
}
static void __deinit_bus(struct iris_hfi_device *device)
{
struct bus_info *bus = NULL;
if (!device)
return;
kfree(device->bus_vote.data);
device->bus_vote = CVP_DEFAULT_BUS_VOTE;
iris_hfi_for_each_bus_reverse(device, bus) {
dev_set_drvdata(bus->dev, NULL);
icc_put(bus->client);
bus->client = NULL;
}
}
static int __init_bus(struct iris_hfi_device *device)
{
struct bus_info *bus = NULL;
int rc = 0;
if (!device)
return -EINVAL;
iris_hfi_for_each_bus(device, bus) {
/*
* This is stupid, but there's no other easy way to ahold
* of struct bus_info in iris_hfi_devfreq_*()
*/
WARN(dev_get_drvdata(bus->dev), "%s's drvdata already set\n",
dev_name(bus->dev));
dev_set_drvdata(bus->dev, device);
bus->client = icc_get(&device->res->pdev->dev,
bus->master, bus->slave);
if (IS_ERR_OR_NULL(bus->client)) {
rc = PTR_ERR(bus->client) ?: -EBADHANDLE;
dprintk(CVP_ERR, "Failed to register bus %s: %d\n",
bus->name, rc);
bus->client = NULL;
goto err_add_dev;
}
}
return 0;
err_add_dev:
__deinit_bus(device);
return rc;
}
static void __deinit_regulators(struct iris_hfi_device *device)
{
struct regulator_info *rinfo = NULL;
iris_hfi_for_each_regulator_reverse(device, rinfo) {
if (rinfo->regulator) {
regulator_put(rinfo->regulator);
rinfo->regulator = NULL;
}
}
}
static int __init_regulators(struct iris_hfi_device *device)
{
int rc = 0;
struct regulator_info *rinfo = NULL;
iris_hfi_for_each_regulator(device, rinfo) {
rinfo->regulator = regulator_get(&device->res->pdev->dev,
rinfo->name);
if (IS_ERR_OR_NULL(rinfo->regulator)) {
rc = PTR_ERR(rinfo->regulator) ?: -EBADHANDLE;
dprintk(CVP_ERR, "Failed to get regulator: %s\n",
rinfo->name);
rinfo->regulator = NULL;
goto err_reg_get;
}
}
return 0;
err_reg_get:
__deinit_regulators(device);
return rc;
}
static void __deinit_subcaches(struct iris_hfi_device *device)
{
struct subcache_info *sinfo = NULL;
if (!device) {
dprintk(CVP_ERR, "deinit_subcaches: invalid device %pK\n",
device);
goto exit;
}
if (!is_sys_cache_present(device))
goto exit;
iris_hfi_for_each_subcache_reverse(device, sinfo) {
if (sinfo->subcache) {
dprintk(CVP_CORE, "deinit_subcaches: %s\n",
sinfo->name);
llcc_slice_putd(sinfo->subcache);
sinfo->subcache = NULL;
}
}
exit:
return;
}
static int __init_subcaches(struct iris_hfi_device *device)
{
int rc = 0;
struct subcache_info *sinfo = NULL;
if (!device) {
dprintk(CVP_ERR, "init_subcaches: invalid device %pK\n",
device);
return -EINVAL;
}
if (!is_sys_cache_present(device))
return 0;
iris_hfi_for_each_subcache(device, sinfo) {
if (!strcmp("cvp", sinfo->name)) {
sinfo->subcache = llcc_slice_getd(LLCC_CVP);
} else if (!strcmp("cvpfw", sinfo->name)) {
sinfo->subcache = llcc_slice_getd(LLCC_CVPFW);
} else {
dprintk(CVP_ERR, "Invalid subcache name %s\n",
sinfo->name);
}
if (IS_ERR_OR_NULL(sinfo->subcache)) {
rc = PTR_ERR(sinfo->subcache) ?
PTR_ERR(sinfo->subcache) : -EBADHANDLE;
dprintk(CVP_ERR,
"init_subcaches: invalid subcache: %s rc %d\n",
sinfo->name, rc);
sinfo->subcache = NULL;
goto err_subcache_get;
}
dprintk(CVP_CORE, "init_subcaches: %s\n",
sinfo->name);
}
return 0;
err_subcache_get:
__deinit_subcaches(device);
return rc;
}
static int __init_resources(struct iris_hfi_device *device,
struct msm_cvp_platform_resources *res)
{
int i, rc = 0;
rc = __init_regulators(device);
if (rc) {
dprintk(CVP_ERR, "Failed to get all regulators\n");
return -ENODEV;
}
rc = msm_cvp_init_clocks(device);
if (rc) {
dprintk(CVP_ERR, "Failed to init clocks\n");
rc = -ENODEV;
goto err_init_clocks;
}
for (i = 0; i < device->res->reset_set.count; i++) {
rc = __handle_reset_clk(res, i, INIT, 0);
if (rc) {
dprintk(CVP_ERR, "Failed to init reset clocks\n");
rc = -ENODEV;
goto err_init_reset_clk;
}
}
rc = __init_bus(device);
if (rc) {
dprintk(CVP_ERR, "Failed to init bus: %d\n", rc);
goto err_init_bus;
}
rc = __init_subcaches(device);
if (rc)
dprintk(CVP_WARN, "Failed to init subcaches: %d\n", rc);
device->sys_init_capabilities =
kzalloc(sizeof(struct msm_cvp_capability)
* CVP_MAX_SESSIONS, GFP_KERNEL);
return rc;
err_init_reset_clk:
err_init_bus:
msm_cvp_deinit_clocks(device);
err_init_clocks:
__deinit_regulators(device);
return rc;
}
static void __deinit_resources(struct iris_hfi_device *device)
{
__deinit_subcaches(device);
__deinit_bus(device);
msm_cvp_deinit_clocks(device);
__deinit_regulators(device);
kfree(device->sys_init_capabilities);
device->sys_init_capabilities = NULL;
}
static int __disable_regulator_impl(struct regulator_info *rinfo,
struct iris_hfi_device *device)
{
int rc = 0;
dprintk(CVP_PWR, "Disabling regulator %s\n", rinfo->name);
/*
* This call is needed. Driver needs to acquire the control back
* from HW in order to disable the regualtor. Else the behavior
* is unknown.
*/
rc = __acquire_regulator(rinfo, device);
if (rc) {
/*
* This is somewhat fatal, but nothing we can do
* about it. We can't disable the regulator w/o
* getting it back under s/w control
*/
dprintk(CVP_WARN,
"Failed to acquire control on %s\n",
rinfo->name);
goto disable_regulator_failed;
}
rc = regulator_disable(rinfo->regulator);
if (rc) {
dprintk(CVP_WARN,
"Failed to disable %s: %d\n",
rinfo->name, rc);
goto disable_regulator_failed;
}
return 0;
disable_regulator_failed:
/* Bring attention to this issue */
msm_cvp_res_handle_fatal_hw_error(device->res, true);
return rc;
}
static int __enable_hw_power_collapse(struct iris_hfi_device *device)
{
int rc = 0;
if (!msm_cvp_fw_low_power_mode) {
dprintk(CVP_PWR, "Not enabling hardware power collapse\n");
return 0;
}
rc = __hand_off_regulators(device);
if (rc)
dprintk(CVP_WARN,
"%s : Failed to enable HW power collapse %d\n",
__func__, rc);
return rc;
}
static int __enable_regulator(struct iris_hfi_device *device,
const char *name)
{
int rc = 0;
struct regulator_info *rinfo;
iris_hfi_for_each_regulator(device, rinfo) {
if (strcmp(rinfo->name, name))
continue;
rc = regulator_enable(rinfo->regulator);
if (rc) {
dprintk(CVP_ERR, "Failed to enable %s: %d\n",
rinfo->name, rc);
return rc;
}
if (!regulator_is_enabled(rinfo->regulator)) {
dprintk(CVP_ERR,"%s: regulator %s not enabled\n",
__func__, rinfo->name);
regulator_disable(rinfo->regulator);
return -EINVAL;
}
dprintk(CVP_PWR, "Enabled regulator %s\n", rinfo->name);
return 0;
}
dprintk(CVP_ERR, "regulator %s not found\n");
return -EINVAL;
}
static int __disable_regulator(struct iris_hfi_device *device,
const char *name)
{
struct regulator_info *rinfo;
iris_hfi_for_each_regulator_reverse(device, rinfo) {
if (strcmp(rinfo->name, name))
continue;
__disable_regulator_impl(rinfo, device);
dprintk(CVP_PWR, "%s Disabled regulator %s\n", __func__, name);
return 0;
}
dprintk(CVP_ERR, "%s regulator %s not found\n", __func__, name);
return -EINVAL;
}
static int __enable_subcaches(struct iris_hfi_device *device)
{
int rc = 0;
u32 c = 0;
struct subcache_info *sinfo;
if (msm_cvp_syscache_disable || !is_sys_cache_present(device))
return 0;
/* Activate subcaches */
iris_hfi_for_each_subcache(device, sinfo) {
rc = llcc_slice_activate(sinfo->subcache);
if (rc) {
dprintk(CVP_WARN, "Failed to activate %s: %d\n",
sinfo->name, rc);
msm_cvp_res_handle_fatal_hw_error(device->res, true);
goto err_activate_fail;
}
sinfo->isactive = true;
dprintk(CVP_CORE, "Activated subcache %s\n", sinfo->name);
c++;
}
dprintk(CVP_CORE, "Activated %d Subcaches to CVP\n", c);
return 0;
err_activate_fail:
__release_subcaches(device);
__disable_subcaches(device);
return 0;
}
static int __set_subcaches(struct iris_hfi_device *device)
{
int rc = 0;
u32 c = 0;
struct subcache_info *sinfo;
u32 resource[CVP_MAX_SUBCACHE_SIZE];
struct cvp_hfi_resource_syscache_info_type *sc_res_info;
struct cvp_hfi_resource_subcache_type *sc_res;
struct cvp_resource_hdr rhdr;
if (device->res->sys_cache_res_set || msm_cvp_syscache_disable) {
dprintk(CVP_CORE, "Subcaches already set or disabled\n");
return 0;
}
memset((void *)resource, 0x0, (sizeof(u32) * CVP_MAX_SUBCACHE_SIZE));
sc_res_info = (struct cvp_hfi_resource_syscache_info_type *)resource;
sc_res = &(sc_res_info->rg_subcache_entries[0]);
iris_hfi_for_each_subcache(device, sinfo) {
if (sinfo->isactive) {
sc_res[c].size = sinfo->subcache->slice_size;
sc_res[c].sc_id = sinfo->subcache->slice_id;
c++;
}
}
/* Set resource to CVP for activated subcaches */
if (c) {
dprintk(CVP_CORE, "Setting %d Subcaches\n", c);
rhdr.resource_handle = sc_res_info; /* cookie */
rhdr.resource_id = CVP_RESOURCE_SYSCACHE;
sc_res_info->num_entries = c;
rc = __core_set_resource(device, &rhdr, (void *)sc_res_info);
if (rc) {
dprintk(CVP_WARN, "Failed to set subcaches %d\n", rc);
goto err_fail_set_subacaches;
}
iris_hfi_for_each_subcache(device, sinfo) {
if (sinfo->isactive)
sinfo->isset = true;
}
dprintk(CVP_CORE, "Set Subcaches done to CVP\n");
device->res->sys_cache_res_set = true;
}
return 0;
err_fail_set_subacaches:
__disable_subcaches(device);
return 0;
}
static int __release_subcaches(struct iris_hfi_device *device)
{
struct subcache_info *sinfo;
int rc = 0;
u32 c = 0;
u32 resource[CVP_MAX_SUBCACHE_SIZE];
struct cvp_hfi_resource_syscache_info_type *sc_res_info;
struct cvp_hfi_resource_subcache_type *sc_res;
struct cvp_resource_hdr rhdr;
if (msm_cvp_syscache_disable || !is_sys_cache_present(device))
return 0;
memset((void *)resource, 0x0, (sizeof(u32) * CVP_MAX_SUBCACHE_SIZE));
sc_res_info = (struct cvp_hfi_resource_syscache_info_type *)resource;
sc_res = &(sc_res_info->rg_subcache_entries[0]);
/* Release resource command to Iris */
iris_hfi_for_each_subcache_reverse(device, sinfo) {
if (sinfo->isset) {
/* Update the entry */
sc_res[c].size = sinfo->subcache->slice_size;
sc_res[c].sc_id = sinfo->subcache->slice_id;
c++;
sinfo->isset = false;
}
}
if (c > 0) {
dprintk(CVP_CORE, "Releasing %d subcaches\n", c);
rhdr.resource_handle = sc_res_info; /* cookie */
rhdr.resource_id = CVP_RESOURCE_SYSCACHE;
rc = __core_release_resource(device, &rhdr);
if (rc)
dprintk(CVP_WARN,
"Failed to release %d subcaches\n", c);
}
device->res->sys_cache_res_set = false;
return 0;
}
static int __disable_subcaches(struct iris_hfi_device *device)
{
struct subcache_info *sinfo;
int rc = 0;
if (msm_cvp_syscache_disable || !is_sys_cache_present(device))
return 0;
/* De-activate subcaches */
iris_hfi_for_each_subcache_reverse(device, sinfo) {
if (sinfo->isactive) {
dprintk(CVP_CORE, "De-activate subcache %s\n",
sinfo->name);
rc = llcc_slice_deactivate(sinfo->subcache);
if (rc) {
dprintk(CVP_WARN,
"Failed to de-activate %s: %d\n",
sinfo->name, rc);
}
sinfo->isactive = false;
}
}
return 0;
}
static void interrupt_init_iris2(struct iris_hfi_device *device)
{
u32 mask_val = 0;
/* All interrupts should be disabled initially 0x1F6 : Reset value */
mask_val = __read_register(device, CVP_WRAPPER_INTR_MASK);
/* Write 0 to unmask CPU and WD interrupts */
mask_val &= ~(CVP_FATAL_INTR_BMSK | CVP_WRAPPER_INTR_MASK_A2HCPU_BMSK);
__write_register(device, CVP_WRAPPER_INTR_MASK, mask_val);
dprintk(CVP_REG, "Init irq: reg: %x, mask value %x\n",
CVP_WRAPPER_INTR_MASK, mask_val);
}
static void setup_dsp_uc_memmap_vpu5(struct iris_hfi_device *device)
{
/* initialize DSP QTBL & UCREGION with CPU queues */
__write_register(device, HFI_DSP_QTBL_ADDR,
(u32)device->dsp_iface_q_table.align_device_addr);
__write_register(device, HFI_DSP_UC_REGION_ADDR,
(u32)device->dsp_iface_q_table.align_device_addr);
__write_register(device, HFI_DSP_UC_REGION_SIZE,
device->dsp_iface_q_table.mem_data.size);
}
static void clock_config_on_enable_vpu5(struct iris_hfi_device *device)
{
__write_register(device, CVP_WRAPPER_CPU_CLOCK_CONFIG, 0);
}
static int __set_ubwc_config(struct iris_hfi_device *device)
{
u8 packet[CVP_IFACEQ_VAR_SMALL_PKT_SIZE];
int rc = 0;
struct cvp_hfi_cmd_sys_set_property_packet *pkt =
(struct cvp_hfi_cmd_sys_set_property_packet *) &packet;
if (!device->res->ubwc_config)
return 0;
rc = call_hfi_pkt_op(device, sys_ubwc_config, pkt,
device->res->ubwc_config);
if (rc) {
dprintk(CVP_WARN,
"ubwc config setting to FW failed\n");
rc = -ENOTEMPTY;
goto fail_to_set_ubwc_config;
}
if (__iface_cmdq_write(device, pkt)) {
rc = -ENOTEMPTY;
goto fail_to_set_ubwc_config;
}
fail_to_set_ubwc_config:
return rc;
}
static int __power_on_controller(struct iris_hfi_device *device)
{
int rc = 0;
rc = __enable_regulator(device, "cvp");
if (rc) {
dprintk(CVP_ERR, "Failed to enable ctrler: %d\n", rc);
return rc;
}
rc = call_iris_op(device, reset_ahb2axi_bridge, device);
if (rc) {
dprintk(CVP_ERR, "Failed to reset ahb2axi: %d\n", rc);
goto fail_reset_clks;
}
rc = msm_cvp_prepare_enable_clk(device, "gcc_video_axi1");
if (rc) {
dprintk(CVP_ERR, "Failed to enable axi1 clk: %d\n", rc);
goto fail_reset_clks;
}
rc = msm_cvp_prepare_enable_clk(device, "cvp_clk");
if (rc) {
dprintk(CVP_ERR, "Failed to enable cvp_clk: %d\n", rc);
goto fail_enable_clk;
}
dprintk(CVP_PWR, "EVA controller powered on\n");
return 0;
fail_enable_clk:
msm_cvp_disable_unprepare_clk(device, "gcc_video_axi1");
fail_reset_clks:
__disable_regulator(device, "cvp");
return rc;
}
static int __power_on_core(struct iris_hfi_device *device)
{
int rc = 0;
rc = __enable_regulator(device, "cvp-core");
if (rc) {
dprintk(CVP_ERR, "Failed to enable core: %d\n", rc);
return rc;
}
rc = msm_cvp_prepare_enable_clk(device, "video_cc_mvs1_clk_src");
if (rc) {
dprintk(CVP_ERR, "Failed to enable video_cc_mvs1_clk_src:%d\n",
rc);
__disable_regulator(device, "cvp-core");
return rc;
}
rc = msm_cvp_prepare_enable_clk(device, "core_clk");
if (rc) {
dprintk(CVP_ERR, "Failed to enable core_clk: %d\n", rc);
__disable_regulator(device, "cvp-core");
return rc;
}
dprintk(CVP_PWR, "EVA core powered on\n");
return 0;
}
static int __iris_power_on(struct iris_hfi_device *device)
{
int rc = 0;
if (device->power_enabled)
return 0;
/* Vote for all hardware resources */
rc = __vote_buses(device, device->bus_vote.data,
device->bus_vote.data_count);
if (rc) {
dprintk(CVP_ERR, "Failed to vote buses, err: %d\n", rc);
goto fail_vote_buses;
}
rc = __power_on_controller(device);
if (rc)
goto fail_enable_controller;
rc = __power_on_core(device);
if (rc)
goto fail_enable_core;
rc = msm_cvp_scale_clocks(device);
if (rc) {
dprintk(CVP_WARN,
"Failed to scale clocks, perf may regress\n");
rc = 0;
} else {
dprintk(CVP_PWR, "Done with scaling\n");
}
/*Do not access registers before this point!*/
device->power_enabled = true;
/*
* Re-program all of the registers that get reset as a result of
* regulator_disable() and _enable()
*/
__set_registers(device);
dprintk(CVP_CORE, "Done with register set\n");
call_iris_op(device, interrupt_init, device);
dprintk(CVP_CORE, "Done with interrupt enabling\n");
device->intr_status = 0;
enable_irq(device->cvp_hal_data->irq);
__write_register(device,
CVP_WRAPPER_DEBUG_BRIDGE_LPI_CONTROL, 0x7);
pr_info(CVP_DBG_TAG "cvp (eva) powered on\n", "pwr");
return 0;
fail_enable_core:
__power_off_controller(device);
fail_enable_controller:
__unvote_buses(device);
fail_vote_buses:
device->power_enabled = false;
return rc;
}
static inline int __suspend(struct iris_hfi_device *device)
{
int rc = 0;
if (!device) {
dprintk(CVP_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
} else if (!device->power_enabled) {
dprintk(CVP_PWR, "Power already disabled\n");
return 0;
}
dprintk(CVP_PWR, "Entering suspend\n");
rc = __tzbsp_set_cvp_state(TZ_SUBSYS_STATE_SUSPEND);
if (rc) {
dprintk(CVP_WARN, "Failed to suspend cvp core %d\n", rc);
goto err_tzbsp_suspend;
}
__disable_subcaches(device);
call_iris_op(device, power_off, device);
if (device->res->pm_qos.latency_us && device->res->pm_qos.pm_qos_hdls)
cvp_pm_qos_update(device, false);
return rc;
err_tzbsp_suspend:
return rc;
}
static void __print_sidebandmanager_regs(struct iris_hfi_device *device)
{
u32 sbm_ln0_low, axi_cbcr;
u32 main_sbm_ln0_low = 0xdeadbeef, main_sbm_ln0_high = 0xdeadbeef;
u32 main_sbm_ln1_high = 0xdeadbeef, cpu_cs_x2rpmh;
sbm_ln0_low =
__read_register(device, CVP_NOC_SBM_SENSELN0_LOW);
cpu_cs_x2rpmh = __read_register(device, CVP_CPU_CS_X2RPMh);
__write_register(device, CVP_CPU_CS_X2RPMh,
(cpu_cs_x2rpmh | CVP_CPU_CS_X2RPMh_SWOVERRIDE_BMSK));
usleep_range(500, 1000);
cpu_cs_x2rpmh = __read_register(device, CVP_CPU_CS_X2RPMh);
if (!(cpu_cs_x2rpmh & CVP_CPU_CS_X2RPMh_SWOVERRIDE_BMSK)) {
dprintk(CVP_WARN,
"failed set CVP_CPU_CS_X2RPMH mask %x\n",
cpu_cs_x2rpmh);
goto exit;
}
axi_cbcr = __read_gcc_register(device, CVP_GCC_VIDEO_AXI1_CBCR);
if (axi_cbcr & 0x80000000) {
dprintk(CVP_WARN, "failed to turn on AXI clock %x\n",
axi_cbcr);
goto exit;
}
main_sbm_ln0_low = __read_register(device,
CVP_NOC_MAIN_SIDEBANDMANAGER_SENSELN0_LOW);
main_sbm_ln0_high = __read_register(device,
CVP_NOC_MAIN_SIDEBANDMANAGER_SENSELN0_HIGH);
main_sbm_ln1_high = __read_register(device,
CVP_NOC_MAIN_SIDEBANDMANAGER_SENSELN1_HIGH);
exit:
cpu_cs_x2rpmh = cpu_cs_x2rpmh & (~CVP_CPU_CS_X2RPMh_SWOVERRIDE_BMSK);
__write_register(device, CVP_CPU_CS_X2RPMh, cpu_cs_x2rpmh);
dprintk(CVP_WARN, "Sidebandmanager regs %x %x %x %x %x\n",
sbm_ln0_low, main_sbm_ln0_low,
main_sbm_ln0_high, main_sbm_ln1_high,
cpu_cs_x2rpmh);
}
static int __power_off_controller(struct iris_hfi_device *device)
{
u32 lpi_status, reg_status = 0, count = 0, max_count = 1000;
u32 sbm_ln0_low;
int rc;
/* HPG 6.2.2 Step 1 */
__write_register(device, CVP_CPU_CS_X2RPMh, 0x3);
/* HPG 6.2.2 Step 2, noc to low power */
__write_register(device, CVP_AON_WRAPPER_CVP_NOC_LPI_CONTROL, 0x1);
while (!reg_status && count < max_count) {
lpi_status =
__read_register(device,
CVP_AON_WRAPPER_CVP_NOC_LPI_STATUS);
reg_status = lpi_status & BIT(0);
/* Wait for Core noc lpi status to be set */
usleep_range(50, 100);
count++;
}
dprintk(CVP_PWR,
"Core Noc: lpi_status %x noc_status %x (count %d)\n",
lpi_status, reg_status, count);
if (count == max_count) {
u32 pc_ready, wfi_status;
wfi_status = __read_register(device, CVP_WRAPPER_CPU_STATUS);
pc_ready = __read_register(device, CVP_CTRL_STATUS);
dprintk(CVP_WARN,
"Core NOC not in qaccept status %x %x %x %x\n",
reg_status, lpi_status, wfi_status, pc_ready);
__print_sidebandmanager_regs(device);
}
/* New addition to put CPU/Tensilica to low power */
reg_status = 0;
count = 0;
__write_register(device, CVP_WRAPPER_CPU_NOC_LPI_CONTROL, 0x1);
while (!reg_status && count < max_count) {
lpi_status =
__read_register(device,
CVP_WRAPPER_CPU_NOC_LPI_STATUS);
reg_status = lpi_status & BIT(0);
/* Wait for CPU noc lpi status to be set */
usleep_range(50, 100);
count++;
}
sbm_ln0_low = __read_register(device, CVP_NOC_SBM_SENSELN0_LOW);
dprintk(CVP_PWR,
"CPU Noc: lpi_status %x noc_status %x (count %d) 0x%x\n",
lpi_status, reg_status, count, sbm_ln0_low);
if (count == max_count) {
u32 pc_ready, wfi_status;
wfi_status = __read_register(device, CVP_WRAPPER_CPU_STATUS);
pc_ready = __read_register(device, CVP_CTRL_STATUS);
dprintk(CVP_WARN,
"CPU NOC not in qaccept status %x %x %x %x\n",
reg_status, lpi_status, wfi_status, pc_ready);
__print_sidebandmanager_regs(device);
}
/* HPG 6.2.2 Step 3, debug bridge to low power BYPASSED */
/* HPG 6.2.2 Step 4, debug bridge to lpi release */
__write_register(device,
CVP_WRAPPER_DEBUG_BRIDGE_LPI_CONTROL, 0x0);
lpi_status = 0x1;
count = 0;
while (lpi_status && count < max_count) {
lpi_status = __read_register(device,
CVP_WRAPPER_DEBUG_BRIDGE_LPI_STATUS);
usleep_range(50, 100);
count++;
}
dprintk(CVP_PWR,
"DBLP Release: lpi_status %d(count %d)\n",
lpi_status, count);
if (count == max_count) {
dprintk(CVP_WARN,
"DBLP Release: lpi_status %x\n", lpi_status);
}
/* PDXFIFO reset: addition for Kailua */
#ifdef CONFIG_EVA_KALAMA
__write_register(device, CVP_WRAPPER_AXI_CLOCK_CONFIG, 0x3);
__write_register(device, CVP_WRAPPER_QNS4PDXFIFO_RESET, 0x1);
__write_register(device, CVP_WRAPPER_QNS4PDXFIFO_RESET, 0x0);
__write_register(device, CVP_WRAPPER_AXI_CLOCK_CONFIG, 0x0);
#endif
/* HPG 6.2.2 Step 5 */
msm_cvp_disable_unprepare_clk(device, "cvp_clk");
/* HPG 6.2.2 Step 7 */
msm_cvp_disable_unprepare_clk(device, "gcc_video_axi1");
/* Added to avoid pending transaction after power off */
rc = call_iris_op(device, reset_ahb2axi_bridge, device);
if (rc)
dprintk(CVP_ERR, "Off: Failed to reset ahb2axi: %d\n", rc);
/* HPG 6.2.2 Step 6 */
__disable_regulator(device, "cvp");
return 0;
}
static int __power_off_core(struct iris_hfi_device *device)
{
u32 config, value = 0, count = 0, warn_flag = 0;
const u32 max_count = 10;
value = __read_register(device, CVP_CC_MVS1_GDSCR);
if (!(value & 0x80000000)) {
/*
* Core has been powered off by f/w.
* Check NOC reset registers to ensure
* NO outstanding NoC transactions
*/
value = __read_register(device, CVP_NOC_RESET_ACK);
if (value) {
dprintk(CVP_WARN,
"Core off with NOC RESET ACK non-zero %x\n",
value);
__print_sidebandmanager_regs(device);
}
__disable_regulator(device, "cvp-core");
msm_cvp_disable_unprepare_clk(device, "core_clk");
msm_cvp_disable_unprepare_clk(device, "video_cc_mvs1_clk_src");
return 0;
}
dprintk(CVP_PWR, "Driver controls Core power off now\n");
/*
* check to make sure core clock branch enabled else
* we cannot read core idle register
*/
config = __read_register(device, CVP_WRAPPER_CORE_CLOCK_CONFIG);
if (config) {
dprintk(CVP_PWR,
"core clock config not enabled, enable it to access core\n");
__write_register(device, CVP_WRAPPER_CORE_CLOCK_CONFIG, 0);
}
/*
* add MNoC idle check before collapsing MVS1 per HPG update
* poll for NoC DMA idle -> HPG 6.2.1
*
*/
do {
value = __read_register(device, CVP_SS_IDLE_STATUS);
if (value & 0x400000)
break;
else
usleep_range(1000, 2000);
count++;
} while (count < max_count);
if (count == max_count) {
dprintk(CVP_WARN, "Core fail to go idle %x\n", value);
warn_flag = 1;
}
/* Apply partial reset on MSF interface and wait for ACK */
__write_register(device, CVP_NOC_RESET_REQ, 0x7);
count = 0;
do {
value = __read_register(device, CVP_NOC_RESET_ACK);
if ((value & 0x7) == 0x7)
break;
else
usleep_range(100, 200);
count++;
} while (count < max_count);
if (count == max_count) {
dprintk(CVP_WARN, "Core NoC reset assert failed %x\n", value);
warn_flag = 1;
}
/* De-assert partial reset on MSF interface and wait for ACK */
__write_register(device, CVP_NOC_RESET_REQ, 0x0);
count = 0;
do {
value = __read_register(device, CVP_NOC_RESET_ACK);
if ((value & 0x1) == 0x0)
break;
else
usleep_range(100, 200);
count++;
} while (count < max_count);
if (count == max_count) {
dprintk(CVP_WARN, "Core NoC reset de-assert failed\n");
warn_flag = 1;
}
if (warn_flag)
__print_sidebandmanager_regs(device);
/* Reset both sides of 2 ahb2ahb_bridges (TZ and non-TZ) */
__write_register(device, CVP_AHB_BRIDGE_SYNC_RESET, 0x3);
__write_register(device, CVP_AHB_BRIDGE_SYNC_RESET, 0x2);
__write_register(device, CVP_AHB_BRIDGE_SYNC_RESET, 0x0);
__write_register(device, CVP_WRAPPER_CORE_CLOCK_CONFIG, config);
__disable_regulator(device, "cvp-core");
msm_cvp_disable_unprepare_clk(device, "core_clk");
msm_cvp_disable_unprepare_clk(device, "video_cc_mvs1_clk_src");
return 0;
}
static void power_off_iris2(struct iris_hfi_device *device)
{
if (!device->power_enabled || !device->res->sw_power_collapsible)
return;
if (!(device->intr_status & CVP_WRAPPER_INTR_STATUS_A2HWD_BMSK))
disable_irq_nosync(device->cvp_hal_data->irq);
device->intr_status = 0;
__power_off_core(device);
__power_off_controller(device);
if (__unvote_buses(device))
dprintk(CVP_WARN, "Failed to unvote for buses\n");
/*Do not access registers after this point!*/
device->power_enabled = false;
pr_info(CVP_DBG_TAG "cvp (eva) power collapsed\n", "pwr");
}
static inline int __resume(struct iris_hfi_device *device)
{
int rc = 0;
u32 flags = 0, reg_gdsc, reg_cbcr;
struct msm_cvp_core *core;
if (!device) {
dprintk(CVP_ERR, "Invalid params: %pK\n", device);
return -EINVAL;
} else if (device->power_enabled) {
goto exit;
} else if (!__core_in_valid_state(device)) {
dprintk(CVP_PWR, "iris_hfi_device in deinit state.");
return -EINVAL;
}
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
dprintk(CVP_PWR, "Resuming from power collapse\n");
rc = __iris_power_on(device);
if (rc) {
dprintk(CVP_ERR, "Failed to power on cvp\n");
goto err_iris_power_on;
}
reg_gdsc = __read_register(device, CVP_CC_MVS1C_GDSCR);
reg_cbcr = __read_register(device, CVP_CC_MVS1C_CBCR);
if (!(reg_gdsc & 0x80000000) || (reg_cbcr & 0x80000000))
dprintk(CVP_ERR, "CVP power on failed gdsc %x cbcr %x\n",
reg_gdsc, reg_cbcr);
/* Reboot the firmware */
rc = __tzbsp_set_cvp_state(TZ_SUBSYS_STATE_RESUME);
if (rc) {
dprintk(CVP_ERR, "Failed to resume cvp core %d\n", rc);
goto err_set_cvp_state;
}
__setup_ucregion_memory_map(device);
/* Wait for boot completion */
rc = __boot_firmware(device);
if (rc) {
dprintk(CVP_ERR, "Failed to reset cvp core\n");
msm_cvp_trigger_ssr(core, SSR_ERR_FATAL);
goto err_reset_core;
}
/*
* Work around for H/W bug, need to reprogram these registers once
* firmware is out reset
*/
__set_threshold_registers(device);
if (device->res->pm_qos.latency_us && device->res->pm_qos.pm_qos_hdls)
cvp_pm_qos_update(device, true);
__sys_set_debug(device, msm_cvp_fw_debug);
__enable_subcaches(device);
__set_subcaches(device);
__dsp_resume(device, flags);
dprintk(CVP_PWR, "Resumed from power collapse\n");
exit:
/* Don't reset skip_pc_count for SYS_PC_PREP cmd */
if (device->last_packet_type != HFI_CMD_SYS_PC_PREP)
device->skip_pc_count = 0;
return rc;
err_reset_core:
__tzbsp_set_cvp_state(TZ_SUBSYS_STATE_SUSPEND);
err_set_cvp_state:
call_iris_op(device, power_off, device);
err_iris_power_on:
dprintk(CVP_ERR, "Failed to resume from power collapse\n");
return rc;
}
static int __load_fw(struct iris_hfi_device *device)
{
int rc = 0;
/* Initialize resources */
rc = __init_resources(device, device->res);
if (rc) {
dprintk(CVP_ERR, "Failed to init resources: %d\n", rc);
goto fail_init_res;
}
rc = __initialize_packetization(device);
if (rc) {
dprintk(CVP_ERR, "Failed to initialize packetization\n");
goto fail_init_pkt;
}
rc = __iris_power_on(device);
if (rc) {
dprintk(CVP_ERR, "Failed to power on iris in in load_fw\n");
goto fail_iris_power_on;
}
if ((!device->res->use_non_secure_pil && !device->res->firmware_base)
|| device->res->use_non_secure_pil) {
rc = load_cvp_fw_impl(device);
if (rc)
goto fail_load_fw;
}
return rc;
fail_load_fw:
call_iris_op(device, power_off, device);
fail_iris_power_on:
fail_init_pkt:
__deinit_resources(device);
fail_init_res:
return rc;
}
static void __unload_fw(struct iris_hfi_device *device)
{
if (!device->resources.fw.cookie)
return;
cancel_delayed_work(&iris_hfi_pm_work);
if (device->state != IRIS_STATE_DEINIT)
flush_workqueue(device->iris_pm_workq);
unload_cvp_fw_impl(device);
__interface_queues_release(device);
call_iris_op(device, power_off, device);
__deinit_resources(device);
dprintk(CVP_WARN, "Firmware unloaded\n");
}
static int iris_hfi_get_fw_info(void *dev, struct cvp_hal_fw_info *fw_info)
{
int i = 0;
struct iris_hfi_device *device = dev;
if (!device || !fw_info) {
dprintk(CVP_ERR,
"%s Invalid parameter: device = %pK fw_info = %pK\n",
__func__, device, fw_info);
return -EINVAL;
}
mutex_lock(&device->lock);
while (cvp_driver->fw_version[i++] != 'V' && i < CVP_VERSION_LENGTH)
;
if (i == CVP_VERSION_LENGTH - 1) {
dprintk(CVP_WARN, "Iris version string is not proper\n");
fw_info->version[0] = '\0';
goto fail_version_string;
}
memcpy(&fw_info->version[0], &cvp_driver->fw_version[0],
CVP_VERSION_LENGTH);
fw_info->version[CVP_VERSION_LENGTH - 1] = '\0';
fail_version_string:
dprintk(CVP_CORE, "F/W version retrieved : %s\n", fw_info->version);
fw_info->base_addr = device->cvp_hal_data->firmware_base;
fw_info->register_base = device->res->register_base;
fw_info->register_size = device->cvp_hal_data->register_size;
fw_info->irq = device->cvp_hal_data->irq;
mutex_unlock(&device->lock);
return 0;
}
static int iris_hfi_get_core_capabilities(void *dev)
{
dprintk(CVP_CORE, "%s not supported yet!\n", __func__);
return 0;
}
static const char * const mid_names[16] = {
"CVP_FW",
"ARP_DATA",
"CVP_OD_NON_PIXEL",
"CVP_OD_ORIG_PIXEL",
"CVP_OD_WR_PIXEL",
"CVP_MPU_ORIG_PIXEL",
"CVP_MPU_REF_PIXEL",
"CVP_MPU_NON_PIXEL",
"CVP_MPU_DFS",
"CVP_FDU_NON_PIXEL",
"CVP_FDU_PIXEL",
"CVP_ICA_PIXEL",
"Invalid",
"Invalid",
"Invalid",
"Invalid"
};
static void __print_reg_details(u32 val)
{
u32 mid, sid;
mid = (val >> 5) & 0xF;
sid = (val >> 2) & 0x7;
dprintk(CVP_ERR, "CVP_NOC_CORE_ERL_MAIN_ERRLOG3_LOW: %#x\n", val);
dprintk(CVP_ERR, "Sub-client:%s, SID: %d\n", mid_names[mid], sid);
}
static void __err_log(bool logging, u32 *data, const char *name, u32 val)
{
if (logging)
*data = val;
dprintk(CVP_ERR, "%s: %#x\n", name, val);
}
static void __noc_error_info_iris2(struct iris_hfi_device *device)
{
struct msm_cvp_core *core;
struct cvp_noc_log *noc_log;
u32 val = 0, regi, i;
bool log_required = false;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
if (!core->ssr_count && core->resources.max_ssr_allowed > 1)
log_required = true;
noc_log = &core->log.noc_log;
if (noc_log->used) {
dprintk(CVP_WARN, "Data already in NoC log, skip logging\n");
return;
}
noc_log->used = 1;
val = __read_register(device, CVP_NOC_ERR_SWID_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_swid_low,
"CVP_NOC_ERL_MAIN_SWID_LOW", val);
val = __read_register(device, CVP_NOC_ERR_SWID_HIGH_OFFS);
__err_log(log_required, &noc_log->err_ctrl_swid_high,
"CVP_NOC_ERL_MAIN_SWID_HIGH", val);
val = __read_register(device, CVP_NOC_ERR_MAINCTL_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_mainctl_low,
"CVP_NOC_ERL_MAIN_MAINCTL_LOW", val);
val = __read_register(device, CVP_NOC_ERR_ERRVLD_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errvld_low,
"CVP_NOC_ERL_MAIN_ERRVLD_LOW", val);
val = __read_register(device, CVP_NOC_ERR_ERRCLR_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errclr_low,
"CVP_NOC_ERL_MAIN_ERRCLR_LOW", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG0_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog0_low,
"CVP_NOC_ERL_MAIN_ERRLOG0_LOW", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG0_HIGH_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog0_high,
"CVP_NOC_ERL_MAIN_ERRLOG0_HIGH", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG1_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog1_low,
"CVP_NOC_ERL_MAIN_ERRLOG1_LOW", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG1_HIGH_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog1_high,
"CVP_NOC_ERL_MAIN_ERRLOG1_HIGH", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG2_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog2_low,
"CVP_NOC_ERL_MAIN_ERRLOG2_LOW", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG2_HIGH_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog2_high,
"CVP_NOC_ERL_MAIN_ERRLOG2_HIGH", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG3_LOW_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog3_low,
"CVP_NOC_ERL_MAIN_ERRLOG3_LOW", val);
val = __read_register(device, CVP_NOC_ERR_ERRLOG3_HIGH_OFFS);
__err_log(log_required, &noc_log->err_ctrl_errlog3_high,
"CVP_NOC_ERL_MAIN_ERRLOG3_HIGH", val);
val = __read_register(device, CVP_NOC_CORE_ERR_SWID_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_swid_low,
"CVP_NOC__CORE_ERL_MAIN_SWID_LOW", val);
val = __read_register(device, CVP_NOC_CORE_ERR_SWID_HIGH_OFFS);
__err_log(log_required, &noc_log->err_core_swid_high,
"CVP_NOC_CORE_ERL_MAIN_SWID_HIGH", val);
val = __read_register(device, CVP_NOC_CORE_ERR_MAINCTL_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_mainctl_low,
"CVP_NOC_CORE_ERL_MAIN_MAINCTL_LOW", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRVLD_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_errvld_low,
"CVP_NOC_CORE_ERL_MAIN_ERRVLD_LOW", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRCLR_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_errclr_low,
"CVP_NOC_CORE_ERL_MAIN_ERRCLR_LOW", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG0_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_errlog0_low,
"CVP_NOC_CORE_ERL_MAIN_ERRLOG0_LOW", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG0_HIGH_OFFS);
__err_log(log_required, &noc_log->err_core_errlog0_high,
"CVP_NOC_CORE_ERL_MAIN_ERRLOG0_HIGH", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG1_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_errlog1_low,
"CVP_NOC_CORE_ERL_MAIN_ERRLOG1_LOW", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG1_HIGH_OFFS);
__err_log(log_required, &noc_log->err_core_errlog1_high,
"CVP_NOC_CORE_ERL_MAIN_ERRLOG1_HIGH", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG2_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_errlog2_low,
"CVP_NOC_CORE_ERL_MAIN_ERRLOG2_LOW", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG2_HIGH_OFFS);
__err_log(log_required, &noc_log->err_core_errlog2_high,
"CVP_NOC_CORE_ERL_MAIN_ERRLOG2_HIGH", val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG3_LOW_OFFS);
__err_log(log_required, &noc_log->err_core_errlog3_low,
"CORE ERRLOG3_LOW, below details", val);
__print_reg_details(val);
val = __read_register(device, CVP_NOC_CORE_ERR_ERRLOG3_HIGH_OFFS);
__err_log(log_required, &noc_log->err_core_errlog3_high,
"CVP_NOC_CORE_ERL_MAIN_ERRLOG3_HIGH", val);
#define CVP_SS_CLK_HALT 0x8
#define CVP_SS_CLK_EN 0xC
#define CVP_SS_ARP_TEST_BUS_CONTROL 0x700
#define CVP_SS_ARP_TEST_BUS_REGISTER 0x704
#define CVP_DMA_TEST_BUS_CONTROL 0x66A0
#define CVP_DMA_TEST_BUS_REGISTER 0x66A4
#define CVP_VPU_WRAPPER_CORE_CONFIG 0xB0088
__write_register(device, CVP_SS_CLK_HALT, 0);
__write_register(device, CVP_SS_CLK_EN, 0x3f);
__write_register(device, CVP_VPU_WRAPPER_CORE_CONFIG, 0);
for (i = 0; i < 15; i++) {
regi = 0xC0000000 + i;
__write_register(device, CVP_SS_ARP_TEST_BUS_CONTROL, regi);
val = __read_register(device, CVP_SS_ARP_TEST_BUS_REGISTER);
noc_log->arp_test_bus[i] = val;
}
for (i = 0; i < 512; i++) {
regi = 0x40000000 + i;
__write_register(device, CVP_DMA_TEST_BUS_CONTROL, regi);
val = __read_register(device, CVP_DMA_TEST_BUS_REGISTER);
noc_log->dma_test_bus[i] = val;
}
}
static int iris_hfi_noc_error_info(void *dev)
{
struct iris_hfi_device *device;
if (!dev) {
dprintk(CVP_ERR, "%s: null device\n", __func__);
return -EINVAL;
}
device = dev;
mutex_lock(&device->lock);
dprintk(CVP_ERR, "%s: non error information\n", __func__);
call_iris_op(device, noc_error_info, device);
mutex_unlock(&device->lock);
return 0;
}
static int __initialize_packetization(struct iris_hfi_device *device)
{
int rc = 0;
if (!device || !device->res) {
dprintk(CVP_ERR, "%s - invalid param\n", __func__);
return -EINVAL;
}
device->packetization_type = HFI_PACKETIZATION_4XX;
device->pkt_ops = cvp_hfi_get_pkt_ops_handle(
device->packetization_type);
if (!device->pkt_ops) {
rc = -EINVAL;
dprintk(CVP_ERR, "Failed to get pkt_ops handle\n");
}
return rc;
}
void __init_cvp_ops(struct iris_hfi_device *device)
{
device->vpu_ops = &iris2_ops;
}
static struct iris_hfi_device *__add_device(u32 device_id,
struct msm_cvp_platform_resources *res,
hfi_cmd_response_callback callback)
{
struct iris_hfi_device *hdevice = NULL;
int rc = 0;
if (!res || !callback) {
dprintk(CVP_ERR, "Invalid Parameters\n");
return NULL;
}
dprintk(CVP_INFO, "%s: device_id: %d\n", __func__, device_id);
hdevice = kzalloc(sizeof(*hdevice), GFP_KERNEL);
if (!hdevice) {
dprintk(CVP_ERR, "failed to allocate new device\n");
goto exit;
}
hdevice->response_pkt = kmalloc_array(cvp_max_packets,
sizeof(*hdevice->response_pkt), GFP_KERNEL);
if (!hdevice->response_pkt) {
dprintk(CVP_ERR, "failed to allocate response_pkt\n");
goto err_cleanup;
}
hdevice->raw_packet =
kzalloc(CVP_IFACEQ_VAR_HUGE_PKT_SIZE, GFP_KERNEL);
if (!hdevice->raw_packet) {
dprintk(CVP_ERR, "failed to allocate raw packet\n");
goto err_cleanup;
}
rc = __init_regs_and_interrupts(hdevice, res);
if (rc)
goto err_cleanup;
hdevice->res = res;
hdevice->device_id = device_id;
hdevice->callback = callback;
__init_cvp_ops(hdevice);
hdevice->cvp_workq = create_singlethread_workqueue(
"msm_cvp_workerq_iris");
if (!hdevice->cvp_workq) {
dprintk(CVP_ERR, ": create cvp workq failed\n");
goto err_cleanup;
}
hdevice->iris_pm_workq = create_singlethread_workqueue(
"pm_workerq_iris");
if (!hdevice->iris_pm_workq) {
dprintk(CVP_ERR, ": create pm workq failed\n");
goto err_cleanup;
}
mutex_init(&hdevice->lock);
INIT_LIST_HEAD(&hdevice->sess_head);
return hdevice;
err_cleanup:
if (hdevice->iris_pm_workq)
destroy_workqueue(hdevice->iris_pm_workq);
if (hdevice->cvp_workq)
destroy_workqueue(hdevice->cvp_workq);
kfree(hdevice->response_pkt);
kfree(hdevice->raw_packet);
kfree(hdevice);
exit:
return NULL;
}
static struct iris_hfi_device *__get_device(u32 device_id,
struct msm_cvp_platform_resources *res,
hfi_cmd_response_callback callback)
{
if (!res || !callback) {
dprintk(CVP_ERR, "Invalid params: %pK %pK\n", res, callback);
return NULL;
}
return __add_device(device_id, res, callback);
}
void cvp_iris_hfi_delete_device(void *device)
{
struct msm_cvp_core *core;
struct iris_hfi_device *dev = NULL;
if (!device)
return;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
if (core)
dev = core->device->hfi_device_data;
if (!dev)
return;
mutex_destroy(&dev->lock);
destroy_workqueue(dev->cvp_workq);
destroy_workqueue(dev->iris_pm_workq);
free_irq(dev->cvp_hal_data->irq, dev);
iounmap(dev->cvp_hal_data->register_base);
iounmap(dev->cvp_hal_data->gcc_reg_base);
kfree(dev->cvp_hal_data);
kfree(dev->response_pkt);
kfree(dev->raw_packet);
kfree(dev);
}
static int iris_hfi_validate_session(void *sess, const char *func)
{
struct cvp_hal_session *session = sess;
int rc = 0;
struct iris_hfi_device *device;
if (!session || !session->device) {
dprintk(CVP_ERR, " %s Invalid Params %pK\n", __func__, session);
return -EINVAL;
}
device = session->device;
mutex_lock(&device->lock);
if (!__is_session_valid(device, session, func))
rc = -ECONNRESET;
mutex_unlock(&device->lock);
return rc;
}
static void iris_init_hfi_callbacks(struct cvp_hfi_device *hdev)
{
hdev->core_init = iris_hfi_core_init;
hdev->core_release = iris_hfi_core_release;
hdev->core_trigger_ssr = iris_hfi_core_trigger_ssr;
hdev->session_init = iris_hfi_session_init;
hdev->session_end = iris_hfi_session_end;
hdev->session_abort = iris_hfi_session_abort;
hdev->session_clean = iris_hfi_session_clean;
hdev->session_set_buffers = iris_hfi_session_set_buffers;
hdev->session_release_buffers = iris_hfi_session_release_buffers;
hdev->session_send = iris_hfi_session_send;
hdev->session_flush = iris_hfi_session_flush;
hdev->scale_clocks = iris_hfi_scale_clocks;
hdev->vote_bus = iris_hfi_vote_buses;
hdev->get_fw_info = iris_hfi_get_fw_info;
hdev->get_core_capabilities = iris_hfi_get_core_capabilities;
hdev->suspend = iris_hfi_suspend;
hdev->resume = iris_hfi_resume;
hdev->flush_debug_queue = iris_hfi_flush_debug_queue;
hdev->noc_error_info = iris_hfi_noc_error_info;
hdev->validate_session = iris_hfi_validate_session;
hdev->pm_qos_update = iris_pm_qos_update;
}
int cvp_iris_hfi_initialize(struct cvp_hfi_device *hdev, u32 device_id,
struct msm_cvp_platform_resources *res,
hfi_cmd_response_callback callback)
{
int rc = 0;
if (!hdev || !res || !callback) {
dprintk(CVP_ERR, "Invalid params: %pK %pK %pK\n",
hdev, res, callback);
rc = -EINVAL;
goto err_iris_hfi_init;
}
hdev->hfi_device_data = __get_device(device_id, res, callback);
if (IS_ERR_OR_NULL(hdev->hfi_device_data)) {
rc = PTR_ERR(hdev->hfi_device_data) ?: -EINVAL;
goto err_iris_hfi_init;
}
iris_init_hfi_callbacks(hdev);
err_iris_hfi_init:
return rc;
}