Files
android_kernel_samsung_sm86…/msm/sde_io_util.c
Samantha Tran 262099e94a disp: msm: replace kzfree with kfree
This change replaces kzfree with kfree as kzfree has been
renamed.

While moving to the latest 5.10 tip, additional small changes
were required to resolve compilation issues:

set_dma_ops has moved from dma-mapping to dma-map-ops header.
This change includes the new header file required.

drm_panel_add returns void, this change removes the expected
return value check.

drm_prime_pages_to_sg takes an additional parameter. This change
passes in the drm_device pointer the function is looking for.

Remove an unused variable in sde_crtc vblank function.

Change-Id: I47c085c0cb64432873c2e750ae64cbdc2b5340da
Signed-off-by: Samantha Tran <samtran@codeaurora.org>
2020-12-22 10:42:18 -08:00

687 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2015, 2017-2020 The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/regulator/consumer.h>
#include <linux/soc/qcom/spmi-pmic-arb.h>
#include <linux/delay.h>
#include <linux/sde_io_util.h>
#include <linux/sde_vm_event.h>
#define MAX_I2C_CMDS 16
void dss_reg_w(struct dss_io_data *io, u32 offset, u32 value, u32 debug)
{
u32 in_val;
if (!io || !io->base) {
DEV_ERR("%pS->%s: invalid input\n",
__builtin_return_address(0), __func__);
return;
}
if (offset > io->len) {
DEV_ERR("%pS->%s: offset out of range\n",
__builtin_return_address(0), __func__);
return;
}
writel_relaxed(value, io->base + offset);
if (debug) {
in_val = readl_relaxed(io->base + offset);
DEV_DBG("[%08x] => %08x [%08x]\n",
(u32)(unsigned long)(io->base + offset),
value, in_val);
}
} /* dss_reg_w */
EXPORT_SYMBOL(dss_reg_w);
u32 dss_reg_r(struct dss_io_data *io, u32 offset, u32 debug)
{
u32 value;
if (!io || !io->base) {
DEV_ERR("%pS->%s: invalid input\n",
__builtin_return_address(0), __func__);
return -EINVAL;
}
if (offset > io->len) {
DEV_ERR("%pS->%s: offset out of range\n",
__builtin_return_address(0), __func__);
return -EINVAL;
}
value = readl_relaxed(io->base + offset);
if (debug)
DEV_DBG("[%08x] <= %08x\n",
(u32)(unsigned long)(io->base + offset), value);
return value;
} /* dss_reg_r */
EXPORT_SYMBOL(dss_reg_r);
void dss_reg_dump(void __iomem *base, u32 length, const char *prefix,
u32 debug)
{
if (debug)
print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 32, 4,
(void *)base, length, false);
} /* dss_reg_dump */
EXPORT_SYMBOL(dss_reg_dump);
static struct resource *msm_dss_get_res_byname(struct platform_device *pdev,
unsigned int type, const char *name)
{
struct resource *res = NULL;
res = platform_get_resource_byname(pdev, type, name);
if (!res)
DEV_ERR("%s: '%s' resource not found\n", __func__, name);
return res;
} /* msm_dss_get_res_byname */
int msm_dss_ioremap_byname(struct platform_device *pdev,
struct dss_io_data *io_data, const char *name)
{
struct resource *res = NULL;
if (!pdev || !io_data) {
DEV_ERR("%pS->%s: invalid input\n",
__builtin_return_address(0), __func__);
return -EINVAL;
}
res = msm_dss_get_res_byname(pdev, IORESOURCE_MEM, name);
if (!res) {
DEV_ERR("%pS->%s: '%s' msm_dss_get_res_byname failed\n",
__builtin_return_address(0), __func__, name);
return -ENODEV;
}
io_data->len = (u32)resource_size(res);
io_data->base = ioremap(res->start, io_data->len);
if (!io_data->base) {
DEV_ERR("%pS->%s: '%s' ioremap failed\n",
__builtin_return_address(0), __func__, name);
return -EIO;
}
return 0;
} /* msm_dss_ioremap_byname */
EXPORT_SYMBOL(msm_dss_ioremap_byname);
void msm_dss_iounmap(struct dss_io_data *io_data)
{
if (!io_data) {
DEV_ERR("%pS->%s: invalid input\n",
__builtin_return_address(0), __func__);
return;
}
if (io_data->base) {
iounmap(io_data->base);
io_data->base = NULL;
}
io_data->len = 0;
} /* msm_dss_iounmap */
EXPORT_SYMBOL(msm_dss_iounmap);
int msm_dss_get_pmic_io_mem(struct platform_device *pdev,
struct list_head *mem_list)
{
struct list_head temp_head;
struct msm_io_mem_entry *io_mem;
struct resource *res = NULL;
struct property *prop;
const __be32 *cur;
int rc = 0;
u32 val;
INIT_LIST_HEAD(&temp_head);
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
if (!res)
return -ENOMEM;
of_property_for_each_u32(pdev->dev.of_node, "qcom,pmic-arb-address",
prop, cur, val) {
rc = spmi_pmic_arb_map_address(&pdev->dev, val, res);
if (rc < 0) {
DEV_ERR("%pS - failed to map pmic address, rc:%d\n",
__func__, rc);
goto parse_fail;
}
io_mem = kzalloc(sizeof(struct msm_io_mem_entry), GFP_KERNEL);
if (!io_mem) {
rc = -ENOMEM;
goto parse_fail;
}
io_mem->base = res->start;
io_mem->size = resource_size(res);
list_add(&io_mem->list, &temp_head);
}
list_splice(&temp_head, mem_list);
goto end;
parse_fail:
msm_dss_clean_io_mem(&temp_head);
end:
kfree(res);
return rc;
}
EXPORT_SYMBOL(msm_dss_get_pmic_io_mem);
int msm_dss_get_io_mem(struct platform_device *pdev, struct list_head *mem_list)
{
struct list_head temp_head;
struct msm_io_mem_entry *io_mem;
struct resource *res = NULL;
const char *reg_name, *exclude_reg_name;
int i, j, rc = 0;
int num_entry, num_exclude_entry;
INIT_LIST_HEAD(&temp_head);
num_entry = of_property_count_strings(pdev->dev.of_node,
"reg-names");
if (num_entry < 0)
num_entry = 0;
/*
* check the dt property to know whether the platform device wants
* to exclude any reg ranges from the IO list
*/
num_exclude_entry = of_property_count_strings(pdev->dev.of_node,
"qcom,sde-vm-exclude-reg-names");
if (num_exclude_entry < 0)
num_exclude_entry = 0;
for (i = 0; i < num_entry; i++) {
bool exclude = false;
of_property_read_string_index(pdev->dev.of_node,
"reg-names", i, &reg_name);
for (j = 0; j < num_exclude_entry; j++) {
of_property_read_string_index(pdev->dev.of_node,
"qcom,sde-vm-exclude-reg-names", j,
&exclude_reg_name);
if (!strcmp(reg_name, exclude_reg_name)) {
exclude = true;
break;
}
}
if (exclude)
continue;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
reg_name);
if (!res)
break;
io_mem = kzalloc(sizeof(*io_mem), GFP_KERNEL);
if (!io_mem) {
msm_dss_clean_io_mem(&temp_head);
rc = -ENOMEM;
goto parse_fail;
}
io_mem->base = res->start;
io_mem->size = resource_size(res);
list_add(&io_mem->list, &temp_head);
}
list_splice(&temp_head, mem_list);
return 0;
parse_fail:
msm_dss_clean_io_mem(&temp_head);
return rc;
}
EXPORT_SYMBOL(msm_dss_get_io_mem);
void msm_dss_clean_io_mem(struct list_head *mem_list)
{
struct msm_io_mem_entry *pos, *tmp;
list_for_each_entry_safe(pos, tmp, mem_list, list) {
list_del(&pos->list);
kfree(pos);
}
}
EXPORT_SYMBOL(msm_dss_clean_io_mem);
int msm_dss_get_io_irq(struct platform_device *pdev, struct list_head *irq_list,
u32 label)
{
struct msm_io_irq_entry *io_irq;
int irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
pr_err("invalid IRQ\n");
return irq;
}
io_irq = kzalloc(sizeof(*io_irq), GFP_KERNEL);
if (!io_irq)
return -ENOMEM;
io_irq->label = label;
io_irq->irq_num = irq;
list_add(&io_irq->list, irq_list);
return 0;
}
EXPORT_SYMBOL(msm_dss_get_io_irq);
void msm_dss_clean_io_irq(struct list_head *irq_list)
{
struct msm_io_irq_entry *pos, *tmp;
list_for_each_entry_safe(pos, tmp, irq_list, list) {
list_del(&pos->list);
kfree(pos);
}
}
EXPORT_SYMBOL(msm_dss_clean_io_irq);
int msm_dss_get_vreg(struct device *dev, struct dss_vreg *in_vreg,
int num_vreg, int enable)
{
int i = 0, rc = 0;
struct dss_vreg *curr_vreg = NULL;
if (!in_vreg || !num_vreg)
return rc;
if (enable) {
for (i = 0; i < num_vreg; i++) {
curr_vreg = &in_vreg[i];
curr_vreg->vreg = regulator_get(dev,
curr_vreg->vreg_name);
rc = PTR_ERR_OR_ZERO(curr_vreg->vreg);
if (rc) {
DEV_ERR("%pS->%s: %s get failed. rc=%d\n",
__builtin_return_address(0), __func__,
curr_vreg->vreg_name, rc);
curr_vreg->vreg = NULL;
goto vreg_get_fail;
}
}
} else {
for (i = num_vreg-1; i >= 0; i--) {
curr_vreg = &in_vreg[i];
if (curr_vreg->vreg) {
regulator_put(curr_vreg->vreg);
curr_vreg->vreg = NULL;
}
}
}
return 0;
vreg_get_fail:
for (i--; i >= 0; i--) {
curr_vreg = &in_vreg[i];
regulator_set_load(curr_vreg->vreg, 0);
regulator_put(curr_vreg->vreg);
curr_vreg->vreg = NULL;
}
return rc;
} /* msm_dss_get_vreg */
EXPORT_SYMBOL(msm_dss_get_vreg);
static bool msm_dss_is_hw_controlled(struct dss_vreg in_vreg)
{
u32 mode = 0;
char const *regulator_gdsc = "gdsc";
/*
* For gdsc-regulator devices only, REGULATOR_MODE_FAST specifies that
* the GDSC is in HW controlled mode.
*/
mode = regulator_get_mode(in_vreg.vreg);
if (!strcmp(regulator_gdsc, in_vreg.vreg_name) &&
mode == REGULATOR_MODE_FAST) {
DEV_DBG("%pS->%s: %s is HW controlled\n",
__builtin_return_address(0), __func__,
in_vreg.vreg_name);
return true;
}
return false;
}
int msm_dss_enable_vreg(struct dss_vreg *in_vreg, int num_vreg, int enable)
{
int i = 0, rc = 0;
bool need_sleep;
if (enable) {
for (i = 0; i < num_vreg; i++) {
rc = PTR_ERR_OR_ZERO(in_vreg[i].vreg);
if (rc) {
DEV_ERR("%pS->%s: %s regulator error. rc=%d\n",
__builtin_return_address(0), __func__,
in_vreg[i].vreg_name, rc);
goto vreg_set_opt_mode_fail;
}
if (msm_dss_is_hw_controlled(in_vreg[i]))
continue;
need_sleep = !regulator_is_enabled(in_vreg[i].vreg);
if (in_vreg[i].pre_on_sleep && need_sleep)
usleep_range(in_vreg[i].pre_on_sleep * 1000,
(in_vreg[i].pre_on_sleep * 1000) + 10);
rc = regulator_set_load(in_vreg[i].vreg,
in_vreg[i].enable_load);
if (rc < 0) {
DEV_ERR("%pS->%s: %s set opt m fail\n",
__builtin_return_address(0), __func__,
in_vreg[i].vreg_name);
goto vreg_set_opt_mode_fail;
}
if (regulator_count_voltages(in_vreg[i].vreg) > 0)
regulator_set_voltage(in_vreg[i].vreg,
in_vreg[i].min_voltage,
in_vreg[i].max_voltage);
rc = regulator_enable(in_vreg[i].vreg);
if (in_vreg[i].post_on_sleep && need_sleep)
usleep_range(in_vreg[i].post_on_sleep * 1000,
(in_vreg[i].post_on_sleep * 1000) + 10);
if (rc < 0) {
DEV_ERR("%pS->%s: %s enable failed\n",
__builtin_return_address(0), __func__,
in_vreg[i].vreg_name);
goto disable_vreg;
}
}
} else {
for (i = num_vreg-1; i >= 0; i--) {
if (msm_dss_is_hw_controlled(in_vreg[i]))
continue;
if (in_vreg[i].pre_off_sleep)
usleep_range(in_vreg[i].pre_off_sleep * 1000,
(in_vreg[i].pre_off_sleep * 1000) + 10);
regulator_disable(in_vreg[i].vreg);
if (in_vreg[i].post_off_sleep)
usleep_range(in_vreg[i].post_off_sleep * 1000,
(in_vreg[i].post_off_sleep * 1000) + 10);
regulator_set_load(in_vreg[i].vreg,
in_vreg[i].disable_load);
if (regulator_count_voltages(in_vreg[i].vreg) > 0)
regulator_set_voltage(in_vreg[i].vreg, 0,
in_vreg[i].max_voltage);
}
}
return rc;
disable_vreg:
regulator_set_load(in_vreg[i].vreg, in_vreg[i].disable_load);
vreg_set_opt_mode_fail:
for (i--; i >= 0; i--) {
if (in_vreg[i].pre_off_sleep)
usleep_range(in_vreg[i].pre_off_sleep * 1000,
(in_vreg[i].pre_off_sleep * 1000) + 10);
regulator_disable(in_vreg[i].vreg);
if (in_vreg[i].post_off_sleep)
usleep_range(in_vreg[i].post_off_sleep * 1000,
(in_vreg[i].post_off_sleep * 1000) + 10);
regulator_set_load(in_vreg[i].vreg,
in_vreg[i].disable_load);
}
return rc;
} /* msm_dss_enable_vreg */
EXPORT_SYMBOL(msm_dss_enable_vreg);
int msm_dss_enable_gpio(struct dss_gpio *in_gpio, int num_gpio, int enable)
{
int i = 0, rc = 0;
if (enable) {
for (i = 0; i < num_gpio; i++) {
DEV_DBG("%pS->%s: %s enable\n",
__builtin_return_address(0), __func__,
in_gpio[i].gpio_name);
rc = gpio_request(in_gpio[i].gpio,
in_gpio[i].gpio_name);
if (rc < 0) {
DEV_ERR("%pS->%s: %s enable failed\n",
__builtin_return_address(0), __func__,
in_gpio[i].gpio_name);
goto disable_gpio;
}
gpio_set_value(in_gpio[i].gpio, in_gpio[i].value);
}
} else {
for (i = num_gpio-1; i >= 0; i--) {
DEV_DBG("%pS->%s: %s disable\n",
__builtin_return_address(0), __func__,
in_gpio[i].gpio_name);
if (in_gpio[i].gpio)
gpio_free(in_gpio[i].gpio);
}
}
return rc;
disable_gpio:
for (i--; i >= 0; i--)
if (in_gpio[i].gpio)
gpio_free(in_gpio[i].gpio);
return rc;
} /* msm_dss_enable_gpio */
EXPORT_SYMBOL(msm_dss_enable_gpio);
void msm_dss_put_clk(struct dss_clk *clk_arry, int num_clk)
{
int i;
for (i = num_clk - 1; i >= 0; i--) {
if (clk_arry[i].clk)
clk_put(clk_arry[i].clk);
clk_arry[i].clk = NULL;
}
} /* msm_dss_put_clk */
EXPORT_SYMBOL(msm_dss_put_clk);
int msm_dss_get_clk(struct device *dev, struct dss_clk *clk_arry, int num_clk)
{
int i, rc = 0;
for (i = 0; i < num_clk; i++) {
clk_arry[i].clk = clk_get(dev, clk_arry[i].clk_name);
rc = PTR_ERR_OR_ZERO(clk_arry[i].clk);
if (rc) {
DEV_ERR("%pS->%s: '%s' get failed. rc=%d\n",
__builtin_return_address(0), __func__,
clk_arry[i].clk_name, rc);
goto error;
}
}
return rc;
error:
for (i--; i >= 0; i--) {
if (clk_arry[i].clk)
clk_put(clk_arry[i].clk);
clk_arry[i].clk = NULL;
}
return rc;
} /* msm_dss_get_clk */
EXPORT_SYMBOL(msm_dss_get_clk);
int msm_dss_single_clk_set_rate(struct dss_clk *clk)
{
int rc = 0;
if (!clk) {
DEV_ERR("invalid clk struct\n");
return -EINVAL;
}
DEV_DBG("%pS->%s: set_rate '%s'\n",
__builtin_return_address(0), __func__,
clk->clk_name);
if (clk->type != DSS_CLK_AHB) {
rc = clk_set_rate(clk->clk, clk->rate);
if (rc)
DEV_ERR("%pS->%s: %s failed. rc=%d\n",
__builtin_return_address(0),
__func__,
clk->clk_name, rc);
}
return rc;
} /* msm_dss_single_clk_set_rate */
EXPORT_SYMBOL(msm_dss_single_clk_set_rate);
int msm_dss_clk_set_rate(struct dss_clk *clk_arry, int num_clk)
{
int i, rc = 0;
for (i = 0; i < num_clk; i++) {
if (clk_arry[i].clk) {
rc = msm_dss_single_clk_set_rate(&clk_arry[i]);
if (rc)
break;
} else {
DEV_ERR("%pS->%s: '%s' is not available\n",
__builtin_return_address(0), __func__,
clk_arry[i].clk_name);
rc = -EPERM;
break;
}
}
return rc;
} /* msm_dss_clk_set_rate */
EXPORT_SYMBOL(msm_dss_clk_set_rate);
int msm_dss_enable_clk(struct dss_clk *clk_arry, int num_clk, int enable)
{
int i, rc = 0;
if (enable) {
for (i = 0; i < num_clk; i++) {
DEV_DBG("%pS->%s: enable '%s'\n",
__builtin_return_address(0), __func__,
clk_arry[i].clk_name);
if (clk_arry[i].clk) {
rc = clk_prepare_enable(clk_arry[i].clk);
if (rc)
DEV_ERR("%pS->%s: %s en fail. rc=%d\n",
__builtin_return_address(0),
__func__,
clk_arry[i].clk_name, rc);
} else {
DEV_ERR("%pS->%s: '%s' is not available\n",
__builtin_return_address(0), __func__,
clk_arry[i].clk_name);
rc = -EPERM;
}
if (rc) {
msm_dss_enable_clk(clk_arry, i, false);
break;
}
}
} else {
for (i = num_clk - 1; i >= 0; i--) {
DEV_DBG("%pS->%s: disable '%s'\n",
__builtin_return_address(0), __func__,
clk_arry[i].clk_name);
if (clk_arry[i].clk)
clk_disable_unprepare(clk_arry[i].clk);
else
DEV_ERR("%pS->%s: '%s' is not available\n",
__builtin_return_address(0), __func__,
clk_arry[i].clk_name);
}
}
return rc;
} /* msm_dss_enable_clk */
EXPORT_SYMBOL(msm_dss_enable_clk);
int sde_i2c_byte_read(struct i2c_client *client, uint8_t slave_addr,
uint8_t reg_offset, uint8_t *read_buf)
{
struct i2c_msg msgs[2];
int ret = -1;
pr_debug("%s: reading from slave_addr=[%x] and offset=[%x]\n",
__func__, slave_addr, reg_offset);
msgs[0].addr = slave_addr >> 1;
msgs[0].flags = 0;
msgs[0].buf = &reg_offset;
msgs[0].len = 1;
msgs[1].addr = slave_addr >> 1;
msgs[1].flags = I2C_M_RD;
msgs[1].buf = read_buf;
msgs[1].len = 1;
ret = i2c_transfer(client->adapter, msgs, 2);
if (ret < 1) {
pr_err("%s: I2C READ FAILED=[%d]\n", __func__, ret);
return -EACCES;
}
pr_debug("%s: i2c buf is [%x]\n", __func__, *read_buf);
return 0;
}
EXPORT_SYMBOL(sde_i2c_byte_read);
int sde_i2c_byte_write(struct i2c_client *client, uint8_t slave_addr,
uint8_t reg_offset, uint8_t *value)
{
struct i2c_msg msgs[1];
uint8_t data[2];
int status = -EACCES;
pr_debug("%s: writing from slave_addr=[%x] and offset=[%x]\n",
__func__, slave_addr, reg_offset);
data[0] = reg_offset;
data[1] = *value;
msgs[0].addr = slave_addr >> 1;
msgs[0].flags = 0;
msgs[0].len = 2;
msgs[0].buf = data;
status = i2c_transfer(client->adapter, msgs, 1);
if (status < 1) {
pr_err("I2C WRITE FAILED=[%d]\n", status);
return -EACCES;
}
pr_debug("%s: I2C write status=%x\n", __func__, status);
return status;
}
EXPORT_SYMBOL(sde_i2c_byte_write);