Files
android_kernel_samsung_sm86…/nfc/common.c

680 lines
20 KiB
C

/******************************************************************************
* Copyright (C) 2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2019-2021 NXP
* *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
******************************************************************************/
#include <linux/of_gpio.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/version.h>
#include "common.h"
#include "common_ese.h"
#include "recovery_seq.h"
int nfc_parse_dt(struct device *dev, struct platform_configs *nfc_configs,
uint8_t interface)
{
struct device_node *np = dev->of_node;
struct platform_gpio *nfc_gpio = &nfc_configs->gpio;
if (!np) {
pr_err("nfc of_node NULL\n");
return -EINVAL;
}
nfc_gpio->irq = -EINVAL;
nfc_gpio->dwl_req = -EINVAL;
nfc_gpio->ven = -EINVAL;
//required for i2c based chips only
if (interface == PLATFORM_IF_I2C) {
nfc_gpio->irq = of_get_named_gpio(np, DTS_IRQ_GPIO_STR, 0);
if ((!gpio_is_valid(nfc_gpio->irq))) {
pr_err("nfc irq gpio invalid %d\n", nfc_gpio->irq);
return -EINVAL;
}
pr_info("%s: irq %d\n", __func__, nfc_gpio->irq);
}
nfc_gpio->ven = of_get_named_gpio(np, DTS_VEN_GPIO_STR, 0);
if ((!gpio_is_valid(nfc_gpio->ven))) {
pr_err("nfc ven gpio invalid %d\n", nfc_gpio->ven);
return -EINVAL;
}
nfc_gpio->dwl_req = of_get_named_gpio(np, DTS_FWDN_GPIO_STR, 0);
if ((!gpio_is_valid(nfc_gpio->dwl_req)))
pr_warn("nfc dwl_req gpio invalid %d\n", nfc_gpio->dwl_req);
pr_info("%s: %d, %d, %d, %d\n", __func__, nfc_gpio->irq, nfc_gpio->ven,
nfc_gpio->dwl_req);
return 0;
}
void set_valid_gpio(int gpio, int value)
{
if (gpio_is_valid(gpio)) {
pr_debug("%s gpio %d value %d\n", __func__, gpio, value);
gpio_set_value(gpio, value);
// hardware dependent delay
usleep_range(NFC_GPIO_SET_WAIT_TIME_USEC,
NFC_GPIO_SET_WAIT_TIME_USEC + 100);
}
}
int get_valid_gpio(int gpio)
{
int value = -EINVAL;
if (gpio_is_valid(gpio)) {
value = gpio_get_value(gpio);
pr_debug("%s gpio %d value %d\n", __func__, gpio, value);
}
return value;
}
void gpio_set_ven(struct nfc_dev *nfc_dev, int value)
{
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if (gpio_get_value(nfc_gpio->ven) != value) {
pr_debug("%s: value %d\n", __func__, value);
/*reset on change in level from high to low */
if (value)
ese_cold_reset_release(nfc_dev);
gpio_set_value(nfc_gpio->ven, value);
// hardware dependent delay
usleep_range(NFC_GPIO_SET_WAIT_TIME_USEC,
NFC_GPIO_SET_WAIT_TIME_USEC + 100);
}
}
int configure_gpio(unsigned int gpio, int flag)
{
int ret;
pr_debug("%s: nfc gpio [%d] flag [%01x]\n", __func__, gpio, flag);
if (gpio_is_valid(gpio)) {
ret = gpio_request(gpio, "nfc_gpio");
if (ret) {
pr_err("%s: unable to request nfc gpio [%d]\n", __func__, gpio);
return ret;
}
/*set direction and value for output pin */
if (flag & GPIO_OUTPUT) {
ret = gpio_direction_output(gpio, (GPIO_HIGH & flag));
pr_debug("nfc o/p gpio %d level %d\n", gpio, gpio_get_value(gpio));
} else {
ret = gpio_direction_input(gpio);
pr_debug("nfc i/p gpio %d\n", gpio);
}
if (ret) {
pr_err("%s: unable to set direction for nfc gpio [%d]\n", __func__, gpio);
gpio_free(gpio);
return ret;
}
/*Consider value as control for input IRQ pin */
if (flag & GPIO_IRQ) {
ret = gpio_to_irq(gpio);
if (ret < 0) {
pr_err("%s: unable to set irq for nfc gpio [%d]\n", __func__, gpio);
gpio_free(gpio);
return ret;
}
pr_debug("%s: gpio_to_irq successful [%d]\n", __func__, gpio);
return ret;
}
} else {
pr_err("%s: invalid gpio\n", __func__);
ret = -EINVAL;
}
return ret;
}
void gpio_free_all(struct nfc_dev *nfc_dev)
{
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if (gpio_is_valid(nfc_gpio->dwl_req))
gpio_free(nfc_gpio->dwl_req);
if (gpio_is_valid(nfc_gpio->irq))
gpio_free(nfc_gpio->irq);
if (gpio_is_valid(nfc_gpio->ven))
gpio_free(nfc_gpio->ven);
}
void nfc_misc_unregister(struct nfc_dev *nfc_dev, int count)
{
pr_debug("%s: entry\n", __func__);
device_destroy(nfc_dev->nfc_class, nfc_dev->devno);
cdev_del(&nfc_dev->c_dev);
class_destroy(nfc_dev->nfc_class);
unregister_chrdev_region(nfc_dev->devno, count);
}
int nfc_misc_register(struct nfc_dev *nfc_dev,
const struct file_operations *nfc_fops,
int count, char *devname, char *classname)
{
int ret = 0;
ret = alloc_chrdev_region(&nfc_dev->devno, 0, count, devname);
if (ret < 0) {
pr_err("%s: failed to alloc chrdev region ret %d\n", __func__, ret);
return ret;
}
nfc_dev->nfc_class = class_create(THIS_MODULE, classname);
if (IS_ERR(nfc_dev->nfc_class)) {
ret = PTR_ERR(nfc_dev->nfc_class);
pr_err("%s: failed to register device class ret %d\n", __func__, ret);
unregister_chrdev_region(nfc_dev->devno, count);
return ret;
}
cdev_init(&nfc_dev->c_dev, nfc_fops);
ret = cdev_add(&nfc_dev->c_dev, nfc_dev->devno, count);
if (ret < 0) {
pr_err("%s: failed to add cdev ret %d\n", __func__, ret);
class_destroy(nfc_dev->nfc_class);
unregister_chrdev_region(nfc_dev->devno, count);
return ret;
}
nfc_dev->nfc_device = device_create(nfc_dev->nfc_class, NULL,
nfc_dev->devno, nfc_dev, devname);
if (IS_ERR(nfc_dev->nfc_device)) {
ret = PTR_ERR(nfc_dev->nfc_device);
pr_err("%s: failed to create the device ret %d\n", __func__, ret);
cdev_del(&nfc_dev->c_dev);
class_destroy(nfc_dev->nfc_class);
unregister_chrdev_region(nfc_dev->devno, count);
return ret;
}
return 0;
}
/*
* nfc_ioctl_power_states() - power control
* @nfc_dev: nfc device data structure
* @arg: mode that we want to move to
*
* Device power control. Depending on the arg value, device moves to
* different states, refer common.h for args
*
* Return: -ENOIOCTLCMD if arg is not supported, 0 in any other case
*/
static int nfc_ioctl_power_states(struct nfc_dev *nfc_dev, unsigned long arg)
{
int ret = 0;
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if (arg == NFC_POWER_OFF) {
/*
* We are attempting a hardware reset so let us disable
* interrupts to avoid spurious notifications to upper
* layers.
*/
nfc_dev->nfc_disable_intr(nfc_dev);
set_valid_gpio(nfc_gpio->dwl_req, 0);
gpio_set_ven(nfc_dev, 0);
nfc_dev->nfc_ven_enabled = false;
} else if (arg == NFC_POWER_ON) {
nfc_dev->nfc_enable_intr(nfc_dev);
set_valid_gpio(nfc_gpio->dwl_req, 0);
gpio_set_ven(nfc_dev, 1);
nfc_dev->nfc_ven_enabled = true;
} else if (arg == NFC_FW_DWL_VEN_TOGGLE) {
/*
* We are switching to download Mode, toggle the enable pin
* in order to set the NFCC in the new mode
*/
nfc_dev->nfc_disable_intr(nfc_dev);
set_valid_gpio(nfc_gpio->dwl_req, 1);
nfc_dev->nfc_state = NFC_STATE_FW_DWL;
gpio_set_ven(nfc_dev, 0);
gpio_set_ven(nfc_dev, 1);
nfc_dev->nfc_enable_intr(nfc_dev);
} else if (arg == NFC_FW_DWL_HIGH) {
/*
* Setting firmware download gpio to HIGH
* before FW download start
*/
set_valid_gpio(nfc_gpio->dwl_req, 1);
nfc_dev->nfc_state = NFC_STATE_FW_DWL;
} else if (arg == NFC_VEN_FORCED_HARD_RESET) {
nfc_dev->nfc_disable_intr(nfc_dev);
gpio_set_ven(nfc_dev, 0);
gpio_set_ven(nfc_dev, 1);
nfc_dev->nfc_enable_intr(nfc_dev);
} else if (arg == NFC_FW_DWL_LOW) {
/*
* Setting firmware download gpio to LOW
* FW download finished
*/
set_valid_gpio(nfc_gpio->dwl_req, 0);
nfc_dev->nfc_state = NFC_STATE_NCI;
} else {
pr_err("%s bad arg %lu\n", __func__, arg);
ret = -ENOIOCTLCMD;
}
return ret;
}
/** @brief IOCTL function to be used to set or get data from upper layer.
*
* @param pfile fil node for opened device.
* @cmd IOCTL type from upper layer.
* @arg IOCTL arg from upper layer.
*
* @return 0 on success, error code for failures.
*/
long nfc_dev_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg)
{
int ret = 0;
struct nfc_dev *nfc_dev = pfile->private_data;
if (!nfc_dev)
return -ENODEV;
pr_debug("%s cmd = %x arg = %zx\n", __func__, cmd, arg);
switch (cmd) {
case NFC_SET_PWR:
ret = nfc_ioctl_power_states(nfc_dev, arg);
break;
case ESE_SET_PWR:
ret = nfc_ese_pwr(nfc_dev, arg);
break;
case ESE_GET_PWR:
ret = nfc_ese_pwr(nfc_dev, ESE_POWER_STATE);
break;
case NFC_GET_IRQ_STATE:
ret = gpio_get_value(nfc_dev->configs.gpio.irq);
break;
default:
pr_err("%s bad cmd %lu\n", __func__, arg);
ret = -ENOIOCTLCMD;
};
return ret;
}
int nfc_dev_open(struct inode *inode, struct file *filp)
{
struct nfc_dev *nfc_dev = container_of(inode->i_cdev, struct nfc_dev, c_dev);
pr_debug("%s: %d, %d\n", __func__, imajor(inode), iminor(inode));
mutex_lock(&nfc_dev->dev_ref_mutex);
filp->private_data = nfc_dev;
if (nfc_dev->dev_ref_count == 0) {
set_valid_gpio(nfc_dev->configs.gpio.dwl_req, 0);
nfc_dev->nfc_enable_intr(nfc_dev);
}
nfc_dev->dev_ref_count = nfc_dev->dev_ref_count + 1;
mutex_unlock(&nfc_dev->dev_ref_mutex);
return 0;
}
int nfc_dev_close(struct inode *inode, struct file *filp)
{
struct nfc_dev *nfc_dev = container_of(inode->i_cdev, struct nfc_dev, c_dev);
pr_debug("%s: %d, %d\n", __func__, imajor(inode), iminor(inode));
mutex_lock(&nfc_dev->dev_ref_mutex);
if (nfc_dev->dev_ref_count == 1) {
nfc_dev->nfc_disable_intr(nfc_dev);
set_valid_gpio(nfc_dev->configs.gpio.dwl_req, 0);
}
if (nfc_dev->dev_ref_count > 0)
nfc_dev->dev_ref_count = nfc_dev->dev_ref_count - 1;
else {
nfc_ese_pwr(nfc_dev, ESE_RST_PROT_DIS_NFC);
/* Uncomment below line incase of eSE calls flow is via NFC driver
* i.e. direct calls from SPI HAL to NFC driver
*/
//nfc_ese_pwr(nfc_dev, ESE_RST_PROT_DIS);
}
filp->private_data = NULL;
mutex_unlock(&nfc_dev->dev_ref_mutex);
return 0;
}
/**
* get_nfcc_chip_type_dl() - get chip type in fw download command;
* @nfc_dev: nfc device data structure
*
* Perform get version command and determine chip
* type from response.
*
* @Return: enum chip_types value
*
*/
static enum chip_types get_nfcc_chip_type_dl(struct nfc_dev *nfc_dev)
{
int ret = 0;
int cmd_length = 0;
uint8_t *cmd = nfc_dev->write_kbuf;
uint8_t *rsp = nfc_dev->read_kbuf;
enum chip_types chip_type = CHIP_UNKNOWN;
*cmd++ = 0x00;
*cmd++ = 0x04;
*cmd++ = 0xF1;
*cmd++ = 0x00;
*cmd++ = 0x00;
*cmd++ = 0x00;
*cmd++ = 0x6E;
*cmd++ = 0xEF;
cmd_length = cmd - nfc_dev->write_kbuf;
pr_debug("%s:Sending GET_VERSION cmd of size=%d\n", __func__, cmd_length);
ret = nfc_dev->nfc_write(nfc_dev, nfc_dev->write_kbuf, cmd_length, MAX_RETRY_COUNT);
if (ret <= 0) {
pr_err("%s: - nfc get version cmd error ret %d\n", __func__, ret);
goto err;
}
memset(rsp, 0x00, DL_GET_VERSION_RSP_LEN_2);
pr_debug("%s:Reading response of GET_VERSION cmd\n", __func__);
ret = nfc_dev->nfc_read(nfc_dev, rsp, DL_GET_VERSION_RSP_LEN_2, NCI_CMD_RSP_TIMEOUT);
if (ret <= 0) {
pr_err("%s: - nfc get version rsp error ret %d\n", __func__, ret);
goto err;
}
if (rsp[0] == FW_MSG_CMD_RSP && ret >= DL_GET_VERSION_RSP_LEN_2) {
nfc_dev->fw_major_version = rsp[FW_MAJOR_VER_OFFSET];
if (rsp[FW_ROM_CODE_VER_OFFSET] == SN1XX_ROM_VER &&
rsp[FW_MAJOR_VER_OFFSET] == SN1xx_MAJOR_VER)
chip_type = CHIP_SN1XX;
else if (rsp[FW_ROM_CODE_VER_OFFSET] == SN220_ROM_VER &&
rsp[FW_MAJOR_VER_OFFSET] == SN220_MAJOR_VER)
chip_type = CHIP_SN220;
pr_info("%s:NFC Chip Type 0x%02x Rom Version 0x%02x FW Minor 0x%02x Major 0x%02x\n",
__func__, rsp[3], rsp[4], rsp[6], rsp[7]);
}
err:
return chip_type;
}
/**
* get_nfcc_session_state_dl() - gets the session state
* @nfc_dev: nfc device data structure
*
* Performs get session command and determine
* the nfcc state based on session status.
*
* @Return nfcc state based on session status.
* NFC_STATE_FW_TEARED if sessionis not closed
* NFC_STATE_FW_DWL if session closed
* NFC_STATE_UNKNOWN in error cases.
*/
enum nfc_state_flags get_nfcc_session_state_dl(struct nfc_dev *nfc_dev)
{
int ret = 0;
int cmd_length = 0;
uint8_t *cmd = nfc_dev->write_kbuf;
uint8_t *rsp = nfc_dev->read_kbuf;
enum nfc_state_flags nfc_state = NFC_STATE_UNKNOWN;
*cmd++ = 0x00;
*cmd++ = 0x04;
*cmd++ = 0xF2;
*cmd++ = 0x00;
*cmd++ = 0x00;
*cmd++ = 0x00;
*cmd++ = 0xF5;
*cmd++ = 0x33;
cmd_length = cmd - nfc_dev->write_kbuf;
pr_debug("%s:Sending GET_SESSION_STATE cmd of size=%d\n", __func__, cmd_length);
ret = nfc_dev->nfc_write(nfc_dev, nfc_dev->write_kbuf, cmd_length, MAX_RETRY_COUNT);
if (ret <= 0) {
pr_err("%s: - nfc get session cmd error ret %d\n", __func__, ret);
goto err;
}
memset(rsp, 0x00, DL_GET_SESSION_STATE_RSP_LEN);
pr_debug("%s:Reading response of GET_SESSION_STATE cmd\n", __func__);
ret = nfc_dev->nfc_read(nfc_dev, rsp, DL_GET_SESSION_STATE_RSP_LEN, NCI_CMD_RSP_TIMEOUT);
if (ret <= 0) {
pr_err("%s: - nfc get session rsp error ret %d\n", __func__, ret);
goto err;
}
if (rsp[0] != FW_MSG_CMD_RSP) {
pr_err("%s: - nfc invalid get session state rsp\n", __func__);
goto err;
}
pr_debug("Response bytes are %02x%02x%02x%02x%02x%02x%02x%02x",
rsp[0], rsp[1], rsp[2], rsp[3], rsp[4], rsp[5], rsp[6], rsp[7]);
/*verify fw in non-teared state */
if (rsp[GET_SESSION_STS_OFF] != NFCC_SESSION_STS_CLOSED) {
pr_err("%s NFCC booted in FW teared state\n", __func__);
nfc_state = NFC_STATE_FW_TEARED;
} else {
pr_info("%s NFCC booted in FW DN mode\n", __func__);
nfc_state = NFC_STATE_FW_DWL;
}
err:
return nfc_state;
}
/**
* get_nfcc_chip_type() - get nfcc chip type in nci mode.
* @nfc_dev: nfc device data structure.
*
* Function to perform nci core reset and extract
* chip type from the response.
*
* @Return: enum chip_types value
*
*/
static enum chip_types get_nfcc_chip_type(struct nfc_dev *nfc_dev)
{
int ret = 0;
int cmd_length = 0;
uint8_t major_version = 0;
uint8_t rom_version = 0;
uint8_t *cmd = nfc_dev->write_kbuf;
uint8_t *rsp = nfc_dev->read_kbuf;
enum chip_types chip_type = CHIP_UNKNOWN;
*cmd++ = 0x20;
*cmd++ = 0x00;
*cmd++ = 0x01;
*cmd++ = 0x00;
cmd_length = cmd - nfc_dev->write_kbuf;
pr_debug("%s:Sending NCI Core Reset cmd of size=%d\n", __func__, cmd_length);
ret = nfc_dev->nfc_write(nfc_dev, nfc_dev->write_kbuf, cmd_length, NO_RETRY);
if (ret <= 0) {
pr_err("%s: - nfc nci core reset cmd error ret %d\n", __func__, ret);
goto err;
}
usleep_range(NCI_RESET_RESP_READ_DELAY, NCI_RESET_RESP_READ_DELAY + 100);
nfc_dev->nfc_enable_intr(nfc_dev);
memset(rsp, 0x00, NCI_RESET_RSP_LEN);
pr_debug("%s:Reading NCI Core Reset rsp\n", __func__);
ret = nfc_dev->nfc_read(nfc_dev, rsp, NCI_RESET_RSP_LEN, NCI_CMD_RSP_TIMEOUT);
if (ret <= 0) {
pr_err("%s: - nfc nci core reset rsp error ret %d\n", __func__, ret);
goto err_disable_intr;
}
pr_debug(" %s: nci core reset response 0x%02x%02x%02x%02x\n",
__func__, rsp[0], rsp[1], rsp[2], rsp[3]);
if (rsp[0] != NCI_MSG_RSP) {
/* reset response failed response*/
pr_err("%s invalid nci core reset response", __func__);
goto err_disable_intr;
}
memset(rsp, 0x00, NCI_RESET_NTF_LEN);
/* read nci rest response ntf */
ret = nfc_dev->nfc_read(nfc_dev, rsp, NCI_RESET_NTF_LEN, NCI_CMD_RSP_TIMEOUT);
if (ret <= 0) {
pr_err("%s - nfc nci rest rsp ntf error status %d\n", __func__, ret);
goto err_disable_intr;
}
if (rsp[0] == NCI_MSG_NTF) {
/* read version info from NCI Reset Notification */
rom_version = rsp[NCI_HDR_LEN + rsp[NCI_PAYLOAD_LEN_IDX] - 3];
major_version = rsp[NCI_HDR_LEN + rsp[NCI_PAYLOAD_LEN_IDX] - 2];
/* determine chip type based on version info */
if (rom_version == SN1XX_ROM_VER && major_version == SN1xx_MAJOR_VER)
chip_type = CHIP_SN1XX;
else if (rom_version == SN220_ROM_VER && major_version == SN220_MAJOR_VER)
chip_type = CHIP_SN220;
pr_debug(" %s:NCI Core Reset ntf 0x%02x%02x%02x%02x\n",
__func__, rsp[0], rsp[1], rsp[2], rsp[3]);
}
err_disable_intr:
nfc_dev->nfc_disable_intr(nfc_dev);
err:
return chip_type;
}
/**
* validate_download_gpio() - validate download gpio.
* @nfc_dev: nfc_dev device data structure.
* @chip_type: chip type of the platform.
*
* Validates dwnld gpio should configured for supported and
* should not be configured for unsupported platform.
*
* @Return: true if gpio validation successful ortherwise
* false if validation fails.
*/
static bool validate_download_gpio(struct nfc_dev *nfc_dev, enum chip_types chip_type)
{
bool status = false;
struct platform_gpio *nfc_gpio;
if (nfc_dev == NULL) {
pr_err("%s nfc devices structure is null\n");
return status;
}
nfc_gpio = &nfc_dev->configs.gpio;
if (chip_type == CHIP_SN1XX) {
/* gpio should be configured for SN1xx */
status = gpio_is_valid(nfc_gpio->dwl_req);
} else if (chip_type == CHIP_SN220) {
/* gpio should not be configured for SN220 */
set_valid_gpio(nfc_gpio->dwl_req, 0);
gpio_free(nfc_gpio->dwl_req);
nfc_gpio->dwl_req = -EINVAL;
status = true;
}
return status;
}
/* Check for availability of NFC controller hardware */
int nfcc_hw_check(struct nfc_dev *nfc_dev)
{
int ret = 0;
enum nfc_state_flags nfc_state = NFC_STATE_UNKNOWN;
enum chip_types chip_type = CHIP_UNKNOWN;
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
/*get fw version in nci mode*/
gpio_set_ven(nfc_dev, 0);
gpio_set_ven(nfc_dev, 1);
chip_type = get_nfcc_chip_type(nfc_dev);
/*get fw version in fw dwl mode*/
if (chip_type == CHIP_UNKNOWN) {
nfc_dev->nfc_enable_intr(nfc_dev);
/*Chip is unknown, initially assume with fw dwl pin enabled*/
set_valid_gpio(nfc_gpio->dwl_req, 1);
gpio_set_ven(nfc_dev, 0);
gpio_set_ven(nfc_dev, 1);
chip_type = get_nfcc_chip_type_dl(nfc_dev);
/*get the state of nfcc normal/teared in fw dwl mode*/
} else {
nfc_state = NFC_STATE_NCI;
}
/*validate gpio config required as per the chip*/
if (!validate_download_gpio(nfc_dev, chip_type)) {
pr_info("%s gpio validation fail", __func__);
ret = -ENXIO;
goto err;
}
/*check whether the NFCC is in FW DN or Teared state*/
if (nfc_state != NFC_STATE_NCI)
nfc_state = get_nfcc_session_state_dl(nfc_dev);
/*nfcc state specific operations */
switch (nfc_state) {
case NFC_STATE_FW_TEARED:
pr_warn("%s: - NFCC FW Teared State\n", __func__);
#if IS_ENABLED(CONFIG_NXP_NFC_RECOVERY)
/* recovery neeeded only for SN1xx */
if (chip_type == CHIP_SN1XX) {
if (do_recovery(nfc_dev) == STATUS_FAILED)
pr_debug("%s: - nfcc recoverey failed\n", __func__);
else
pr_debug("%s: - nfcc recovered successfully\n", __func__);
nfc_state = get_nfcc_session_state_dl(nfc_dev);
}
#endif
/*fallthrough*/
case NFC_STATE_FW_DWL:
case NFC_STATE_NCI:
break;
case NFC_STATE_UNKNOWN:
default:
ret = -ENXIO;
pr_err("%s: - NFCC HW not available\n", __func__);
goto err;
};
nfc_dev->nfc_state = nfc_state;
nfc_dev->nfc_ven_enabled = true;
err:
nfc_dev->nfc_disable_intr(nfc_dev);
set_valid_gpio(nfc_gpio->dwl_req, 0);
gpio_set_ven(nfc_dev, 0);
gpio_set_ven(nfc_dev, 1);
return ret;
}
int validate_nfc_state_nci(struct nfc_dev *nfc_dev)
{
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if (!gpio_get_value(nfc_gpio->ven)) {
pr_err("VEN LOW - NFCC powered off\n");
return -ENODEV;
}
if (get_valid_gpio(nfc_gpio->dwl_req) == 1) {
pr_err("FW download in-progress\n");
return -EBUSY;
}
if (nfc_dev->nfc_state != NFC_STATE_NCI) {
pr_err("FW download state\n");
return -EBUSY;
}
return 0;
}