Files
android_kernel_samsung_sm86…/asoc/codecs/wcd939x/wcd939x-mbhc.c
Sam Rainey 08bc673260 asoc: wcd939x: Support xtalk for high voltage mics
Update zdet and xtalk to support high voltage microphones
with improved accuracy.

Change-Id: I4b0af5ade7f653de4a938162302ec21c4a09891f
Signed-off-by: Sam Rainey <quic_rainey@quicinc.com>
2023-09-29 16:56:12 -07:00

2379 lines
80 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/kernel.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/timer.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <asoc/wcdcal-hwdep.h>
#include <asoc/wcd-mbhc-v2-api.h>
#include <linux/sysfs.h>
#include <linux/kobject.h>
#include "wcd939x-registers.h"
#include "internal.h"
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
#include <linux/soc/qcom/wcd939x-i2c.h>
#endif
#define WCD939X_ZDET_SUPPORTED true
/* Z value defined in milliohm */
#define WCD939X_ZDET_VAL_32 32000
#define WCD939X_ZDET_VAL_400 400000
#define WCD939X_ZDET_VAL_1200 1200000
#define WCD939X_ZDET_VAL_100K 100000000
/* Z floating defined in ohms */
#define WCD939X_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE
#define WCD939X_ZDET_NUM_MEASUREMENTS 900
#define WCD939X_MBHC_GET_C1(c) ((c & 0xC000) >> 14)
#define WCD939X_MBHC_GET_X1(x) (x & 0x3FFF)
/* Z value compared in milliOhm */
#define WCD939X_MBHC_IS_SECOND_RAMP_REQUIRED(z) false
#define WCD939X_MBHC_ZDET_CONST (1071 * 1024)
#define WCD939X_MBHC_MOISTURE_RREF R_24_KOHM
#define OHMS_TO_MILLIOHMS 1000
#define SLOPE_FACTOR_SCALER 10000
#define FLOAT_TO_FIXED_XTALK (1UL << 16)
#define MAX_XTALK_ALPHA 255
#define MIN_RL_EFF_MOHMS 1
#define MAX_RL_EFF_MOHMS 900000
#define HD2_CODE_BASE_VALUE 0x1D
#define HD2_CODE_INV_RESOLUTION 4201025
#define FLOAT_TO_FIXED_LINEARIZER (1UL << 12)
#define MIN_TAP_OFFSET -1023
#define MAX_TAP_OFFSET 1023
#define MIN_TAP 0
#define MAX_TAP 1023
#define RDOWN_TIMER_PERIOD_MSEC 100
#define WCD_USBSS_WRITE true
#define WCD_USBSS_READ false
#define ZDET_SE 0
#define ZDET_DIFF 1
#define WCD_USBSS_EXT_LIN_EN 0x3D
#define WCD_USBSS_EXT_SW_CTRL_1 0x43
#define WCD_USBSS_MG1_BIAS 0x25
#define WCD_USBSS_MG2_BIAS 0x29
#define SE_SLOPE_MEAS_BIAS 10000
#define DIFF_SLOPE_MEAS_BIAS 20000
#define XTALK_CH_REG_ADDR_DELTA 4
#define NUM_DIFF_MEAS 2
#define ZDET_SE_MAX_MOHMS 600000
#define ZDET_ACC_LMT_MOHMS 100000
#define R_CONN_PAR_LOAD_POS_MOHMS 7895
#define LINEARIZER_DEFAULT_TAP 0xE8
#define GND_EXT_FET_MAX_MOHMS 2000
struct zdet_dnl_entry {
u8 base_val_ohms;
s16 se_corr_mohms;
s16 diff_corr_mohms;
};
static const struct zdet_dnl_entry zdet_dnl_table[] = {
{ 0, 0, 0},
{ 5, 56, 13},
{ 10, 60, 34},
{ 15, 13, -4},
{ 20, 21, 14},
{ 25, -16, -20},
{ 30, 5, 7},
{ 35, -46, -90},
{ 40, -4, -17},
{ 45, -74, -40},
{ 50, -52, 3},
{ 55, -37, -5},
{ 60, 4, -79},
{ 65, -34, -82},
{ 70, -105, -33},
{ 75, -81, -55},
{ 80, -39, 34},
{ 85, -37, 46},
{ 90, -51, 81},
{ 95, 14, 132},
{100, 101, 197},
{105, 150, 247},
{110, 217, 245},
{115, 232, -189},
{120, 201, -146},
{125, -152, -121},
{130, -157, -69},
{135, -118, -72},
{140, -54, -24},
{145, -55, 51},
};
static struct wcd_mbhc_register
wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = {
WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN",
WCD939X_MBHC_MECH, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN",
WCD939X_MBHC_MECH, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE",
WCD939X_MBHC_MECH, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL",
WCD939X_PLUG_DETECT_CTL, 0x30, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE",
WCD939X_MBHC_ELECT, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL",
WCD939X_MECH_DET_CURRENT, 0x1F, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL",
WCD939X_MBHC_MECH, 0x04, 2, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE",
WCD939X_MBHC_MECH, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE",
WCD939X_MBHC_MECH, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND",
WCD939X_MBHC_MECH, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC",
WCD939X_MBHC_ELECT, 0x06, 1, 0),
WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN",
WCD939X_MBHC_ELECT, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC",
WCD939X_PLUG_DETECT_CTL, 0x0F, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC",
WCD939X_CTL_1, 0x03, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF",
WCD939X_CTL_2, 0x03, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT",
WCD939X_MBHC_RESULT_3, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_IN2P_CLAMP_STATE",
WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT",
WCD939X_MBHC_RESULT_3, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT",
WCD939X_MBHC_RESULT_3, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT",
WCD939X_MBHC_RESULT_3, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN",
WCD939X_HPH_OCP_CTL, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT",
WCD939X_MBHC_RESULT_3, 0x07, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL",
WCD939X_MBHC_ELECT, 0x70, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT",
WCD939X_MBHC_RESULT_3, 0xFF, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL",
WCD939X_MICB2, 0xC0, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME",
WCD939X_CNP_WG_TIME, 0xFF, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN",
WCD939X_HPH, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN",
WCD939X_HPH, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN",
WCD939X_HPH, 0xC0, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE",
WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL",
0, 0, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN",
WCD939X_CTL_BCS, 0x02, 1, 0),
WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS",
WCD939X_FSM_STATUS, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL",
WCD939X_CTL_2, 0x70, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MOISTURE_STATUS",
WCD939X_FSM_STATUS, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_GND",
WCD939X_PA_CTL2, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_GND",
WCD939X_PA_CTL2, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_DET_EN",
WCD939X_L_TEST, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_DET_EN",
WCD939X_R_TEST, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_STATUS",
WCD939X_INTR_STATUS_0, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_STATUS",
WCD939X_INTR_STATUS_0, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_EN",
WCD939X_CTL_1, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_COMPLETE", WCD939X_FSM_STATUS,
0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_TIMEOUT", WCD939X_FSM_STATUS,
0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_RESULT", WCD939X_ADC_RESULT,
0xFF, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MICB2_VOUT", WCD939X_MICB2, 0x3F, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_MODE",
WCD939X_CTL_1, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_DETECTION_DONE",
WCD939X_CTL_1, 0x04, 2, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_ISRC_EN",
WCD939X_MBHC_ZDET, 0x02, 1, 0),
};
static const struct wcd_mbhc_intr intr_ids = {
.mbhc_sw_intr = WCD939X_IRQ_MBHC_SW_DET,
.mbhc_btn_press_intr = WCD939X_IRQ_MBHC_BUTTON_PRESS_DET,
.mbhc_btn_release_intr = WCD939X_IRQ_MBHC_BUTTON_RELEASE_DET,
.mbhc_hs_ins_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_LEG_DET,
.mbhc_hs_rem_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_DET,
.hph_left_ocp = WCD939X_IRQ_HPHL_OCP_INT,
.hph_right_ocp = WCD939X_IRQ_HPHR_OCP_INT,
};
struct wcd939x_mbhc_zdet_param {
u16 ldo_ctl;
u16 noff;
u16 nshift;
u16 btn5;
u16 btn6;
u16 btn7;
};
static int wcd939x_mbhc_request_irq(struct snd_soc_component *component,
int irq, irq_handler_t handler,
const char *name, void *data)
{
struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
return wcd_request_irq(&wcd939x->irq_info, irq, name, handler, data);
}
static void wcd939x_mbhc_irq_control(struct snd_soc_component *component,
int irq, bool enable)
{
struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
if (enable)
wcd_enable_irq(&wcd939x->irq_info, irq);
else
wcd_disable_irq(&wcd939x->irq_info, irq);
}
static int wcd939x_mbhc_free_irq(struct snd_soc_component *component,
int irq, void *data)
{
struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
wcd_free_irq(&wcd939x->irq_info, irq, data);
return 0;
}
static void wcd939x_mbhc_clk_setup(struct snd_soc_component *component,
bool enable)
{
if (enable)
snd_soc_component_update_bits(component, WCD939X_CTL_1,
0x80, 0x80);
else
snd_soc_component_update_bits(component, WCD939X_CTL_1,
0x80, 0x00);
}
static int wcd939x_mbhc_btn_to_num(struct snd_soc_component *component)
{
return snd_soc_component_read(component, WCD939X_MBHC_RESULT_3) & 0x7;
}
static void wcd939x_mbhc_mbhc_bias_control(struct snd_soc_component *component,
bool enable)
{
if (enable)
snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
0x01, 0x01);
else
snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
0x01, 0x00);
}
static void wcd939x_mbhc_program_btn_thr(struct snd_soc_component *component,
s16 *btn_low, s16 *btn_high,
int num_btn, bool is_micbias)
{
int i;
int vth;
if (num_btn > WCD_MBHC_DEF_BUTTONS) {
dev_err_ratelimited(component->dev, "%s: invalid number of buttons: %d\n",
__func__, num_btn);
return;
}
for (i = 0; i < num_btn; i++) {
vth = ((btn_high[i] * 2) / 25) & 0x3F;
snd_soc_component_update_bits(component, WCD939X_MBHC_BTN0 + i,
0xFC, vth << 2);
dev_dbg(component->dev, "%s: btn_high[%d]: %d, vth: %d\n",
__func__, i, btn_high[i], vth);
}
}
static bool wcd939x_mbhc_lock_sleep(struct wcd_mbhc *mbhc, bool lock)
{
struct snd_soc_component *component = mbhc->component;
struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
wcd939x->wakeup((void*)wcd939x, lock);
return true;
}
static int wcd939x_mbhc_register_notifier(struct wcd_mbhc *mbhc,
struct notifier_block *nblock,
bool enable)
{
struct wcd939x_mbhc *wcd939x_mbhc;
wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
if (enable)
return blocking_notifier_chain_register(&wcd939x_mbhc->notifier,
nblock);
else
return blocking_notifier_chain_unregister(
&wcd939x_mbhc->notifier, nblock);
}
static bool wcd939x_mbhc_micb_en_status(struct wcd_mbhc *mbhc, int micb_num)
{
u8 val = 0;
if (micb_num == MIC_BIAS_2) {
val = ((snd_soc_component_read(mbhc->component,
WCD939X_MICB2) & 0xC0)
>> 6);
if (val == 0x01)
return true;
}
return false;
}
static bool wcd939x_mbhc_hph_pa_on_status(struct snd_soc_component *component)
{
return (snd_soc_component_read(component, WCD939X_HPH) & 0xC0) ?
true : false;
}
static void wcd939x_mbhc_hph_l_pull_up_control(
struct snd_soc_component *component,
int pull_up_cur)
{
/* Default pull up current to 2uA */
if (pull_up_cur > HS_PULLUP_I_OFF || pull_up_cur < HS_PULLUP_I_3P0_UA ||
pull_up_cur == HS_PULLUP_I_DEFAULT)
pull_up_cur = HS_PULLUP_I_2P0_UA;
dev_dbg(component->dev, "%s: HS pull up current:%d\n",
__func__, pull_up_cur);
snd_soc_component_update_bits(component,
WCD939X_MECH_DET_CURRENT,
0x1F, pull_up_cur);
}
static int wcd939x_mbhc_request_micbias(struct snd_soc_component *component,
int micb_num, int req)
{
int ret = 0;
ret = wcd939x_micbias_control(component, micb_num, req, false);
return ret;
}
static void wcd939x_mbhc_micb_ramp_control(struct snd_soc_component *component,
bool enable)
{
if (enable) {
snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
0x1C, 0x0C);
snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
0x80, 0x80);
} else {
snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
0x80, 0x00);
snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
0x1C, 0x00);
}
}
static struct firmware_cal *wcd939x_get_hwdep_fw_cal(struct wcd_mbhc *mbhc,
enum wcd_cal_type type)
{
struct wcd939x_mbhc *wcd939x_mbhc;
struct firmware_cal *hwdep_cal;
struct snd_soc_component *component = mbhc->component;
wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
if (!component) {
pr_err_ratelimited("%s: NULL component pointer\n", __func__);
return NULL;
}
hwdep_cal = wcdcal_get_fw_cal(wcd939x_mbhc->fw_data, type);
if (!hwdep_cal)
dev_err_ratelimited(component->dev, "%s: cal not sent by %d\n",
__func__, type);
return hwdep_cal;
}
static int wcd939x_mbhc_micb_ctrl_threshold_mic(
struct snd_soc_component *component,
int micb_num, bool req_en)
{
struct wcd939x_pdata *pdata = dev_get_platdata(component->dev);
int rc, micb_mv;
if (micb_num != MIC_BIAS_2)
return -EINVAL;
/*
* If device tree micbias level is already above the minimum
* voltage needed to detect threshold microphone, then do
* not change the micbias, just return.
*/
if (pdata->micbias.micb2_mv >= WCD_MBHC_THR_HS_MICB_MV)
return 0;
micb_mv = req_en ? WCD_MBHC_THR_HS_MICB_MV : pdata->micbias.micb2_mv;
rc = wcd939x_mbhc_micb_adjust_voltage(component, micb_mv, MIC_BIAS_2);
return rc;
}
static inline void wcd939x_mbhc_get_result_params(struct wcd939x_priv *wcd939x,
s16 *d1_a, u16 noff,
int32_t *zdet)
{
int i;
int val, val1;
s16 c1;
s32 x1, d1;
int32_t denom;
int minCode_param[] = {
3277, 1639, 820, 410, 205, 103, 52, 26
};
struct wcd939x_mbhc *wcd939x_mbhc = wcd939x->mbhc;
regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x20);
for (i = 0; i < WCD939X_ZDET_NUM_MEASUREMENTS; i++) {
regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_2, &val);
if (val & 0x80)
break;
}
val = val << 0x8;
regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_1, &val1);
val |= val1;
wcd939x_mbhc->rdown_prev_iter = val;
regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x00);
x1 = WCD939X_MBHC_GET_X1(val);
c1 = WCD939X_MBHC_GET_C1(val);
/* If ramp is not complete, give additional 5ms */
if ((c1 < 2) && x1)
usleep_range(5000, 5050);
if (!c1 || !x1) {
dev_dbg(wcd939x->dev,
"%s: Impedance detect ramp error, c1=%d, x1=0x%x\n",
__func__, c1, x1);
goto ramp_down;
}
d1 = d1_a[c1];
denom = (x1 * d1) - (1 << (14 - noff));
if (denom > 0)
*zdet = (WCD939X_MBHC_ZDET_CONST * 1000) / denom;
else if (x1 < minCode_param[noff])
*zdet = WCD939X_ZDET_FLOATING_IMPEDANCE;
dev_dbg(wcd939x->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n",
__func__, d1, c1, x1, *zdet);
ramp_down:
i = 0;
wcd939x_mbhc->rdown_timer_complete = false;
mod_timer(&wcd939x_mbhc->rdown_timer, jiffies + msecs_to_jiffies(RDOWN_TIMER_PERIOD_MSEC));
while (x1) {
regmap_read(wcd939x->regmap,
WCD939X_MBHC_RESULT_1, &val);
regmap_read(wcd939x->regmap,
WCD939X_MBHC_RESULT_2, &val1);
val = val << 0x08;
val |= val1;
x1 = WCD939X_MBHC_GET_X1(val);
i++;
if (i == WCD939X_ZDET_NUM_MEASUREMENTS)
break;
if (wcd939x_mbhc->rdown_timer_complete && wcd939x_mbhc->rdown_prev_iter == val)
break;
wcd939x_mbhc->rdown_prev_iter = val;
}
del_timer(&wcd939x_mbhc->rdown_timer);
}
static void wcd939x_mbhc_zdet_ramp(struct snd_soc_component *component,
struct wcd939x_mbhc_zdet_param *zdet_param,
int32_t *zl, int32_t *zr, s16 *d1_a)
{
struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
int32_t zdet = 0;
snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL, 0xF0,
0x80 | (zdet_param->ldo_ctl << 4));
snd_soc_component_update_bits(component, WCD939X_MBHC_BTN5, 0xFC,
zdet_param->btn5);
snd_soc_component_update_bits(component, WCD939X_MBHC_BTN6, 0xFC,
zdet_param->btn6);
snd_soc_component_update_bits(component, WCD939X_MBHC_BTN7, 0xFC,
zdet_param->btn7);
snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL,
0x0F, zdet_param->noff);
snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
0x0F, zdet_param->nshift);
snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
0x70, 0x60); /*acc1_min_63 */
if (!zl)
goto z_right;
/* Start impedance measurement for HPH_L */
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_ZDET, 0x80, 0x80);
dev_dbg(wcd939x->dev, "%s: ramp for HPH_L, noff = %d\n",
__func__, zdet_param->noff);
wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_ZDET, 0x80, 0x00);
*zl = zdet;
z_right:
if (!zr)
return;
/* Start impedance measurement for HPH_R */
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_ZDET, 0x40, 0x40);
dev_dbg(wcd939x->dev, "%s: ramp for HPH_R, noff = %d\n",
__func__, zdet_param->noff);
wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_ZDET, 0x40, 0x00);
*zr = zdet;
}
static inline void wcd939x_wcd_mbhc_qfuse_cal(
struct snd_soc_component *component,
int32_t *z_val, int flag_l_r)
{
s16 q1;
int q1_cal;
q1 = snd_soc_component_read(component,
WCD939X_EFUSE_REG_21 + flag_l_r);
if (q1 & 0x80)
q1_cal = (10000 - ((q1 & 0x7F) * 10));
else
q1_cal = (10000 + (q1 * 10));
if (q1_cal > 0) {
if (*z_val < 200 * OHMS_TO_MILLIOHMS)
*z_val = ((*z_val) * 10000) / q1_cal;
else if (*z_val < 2000 * OHMS_TO_MILLIOHMS)
*z_val = ((*z_val) * 1000) / q1_cal * 10;
else if (*z_val < 20000 * OHMS_TO_MILLIOHMS)
*z_val = ((*z_val) * 100) / q1_cal * 100;
}
}
static void rdown_timer_callback(struct timer_list *timer)
{
struct wcd939x_mbhc *wcd939x_mbhc = container_of(timer, struct wcd939x_mbhc, rdown_timer);
wcd939x_mbhc->rdown_timer_complete = true;
}
static void update_hd2_codes(struct regmap *regmap, u32 r_gnd_res_tot_mohms, u32 r_load_eff_mohms)
{
u64 hd2_delta = 0;
if (!regmap)
return;
hd2_delta = (HD2_CODE_INV_RESOLUTION * (u64) r_gnd_res_tot_mohms +
FLOAT_TO_FIXED_XTALK * (u64) ((r_gnd_res_tot_mohms + r_load_eff_mohms) / 2)) /
(FLOAT_TO_FIXED_XTALK * (u64) (r_gnd_res_tot_mohms + r_load_eff_mohms));
if (hd2_delta >= HD2_CODE_BASE_VALUE) {
regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F, 0x00);
regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F, 0x00);
} else {
regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F,
HD2_CODE_BASE_VALUE - hd2_delta);
regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F,
HD2_CODE_BASE_VALUE - hd2_delta);
}
}
static u8 get_xtalk_scale(u32 gain)
{
u8 i;
int target, residue;
if (gain == 0)
return MAX_XTALK_SCALE;
target = FLOAT_TO_FIXED_XTALK / ((int) gain);
residue = target;
for (i = 0; i <= MAX_XTALK_SCALE; i++) {
residue = target - (1 << ((int)((u32) i)));
if (residue < 0)
return i;
}
return MAX_XTALK_SCALE;
}
static u8 get_xtalk_alpha(u32 gain, u8 scale)
{
u32 two_exp_scale, round_offset, alpha;
if (gain == 0)
return MIN_XTALK_ALPHA;
two_exp_scale = 1 << ((u32) scale);
round_offset = FLOAT_TO_FIXED_XTALK / 2;
alpha = (((gain * two_exp_scale - FLOAT_TO_FIXED_XTALK) * 255) + round_offset)
/ FLOAT_TO_FIXED_XTALK;
return (alpha <= MAX_XTALK_ALPHA) ? ((u8) alpha) : MAX_XTALK_ALPHA;
}
static void update_xtalk_scale_and_alpha(struct wcd939x_priv *wcd939x)
{
u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, r_gnd_par_route1_mohms = 0;
u32 xtalk_gain_l = 0, xtalk_gain_r = 0, r_load_eff_mohms = 0;
u32 xtalk_gain_denom_l = 0, xtalk_gain_denom_r = 0, r7 = 0;
struct wcd939x_pdata *pdata = dev_get_platdata(wcd939x->dev);
if (!pdata || pdata->usbcss_hs.xtalk.xtalk_config == XTALK_NONE)
return;
/* Default xtalk values */
pdata->usbcss_hs.xtalk.scale_l = MAX_XTALK_SCALE;
pdata->usbcss_hs.xtalk.alpha_l = MIN_XTALK_ALPHA;
pdata->usbcss_hs.xtalk.scale_r = MAX_XTALK_SCALE;
pdata->usbcss_hs.xtalk.alpha_r = MIN_XTALK_ALPHA;
/* Orientation-dependent ground impedance parameters */
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
r_gnd_res_tot_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_res_tot_mohms;
r_gnd_int_fet_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_int_fet_mohms;
r_gnd_par_route1_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_par_route1_mohms;
r7 = pdata->usbcss_hs.gnd.sbu2.r7;
} else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
r_gnd_res_tot_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_res_tot_mohms;
r_gnd_int_fet_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_int_fet_mohms;
r_gnd_par_route1_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_par_route1_mohms;
r7 = pdata->usbcss_hs.gnd.sbu1.r7;
} else {
dev_dbg(wcd939x->dev, "%s: Using default scale and alpha values\n", __func__);
return;
}
#endif
r_load_eff_mohms = (pdata->usbcss_hs.aud.l.r_load_eff_mohms +
pdata->usbcss_hs.aud.r.r_load_eff_mohms) / 2;
if (pdata->usbcss_hs.xtalk.xtalk_config == XTALK_ANALOG) {
/* Update HD2 codes for analog xtalk */
update_hd2_codes(wcd939x->regmap, r_gnd_res_tot_mohms, r_load_eff_mohms);
}
/* Left channel */
xtalk_gain_denom_l = pdata->usbcss_hs.aud.l.zval - r_gnd_int_fet_mohms -
r_gnd_par_route1_mohms + pdata->usbcss_hs.aud.l.r1;
if (xtalk_gain_denom_l == 0) {
dev_dbg(wcd939x->dev,
"%s: Using default scale and alpha values for the left channel\n",
__func__);
} else {
xtalk_gain_l = FLOAT_TO_FIXED_XTALK * pdata->usbcss_hs.gnd.r_common_gnd_mohms /
xtalk_gain_denom_l;
/* Store scale and alpha values */
pdata->usbcss_hs.xtalk.scale_l = get_xtalk_scale(xtalk_gain_l);
pdata->usbcss_hs.xtalk.alpha_l = get_xtalk_alpha(xtalk_gain_l,
pdata->usbcss_hs.xtalk.scale_l);
}
/* Right channel */
xtalk_gain_denom_r = pdata->usbcss_hs.aud.r.zval - r_gnd_int_fet_mohms -
r_gnd_par_route1_mohms + pdata->usbcss_hs.aud.r.r1;
if (xtalk_gain_denom_r == 0) {
dev_dbg(wcd939x->dev,
"%s: Using default scale and alpha values for the right channel\n",
__func__);
} else {
xtalk_gain_r = FLOAT_TO_FIXED_XTALK * pdata->usbcss_hs.gnd.r_common_gnd_mohms /
xtalk_gain_denom_r;
pdata->usbcss_hs.xtalk.scale_r = get_xtalk_scale(xtalk_gain_r);
pdata->usbcss_hs.xtalk.alpha_r = get_xtalk_alpha(xtalk_gain_r,
pdata->usbcss_hs.xtalk.scale_r);
}
/* Print relevant values */
dev_dbg(wcd939x->dev, "%s: %s = %dmohms, %s = %dmohms, %s = %dmohms\n", __func__,
"Left SE measurement", pdata->usbcss_hs.aud.l.zval,
"right SE measurment", pdata->usbcss_hs.aud.r.zval,
"differential measurement", pdata->usbcss_hs.zdiffval);
dev_dbg(wcd939x->dev,
"%s: %s = %dmohms, %s = %dmohms, %s = %dmohms, %s = %dmohms, %s = %dmohms\n",
__func__, "R1_L", pdata->usbcss_hs.aud.l.r1, "R1_R", pdata->usbcss_hs.aud.r.r1,
"R7", r7, "r_gnd_int_fet_mohms", r_gnd_int_fet_mohms, "r_common_gnd_mohms",
pdata->usbcss_hs.gnd.r_common_gnd_mohms);
dev_dbg(wcd939x->dev, "%s: %s = %d, %s = %d %s %d\n", __func__,
"Xtalk gain (L->R)", xtalk_gain_l, "xtalk gain (R->L)", xtalk_gain_r,
". To convert xtalk gain to floating point, divide by", FLOAT_TO_FIXED_XTALK);
}
static void update_ext_fet_res(struct wcd939x_pdata *pdata, u32 r_aud_ext_fet_mohms,
u32 r_gnd_ext_fet_mohms)
{
if (!pdata)
return;
pdata->usbcss_hs.gnd.r_gnd_ext_fet_mohms = (r_gnd_ext_fet_mohms >
MAX_USBCSS_HS_IMPEDANCE_MOHMS)
? MAX_USBCSS_HS_IMPEDANCE_MOHMS
: r_gnd_ext_fet_mohms;
pdata->usbcss_hs.aud.l.r_aud_ext_fet_mohms = (r_aud_ext_fet_mohms >
MAX_USBCSS_HS_IMPEDANCE_MOHMS)
? MAX_USBCSS_HS_IMPEDANCE_MOHMS
: r_aud_ext_fet_mohms;
pdata->usbcss_hs.aud.r.r_aud_ext_fet_mohms = pdata->usbcss_hs.aud.l.r_aud_ext_fet_mohms;
pdata->usbcss_hs.gnd.sbu1.r_gnd_res_tot_mohms = get_r_gnd_res_tot_mohms(
pdata->usbcss_hs.gnd.sbu1.r_gnd_int_fet_mohms,
pdata->usbcss_hs.gnd.r_gnd_ext_fet_mohms,
pdata->usbcss_hs.gnd.sbu1.r_gnd_par_tot_mohms);
pdata->usbcss_hs.gnd.sbu2.r_gnd_res_tot_mohms = get_r_gnd_res_tot_mohms(
pdata->usbcss_hs.gnd.sbu2.r_gnd_int_fet_mohms,
pdata->usbcss_hs.gnd.r_gnd_ext_fet_mohms,
pdata->usbcss_hs.gnd.sbu2.r_gnd_par_tot_mohms);
pdata->usbcss_hs.aud.l.r_aud_res_tot_mohms = get_r_aud_res_tot_mohms(
pdata->usbcss_hs.aud.l.r_aud_int_fet_mohms,
pdata->usbcss_hs.aud.l.r_aud_ext_fet_mohms,
pdata->usbcss_hs.aud.l.r_load_eff_mohms);
pdata->usbcss_hs.aud.r.r_aud_res_tot_mohms = get_r_aud_res_tot_mohms(
pdata->usbcss_hs.aud.r.r_aud_int_fet_mohms,
pdata->usbcss_hs.aud.r.r_aud_ext_fet_mohms,
pdata->usbcss_hs.aud.r.r_load_eff_mohms);
}
static void get_linearizer_taps(struct wcd939x_pdata *pdata, u32 *aud_tap)
{
u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, r_gnd_par_tot_mohms = 0;
u32 v_aud1 = 0, v_aud2 = 0, aud_denom = 0;
u32 r_load_eff_mohms = 0, r3 = 0, r_aud_ext_fet_mohms = 0, r_aud_int_fet_mohms = 0;
if (!pdata)
goto err_data;
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
/* Orientation-dependent ground impedance parameters */
if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
r_gnd_res_tot_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_res_tot_mohms;
r_gnd_int_fet_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_int_fet_mohms;
} else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
r_gnd_res_tot_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_res_tot_mohms;
r_gnd_int_fet_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_int_fet_mohms;
} else {
goto err_data;
}
#endif
r_load_eff_mohms = (pdata->usbcss_hs.aud.l.r_load_eff_mohms +
pdata->usbcss_hs.aud.r.r_load_eff_mohms) / 2;
r3 = (pdata->usbcss_hs.aud.l.r3 + pdata->usbcss_hs.aud.r.r3) / 2;
r_aud_ext_fet_mohms = (pdata->usbcss_hs.aud.l.r_aud_ext_fet_mohms +
pdata->usbcss_hs.aud.l.r_aud_ext_fet_mohms) / 2;
r_aud_int_fet_mohms = (pdata->usbcss_hs.aud.l.r_aud_int_fet_mohms +
pdata->usbcss_hs.aud.l.r_aud_int_fet_mohms) / 2;
aud_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER +
(FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.aud.k_aud_times_100 / 100));
v_aud2 = r_load_eff_mohms - r3 + r_gnd_int_fet_mohms +
pdata->usbcss_hs.gnd.r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms;
v_aud1 = v_aud2 + r_aud_ext_fet_mohms;
v_aud1 = FLOAT_TO_FIXED_LINEARIZER * v_aud1 / (v_aud1 + r_aud_int_fet_mohms);
v_aud2 = FLOAT_TO_FIXED_LINEARIZER * v_aud2 /
(v_aud2 + r_aud_ext_fet_mohms + r_aud_int_fet_mohms);
*aud_tap = (u32) ((s32) ((1000 * v_aud1 + 10 * pdata->usbcss_hs.aud.k_aud_times_100 * v_aud2
+ aud_denom / 2) / aud_denom) +
pdata->usbcss_hs.aud.aud_tap_offset);
if (*aud_tap > MAX_TAP)
*aud_tap = MAX_TAP;
else if (*aud_tap < MIN_TAP)
*aud_tap = MIN_TAP;
return;
err_data:
*aud_tap = LINEARIZER_DEFAULT_TAP;
}
static void interpolate_zdet_val(uint32_t *z, s64 z_meas_bias_removed, s64 z_val_slope_corrected,
int lb, int flag_se_diff)
{
s64 lb_to_z = 0, lb_to_ub = 0, z_to_ub = 0, lb_corr = 0, ub_corr = 0, z_interp = 0;
/* If lb is the table upper bound, no interpolation needed, just use the lb corr factor */
if ((lb + 1) >= ARRAY_SIZE(zdet_dnl_table)) {
z_interp = (s64) ((flag_se_diff) ? (zdet_dnl_table[lb].diff_corr_mohms) :
(zdet_dnl_table[lb].se_corr_mohms));
goto apply_interpolated_bias;
}
/* Set up interpolation */
lb_to_ub = OHMS_TO_MILLIOHMS *
(s64) (u64) ((zdet_dnl_table[lb + 1].base_val_ohms -
zdet_dnl_table[lb].base_val_ohms));
z_to_ub = (OHMS_TO_MILLIOHMS *
((s64) (u64) (zdet_dnl_table[lb + 1].base_val_ohms))) - z_meas_bias_removed;
lb_to_z = z_meas_bias_removed - (OHMS_TO_MILLIOHMS *
((s64) (u64) (zdet_dnl_table[lb].base_val_ohms)));
lb_corr = (s64) ((flag_se_diff) ? (zdet_dnl_table[lb].diff_corr_mohms) :
(zdet_dnl_table[lb].se_corr_mohms));
ub_corr = (s64) ((flag_se_diff) ? (zdet_dnl_table[lb + 1].diff_corr_mohms) :
(zdet_dnl_table[lb + 1].se_corr_mohms));
/* Linear interpolation */
z_interp = (lb_corr * z_to_ub + ub_corr * lb_to_z) / lb_to_ub;
apply_interpolated_bias:
/* Subtract interpolated bias to correct error */
if (z_interp < z_val_slope_corrected)
*z = (u32) (s32) (z_val_slope_corrected - z_interp);
}
static int get_lb_zdet_base_val_index(uint32_t z_val)
{
int i;
/* Find the lower bound index, whose base value is the smallest value that is still higher
* than the load
*/
for (i = 1; i < ARRAY_SIZE(zdet_dnl_table); i++) {
if (z_val < (OHMS_TO_MILLIOHMS * (u32) zdet_dnl_table[i].base_val_ohms))
return i - 1;
}
/* Return the last index if the load is larger than all base values */
return ARRAY_SIZE(zdet_dnl_table) - 1;
}
static void apply_zdet_correction(uint32_t *z, int flag_se_diff, u32 se_slope_factor_times_1000,
u32 diff_slope_factor_times_1000)
{
s64 z_val_slope_corrected = 0, slope_corr = 0;
uint32_t z_meas_bias_removed = 0;
int lb;
/* Apply slope correction */
slope_corr = (s64) ((flag_se_diff) ? diff_slope_factor_times_1000 :
se_slope_factor_times_1000);
z_val_slope_corrected = ((s64) (u64) *z) * (FLOAT_TO_FIXED_XTALK) * slope_corr /
SLOPE_FACTOR_SCALER / (FLOAT_TO_FIXED_XTALK);
/* Interpolate correction term to bias out and apply correction */
z_meas_bias_removed = (flag_se_diff) ? *z - DIFF_SLOPE_MEAS_BIAS : *z - SE_SLOPE_MEAS_BIAS;
lb = get_lb_zdet_base_val_index(z_meas_bias_removed);
interpolate_zdet_val(z, (s64) (u64) z_meas_bias_removed, z_val_slope_corrected, lb,
flag_se_diff);
}
static void get_r_common_gnd(struct wcd939x_priv *wcd939x, u32 r_gnd_res_tot_mohms,
u32 r_gnd_int_fet_mohms, u32 r_gnd_par_route1_mohms)
{
u32 r_common_gnd_mohms = 0, r_accum = 0, r_avg = 0;
size_t i;
struct wcd939x_pdata *pdata = dev_get_platdata(wcd939x->dev);
size_t index = pdata->usbcss_hs.gnd.r_cm_gnd_buffer.write_index;
r_common_gnd_mohms = r_gnd_res_tot_mohms - r_gnd_int_fet_mohms - r_gnd_par_route1_mohms;
/* Compute average from r_common_gnd buffer */
for (i = 0; i < R_COMMON_GND_BUFFER_SIZE; i++)
r_accum += pdata->usbcss_hs.gnd.r_cm_gnd_buffer.data[i];
r_avg = r_accum / R_COMMON_GND_BUFFER_SIZE;
/* If r_common_gnd_mohms is OOB, use the average of the buffer values instead */
if (r_common_gnd_mohms > (r_avg + pdata->usbcss_hs.gnd.r_common_gnd_margin) ||
(r_avg >= pdata->usbcss_hs.gnd.r_common_gnd_margin &&
r_common_gnd_mohms < (r_avg - pdata->usbcss_hs.gnd.r_common_gnd_margin))) {
dev_dbg(wcd939x->dev, "%s: %s %d %s %d %s\n", __func__,
"The average of the r_common_gnd buffer,", r_avg,
"mohms, is being used instead of the calculated r_common_gnd value of",
r_common_gnd_mohms, "mohms");
pdata->usbcss_hs.gnd.r_common_gnd_mohms = r_avg;
return;
}
/* Otherwise, use the computed value and store it in the buffer, updating the write index */
pdata->usbcss_hs.gnd.r_common_gnd_mohms = r_common_gnd_mohms;
pdata->usbcss_hs.gnd.r_cm_gnd_buffer.data[index] = r_common_gnd_mohms;
pdata->usbcss_hs.gnd.r_cm_gnd_buffer.write_index = (index + 1) % R_COMMON_GND_BUFFER_SIZE;
dev_dbg(wcd939x->dev, "%s: %s %d %s\n", __func__, "The calculated r_common_gnd value,",
r_common_gnd_mohms, "mohms, is being used");
}
struct usbcss_hs_attr {
struct wcd939x_priv *priv;
struct kobj_attribute attr;
int index;
};
static char *usbcss_sysfs_files[] = {
"rdson_3p6v",
"rdson_6v",
"r1_l",
"r1_r",
"r3_l",
"r3_r",
"r4_sbu1",
"r4_sbu2",
"r5_sbu1",
"r5_sbu2",
"r6_sbu1",
"r6_sbu2",
"r7_sbu1",
"r7_sbu2",
"r_common_gnd_offset",
"rcom_margin",
"se_slope_factor_times_1000",
"diff_slope_factor_times_1000",
"lin_k_aud",
"xtalk_config",
};
static ssize_t usbcss_sysfs_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct usbcss_hs_attr *usbc_attr;
struct wcd939x_priv *wcd939x;
struct wcd939x_pdata *pdata;
struct wcd939x_usbcss_hs_params *usbcss_hs;
long val;
int rc;
u32 aud_tap = 0;
bool update_xtalk = false, update_linearizer = false;
usbc_attr = container_of(attr, struct usbcss_hs_attr, attr);
wcd939x = usbc_attr->priv;
pdata = dev_get_platdata(wcd939x->dev);
if (!wcd939x || !pdata)
return -EINVAL;
usbcss_hs = &pdata->usbcss_hs;
rc = kstrtol(buf, 0, &val);
if (rc)
return rc;
if (strcmp(attr->attr.name, "rdson_3p6v") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.rdson_3p6v_mohms = val;
usbcss_hs->gnd.gnd_ext_fet_delta_mohms = (s32) (usbcss_hs->gnd.rdson_3p6v_mohms -
usbcss_hs->gnd.rdson_mohms);
update_linearizer = usbcss_hs->xtalk.xtalk_config == XTALK_ANALOG;
} else if (strcmp(attr->attr.name, "rdson_6v") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.rdson_mohms = val;
update_linearizer = usbcss_hs->xtalk.xtalk_config == XTALK_ANALOG;
} else if (strcmp(attr->attr.name, "r1_l") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->aud.l.r1 = val;
update_xtalk = true;
} else if (strcmp(attr->attr.name, "r1_r") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->aud.r.r1 = val;
update_xtalk = true;
} else if (strcmp(attr->attr.name, "r3_l") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->aud.l.r3 = val;
update_linearizer = true;
} else if (strcmp(attr->attr.name, "r3_r") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->aud.r.r3 = val;
update_linearizer = true;
} else if (strcmp(attr->attr.name, "r4_sbu1") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu1.r4 = val;
update_xtalk = true;
update_linearizer = true;
} else if (strcmp(attr->attr.name, "r4_sbu2") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu2.r4 = val;
update_xtalk = true;
update_linearizer = true;
} else if (strcmp(attr->attr.name, "r5_sbu1") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu1.r5 = val;
switch (usbcss_hs->xtalk.xtalk_config) {
case XTALK_ANALOG:
update_xtalk = true;
update_linearizer = true;
break;
case XTALK_DIGITAL:
fallthrough;
case XTALK_NONE:
fallthrough;
default:
return count;
}
} else if (strcmp(attr->attr.name, "r5_sbu2") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu2.r5 = val;
switch (usbcss_hs->xtalk.xtalk_config) {
case XTALK_ANALOG:
update_xtalk = true;
update_linearizer = true;
break;
case XTALK_DIGITAL:
fallthrough;
case XTALK_NONE:
fallthrough;
default:
return count;
}
} else if (strcmp(attr->attr.name, "r6_sbu1") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu1.r6 = val;
switch (usbcss_hs->xtalk.xtalk_config) {
case XTALK_DIGITAL:
update_xtalk = true;
update_linearizer = true;
break;
case XTALK_ANALOG:
fallthrough;
case XTALK_NONE:
fallthrough;
default:
return count;
}
} else if (strcmp(attr->attr.name, "r6_sbu2") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu2.r6 = val;
switch (usbcss_hs->xtalk.xtalk_config) {
case XTALK_DIGITAL:
update_xtalk = true;
update_linearizer = true;
break;
case XTALK_ANALOG:
fallthrough;
case XTALK_NONE:
fallthrough;
default:
return count;
}
} else if (strcmp(attr->attr.name, "r7_sbu1") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu1.r7 = val;
switch (usbcss_hs->xtalk.xtalk_config) {
case XTALK_DIGITAL:
update_xtalk = true;
update_linearizer = true;
break;
case XTALK_ANALOG:
fallthrough;
case XTALK_NONE:
fallthrough;
default:
return count;
}
} else if (strcmp(attr->attr.name, "r7_sbu2") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.sbu2.r7 = val;
switch (usbcss_hs->xtalk.xtalk_config) {
case XTALK_DIGITAL:
update_xtalk = true;
update_linearizer = true;
break;
case XTALK_ANALOG:
fallthrough;
case XTALK_NONE:
fallthrough;
default:
return count;
}
} else if (strcmp(attr->attr.name, "r_common_gnd_offset") == 0) {
if (val < -MAX_USBCSS_HS_IMPEDANCE_MOHMS || val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of bounds. Min: %d, Max: %d\n",
__func__, val, -MAX_USBCSS_HS_IMPEDANCE_MOHMS,
MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.r_common_gnd_offset = val;
update_xtalk = true;
} else if (strcmp(attr->attr.name, "rcom_margin") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->gnd.r_common_gnd_margin = val;
} else if (strcmp(attr->attr.name, "se_slope_factor_times_1000") == 0) {
if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) {
dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n",
__func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS);
return count;
}
usbcss_hs->se_slope_factor_times_1000 = val;
} else if (strcmp(attr->attr.name, "diff_slope_factor_times_1000") == 0) {
if (val > MAX_DIFF_SLOPE_FACTOR || val < MIN_DIFF_SLOPE_FACTOR) {
dev_err(wcd939x->dev, "%s: Value %d out of range of %d to %d\n",
__func__, val, MIN_DIFF_SLOPE_FACTOR, MAX_DIFF_SLOPE_FACTOR);
return count;
}
usbcss_hs->diff_slope_factor_times_1000 = val;
} else if (strcmp(attr->attr.name, "lin_k_aud") == 0) {
if (val < MIN_K_TIMES_100 || val > MAX_K_TIMES_100) {
dev_err(wcd939x->dev, "%s: Value %d out of bounds. Min: %d, Max: %d\n",
__func__, val, MIN_K_TIMES_100, MAX_K_TIMES_100);
return count;
}
usbcss_hs->aud.k_aud_times_100 = val;
update_linearizer = true;
} else if (strcmp(attr->attr.name, "xtalk_config") == 0) {
pdata->usbcss_hs.xtalk.xtalk_config = val;
update_xtalk = true;
switch (val) {
case XTALK_NONE:
usbcss_hs->xtalk.scale_l = MAX_XTALK_SCALE;
usbcss_hs->xtalk.scale_r = MAX_XTALK_SCALE;
usbcss_hs->xtalk.alpha_l = MIN_XTALK_ALPHA;
usbcss_hs->xtalk.alpha_r = MIN_XTALK_ALPHA;
break;
case XTALK_DIGITAL:
update_linearizer = true;
break;
case XTALK_ANALOG:
update_linearizer = true;
break;
default:
return count;
}
}
/* Update parastics */
switch (pdata->usbcss_hs.xtalk.xtalk_config) {
case XTALK_NONE:
fallthrough;
case XTALK_DIGITAL:
usbcss_hs->gnd.sbu1.r_gnd_par_route1_mohms = usbcss_hs->gnd.sbu1.r7;
usbcss_hs->gnd.sbu2.r_gnd_par_route1_mohms = usbcss_hs->gnd.sbu2.r7;
usbcss_hs->gnd.sbu1.r_gnd_par_route2_mohms = usbcss_hs->gnd.sbu1.r6 +
usbcss_hs->gnd.sbu1.r4;
usbcss_hs->gnd.sbu2.r_gnd_par_route2_mohms = usbcss_hs->gnd.sbu2.r6 +
usbcss_hs->gnd.sbu2.r4;
break;
case XTALK_ANALOG:
usbcss_hs->gnd.sbu1.r_gnd_par_route1_mohms = usbcss_hs->gnd.sbu1.r5 +
usbcss_hs->gnd.sbu1.r4;
usbcss_hs->gnd.sbu2.r_gnd_par_route1_mohms = usbcss_hs->gnd.sbu2.r5 +
usbcss_hs->gnd.sbu2.r4;
usbcss_hs->gnd.sbu1.r_gnd_par_route2_mohms = 1;
usbcss_hs->gnd.sbu2.r_gnd_par_route2_mohms = 1;
break;
default:
return count;
}
/* Update parastics total */
usbcss_hs->gnd.sbu1.r_gnd_par_tot_mohms = usbcss_hs->gnd.sbu1.r_gnd_par_route1_mohms +
usbcss_hs->gnd.sbu1.r_gnd_par_route2_mohms;
usbcss_hs->gnd.sbu2.r_gnd_par_tot_mohms = usbcss_hs->gnd.sbu2.r_gnd_par_route1_mohms +
usbcss_hs->gnd.sbu2.r_gnd_par_route2_mohms;
if (update_xtalk) {
/* Apply r_common_gnd offset */
usbcss_hs->gnd.r_common_gnd_mohms = (usbcss_hs->gnd.r_common_gnd_offset >= 0) ?
usbcss_hs->gnd.r_common_gnd_mohms +
(u32) usbcss_hs->gnd.r_common_gnd_offset :
usbcss_hs->gnd.r_common_gnd_mohms -
(u32) (-1 * usbcss_hs->gnd.r_common_gnd_offset);
/* Compute and store xtalk values */
update_xtalk_scale_and_alpha(wcd939x);
/* Revert r_common_gnd offset */
usbcss_hs->gnd.r_common_gnd_mohms = (usbcss_hs->gnd.r_common_gnd_offset >= 0) ?
usbcss_hs->gnd.r_common_gnd_mohms -
(u32) usbcss_hs->gnd.r_common_gnd_offset :
usbcss_hs->gnd.r_common_gnd_mohms +
(u32) (-1 * usbcss_hs->gnd.r_common_gnd_offset);
/* Apply xtalk scale and alpha values */
regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC0, 0x1F,
pdata->usbcss_hs.xtalk.scale_l);
regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC1, 0xFF,
pdata->usbcss_hs.xtalk.alpha_l);
regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC0 +
XTALK_CH_REG_ADDR_DELTA, 0x1F,
pdata->usbcss_hs.xtalk.scale_r);
regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC1 +
XTALK_CH_REG_ADDR_DELTA, 0xFF,
pdata->usbcss_hs.xtalk.alpha_r);
dev_err(wcd939x->dev, "%s: Updated xtalk thru sysfs\n",
__func__);
dev_dbg(wcd939x->dev, "%s: Left-channel: Xtalk scale is 0x%x and alpha is 0x%x\n",
__func__, pdata->usbcss_hs.xtalk.scale_l, pdata->usbcss_hs.xtalk.alpha_l);
dev_dbg(wcd939x->dev, "%s: Right-channel: Xtalk scale is 0x%x and alpha is 0x%x\n",
__func__, pdata->usbcss_hs.xtalk.scale_r, pdata->usbcss_hs.xtalk.alpha_r);
}
if (update_linearizer) {
get_linearizer_taps(pdata, &aud_tap);
wcd_usbss_set_linearizer_sw_tap(aud_tap, LINEARIZER_DEFAULT_TAP);
dev_err(wcd939x->dev, "%s: Updated linearizer thru sysfs\n",
__func__);
dev_dbg(wcd939x->dev, "%s: Linearizer aud_tap is 0x%x\n",
__func__, aud_tap);
}
return count;
}
static ssize_t usbcss_sysfs_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct usbcss_hs_attr *usbc_attr;
struct wcd939x_priv *wcd939x;
struct wcd939x_pdata *pdata;
usbc_attr = container_of(attr, struct usbcss_hs_attr, attr);
wcd939x = usbc_attr->priv;
pdata = dev_get_platdata(wcd939x->dev);
if (strcmp(attr->attr.name, "rdson_3p6v") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.rdson_3p6v_mohms);
else if (strcmp(attr->attr.name, "rdson_6v") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.rdson_mohms);
else if (strcmp(attr->attr.name, "r1_l") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.aud.l.r1);
else if (strcmp(attr->attr.name, "r1_r") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.aud.r.r1);
else if (strcmp(attr->attr.name, "r3_l") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.aud.l.r3);
else if (strcmp(attr->attr.name, "r3_r") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.aud.r.r3);
else if (strcmp(attr->attr.name, "r4_sbu1") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu1.r4);
else if (strcmp(attr->attr.name, "r4_sbu2") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu2.r4);
else if (strcmp(attr->attr.name, "r5_sbu1") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu1.r5);
else if (strcmp(attr->attr.name, "r5_sbu2") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu2.r5);
else if (strcmp(attr->attr.name, "r6_sbu1") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu1.r6);
else if (strcmp(attr->attr.name, "r6_sbu2") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu2.r6);
else if (strcmp(attr->attr.name, "r7_sbu1") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu1.r7);
else if (strcmp(attr->attr.name, "r7_sbu2") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.sbu2.r7);
else if (strcmp(attr->attr.name, "r_common_gnd_offset") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.r_common_gnd_offset);
else if (strcmp(attr->attr.name, "rcom_margin") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.gnd.r_common_gnd_margin);
else if (strcmp(attr->attr.name, "se_slope_factor_times_1000") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.se_slope_factor_times_1000);
else if (strcmp(attr->attr.name, "diff_slope_factor_times_1000") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.diff_slope_factor_times_1000);
else if (strcmp(attr->attr.name, "lin_k_aud") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.aud.k_aud_times_100);
else if (strcmp(attr->attr.name, "xtalk_config") == 0)
return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.xtalk.xtalk_config);
return 0;
}
static int create_sysfs_entry_file(struct wcd939x_priv *wcd939x, char *name, int mode,
int index, struct kobject *parent)
{
struct usbcss_hs_attr *usbc_attr;
char *name_copy;
usbc_attr = devm_kmalloc(wcd939x->dev, sizeof(*usbc_attr), GFP_KERNEL);
if (!usbc_attr)
return -ENOMEM;
name_copy = devm_kstrdup(wcd939x->dev, name, GFP_KERNEL);
if (!name_copy)
return -ENOMEM;
usbc_attr->priv = wcd939x;
usbc_attr->index = index;
usbc_attr->attr.attr.name = name_copy;
usbc_attr->attr.attr.mode = mode;
usbc_attr->attr.show = usbcss_sysfs_show;
usbc_attr->attr.store = usbcss_sysfs_store;
sysfs_attr_init(&usbc_attr->attr.attr);
return sysfs_create_file(parent, &usbc_attr->attr.attr);
}
static int usbcss_hs_sysfs_init(struct wcd939x_priv *wcd939x)
{
int rc = 0;
int i = 0;
struct kobject *kobj = NULL;
if (!wcd939x || !wcd939x->dev) {
pr_err("%s: Invalid wcd939x private data.\n", __func__);
return -EINVAL;
}
kobj = kobject_create_and_add("usbcss_hs", kernel_kobj);
if (!kobj) {
dev_err(wcd939x->dev, "%s: Could not create the USBC-SS HS kobj.\n", __func__);
return -ENOMEM;
}
for (i = 0; i < ARRAY_SIZE(usbcss_sysfs_files); i++) {
rc = create_sysfs_entry_file(wcd939x, usbcss_sysfs_files[i],
0644, i, kobj);
}
return 0;
}
static void wcd939x_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl, uint32_t *zr)
{
struct snd_soc_component *component = mbhc->component;
struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
struct wcd939x_pdata *pdata = dev_get_platdata(wcd939x->dev);
s16 reg0, reg1, reg2, reg3, reg4;
uint32_t zdiff_val = 0, r_gnd_int_fet_mohms = 0, rl_eff_l_mohms = 0, rl_eff_r_mohms = 0;
uint32_t r_gnd_ext_fet_mohms = 0, r_aud_ext_fet_mohms = 0, r_gnd_res_tot_mohms = 0;
uint32_t r_gnd_par_tot_mohms = 0, r_gnd_par_route1_mohms = 0;
uint32_t aud_tap = LINEARIZER_DEFAULT_TAP, zdiff_counter = 0, zdiff_sum = 0;
uint32_t *zdiff = &zdiff_val;
s32 z_L_R_delta_mohms = 0;
int32_t z1L, z1R, z1Ls, z1Diff;
int zMono, z_diff1, z_diff2;
size_t i;
bool is_fsm_disable = false, calculate_lin_aud_tap = false, gnd_ext_fet_updated = false;
struct wcd939x_mbhc_zdet_param zdet_param = {4, 0, 6, 0x18, 0x60, 0x78};
struct wcd939x_mbhc_zdet_param *zdet_param_ptr = &zdet_param;
s16 d1[] = {0, 30, 30, 6};
uint32_t cached_regs[4][2] = {{WCD_USBSS_EXT_LIN_EN, 0}, {WCD_USBSS_EXT_SW_CTRL_1, 0},
{WCD_USBSS_MG1_BIAS, 0}, {WCD_USBSS_MG2_BIAS, 0}};
uint32_t l_3_6V_regs[4][2] = {{WCD_USBSS_EXT_LIN_EN, 0x00}, {WCD_USBSS_EXT_SW_CTRL_1, 0x00},
{WCD_USBSS_MG1_BIAS, 0x0E}, {WCD_USBSS_MG2_BIAS, 0x0E}};
uint32_t diff_regs[2][2] = {{WCD_USBSS_EXT_LIN_EN, 0x00}, {WCD_USBSS_EXT_SW_CTRL_1, 0x00}};
WCD_MBHC_RSC_ASSERT_LOCKED(mbhc);
/* Turn on RX supplies */
if (wcd939x->version == WCD939X_VERSION_2_0) {
/* Start up Buck/Flyback, Enable RX bias, Use MBHC RCO for MBHC Zdet, Enable Vneg */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x4E, 0x4E);
/* Wait 100us for settling */
usleep_range(100, 110);
/* Enable VNEGDAC_LDO */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x10, 0x10);
/* Wait 100us for settling */
usleep_range(100, 110);
/* Keep PA left/right channels disabled */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x01, 0x01);
/* Enable VPOS */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x20);
/* Wait 500us for settling */
usleep_range(500, 510);
}
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
/* Cache relevant USB-SS registers */
wcd_usbss_register_update(cached_regs, WCD_USBSS_READ, ARRAY_SIZE(cached_regs));
/* Disable 2k pulldown on MG for improved measurement */
wcd_usbss_register_update(l_3_6V_regs, WCD_USBSS_WRITE, ARRAY_SIZE(l_3_6V_regs));
#endif
/* Store register values */
reg0 = snd_soc_component_read(component, WCD939X_MBHC_BTN5);
reg1 = snd_soc_component_read(component, WCD939X_MBHC_BTN6);
reg2 = snd_soc_component_read(component, WCD939X_MBHC_BTN7);
reg3 = snd_soc_component_read(component, WCD939X_CTL_CLK);
reg4 = snd_soc_component_read(component, WCD939X_ZDET_ANA_CTL);
/* Disable the detection FSM */
if (snd_soc_component_read(component, WCD939X_MBHC_ELECT) & 0x80) {
is_fsm_disable = true;
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_ELECT, 0x80, 0x00);
}
/* For NO-jack, disable L_DET_EN before Z-det measurements */
if (mbhc->hphl_swh)
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_MECH, 0x80, 0x00);
/* Turn off 100k pull down on HPHL */
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_MECH, 0x01, 0x00);
/* Disable surge protection before impedance detection.
* This is done to give correct value for high impedance.
*/
regmap_update_bits(wcd939x->regmap,
WCD939X_HPHLR_SURGE_EN, 0xC0, 0x00);
/* 1ms delay needed after disable surge protection */
usleep_range(1000, 1010);
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
/* Disable sense switch and MIC for USB-C analog platforms */
if (mbhc->mbhc_cfg->enable_usbc_analog) {
wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_DISABLE);
wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_DISABLE);
}
#endif
/* L-channel impedance */
wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
if ((z1L == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1L > WCD939X_ZDET_VAL_100K)) {
*zl = WCD939X_ZDET_FLOATING_IMPEDANCE;
} else {
*zl = z1L;
wcd939x_wcd_mbhc_qfuse_cal(component, zl, 0);
dev_dbg(component->dev, "%s: Calibrated left SE measurement is %d(mohms)\n",
__func__, *zl);
apply_zdet_correction(zl, ZDET_SE, pdata->usbcss_hs.se_slope_factor_times_1000,
pdata->usbcss_hs.diff_slope_factor_times_1000);
}
pdata->usbcss_hs.aud.l.zval = *zl;
if (mbhc->mbhc_cfg->enable_usbc_analog) {
dev_dbg(component->dev,
"%s: Calibrated and adjusted left SE measurement is %d(mohms)\n", __func__,
*zl);
} else {
dev_dbg(component->dev, "%s: impedance on HPH_L = %d(mohms)\n",
__func__, *zl);
}
/* R-channel impedance */
wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1);
if ((z1R == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1R > WCD939X_ZDET_VAL_100K)) {
*zr = WCD939X_ZDET_FLOATING_IMPEDANCE;
} else {
*zr = z1R;
wcd939x_wcd_mbhc_qfuse_cal(component, zr, 4);
dev_dbg(component->dev, "%s: Calibrated right SE measurement is %d(mohms)\n",
__func__, *zr);
apply_zdet_correction(zr, ZDET_SE, pdata->usbcss_hs.se_slope_factor_times_1000,
pdata->usbcss_hs.diff_slope_factor_times_1000);
}
pdata->usbcss_hs.aud.r.zval = *zr;
if (mbhc->mbhc_cfg->enable_usbc_analog) {
dev_dbg(component->dev,
"%s: Calibrated and adjusted right SE measurement is %d(mohms)\n", __func__,
*zr);
} else {
dev_dbg(component->dev, "%s: impedance on HPH_R = %d(mohms)\n",
__func__, *zr);
/* Convert from mohms to ohms (rounded) */
*zl = (*zl + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
*zr = (*zr + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
goto mono_stereo_detection;
}
/* Differential measurement L to R */
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
/* Disable AGND switch */
wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_DISABLE);
wcd_usbss_register_update(diff_regs, WCD_USBSS_WRITE, ARRAY_SIZE(diff_regs));
#endif
/* Enable HPHR NCLAMP */
regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x08);
/* Wait 3ms for settling */
usleep_range(3000, 3010);
/* Differential impedance */
for (i = 0; i < NUM_DIFF_MEAS; i++) {
wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Diff, NULL, d1);
if ((z1Diff == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
(z1Diff > WCD939X_ZDET_VAL_100K)) {
} else {
*zdiff = z1Diff;
wcd939x_wcd_mbhc_qfuse_cal(component, zdiff, 0);
dev_dbg(component->dev,
"%s: Calibrated differential measurement %d is %d(mohms)\n",
__func__, i + 1, *zdiff);
apply_zdet_correction(zdiff, ZDET_DIFF,
pdata->usbcss_hs.se_slope_factor_times_1000,
pdata->usbcss_hs.diff_slope_factor_times_1000);
zdiff_sum += *zdiff;
zdiff_counter++;
}
dev_dbg(component->dev,
"%s: Calibrated and adjusted differential measurement %d is %d(mohms)\n",
__func__, i + 1, *zdiff);
}
/* Take average of measurements */
if (zdiff_counter == 0)
*zdiff = WCD939X_ZDET_FLOATING_IMPEDANCE;
else
*zdiff = zdiff_sum / zdiff_counter;
/* Store the average of the measurements */
pdata->usbcss_hs.zdiffval = *zdiff;
dev_dbg(component->dev, "%s: %s %d(mohms)\n", __func__,
"Average of the calibrated and adjusted differential measurement(s) is", *zdiff);
/* Disable HPHR NCLAMP */
regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x00);
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
/* Enable AGND switch */
wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_ENABLE);
/* Get ground internal resistance based on orientation */
if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
r_gnd_int_fet_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_int_fet_mohms;
r_gnd_par_route1_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_par_route1_mohms;
r_gnd_par_tot_mohms = pdata->usbcss_hs.gnd.sbu2.r_gnd_par_tot_mohms;
} else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
r_gnd_int_fet_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_int_fet_mohms;
r_gnd_par_route1_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_par_route1_mohms;
r_gnd_par_tot_mohms = pdata->usbcss_hs.gnd.sbu1.r_gnd_par_tot_mohms;
} else {
dev_dbg(component->dev, "%s: Invalid SBU switch orientation\n", __func__);
*zl = 0;
*zr = 0;
goto default_vals;
}
#endif
z_L_R_delta_mohms = *zl - *zr;
dev_dbg(component->dev, "%s: %s : %d mohms\n", __func__,
"The difference between the L and R SE measurements (L - R) is", z_L_R_delta_mohms);
/* Ground path resistance */
/* Use DTSI params for high zdet SE measurements */
if (pdata->usbcss_hs.aud.l.zval > ZDET_ACC_LMT_MOHMS ||
pdata->usbcss_hs.aud.r.zval > ZDET_ACC_LMT_MOHMS) {
r_gnd_res_tot_mohms = pdata->usbcss_hs.gnd.rdson_mohms + r_gnd_par_tot_mohms +
r_gnd_int_fet_mohms;
pdata->usbcss_hs.gnd.r_common_gnd_mohms = r_gnd_res_tot_mohms -
r_gnd_int_fet_mohms -
r_gnd_par_route1_mohms;
dev_dbg(component->dev, "%s: %s %d %s\n", __func__,
"The r_common_gnd value determined by DTSI parameters,",
pdata->usbcss_hs.gnd.r_common_gnd_mohms,
"mohms, is being used instead of calculating r_common_gnd");
calculate_lin_aud_tap = false;
} else {
r_gnd_res_tot_mohms = (*zl + *zr - *zdiff + pdata->usbcss_hs.aud.r_surge_mohms) / 2;
/* Offset to account for using 3.6V SE measurements */
r_gnd_res_tot_mohms = (pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms >= 0) ?
r_gnd_res_tot_mohms -
(u32) (s32) pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms :
r_gnd_res_tot_mohms +
(u32) (s32) (-1 * pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms);
/* Compute r_common_gnd */
get_r_common_gnd(wcd939x, r_gnd_res_tot_mohms, r_gnd_int_fet_mohms,
r_gnd_par_route1_mohms);
/* Re-calculate ground path resistance based on r_common_gnd */
r_gnd_res_tot_mohms = pdata->usbcss_hs.gnd.r_common_gnd_mohms +
r_gnd_int_fet_mohms + r_gnd_par_route1_mohms;
calculate_lin_aud_tap = true;
}
dev_dbg(component->dev, "%s: r_gnd_res_tot_mohms is : %d mohms\n", __func__,
r_gnd_res_tot_mohms);
/* Print r_common_gnd buffer */
for (i = 0; i < R_COMMON_GND_BUFFER_SIZE; i++) {
dev_dbg(component->dev, "%s: Element %d in r_common_gnd_buffer is : %d mohms\n",
__func__, i + 1, pdata->usbcss_hs.gnd.r_cm_gnd_buffer.data[i]);
}
/* Apply r_common_gnd offset */
pdata->usbcss_hs.gnd.r_common_gnd_mohms =
(pdata->usbcss_hs.gnd.r_common_gnd_offset >= 0) ?
pdata->usbcss_hs.gnd.r_common_gnd_mohms +
(u32) pdata->usbcss_hs.gnd.r_common_gnd_offset :
pdata->usbcss_hs.gnd.r_common_gnd_mohms -
(u32) (-1 * pdata->usbcss_hs.gnd.r_common_gnd_offset);
/* Ground external FET */
r_gnd_ext_fet_mohms = r_gnd_res_tot_mohms - r_gnd_par_tot_mohms - r_gnd_int_fet_mohms;
dev_dbg(component->dev, "%s: r_gnd_ext_fet_mohms is : %d mohms\n", __func__,
r_gnd_ext_fet_mohms);
/* Audio external FET */
r_aud_ext_fet_mohms = (pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms >= 0) ?
r_gnd_ext_fet_mohms + (u32) (s32) pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms :
r_gnd_ext_fet_mohms - (u32) (s32) (-1 * pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms);
dev_dbg(component->dev, "%s: r_aud_ext_fet_mohms is : %d mohms\n", __func__,
r_aud_ext_fet_mohms);
/* Compute effective load resistance */
rl_eff_l_mohms = *zl - pdata->usbcss_hs.aud.l.r_aud_int_fet_mohms - r_aud_ext_fet_mohms -
r_gnd_res_tot_mohms;
rl_eff_r_mohms = *zr - pdata->usbcss_hs.aud.r.r_aud_int_fet_mohms - r_aud_ext_fet_mohms -
r_gnd_res_tot_mohms;
/* Store z values */
*zl = (rl_eff_l_mohms - R_CONN_PAR_LOAD_POS_MOHMS - pdata->usbcss_hs.aud.l.r3 +
OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
dev_dbg(component->dev, "%s: rload_l is : %d mohms\n", __func__,
rl_eff_l_mohms - R_CONN_PAR_LOAD_POS_MOHMS - pdata->usbcss_hs.aud.l.r3);
*zr = (rl_eff_r_mohms - R_CONN_PAR_LOAD_POS_MOHMS - pdata->usbcss_hs.aud.r.r3 +
OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
dev_dbg(component->dev, "%s: rload_r is : %d mohms\n", __func__,
rl_eff_r_mohms - R_CONN_PAR_LOAD_POS_MOHMS - pdata->usbcss_hs.aud.r.r3);
/* Check bounds on effective load values and store the value */
if (rl_eff_l_mohms > MAX_RL_EFF_MOHMS)
rl_eff_l_mohms = MAX_RL_EFF_MOHMS;
else if (rl_eff_l_mohms < MIN_RL_EFF_MOHMS)
rl_eff_l_mohms = MIN_RL_EFF_MOHMS;
pdata->usbcss_hs.aud.l.r_load_eff_mohms = rl_eff_l_mohms;
if (rl_eff_r_mohms > MAX_RL_EFF_MOHMS)
rl_eff_r_mohms = MAX_RL_EFF_MOHMS;
else if (rl_eff_r_mohms < MIN_RL_EFF_MOHMS)
rl_eff_r_mohms = MIN_RL_EFF_MOHMS;
pdata->usbcss_hs.aud.r.r_load_eff_mohms = rl_eff_r_mohms;
/* Update FET values and resistances */
update_ext_fet_res(pdata, r_aud_ext_fet_mohms, r_gnd_ext_fet_mohms);
/* Update xtalk params */
/* For SE measurements greater than ZDET_SE_MAX_MOHMS, use default xtalk values */
if (pdata->usbcss_hs.aud.l.zval > ZDET_SE_MAX_MOHMS ||
pdata->usbcss_hs.aud.r.zval > ZDET_SE_MAX_MOHMS) {
pdata->usbcss_hs.xtalk.scale_l = MAX_XTALK_SCALE;
pdata->usbcss_hs.xtalk.scale_r = MAX_XTALK_SCALE;
pdata->usbcss_hs.xtalk.alpha_l = MIN_XTALK_ALPHA;
pdata->usbcss_hs.xtalk.alpha_r = MIN_XTALK_ALPHA;
dev_dbg(component->dev, "%s: %s %d, %s\n",
__func__, "The SE zdet measurement is greater than ZDET_SE_MAX_MOHMS,",
ZDET_SE_MAX_MOHMS,
"so the default xtalk scale and alpha values will be used");
} else {
update_xtalk_scale_and_alpha(wcd939x);
/* Compute updated linearizer tap */
if (calculate_lin_aud_tap) {
if (r_gnd_ext_fet_mohms < pdata->usbcss_hs.gnd.gnd_ext_fet_min_mohms) {
r_gnd_ext_fet_mohms = pdata->usbcss_hs.gnd.gnd_ext_fet_min_mohms;
gnd_ext_fet_updated = true;
}
if (r_gnd_ext_fet_mohms > GND_EXT_FET_MAX_MOHMS) {
r_gnd_ext_fet_mohms = GND_EXT_FET_MAX_MOHMS;
gnd_ext_fet_updated = true;
}
if (gnd_ext_fet_updated) {
dev_dbg(component->dev, "%s: %s %d mohms\n", __func__,
"Updated (for linearizer) r_gnd_ext_fet_mohms is :",
r_gnd_ext_fet_mohms);
/* Audio external FET */
r_aud_ext_fet_mohms =
(pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms >= 0) ?
r_gnd_ext_fet_mohms +
(u32) (s32) pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms :
r_gnd_ext_fet_mohms -
(u32) (s32) (-1 * pdata->usbcss_hs.gnd.gnd_ext_fet_delta_mohms);
dev_dbg(component->dev, "%s: %s %d mohms\n", __func__,
"Updated (for linearizer) r_aud_ext_fet_mohms is :",
r_aud_ext_fet_mohms);
/* Update FET values and resistances */
update_ext_fet_res(pdata, r_aud_ext_fet_mohms, r_gnd_ext_fet_mohms);
}
get_linearizer_taps(pdata, &aud_tap);
}
}
/* Print xtalk params */
dev_dbg(component->dev, "%s: Left-channel: Xtalk scale is 0x%x and alpha is 0x%x\n",
__func__, pdata->usbcss_hs.xtalk.scale_l, pdata->usbcss_hs.xtalk.alpha_l);
dev_dbg(component->dev, "%s: Right-channel: Xtalk scale is 0x%x and alpha is 0x%x\n",
__func__, pdata->usbcss_hs.xtalk.scale_r, pdata->usbcss_hs.xtalk.alpha_r);
/* Revert r_common_gnd offset */
pdata->usbcss_hs.gnd.r_common_gnd_mohms = (pdata->usbcss_hs.gnd.r_common_gnd_offset >= 0) ?
pdata->usbcss_hs.gnd.r_common_gnd_mohms -
(u32) pdata->usbcss_hs.gnd.r_common_gnd_offset :
pdata->usbcss_hs.gnd.r_common_gnd_mohms +
(u32) (-1 * pdata->usbcss_hs.gnd.r_common_gnd_offset);
mono_stereo_detection:
/* Mono/stereo detection */
if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) && (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE)) {
dev_dbg(component->dev,
"%s: plug type is invalid or extension cable\n",
__func__);
goto zdet_complete;
}
if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
(*zr == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
((*zl < WCD_MONO_HS_MIN_THR) && (*zr > WCD_MONO_HS_MIN_THR)) ||
((*zl > WCD_MONO_HS_MIN_THR) && (*zr < WCD_MONO_HS_MIN_THR))) {
dev_dbg(component->dev,
"%s: Mono plug type with one ch floating or shorted to GND\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_MONO;
goto zdet_complete;
}
snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x02);
snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x01);
wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Ls, NULL, d1);
snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x00);
snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x00);
z1Ls /= 1000;
wcd939x_wcd_mbhc_qfuse_cal(component, &z1Ls, 0);
/* Parallel of left Z and 9 ohm pull down resistor */
zMono = ((*zl) * 9) / ((*zl) + 9);
z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls);
z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl));
if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) {
dev_dbg(component->dev, "%s: stereo plug type detected\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_STEREO;
} else {
dev_dbg(component->dev, "%s: MONO plug type detected\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_MONO;
}
goto zdet_complete;
default_vals:
pdata->usbcss_hs.xtalk.scale_l = MAX_XTALK_SCALE;
pdata->usbcss_hs.xtalk.scale_r = MAX_XTALK_SCALE;
pdata->usbcss_hs.xtalk.alpha_l = MIN_XTALK_ALPHA;
pdata->usbcss_hs.xtalk.alpha_r = MIN_XTALK_ALPHA;
/* Print xtalk params */
dev_dbg(component->dev,
"%s: Left-channel: Xtalk scale is 0x%x and alpha is 0x%x\n", __func__,
pdata->usbcss_hs.xtalk.scale_l, pdata->usbcss_hs.xtalk.alpha_l);
dev_dbg(component->dev,
"%s: Right-channel: Xtalk scale is 0x%x and alpha is 0x%x\n", __func__,
pdata->usbcss_hs.xtalk.scale_r, pdata->usbcss_hs.xtalk.alpha_r);
zdet_complete:
/* Configure linearizer */
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
wcd_usbss_set_linearizer_sw_tap(aud_tap, LINEARIZER_DEFAULT_TAP);
#endif
/* Print linearizer values */
dev_dbg(component->dev, "%s: Linearizer aud_tap is 0x%x\n",
__func__, aud_tap);
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
/* Enable sense switch and MIC for USB-C analog platforms */
if (mbhc->mbhc_cfg->enable_usbc_analog) {
wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_ENABLE);
wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_ENABLE);
}
#endif
/* Enable surge protection again after impedance detection for platforms other than USB-C
* analog platforms
*/
if (!(mbhc->mbhc_cfg->enable_usbc_analog))
regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_EN, 0xC0, 0xC0);
snd_soc_component_write(component, WCD939X_MBHC_BTN5, reg0);
snd_soc_component_write(component, WCD939X_MBHC_BTN6, reg1);
snd_soc_component_write(component, WCD939X_MBHC_BTN7, reg2);
/* Turn on 100k pull down on HPHL */
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_MECH, 0x01, 0x01);
/* For NO-jack, re-enable L_DET_EN after Z-det measurements */
if (mbhc->hphl_swh)
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_MECH, 0x80, 0x80);
snd_soc_component_write(component, WCD939X_ZDET_ANA_CTL, reg4);
snd_soc_component_write(component, WCD939X_CTL_CLK, reg3);
if (is_fsm_disable)
regmap_update_bits(wcd939x->regmap,
WCD939X_MBHC_ELECT, 0x80, 0x80);
#if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
wcd_usbss_register_update(cached_regs, WCD_USBSS_WRITE, ARRAY_SIZE(cached_regs));
#endif
/* Turn off RX supplies */
if (wcd939x->version == WCD939X_VERSION_2_0) {
/* Set VPOS to be controlled by RX */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x00);
/* Wait 500us for settling */
usleep_range(500, 510);
/* Set PA Left/Right channels and VNEGDAC_LDO to be controlled by RX */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x11, 0x00);
/* Wait 100us for settling */
usleep_range(100, 110);
/* Set Vneg mode and enable to be controlled by RX */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x06, 0x00);
/* Wait 100us for settling */
usleep_range(100, 110);
/* Set RX bias to be controlled by RX and set Buck/Flyback back to SWR Rx clock */
regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x48, 0x00);
}
}
static void wcd939x_mbhc_gnd_det_ctrl(struct snd_soc_component *component,
bool enable)
{
if (enable) {
snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
0x02, 0x02);
snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
0x40, 0x40);
} else {
snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
0x40, 0x00);
snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
0x02, 0x00);
}
}
static void wcd939x_mbhc_hph_pull_down_ctrl(struct snd_soc_component *component,
bool enable)
{
if (enable) {
snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
0x40, 0x40);
snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
0x10, 0x10);
} else {
snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
0x40, 0x00);
snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
0x10, 0x00);
}
}
static void wcd939x_mbhc_moisture_config(struct wcd_mbhc *mbhc)
{
struct snd_soc_component *component = mbhc->component;
if ((mbhc->moist_rref == R_OFF) ||
(mbhc->mbhc_cfg->enable_usbc_analog)) {
snd_soc_component_update_bits(component, WCD939X_CTL_2,
0x0C, R_OFF << 2);
return;
}
/* Do not enable moisture detection if jack type is NC */
if (!mbhc->hphl_swh) {
dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
__func__);
snd_soc_component_update_bits(component, WCD939X_CTL_2,
0x0C, R_OFF << 2);
return;
}
snd_soc_component_update_bits(component, WCD939X_CTL_2,
0x0C, mbhc->moist_rref << 2);
}
static void wcd939x_mbhc_moisture_detect_en(struct wcd_mbhc *mbhc, bool enable)
{
struct snd_soc_component *component = mbhc->component;
if (enable)
snd_soc_component_update_bits(component, WCD939X_CTL_2,
0x0C, mbhc->moist_rref << 2);
else
snd_soc_component_update_bits(component, WCD939X_CTL_2,
0x0C, R_OFF << 2);
}
static bool wcd939x_mbhc_get_moisture_status(struct wcd_mbhc *mbhc)
{
struct snd_soc_component *component = mbhc->component;
bool ret = false;
if ((mbhc->moist_rref == R_OFF) ||
(mbhc->mbhc_cfg->enable_usbc_analog)) {
snd_soc_component_update_bits(component, WCD939X_CTL_2,
0x0C, R_OFF << 2);
goto done;
}
/* Do not enable moisture detection if jack type is NC */
if (!mbhc->hphl_swh) {
dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
__func__);
snd_soc_component_update_bits(component, WCD939X_CTL_2,
0x0C, R_OFF << 2);
goto done;
}
/*
* If moisture_en is already enabled, then skip to plug type
* detection.
*/
if ((snd_soc_component_read(component, WCD939X_CTL_2) & 0x0C))
goto done;
wcd939x_mbhc_moisture_detect_en(mbhc, true);
/* Read moisture comparator status */
ret = ((snd_soc_component_read(component, WCD939X_FSM_STATUS)
& 0x20) ? 0 : 1);
done:
return ret;
}
static void wcd939x_mbhc_moisture_polling_ctrl(struct wcd_mbhc *mbhc,
bool enable)
{
struct snd_soc_component *component = mbhc->component;
snd_soc_component_update_bits(component,
WCD939X_MOISTURE_DET_POLLING_CTRL,
0x04, (enable << 2));
}
static void wcd939x_mbhc_bcs_enable(struct wcd_mbhc *mbhc,
bool bcs_enable)
{
if (bcs_enable)
wcd939x_disable_bcs_before_slow_insert(mbhc->component, false);
else
wcd939x_disable_bcs_before_slow_insert(mbhc->component, true);
}
static void wcd939x_surge_reset_routine(struct wcd_mbhc *mbhc)
{
struct wcd939x_priv *wcd939x = snd_soc_component_get_drvdata(mbhc->component);
regcache_mark_dirty(wcd939x->regmap);
regcache_sync(wcd939x->regmap);
}
static void wcd939x_mbhc_zdet_leakage_resistance(struct wcd_mbhc *mbhc,
bool enable)
{
if (enable)
snd_soc_component_update_bits(mbhc->component, WCD939X_ZDET_BIAS_CTL,
0x80, 0x80); /* disable 1M pull-up */
else
snd_soc_component_update_bits(mbhc->component, WCD939X_ZDET_BIAS_CTL,
0x80, 0x00); /* enable 1M pull-up */
}
static const struct wcd_mbhc_cb mbhc_cb = {
.request_irq = wcd939x_mbhc_request_irq,
.irq_control = wcd939x_mbhc_irq_control,
.free_irq = wcd939x_mbhc_free_irq,
.clk_setup = wcd939x_mbhc_clk_setup,
.map_btn_code_to_num = wcd939x_mbhc_btn_to_num,
.mbhc_bias = wcd939x_mbhc_mbhc_bias_control,
.set_btn_thr = wcd939x_mbhc_program_btn_thr,
.lock_sleep = wcd939x_mbhc_lock_sleep,
.register_notifier = wcd939x_mbhc_register_notifier,
.micbias_enable_status = wcd939x_mbhc_micb_en_status,
.hph_pa_on_status = wcd939x_mbhc_hph_pa_on_status,
.hph_pull_up_control_v2 = wcd939x_mbhc_hph_l_pull_up_control,
.mbhc_micbias_control = wcd939x_mbhc_request_micbias,
.mbhc_micb_ramp_control = wcd939x_mbhc_micb_ramp_control,
.get_hwdep_fw_cal = wcd939x_get_hwdep_fw_cal,
.mbhc_micb_ctrl_thr_mic = wcd939x_mbhc_micb_ctrl_threshold_mic,
.compute_impedance = wcd939x_wcd_mbhc_calc_impedance,
.mbhc_gnd_det_ctrl = wcd939x_mbhc_gnd_det_ctrl,
.hph_pull_down_ctrl = wcd939x_mbhc_hph_pull_down_ctrl,
.mbhc_moisture_config = wcd939x_mbhc_moisture_config,
.mbhc_get_moisture_status = wcd939x_mbhc_get_moisture_status,
.mbhc_moisture_polling_ctrl = wcd939x_mbhc_moisture_polling_ctrl,
.mbhc_moisture_detect_en = wcd939x_mbhc_moisture_detect_en,
.bcs_enable = wcd939x_mbhc_bcs_enable,
.surge_reset_routine = wcd939x_surge_reset_routine,
.zdet_leakage_resistance = wcd939x_mbhc_zdet_leakage_resistance,
};
static int wcd939x_get_hph_type(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
struct wcd_mbhc *mbhc;
if (!wcd939x_mbhc) {
dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
return -EINVAL;
}
mbhc = &wcd939x_mbhc->wcd_mbhc;
ucontrol->value.integer.value[0] = (u32) mbhc->hph_type;
dev_dbg(component->dev, "%s: hph_type = %u\n", __func__, mbhc->hph_type);
return 0;
}
static int wcd939x_hph_impedance_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
uint32_t zl, zr;
bool hphr;
struct soc_multi_mixer_control *mc;
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
if (!wcd939x_mbhc) {
dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
return -EINVAL;
}
mc = (struct soc_multi_mixer_control *)(kcontrol->private_value);
hphr = mc->shift;
wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, &zl, &zr);
dev_dbg(component->dev, "%s: zl=%u(ohms), zr=%u(ohms)\n", __func__, zl, zr);
ucontrol->value.integer.value[0] = hphr ? zr : zl;
return 0;
}
static const struct snd_kcontrol_new hph_type_detect_controls[] = {
SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0,
wcd939x_get_hph_type, NULL),
};
static const struct snd_kcontrol_new impedance_detect_controls[] = {
SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0,
wcd939x_hph_impedance_get, NULL),
SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0,
wcd939x_hph_impedance_get, NULL),
};
/*
* wcd939x_mbhc_get_impedance: get impedance of headphone
* left and right channels
* @wcd939x_mbhc: handle to struct wcd939x_mbhc *
* @zl: handle to left-ch impedance
* @zr: handle to right-ch impedance
* return 0 for success or error code in case of failure
*/
int wcd939x_mbhc_get_impedance(struct wcd939x_mbhc *wcd939x_mbhc,
uint32_t *zl, uint32_t *zr)
{
if (!wcd939x_mbhc) {
pr_err_ratelimited("%s: mbhc not initialized!\n", __func__);
return -EINVAL;
}
if (!zl || !zr) {
pr_err_ratelimited("%s: zl or zr null!\n", __func__);
return -EINVAL;
}
return wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, zl, zr);
}
EXPORT_SYMBOL(wcd939x_mbhc_get_impedance);
/*
* wcd939x_mbhc_hs_detect: starts mbhc insertion/removal functionality
* @codec: handle to snd_soc_component *
* @mbhc_cfg: handle to mbhc configuration structure
* return 0 if mbhc_start is success or error code in case of failure
*/
int wcd939x_mbhc_hs_detect(struct snd_soc_component *component,
struct wcd_mbhc_config *mbhc_cfg)
{
struct wcd939x_priv *wcd939x = NULL;
struct wcd939x_mbhc *wcd939x_mbhc = NULL;
if (!component) {
pr_err_ratelimited("%s: component is NULL\n", __func__);
return -EINVAL;
}
wcd939x = snd_soc_component_get_drvdata(component);
if (!wcd939x) {
pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
return -EINVAL;
}
wcd939x_mbhc = wcd939x->mbhc;
if (!wcd939x_mbhc) {
dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
return -EINVAL;
}
return wcd_mbhc_start(&wcd939x_mbhc->wcd_mbhc, mbhc_cfg);
}
EXPORT_SYMBOL(wcd939x_mbhc_hs_detect);
/*
* wcd939x_mbhc_hs_detect_exit: stop mbhc insertion/removal functionality
* @component: handle to snd_soc_component *
*/
void wcd939x_mbhc_hs_detect_exit(struct snd_soc_component *component)
{
struct wcd939x_priv *wcd939x = NULL;
struct wcd939x_mbhc *wcd939x_mbhc = NULL;
if (!component) {
pr_err_ratelimited("%s: component is NULL\n", __func__);
return;
}
wcd939x = snd_soc_component_get_drvdata(component);
if (!wcd939x) {
pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
return;
}
wcd939x_mbhc = wcd939x->mbhc;
if (!wcd939x_mbhc) {
dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
return;
}
wcd_mbhc_stop(&wcd939x_mbhc->wcd_mbhc);
}
EXPORT_SYMBOL(wcd939x_mbhc_hs_detect_exit);
/*
* wcd939x_mbhc_ssr_down: stop mbhc during
* wcd939x subsystem restart
* mbhc: pointer to wcd937x_mbhc structure
* component: handle to snd_soc_component *
*/
void wcd939x_mbhc_ssr_down(struct wcd939x_mbhc *mbhc,
struct snd_soc_component *component)
{
struct wcd_mbhc *wcd_mbhc = NULL;
if (!mbhc || !component)
return;
wcd_mbhc = &mbhc->wcd_mbhc;
if (!wcd_mbhc) {
dev_err_ratelimited(component->dev, "%s: wcd_mbhc is NULL\n", __func__);
return;
}
wcd939x_mbhc_hs_detect_exit(component);
wcd_mbhc_deinit(wcd_mbhc);
}
EXPORT_SYMBOL(wcd939x_mbhc_ssr_down);
/*
* wcd939x_mbhc_post_ssr_init: initialize mbhc for
* wcd939x post subsystem restart
* @mbhc: poniter to wcd939x_mbhc structure
* @component: handle to snd_soc_component *
*
* return 0 if mbhc_init is success or error code in case of failure
*/
int wcd939x_mbhc_post_ssr_init(struct wcd939x_mbhc *mbhc,
struct snd_soc_component *component)
{
int ret = 0;
struct wcd_mbhc *wcd_mbhc = NULL;
if (!mbhc || !component)
return -EINVAL;
wcd_mbhc = &mbhc->wcd_mbhc;
if (wcd_mbhc == NULL) {
pr_err("%s: wcd_mbhc is NULL\n", __func__);
return -EINVAL;
}
/* Reset detection type to insertion after SSR recovery */
snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
0x20, 0x20);
ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids,
wcd_mbhc_registers, WCD939X_ZDET_SUPPORTED);
if (ret) {
dev_err(component->dev, "%s: mbhc initialization failed\n",
__func__);
goto done;
}
done:
return ret;
}
EXPORT_SYMBOL(wcd939x_mbhc_post_ssr_init);
/*
* wcd939x_mbhc_init: initialize mbhc for wcd939x
* @mbhc: poniter to wcd939x_mbhc struct pointer to store the configs
* @codec: handle to snd_soc_component *
* @fw_data: handle to firmware data
*
* return 0 if mbhc_init is success or error code in case of failure
*/
int wcd939x_mbhc_init(struct wcd939x_mbhc **mbhc,
struct snd_soc_component *component,
struct fw_info *fw_data)
{
struct wcd939x_mbhc *wcd939x_mbhc = NULL;
struct wcd_mbhc *wcd_mbhc = NULL;
int ret = 0;
struct wcd939x_pdata *pdata;
struct wcd939x_priv *wcd939x;
if (!component) {
pr_err("%s: component is NULL\n", __func__);
return -EINVAL;
}
wcd939x_mbhc = devm_kzalloc(component->dev, sizeof(struct wcd939x_mbhc),
GFP_KERNEL);
if (!wcd939x_mbhc)
return -ENOMEM;
wcd939x_mbhc->fw_data = fw_data;
BLOCKING_INIT_NOTIFIER_HEAD(&wcd939x_mbhc->notifier);
wcd_mbhc = &wcd939x_mbhc->wcd_mbhc;
if (wcd_mbhc == NULL) {
pr_err("%s: wcd_mbhc is NULL\n", __func__);
ret = -EINVAL;
goto err;
}
/* Setting default mbhc detection logic to ADC */
wcd_mbhc->mbhc_detection_logic = WCD_DETECTION_ADC;
/* Down ramp timer set-up */
timer_setup(&wcd939x_mbhc->rdown_timer, rdown_timer_callback, 0);
wcd939x_mbhc->rdown_prev_iter = 0;
wcd939x_mbhc->rdown_timer_complete = false;
pdata = dev_get_platdata(component->dev);
if (!pdata) {
dev_err(component->dev, "%s: pdata pointer is NULL\n",
__func__);
ret = -EINVAL;
goto err;
}
wcd_mbhc->micb_mv = pdata->micbias.micb2_mv;
ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb,
&intr_ids, wcd_mbhc_registers,
WCD939X_ZDET_SUPPORTED);
if (ret) {
dev_err(component->dev, "%s: mbhc initialization failed\n",
__func__);
goto err;
}
(*mbhc) = wcd939x_mbhc;
snd_soc_add_component_controls(component, impedance_detect_controls,
ARRAY_SIZE(impedance_detect_controls));
snd_soc_add_component_controls(component, hph_type_detect_controls,
ARRAY_SIZE(hph_type_detect_controls));
wcd939x = dev_get_drvdata(component->dev);
if (!wcd939x) {
dev_err(component->dev, "%s: wcd939x pointer is NULL\n", __func__);
ret = -EINVAL;
goto err;
}
usbcss_hs_sysfs_init(wcd939x);
return 0;
err:
if (wcd939x_mbhc)
del_timer(&wcd939x_mbhc->rdown_timer);
devm_kfree(component->dev, wcd939x_mbhc);
return ret;
}
EXPORT_SYMBOL(wcd939x_mbhc_init);
/*
* wcd939x_mbhc_deinit: deinitialize mbhc for wcd939x
* @codec: handle to snd_soc_component *
*/
void wcd939x_mbhc_deinit(struct snd_soc_component *component)
{
struct wcd939x_priv *wcd939x;
struct wcd939x_mbhc *wcd939x_mbhc;
if (!component) {
pr_err("%s: component is NULL\n", __func__);
return;
}
wcd939x = snd_soc_component_get_drvdata(component);
if (!wcd939x) {
pr_err("%s: wcd939x is NULL\n", __func__);
return;
}
wcd939x_mbhc = wcd939x->mbhc;
if (wcd939x_mbhc) {
del_timer(&wcd939x_mbhc->rdown_timer);
wcd_mbhc_deinit(&wcd939x_mbhc->wcd_mbhc);
devm_kfree(component->dev, wcd939x_mbhc);
}
}
EXPORT_SYMBOL(wcd939x_mbhc_deinit);