sde_hw_reg_dma_v1.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/iopoll.h>
  6. #include "sde_hw_mdss.h"
  7. #include "sde_hw_ctl.h"
  8. #include "sde_hw_reg_dma_v1.h"
  9. #include "msm_drv.h"
  10. #include "msm_mmu.h"
  11. #include "sde_dbg.h"
  12. #define GUARD_BYTES (BIT(8) - 1)
  13. #define ALIGNED_OFFSET (U32_MAX & ~(GUARD_BYTES))
  14. #define ADDR_ALIGN BIT(8)
  15. #define MAX_RELATIVE_OFF (BIT(20) - 1)
  16. #define ABSOLUTE_RANGE BIT(27)
  17. #define DECODE_SEL_OP (BIT(HW_BLK_SELECT))
  18. #define REG_WRITE_OP ((BIT(REG_SINGLE_WRITE)) | (BIT(REG_BLK_WRITE_SINGLE)) | \
  19. (BIT(REG_BLK_WRITE_INC)) | (BIT(REG_BLK_WRITE_MULTIPLE)) | \
  20. (BIT(REG_SINGLE_MODIFY)) | (BIT(REG_BLK_LUT_WRITE)))
  21. #define REG_DMA_OPS (DECODE_SEL_OP | REG_WRITE_OP)
  22. #define IS_OP_ALLOWED(op, buf_op) (BIT(op) & buf_op)
  23. #define SET_UP_REG_DMA_REG(hw, reg_dma, i) \
  24. do { \
  25. if ((reg_dma)->caps->reg_dma_blks[(i)].valid == false) \
  26. break; \
  27. (hw).base_off = (reg_dma)->addr; \
  28. (hw).blk_off = (reg_dma)->caps->reg_dma_blks[(i)].base; \
  29. (hw).hwversion = (reg_dma)->caps->version; \
  30. (hw).log_mask = SDE_DBG_MASK_REGDMA; \
  31. } while (0)
  32. #define SIZE_DWORD(x) ((x) / (sizeof(u32)))
  33. #define NOT_WORD_ALIGNED(x) ((x) & 0x3)
  34. #define GRP_VIG_HW_BLK_SELECT (VIG0 | VIG1 | VIG2 | VIG3)
  35. #define GRP_DMA_HW_BLK_SELECT (DMA0 | DMA1 | DMA2 | DMA3)
  36. #define GRP_DSPP_HW_BLK_SELECT (DSPP0 | DSPP1 | DSPP2 | DSPP3)
  37. #define GRP_LTM_HW_BLK_SELECT (LTM0 | LTM1)
  38. #define GRP_MDSS_HW_BLK_SELECT (MDSS)
  39. #define BUFFER_SPACE_LEFT(cfg) ((cfg)->dma_buf->buffer_size - \
  40. (cfg)->dma_buf->index)
  41. #define REL_ADDR_OPCODE (BIT(27))
  42. #define SINGLE_REG_WRITE_OPCODE (BIT(28))
  43. #define SINGLE_REG_MODIFY_OPCODE (BIT(29))
  44. #define HW_INDEX_REG_WRITE_OPCODE (BIT(28) | BIT(29))
  45. #define AUTO_INC_REG_WRITE_OPCODE (BIT(30))
  46. #define BLK_REG_WRITE_OPCODE (BIT(30) | BIT(28))
  47. #define LUTBUS_WRITE_OPCODE (BIT(30) | BIT(29))
  48. #define WRAP_MIN_SIZE 2
  49. #define WRAP_MAX_SIZE (BIT(4) - 1)
  50. #define MAX_DWORDS_SZ (BIT(14) - 1)
  51. #define REG_DMA_HEADERS_BUFFER_SZ (sizeof(u32) * 128)
  52. #define LUTBUS_TABLE_SEL_MASK 0x10000
  53. #define LUTBUS_BLOCK_SEL_MASK 0xffff
  54. #define LUTBUS_TRANS_SZ_MASK 0xff0000
  55. #define LUTBUS_LUT_SIZE_MASK 0x3fff
  56. static uint32_t reg_dma_register_count;
  57. static uint32_t reg_dma_decode_sel;
  58. static uint32_t reg_dma_opmode_offset;
  59. static uint32_t reg_dma_ctl0_queue0_cmd0_offset;
  60. static uint32_t reg_dma_ctl0_queue1_cmd0_offset;
  61. static uint32_t reg_dma_intr_status_offset;
  62. static uint32_t reg_dma_intr_4_status_offset;
  63. static uint32_t reg_dma_intr_clear_offset;
  64. static uint32_t reg_dma_ctl_trigger_offset;
  65. static uint32_t reg_dma_ctl0_reset_offset;
  66. static uint32_t reg_dma_error_clear_mask;
  67. static uint32_t reg_dma_ctl_queue_off[CTL_MAX];
  68. static uint32_t reg_dma_ctl_queue1_off[CTL_MAX];
  69. typedef int (*reg_dma_internal_ops) (struct sde_reg_dma_setup_ops_cfg *cfg);
  70. static struct sde_hw_reg_dma *reg_dma;
  71. static u32 ops_mem_size[REG_DMA_SETUP_OPS_MAX] = {
  72. [REG_BLK_WRITE_SINGLE] = sizeof(u32) * 2,
  73. [REG_BLK_WRITE_INC] = sizeof(u32) * 2,
  74. [REG_BLK_WRITE_MULTIPLE] = sizeof(u32) * 2,
  75. [HW_BLK_SELECT] = sizeof(u32) * 2,
  76. [REG_SINGLE_WRITE] = sizeof(u32) * 2,
  77. [REG_SINGLE_MODIFY] = sizeof(u32) * 3,
  78. [REG_BLK_LUT_WRITE] = sizeof(u32) * 2,
  79. };
  80. static u32 queue_sel[DMA_CTL_QUEUE_MAX] = {
  81. [DMA_CTL_QUEUE0] = BIT(0),
  82. [DMA_CTL_QUEUE1] = BIT(4),
  83. };
  84. static u32 dspp_read_sel[DSPP_HIST_MAX] = {
  85. [DSPP0_HIST] = 0,
  86. [DSPP1_HIST] = 1,
  87. [DSPP2_HIST] = 2,
  88. [DSPP3_HIST] = 3,
  89. };
  90. static u32 v1_supported[REG_DMA_FEATURES_MAX] = {
  91. [GAMUT] = GRP_VIG_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT,
  92. [VLUT] = GRP_DSPP_HW_BLK_SELECT,
  93. [GC] = GRP_DSPP_HW_BLK_SELECT,
  94. [IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT,
  95. [PCC] = GRP_DSPP_HW_BLK_SELECT,
  96. };
  97. static u32 ctl_trigger_done_mask[CTL_MAX][DMA_CTL_QUEUE_MAX] = {
  98. [CTL_0][0] = BIT(16),
  99. [CTL_0][1] = BIT(21),
  100. [CTL_1][0] = BIT(17),
  101. [CTL_1][1] = BIT(22),
  102. [CTL_2][0] = BIT(18),
  103. [CTL_2][1] = BIT(23),
  104. [CTL_3][0] = BIT(19),
  105. [CTL_3][1] = BIT(24),
  106. [CTL_4][0] = BIT(25),
  107. [CTL_4][1] = BIT(27),
  108. [CTL_5][0] = BIT(26),
  109. [CTL_5][1] = BIT(28),
  110. };
  111. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg);
  112. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  113. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  114. static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg);
  115. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  116. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  117. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  118. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  119. static int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg);
  120. static int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg);
  121. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  122. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg);
  123. static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  124. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  125. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf);
  126. static int check_support_v1(enum sde_reg_dma_features feature,
  127. enum sde_reg_dma_blk blk, bool *is_supported);
  128. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg);
  129. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg);
  130. static int reset_v1(struct sde_hw_ctl *ctl);
  131. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  132. enum sde_reg_dma_last_cmd_mode mode);
  133. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size);
  134. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *lut_buf);
  135. static void dump_regs_v1(void);
  136. static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  137. enum sde_reg_dma_last_cmd_mode mode);
  138. static reg_dma_internal_ops write_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  139. [HW_BLK_SELECT] = write_decode_sel,
  140. [REG_SINGLE_WRITE] = write_single_reg,
  141. [REG_BLK_WRITE_SINGLE] = write_multi_reg_inc,
  142. [REG_BLK_WRITE_INC] = write_multi_reg_index,
  143. [REG_BLK_WRITE_MULTIPLE] = write_multi_lut_reg,
  144. [REG_SINGLE_MODIFY] = write_single_modify,
  145. [REG_BLK_LUT_WRITE] = write_block_lut_reg,
  146. };
  147. static reg_dma_internal_ops validate_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  148. [HW_BLK_SELECT] = validate_write_decode_sel,
  149. [REG_SINGLE_WRITE] = validate_write_reg,
  150. [REG_BLK_WRITE_SINGLE] = validate_write_reg,
  151. [REG_BLK_WRITE_INC] = validate_write_reg,
  152. [REG_BLK_WRITE_MULTIPLE] = validate_write_multi_lut_reg,
  153. [REG_SINGLE_MODIFY] = validate_write_reg,
  154. [REG_BLK_LUT_WRITE] = validate_blk_lut_write,
  155. };
  156. static struct sde_reg_dma_buffer *last_cmd_buf_db[CTL_MAX];
  157. static struct sde_reg_dma_buffer *last_cmd_buf_sb[CTL_MAX];
  158. static void get_decode_sel(unsigned long blk, u32 *decode_sel)
  159. {
  160. int i = 0;
  161. *decode_sel = 0;
  162. for_each_set_bit(i, &blk, REG_DMA_BLK_MAX) {
  163. switch (BIT(i)) {
  164. case VIG0:
  165. *decode_sel |= BIT(0);
  166. break;
  167. case VIG1:
  168. *decode_sel |= BIT(1);
  169. break;
  170. case VIG2:
  171. *decode_sel |= BIT(2);
  172. break;
  173. case VIG3:
  174. *decode_sel |= BIT(3);
  175. break;
  176. case DMA0:
  177. *decode_sel |= BIT(5);
  178. break;
  179. case DMA1:
  180. *decode_sel |= BIT(6);
  181. break;
  182. case DMA2:
  183. *decode_sel |= BIT(7);
  184. break;
  185. case DMA3:
  186. *decode_sel |= BIT(8);
  187. break;
  188. case DSPP0:
  189. *decode_sel |= BIT(17);
  190. break;
  191. case DSPP1:
  192. *decode_sel |= BIT(18);
  193. break;
  194. case DSPP2:
  195. *decode_sel |= BIT(19);
  196. break;
  197. case DSPP3:
  198. *decode_sel |= BIT(20);
  199. break;
  200. case SSPP_IGC:
  201. *decode_sel |= BIT(4);
  202. break;
  203. case DSPP_IGC:
  204. *decode_sel |= BIT(21);
  205. break;
  206. case LTM0:
  207. *decode_sel |= BIT(22);
  208. break;
  209. case LTM1:
  210. *decode_sel |= BIT(23);
  211. break;
  212. case MDSS:
  213. *decode_sel |= BIT(31);
  214. break;
  215. default:
  216. DRM_ERROR("block not supported %zx\n", (size_t)BIT(i));
  217. break;
  218. }
  219. }
  220. }
  221. static int write_multi_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  222. {
  223. u8 *loc = NULL;
  224. loc = (u8 *)cfg->dma_buf->vaddr + cfg->dma_buf->index;
  225. memcpy(loc, cfg->data, cfg->data_size);
  226. cfg->dma_buf->index += cfg->data_size;
  227. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  228. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  229. return 0;
  230. }
  231. int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg)
  232. {
  233. u32 *loc = NULL;
  234. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  235. cfg->dma_buf->index);
  236. loc[0] = HW_INDEX_REG_WRITE_OPCODE;
  237. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  238. if (cfg->blk == MDSS)
  239. loc[0] |= ABSOLUTE_RANGE;
  240. loc[1] = SIZE_DWORD(cfg->data_size);
  241. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  242. return write_multi_reg(cfg);
  243. }
  244. int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg)
  245. {
  246. u32 *loc = NULL;
  247. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  248. cfg->dma_buf->index);
  249. loc[0] = AUTO_INC_REG_WRITE_OPCODE;
  250. if (cfg->blk == MDSS)
  251. loc[0] |= ABSOLUTE_RANGE;
  252. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  253. loc[1] = SIZE_DWORD(cfg->data_size);
  254. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  255. return write_multi_reg(cfg);
  256. }
  257. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  258. {
  259. u32 *loc = NULL;
  260. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  261. cfg->dma_buf->index);
  262. loc[0] = BLK_REG_WRITE_OPCODE;
  263. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  264. if (cfg->blk == MDSS)
  265. loc[0] |= ABSOLUTE_RANGE;
  266. loc[1] = (cfg->inc) ? 0 : BIT(31);
  267. loc[1] |= (cfg->wrap_size & WRAP_MAX_SIZE) << 16;
  268. loc[1] |= ((SIZE_DWORD(cfg->data_size)) & MAX_DWORDS_SZ);
  269. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  270. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  271. return write_multi_reg(cfg);
  272. }
  273. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  274. {
  275. u32 *loc = NULL;
  276. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  277. cfg->dma_buf->index);
  278. loc[0] = SINGLE_REG_WRITE_OPCODE;
  279. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  280. if (cfg->blk == MDSS)
  281. loc[0] |= ABSOLUTE_RANGE;
  282. loc[1] = *cfg->data;
  283. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  284. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  285. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  286. return 0;
  287. }
  288. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg)
  289. {
  290. u32 *loc = NULL;
  291. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  292. cfg->dma_buf->index);
  293. loc[0] = SINGLE_REG_MODIFY_OPCODE;
  294. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  295. if (cfg->blk == MDSS)
  296. loc[0] |= ABSOLUTE_RANGE;
  297. loc[1] = cfg->mask;
  298. loc[2] = *cfg->data;
  299. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  300. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  301. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  302. return 0;
  303. }
  304. static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  305. {
  306. u32 *loc = NULL;
  307. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  308. cfg->dma_buf->index);
  309. loc[0] = LUTBUS_WRITE_OPCODE;
  310. loc[0] |= (cfg->table_sel << 16) & LUTBUS_TABLE_SEL_MASK;
  311. loc[0] |= (cfg->block_sel & LUTBUS_BLOCK_SEL_MASK);
  312. loc[1] = (cfg->trans_size << 16) & LUTBUS_TRANS_SZ_MASK;
  313. loc[1] |= (cfg->lut_size & LUTBUS_LUT_SIZE_MASK);
  314. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  315. return write_multi_reg(cfg);
  316. }
  317. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  318. {
  319. u32 *loc = NULL;
  320. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  321. cfg->dma_buf->index);
  322. loc[0] = reg_dma_decode_sel;
  323. get_decode_sel(cfg->blk, &loc[1]);
  324. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  325. cfg->dma_buf->ops_completed |= DECODE_SEL_OP;
  326. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  327. return 0;
  328. }
  329. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  330. {
  331. int rc;
  332. rc = validate_write_reg(cfg);
  333. if (rc)
  334. return rc;
  335. if (cfg->wrap_size < WRAP_MIN_SIZE || cfg->wrap_size > WRAP_MAX_SIZE) {
  336. DRM_ERROR("invalid wrap sz %d min %d max %zd\n",
  337. cfg->wrap_size, WRAP_MIN_SIZE, (size_t)WRAP_MAX_SIZE);
  338. rc = -EINVAL;
  339. }
  340. return rc;
  341. }
  342. static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg)
  343. {
  344. int rc;
  345. rc = validate_write_reg(cfg);
  346. if (rc)
  347. return rc;
  348. if (cfg->table_sel >= LUTBUS_TABLE_SELECT_MAX ||
  349. cfg->block_sel >= LUTBUS_BLOCK_MAX ||
  350. (cfg->trans_size != LUTBUS_IGC_TRANS_SIZE &&
  351. cfg->trans_size != LUTBUS_GAMUT_TRANS_SIZE)) {
  352. DRM_ERROR("invalid table_sel %d block_sel %d trans_size %d\n",
  353. cfg->table_sel, cfg->block_sel,
  354. cfg->trans_size);
  355. rc = -EINVAL;
  356. }
  357. return rc;
  358. }
  359. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  360. {
  361. u32 remain_len, write_len;
  362. remain_len = BUFFER_SPACE_LEFT(cfg);
  363. write_len = ops_mem_size[cfg->ops] + cfg->data_size;
  364. if (remain_len < write_len) {
  365. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  366. remain_len, write_len);
  367. return -EINVAL;
  368. }
  369. if (!cfg->data) {
  370. DRM_ERROR("invalid data %pK size %d exp sz %d\n", cfg->data,
  371. cfg->data_size, write_len);
  372. return -EINVAL;
  373. }
  374. if ((SIZE_DWORD(cfg->data_size)) > MAX_DWORDS_SZ ||
  375. NOT_WORD_ALIGNED(cfg->data_size)) {
  376. DRM_ERROR("Invalid data size %d max %zd align %x\n",
  377. cfg->data_size, (size_t)MAX_DWORDS_SZ,
  378. NOT_WORD_ALIGNED(cfg->data_size));
  379. return -EINVAL;
  380. }
  381. if (cfg->blk_offset > MAX_RELATIVE_OFF ||
  382. NOT_WORD_ALIGNED(cfg->blk_offset)) {
  383. DRM_ERROR("invalid offset %d max %zd align %x\n",
  384. cfg->blk_offset, (size_t)MAX_RELATIVE_OFF,
  385. NOT_WORD_ALIGNED(cfg->blk_offset));
  386. return -EINVAL;
  387. }
  388. return 0;
  389. }
  390. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  391. {
  392. u32 remain_len;
  393. bool vig_blk, dma_blk, dspp_blk, mdss_blk;
  394. remain_len = BUFFER_SPACE_LEFT(cfg);
  395. if (remain_len < ops_mem_size[HW_BLK_SELECT]) {
  396. DRM_ERROR("buffer is full needs %d bytes\n",
  397. ops_mem_size[HW_BLK_SELECT]);
  398. return -EINVAL;
  399. }
  400. if (!cfg->blk) {
  401. DRM_ERROR("blk set as 0\n");
  402. return -EINVAL;
  403. }
  404. vig_blk = (cfg->blk & GRP_VIG_HW_BLK_SELECT) ? true : false;
  405. dma_blk = (cfg->blk & GRP_DMA_HW_BLK_SELECT) ? true : false;
  406. dspp_blk = (cfg->blk & GRP_DSPP_HW_BLK_SELECT) ? true : false;
  407. mdss_blk = (cfg->blk & MDSS) ? true : false;
  408. if ((vig_blk && dspp_blk) || (dma_blk && dspp_blk) ||
  409. (vig_blk && dma_blk) ||
  410. (mdss_blk && (vig_blk | dma_blk | dspp_blk))) {
  411. DRM_ERROR("invalid blk combination %x\n", cfg->blk);
  412. return -EINVAL;
  413. }
  414. return 0;
  415. }
  416. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg)
  417. {
  418. int rc = 0;
  419. bool supported;
  420. if (!cfg || cfg->ops >= REG_DMA_SETUP_OPS_MAX || !cfg->dma_buf) {
  421. DRM_ERROR("invalid param cfg %pK ops %d dma_buf %pK\n",
  422. cfg, ((cfg) ? cfg->ops : REG_DMA_SETUP_OPS_MAX),
  423. ((cfg) ? cfg->dma_buf : NULL));
  424. return -EINVAL;
  425. }
  426. rc = check_support_v1(cfg->feature, cfg->blk, &supported);
  427. if (rc || !supported) {
  428. DRM_ERROR("check support failed rc %d supported %d\n",
  429. rc, supported);
  430. rc = -EINVAL;
  431. return rc;
  432. }
  433. if (cfg->dma_buf->index >= cfg->dma_buf->buffer_size ||
  434. NOT_WORD_ALIGNED(cfg->dma_buf->index)) {
  435. DRM_ERROR("Buf Overflow index %d max size %d align %x\n",
  436. cfg->dma_buf->index, cfg->dma_buf->buffer_size,
  437. NOT_WORD_ALIGNED(cfg->dma_buf->index));
  438. return -EINVAL;
  439. }
  440. if (cfg->dma_buf->iova & GUARD_BYTES || !cfg->dma_buf->vaddr) {
  441. DRM_ERROR("iova not aligned to %zx iova %llx kva %pK",
  442. (size_t)ADDR_ALIGN, cfg->dma_buf->iova,
  443. cfg->dma_buf->vaddr);
  444. return -EINVAL;
  445. }
  446. if (!IS_OP_ALLOWED(cfg->ops, cfg->dma_buf->next_op_allowed)) {
  447. DRM_ERROR("invalid op %x allowed %x\n", cfg->ops,
  448. cfg->dma_buf->next_op_allowed);
  449. return -EINVAL;
  450. }
  451. if (!validate_dma_op_params[cfg->ops] ||
  452. !write_dma_op_params[cfg->ops]) {
  453. DRM_ERROR("invalid op %d validate %pK write %pK\n", cfg->ops,
  454. validate_dma_op_params[cfg->ops],
  455. write_dma_op_params[cfg->ops]);
  456. return -EINVAL;
  457. }
  458. return rc;
  459. }
  460. static int validate_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  461. {
  462. if (!cfg || !cfg->ctl || !cfg->dma_buf ||
  463. cfg->dma_type >= REG_DMA_TYPE_MAX) {
  464. DRM_ERROR("invalid cfg %pK ctl %pK dma_buf %pK dma type %d\n",
  465. cfg, ((!cfg) ? NULL : cfg->ctl),
  466. ((!cfg) ? NULL : cfg->dma_buf),
  467. ((!cfg) ? 0 : cfg->dma_type));
  468. return -EINVAL;
  469. }
  470. if (reg_dma->caps->reg_dma_blks[cfg->dma_type].valid == false) {
  471. DRM_DEBUG("REG dma type %d is not supported\n", cfg->dma_type);
  472. return -EOPNOTSUPP;
  473. }
  474. if (cfg->ctl->idx < CTL_0 && cfg->ctl->idx >= CTL_MAX) {
  475. DRM_ERROR("invalid ctl idx %d\n", cfg->ctl->idx);
  476. return -EINVAL;
  477. }
  478. if (cfg->op >= REG_DMA_OP_MAX) {
  479. DRM_ERROR("invalid op %d\n", cfg->op);
  480. return -EINVAL;
  481. }
  482. if ((cfg->op == REG_DMA_WRITE) &&
  483. (!(cfg->dma_buf->ops_completed & DECODE_SEL_OP) ||
  484. !(cfg->dma_buf->ops_completed & REG_WRITE_OP))) {
  485. DRM_ERROR("incomplete write ops %x\n",
  486. cfg->dma_buf->ops_completed);
  487. return -EINVAL;
  488. }
  489. if (cfg->op == REG_DMA_READ && cfg->block_select >= DSPP_HIST_MAX) {
  490. DRM_ERROR("invalid block for read %d\n", cfg->block_select);
  491. return -EINVAL;
  492. }
  493. /* Only immediate triggers are supported now hence hardcode */
  494. cfg->trigger_mode = (cfg->op == REG_DMA_READ) ? (READ_TRIGGER) :
  495. (WRITE_TRIGGER);
  496. if (cfg->dma_buf->iova & GUARD_BYTES) {
  497. DRM_ERROR("Address is not aligned to %zx iova %llx",
  498. (size_t)ADDR_ALIGN, cfg->dma_buf->iova);
  499. return -EINVAL;
  500. }
  501. if (cfg->queue_select >= DMA_CTL_QUEUE_MAX) {
  502. DRM_ERROR("invalid queue selected %d\n", cfg->queue_select);
  503. return -EINVAL;
  504. }
  505. if (SIZE_DWORD(cfg->dma_buf->index) > MAX_DWORDS_SZ ||
  506. !cfg->dma_buf->index) {
  507. DRM_ERROR("invalid dword size %zd max %zd\n",
  508. (size_t)SIZE_DWORD(cfg->dma_buf->index),
  509. (size_t)MAX_DWORDS_SZ);
  510. return -EINVAL;
  511. }
  512. if (cfg->dma_type == REG_DMA_TYPE_SB &&
  513. (cfg->queue_select != DMA_CTL_QUEUE1 ||
  514. cfg->op == REG_DMA_READ)) {
  515. DRM_ERROR("invalid queue selected %d or op %d for SB LUTDMA\n",
  516. cfg->queue_select, cfg->op);
  517. return -EINVAL;
  518. }
  519. return 0;
  520. }
  521. static int write_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  522. {
  523. u32 cmd1, mask = 0, val = 0;
  524. struct sde_hw_blk_reg_map hw;
  525. memset(&hw, 0, sizeof(hw));
  526. msm_gem_sync(cfg->dma_buf->buf);
  527. cmd1 = (cfg->op == REG_DMA_READ) ?
  528. (dspp_read_sel[cfg->block_select] << 30) : 0;
  529. cmd1 |= (cfg->last_command) ? BIT(24) : 0;
  530. cmd1 |= (cfg->op == REG_DMA_READ) ? (2 << 22) : 0;
  531. cmd1 |= (cfg->op == REG_DMA_WRITE) ? (BIT(22)) : 0;
  532. cmd1 |= (SIZE_DWORD(cfg->dma_buf->index) & MAX_DWORDS_SZ);
  533. if (cfg->dma_type == REG_DMA_TYPE_DB)
  534. SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_DB);
  535. else if (cfg->dma_type == REG_DMA_TYPE_SB)
  536. SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_SB);
  537. if (hw.hwversion == 0) {
  538. DRM_ERROR("DMA type %d is unsupported\n", cfg->dma_type);
  539. return -EOPNOTSUPP;
  540. }
  541. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  542. val = SDE_REG_READ(&hw, reg_dma_intr_4_status_offset);
  543. if (val) {
  544. DRM_DEBUG("LUT dma status %x\n", val);
  545. mask = reg_dma_error_clear_mask;
  546. SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset + sizeof(u32) * 4,
  547. mask);
  548. SDE_EVT32(val);
  549. }
  550. if (cfg->dma_type == REG_DMA_TYPE_DB) {
  551. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx],
  552. cfg->dma_buf->iova);
  553. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx] + 0x4,
  554. cmd1);
  555. } else if (cfg->dma_type == REG_DMA_TYPE_SB) {
  556. SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx],
  557. cfg->dma_buf->iova);
  558. SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx] + 0x4,
  559. cmd1);
  560. }
  561. if (cfg->last_command) {
  562. mask = ctl_trigger_done_mask[cfg->ctl->idx][cfg->queue_select];
  563. SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset, mask);
  564. /* DB LUTDMA use SW trigger while SB LUTDMA uses DSPP_SB
  565. * flush as its trigger event.
  566. */
  567. if (cfg->dma_type == REG_DMA_TYPE_DB) {
  568. SDE_REG_WRITE(&cfg->ctl->hw, reg_dma_ctl_trigger_offset,
  569. queue_sel[cfg->queue_select]);
  570. }
  571. }
  572. return 0;
  573. }
  574. int init_v1(struct sde_hw_reg_dma *cfg)
  575. {
  576. int i = 0, rc = 0;
  577. if (!cfg)
  578. return -EINVAL;
  579. reg_dma = cfg;
  580. for (i = CTL_0; i < CTL_MAX; i++) {
  581. if (!last_cmd_buf_db[i]) {
  582. last_cmd_buf_db[i] =
  583. alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
  584. if (IS_ERR_OR_NULL(last_cmd_buf_db[i])) {
  585. /*
  586. * This will allow reg dma to fall back to
  587. * AHB domain
  588. */
  589. pr_info("Failed to allocate reg dma, ret:%lu\n",
  590. PTR_ERR(last_cmd_buf_db[i]));
  591. return 0;
  592. }
  593. }
  594. if (!last_cmd_buf_sb[i]) {
  595. last_cmd_buf_sb[i] =
  596. alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
  597. if (IS_ERR_OR_NULL(last_cmd_buf_sb[i])) {
  598. /*
  599. * This will allow reg dma to fall back to
  600. * AHB domain
  601. */
  602. pr_info("Failed to allocate reg dma, ret:%lu\n",
  603. PTR_ERR(last_cmd_buf_sb[i]));
  604. return 0;
  605. }
  606. }
  607. }
  608. if (rc) {
  609. for (i = 0; i < CTL_MAX; i++) {
  610. if (!last_cmd_buf_db[i])
  611. continue;
  612. dealloc_reg_dma_v1(last_cmd_buf_db[i]);
  613. last_cmd_buf_db[i] = NULL;
  614. }
  615. for (i = 0; i < CTL_MAX; i++) {
  616. if (!last_cmd_buf_sb[i])
  617. continue;
  618. dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
  619. last_cmd_buf_sb[i] = NULL;
  620. }
  621. return rc;
  622. }
  623. reg_dma->ops.check_support = check_support_v1;
  624. reg_dma->ops.setup_payload = setup_payload_v1;
  625. reg_dma->ops.kick_off = kick_off_v1;
  626. reg_dma->ops.reset = reset_v1;
  627. reg_dma->ops.alloc_reg_dma_buf = alloc_reg_dma_buf_v1;
  628. reg_dma->ops.dealloc_reg_dma = dealloc_reg_dma_v1;
  629. reg_dma->ops.reset_reg_dma_buf = reset_reg_dma_buffer_v1;
  630. reg_dma->ops.last_command = last_cmd_v1;
  631. reg_dma->ops.dump_regs = dump_regs_v1;
  632. reg_dma_register_count = 60;
  633. reg_dma_decode_sel = 0x180ac060;
  634. reg_dma_opmode_offset = 0x4;
  635. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  636. reg_dma_intr_status_offset = 0x90;
  637. reg_dma_intr_4_status_offset = 0xa0;
  638. reg_dma_intr_clear_offset = 0xb0;
  639. reg_dma_ctl_trigger_offset = 0xd4;
  640. reg_dma_ctl0_reset_offset = 0xe4;
  641. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16);
  642. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  643. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  644. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  645. (sizeof(u32) * 4);
  646. return 0;
  647. }
  648. int init_v11(struct sde_hw_reg_dma *cfg)
  649. {
  650. int ret = 0, i = 0;
  651. ret = init_v1(cfg);
  652. if (ret) {
  653. DRM_ERROR("failed to initialize v1: ret %d\n", ret);
  654. return -EINVAL;
  655. }
  656. /* initialize register offsets and v1_supported based on version */
  657. reg_dma_register_count = 133;
  658. reg_dma_decode_sel = 0x180ac114;
  659. reg_dma_opmode_offset = 0x4;
  660. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  661. reg_dma_intr_status_offset = 0x160;
  662. reg_dma_intr_4_status_offset = 0x170;
  663. reg_dma_intr_clear_offset = 0x1a0;
  664. reg_dma_ctl_trigger_offset = 0xd4;
  665. reg_dma_ctl0_reset_offset = 0x200;
  666. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16) |
  667. BIT(17) | BIT(18);
  668. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  669. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  670. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  671. (sizeof(u32) * 4);
  672. v1_supported[IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT |
  673. GRP_VIG_HW_BLK_SELECT | GRP_DMA_HW_BLK_SELECT;
  674. v1_supported[GC] = GRP_DMA_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT;
  675. v1_supported[HSIC] = GRP_DSPP_HW_BLK_SELECT;
  676. v1_supported[SIX_ZONE] = GRP_DSPP_HW_BLK_SELECT;
  677. v1_supported[MEMC_SKIN] = GRP_DSPP_HW_BLK_SELECT;
  678. v1_supported[MEMC_SKY] = GRP_DSPP_HW_BLK_SELECT;
  679. v1_supported[MEMC_FOLIAGE] = GRP_DSPP_HW_BLK_SELECT;
  680. v1_supported[MEMC_PROT] = GRP_DSPP_HW_BLK_SELECT;
  681. v1_supported[QSEED] = GRP_VIG_HW_BLK_SELECT;
  682. return 0;
  683. }
  684. int init_v12(struct sde_hw_reg_dma *cfg)
  685. {
  686. int ret = 0;
  687. ret = init_v11(cfg);
  688. if (ret) {
  689. DRM_ERROR("failed to initialize v11: ret %d\n", ret);
  690. return ret;
  691. }
  692. v1_supported[LTM_INIT] = GRP_LTM_HW_BLK_SELECT;
  693. v1_supported[LTM_ROI] = GRP_LTM_HW_BLK_SELECT;
  694. v1_supported[LTM_VLUT] = GRP_LTM_HW_BLK_SELECT;
  695. v1_supported[RC_DATA] = (GRP_DSPP_HW_BLK_SELECT |
  696. GRP_MDSS_HW_BLK_SELECT);
  697. v1_supported[SPR_INIT] = (GRP_DSPP_HW_BLK_SELECT |
  698. GRP_MDSS_HW_BLK_SELECT);
  699. v1_supported[DEMURA_CFG] = MDSS | DSPP0 | DSPP1;
  700. return 0;
  701. }
  702. int init_v2(struct sde_hw_reg_dma *cfg)
  703. {
  704. int ret = 0, i = 0;
  705. ret = init_v12(cfg);
  706. if (ret) {
  707. DRM_ERROR("failed to initialize v12: ret %d\n", ret);
  708. return ret;
  709. }
  710. /* initialize register offsets based on version delta */
  711. reg_dma_register_count = 0x91;
  712. reg_dma_ctl0_queue1_cmd0_offset = 0x1c;
  713. reg_dma_error_clear_mask |= BIT(19);
  714. reg_dma_ctl_queue1_off[CTL_0] = reg_dma_ctl0_queue1_cmd0_offset;
  715. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  716. reg_dma_ctl_queue1_off[i] = reg_dma_ctl_queue1_off[i - 1] +
  717. (sizeof(u32) * 4);
  718. v1_supported[IGC] = GRP_DSPP_HW_BLK_SELECT | GRP_VIG_HW_BLK_SELECT |
  719. GRP_DMA_HW_BLK_SELECT;
  720. if (cfg->caps->reg_dma_blks[REG_DMA_TYPE_SB].valid == true)
  721. reg_dma->ops.last_command_sb = last_cmd_sb_v2;
  722. return 0;
  723. }
  724. static int check_support_v1(enum sde_reg_dma_features feature,
  725. enum sde_reg_dma_blk blk,
  726. bool *is_supported)
  727. {
  728. int ret = 0;
  729. if (!is_supported)
  730. return -EINVAL;
  731. if (feature >= REG_DMA_FEATURES_MAX || blk >= BIT(REG_DMA_BLK_MAX)) {
  732. *is_supported = false;
  733. return ret;
  734. }
  735. *is_supported = (blk & v1_supported[feature]) ? true : false;
  736. return ret;
  737. }
  738. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg)
  739. {
  740. int rc = 0;
  741. rc = validate_dma_cfg(cfg);
  742. if (!rc)
  743. rc = validate_dma_op_params[cfg->ops](cfg);
  744. if (!rc)
  745. rc = write_dma_op_params[cfg->ops](cfg);
  746. return rc;
  747. }
  748. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  749. {
  750. int rc = 0;
  751. rc = validate_kick_off_v1(cfg);
  752. if (rc)
  753. return rc;
  754. rc = write_kick_off_v1(cfg);
  755. return rc;
  756. }
  757. int reset_v1(struct sde_hw_ctl *ctl)
  758. {
  759. struct sde_hw_blk_reg_map hw;
  760. u32 index, val, i = 0, k = 0;
  761. if (!ctl || ctl->idx > CTL_MAX) {
  762. DRM_ERROR("invalid ctl %pK ctl idx %d\n",
  763. ctl, ((ctl) ? ctl->idx : 0));
  764. return -EINVAL;
  765. }
  766. index = ctl->idx - CTL_0;
  767. for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
  768. memset(&hw, 0, sizeof(hw));
  769. SET_UP_REG_DMA_REG(hw, reg_dma, k);
  770. if (hw.hwversion == 0)
  771. continue;
  772. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  773. SDE_REG_WRITE(&hw, (reg_dma_ctl0_reset_offset +
  774. index * sizeof(u32)), BIT(0));
  775. i = 0;
  776. do {
  777. udelay(1000);
  778. i++;
  779. val = SDE_REG_READ(&hw,
  780. (reg_dma_ctl0_reset_offset +
  781. index * sizeof(u32)));
  782. } while (i < 2 && val);
  783. }
  784. return 0;
  785. }
  786. static void sde_reg_dma_aspace_cb_locked(void *cb_data, bool is_detach)
  787. {
  788. struct sde_reg_dma_buffer *dma_buf = NULL;
  789. struct msm_gem_address_space *aspace = NULL;
  790. u32 iova_aligned, offset;
  791. int rc;
  792. if (!cb_data) {
  793. DRM_ERROR("aspace cb called with invalid dma_buf\n");
  794. return;
  795. }
  796. dma_buf = (struct sde_reg_dma_buffer *)cb_data;
  797. aspace = dma_buf->aspace;
  798. if (is_detach) {
  799. /* invalidate the stored iova */
  800. dma_buf->iova = 0;
  801. /* return the virtual address mapping */
  802. msm_gem_put_vaddr(dma_buf->buf);
  803. msm_gem_vunmap(dma_buf->buf, OBJ_LOCK_NORMAL);
  804. } else {
  805. rc = msm_gem_get_iova(dma_buf->buf, aspace,
  806. &dma_buf->iova);
  807. if (rc) {
  808. DRM_ERROR("failed to get the iova rc %d\n", rc);
  809. return;
  810. }
  811. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  812. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  813. DRM_ERROR("failed to get va rc %d\n", rc);
  814. return;
  815. }
  816. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  817. offset = iova_aligned - dma_buf->iova;
  818. dma_buf->iova = dma_buf->iova + offset;
  819. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  820. dma_buf->next_op_allowed = DECODE_SEL_OP;
  821. }
  822. }
  823. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size)
  824. {
  825. struct sde_reg_dma_buffer *dma_buf = NULL;
  826. u32 iova_aligned, offset;
  827. u32 rsize = size + GUARD_BYTES;
  828. struct msm_gem_address_space *aspace = NULL;
  829. int rc = 0;
  830. if (!size || SIZE_DWORD(size) > MAX_DWORDS_SZ) {
  831. DRM_ERROR("invalid buffer size %d, max %d\n",
  832. SIZE_DWORD(size), MAX_DWORDS_SZ);
  833. return ERR_PTR(-EINVAL);
  834. }
  835. dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
  836. if (!dma_buf)
  837. return ERR_PTR(-ENOMEM);
  838. dma_buf->buf = msm_gem_new(reg_dma->drm_dev,
  839. rsize, MSM_BO_UNCACHED);
  840. if (IS_ERR_OR_NULL(dma_buf->buf)) {
  841. rc = -EINVAL;
  842. goto fail;
  843. }
  844. aspace = msm_gem_smmu_address_space_get(reg_dma->drm_dev,
  845. MSM_SMMU_DOMAIN_UNSECURE);
  846. if (!aspace) {
  847. DRM_ERROR("failed to get aspace\n");
  848. rc = -EINVAL;
  849. goto free_gem;
  850. }
  851. /* register to aspace */
  852. rc = msm_gem_address_space_register_cb(aspace,
  853. sde_reg_dma_aspace_cb_locked,
  854. (void *)dma_buf);
  855. if (rc) {
  856. DRM_ERROR("failed to register callback %d", rc);
  857. goto free_gem;
  858. }
  859. dma_buf->aspace = aspace;
  860. rc = msm_gem_get_iova(dma_buf->buf, aspace, &dma_buf->iova);
  861. if (rc) {
  862. DRM_ERROR("failed to get the iova rc %d\n", rc);
  863. goto free_aspace_cb;
  864. }
  865. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  866. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  867. DRM_ERROR("failed to get va rc %d\n", rc);
  868. rc = -EINVAL;
  869. goto put_iova;
  870. }
  871. dma_buf->buffer_size = size;
  872. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  873. offset = iova_aligned - dma_buf->iova;
  874. dma_buf->iova = dma_buf->iova + offset;
  875. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  876. dma_buf->next_op_allowed = DECODE_SEL_OP;
  877. return dma_buf;
  878. put_iova:
  879. msm_gem_put_iova(dma_buf->buf, aspace);
  880. free_aspace_cb:
  881. msm_gem_address_space_unregister_cb(aspace,
  882. sde_reg_dma_aspace_cb_locked, dma_buf);
  883. free_gem:
  884. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  885. msm_gem_free_object(dma_buf->buf);
  886. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  887. fail:
  888. kfree(dma_buf);
  889. return ERR_PTR(rc);
  890. }
  891. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *dma_buf)
  892. {
  893. if (!dma_buf) {
  894. DRM_ERROR("invalid param reg_buf %pK\n", dma_buf);
  895. return -EINVAL;
  896. }
  897. if (dma_buf->buf) {
  898. msm_gem_put_iova(dma_buf->buf, 0);
  899. msm_gem_address_space_unregister_cb(dma_buf->aspace,
  900. sde_reg_dma_aspace_cb_locked, dma_buf);
  901. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  902. msm_gem_free_object(dma_buf->buf);
  903. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  904. }
  905. kfree(dma_buf);
  906. return 0;
  907. }
  908. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf)
  909. {
  910. if (!lut_buf)
  911. return -EINVAL;
  912. lut_buf->index = 0;
  913. lut_buf->ops_completed = 0;
  914. lut_buf->next_op_allowed = DECODE_SEL_OP;
  915. return 0;
  916. }
  917. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  918. {
  919. u32 remain_len, write_len;
  920. remain_len = BUFFER_SPACE_LEFT(cfg);
  921. write_len = sizeof(u32);
  922. if (remain_len < write_len) {
  923. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  924. remain_len, write_len);
  925. return -EINVAL;
  926. }
  927. return 0;
  928. }
  929. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  930. {
  931. u32 *loc = NULL;
  932. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  933. cfg->dma_buf->index);
  934. loc[0] = reg_dma_decode_sel;
  935. loc[1] = 0;
  936. cfg->dma_buf->index = sizeof(u32) * 2;
  937. cfg->dma_buf->ops_completed = REG_WRITE_OP | DECODE_SEL_OP;
  938. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  939. return 0;
  940. }
  941. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  942. enum sde_reg_dma_last_cmd_mode mode)
  943. {
  944. struct sde_reg_dma_setup_ops_cfg cfg;
  945. struct sde_reg_dma_kickoff_cfg kick_off;
  946. struct sde_hw_blk_reg_map hw;
  947. u32 val;
  948. int rc;
  949. if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
  950. DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
  951. ((ctl) ? ctl->idx : -1));
  952. return -EINVAL;
  953. }
  954. if (!last_cmd_buf_db[ctl->idx] || !last_cmd_buf_db[ctl->idx]->iova) {
  955. DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
  956. return -EINVAL;
  957. }
  958. cfg.dma_buf = last_cmd_buf_db[ctl->idx];
  959. reset_reg_dma_buffer_v1(last_cmd_buf_db[ctl->idx]);
  960. if (validate_last_cmd(&cfg)) {
  961. DRM_ERROR("validate buf failed\n");
  962. return -EINVAL;
  963. }
  964. if (write_last_cmd(&cfg)) {
  965. DRM_ERROR("write buf failed\n");
  966. return -EINVAL;
  967. }
  968. kick_off.ctl = ctl;
  969. kick_off.queue_select = q;
  970. kick_off.trigger_mode = WRITE_IMMEDIATE;
  971. kick_off.last_command = 1;
  972. kick_off.op = REG_DMA_WRITE;
  973. kick_off.dma_type = REG_DMA_TYPE_DB;
  974. kick_off.dma_buf = last_cmd_buf_db[ctl->idx];
  975. rc = kick_off_v1(&kick_off);
  976. if (rc) {
  977. DRM_ERROR("kick off last cmd failed\n");
  978. return rc;
  979. }
  980. //Lack of block support will be caught by kick_off
  981. memset(&hw, 0, sizeof(hw));
  982. SET_UP_REG_DMA_REG(hw, reg_dma, kick_off.dma_type);
  983. SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, mode);
  984. if (mode == REG_DMA_WAIT4_COMP) {
  985. rc = readl_poll_timeout(hw.base_off + hw.blk_off +
  986. reg_dma_intr_status_offset, val,
  987. (val & ctl_trigger_done_mask[ctl->idx][q]),
  988. 10, 20000);
  989. if (rc)
  990. DRM_ERROR("poll wait failed %d val %x mask %x\n",
  991. rc, val, ctl_trigger_done_mask[ctl->idx][q]);
  992. SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, mode);
  993. }
  994. return rc;
  995. }
  996. void deinit_v1(void)
  997. {
  998. int i = 0;
  999. for (i = CTL_0; i < CTL_MAX; i++) {
  1000. if (last_cmd_buf_db[i])
  1001. dealloc_reg_dma_v1(last_cmd_buf_db[i]);
  1002. last_cmd_buf_db[i] = NULL;
  1003. if (last_cmd_buf_sb[i])
  1004. dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
  1005. last_cmd_buf_sb[i] = NULL;
  1006. }
  1007. }
  1008. static void dump_regs_v1(void)
  1009. {
  1010. uint32_t i = 0, k = 0;
  1011. u32 val;
  1012. struct sde_hw_blk_reg_map hw;
  1013. for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
  1014. memset(&hw, 0, sizeof(hw));
  1015. SET_UP_REG_DMA_REG(hw, reg_dma, k);
  1016. if (hw.hwversion == 0)
  1017. continue;
  1018. for (i = 0; i < reg_dma_register_count; i++) {
  1019. val = SDE_REG_READ(&hw, i * sizeof(u32));
  1020. DRM_ERROR("offset %x val %x\n", (u32)(i * sizeof(u32)),
  1021. val);
  1022. }
  1023. }
  1024. }
  1025. static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  1026. enum sde_reg_dma_last_cmd_mode mode)
  1027. {
  1028. struct sde_reg_dma_setup_ops_cfg cfg;
  1029. struct sde_reg_dma_kickoff_cfg kick_off;
  1030. int rc = 0;
  1031. if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
  1032. DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
  1033. ((ctl) ? ctl->idx : -1));
  1034. return -EINVAL;
  1035. }
  1036. if (!last_cmd_buf_sb[ctl->idx] || !last_cmd_buf_sb[ctl->idx]->iova) {
  1037. DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
  1038. return -EINVAL;
  1039. }
  1040. cfg.dma_buf = last_cmd_buf_sb[ctl->idx];
  1041. reset_reg_dma_buffer_v1(last_cmd_buf_sb[ctl->idx]);
  1042. if (validate_last_cmd(&cfg)) {
  1043. DRM_ERROR("validate buf failed\n");
  1044. return -EINVAL;
  1045. }
  1046. if (write_last_cmd(&cfg)) {
  1047. DRM_ERROR("write buf failed\n");
  1048. return -EINVAL;
  1049. }
  1050. kick_off.ctl = ctl;
  1051. kick_off.queue_select = q;
  1052. kick_off.trigger_mode = WRITE_IMMEDIATE;
  1053. kick_off.last_command = 1;
  1054. kick_off.op = REG_DMA_WRITE;
  1055. kick_off.dma_type = REG_DMA_TYPE_SB;
  1056. kick_off.queue_select = DMA_CTL_QUEUE1;
  1057. kick_off.dma_buf = last_cmd_buf_sb[ctl->idx];
  1058. rc = kick_off_v1(&kick_off);
  1059. if (rc)
  1060. DRM_ERROR("kick off last cmd failed\n");
  1061. return rc;
  1062. }