dp_txrx_wds.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "htt.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_types.h"
  25. #include "dp_internal.h"
  26. #include "dp_tx.h"
  27. #include "enet.h"
  28. #ifdef WIFI_MONITOR_SUPPORT
  29. #include "dp_mon.h"
  30. #endif
  31. #include "dp_txrx_wds.h"
  32. /* Generic AST entry aging timer value */
  33. #define DP_AST_AGING_TIMER_DEFAULT_MS 5000
  34. #define DP_VLAN_UNTAGGED 0
  35. #define DP_VLAN_TAGGED_MULTICAST 1
  36. #define DP_VLAN_TAGGED_UNICAST 2
  37. #define DP_MAX_VLAN_IDS 4096
  38. #define DP_INVALID_AST_IDX 0xffff
  39. #define DP_INVALID_FLOW_PRIORITY 0xff
  40. #define DP_PEER_AST0_FLOW_MASK 0x4
  41. #define DP_PEER_AST1_FLOW_MASK 0x8
  42. #define DP_PEER_AST2_FLOW_MASK 0x1
  43. #define DP_PEER_AST3_FLOW_MASK 0x2
  44. #define DP_MAX_AST_INDEX_PER_PEER 4
  45. #ifdef WLAN_FEATURE_MULTI_AST_DEL
  46. void dp_peer_free_peer_ase_list(struct dp_soc *soc,
  47. struct peer_del_multi_wds_entries *wds_list)
  48. {
  49. struct peer_wds_entry_list *wds_entry, *tmp_entry;
  50. TAILQ_FOREACH_SAFE(wds_entry, &wds_list->ase_list,
  51. ase_list_elem, tmp_entry) {
  52. dp_peer_debug("type: %d mac_addr: " QDF_MAC_ADDR_FMT,
  53. wds_entry->type,
  54. QDF_MAC_ADDR_REF(wds_entry->dest_addr));
  55. TAILQ_REMOVE(&wds_list->ase_list, wds_entry, ase_list_elem);
  56. wds_list->num_entries--;
  57. qdf_mem_free(wds_entry);
  58. }
  59. }
  60. static void
  61. dp_pdev_build_peer_ase_list(struct dp_soc *soc, struct dp_peer *peer,
  62. void *arg)
  63. {
  64. struct dp_ast_entry *ase, *temp_ase;
  65. struct peer_del_multi_wds_entries *list = arg;
  66. struct peer_wds_entry_list *wds_entry;
  67. if (!soc || !peer || !arg) {
  68. dp_peer_err("Invalid input");
  69. return;
  70. }
  71. list->vdev_id = peer->vdev->vdev_id;
  72. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  73. if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
  74. ase->type != CDP_TXRX_AST_TYPE_DA)
  75. continue;
  76. if (ase->is_active) {
  77. ase->is_active = false;
  78. continue;
  79. }
  80. if (ase->delete_in_progress) {
  81. dp_info_rl("Del set addr:" QDF_MAC_ADDR_FMT " type:%d",
  82. QDF_MAC_ADDR_REF(ase->mac_addr.raw),
  83. ase->type);
  84. continue;
  85. }
  86. if (ase->is_mapped)
  87. soc->ast_table[ase->ast_idx] = NULL;
  88. if (!ase->next_hop) {
  89. dp_peer_unlink_ast_entry(soc, ase, peer);
  90. continue;
  91. }
  92. wds_entry = (struct peer_wds_entry_list *)
  93. qdf_mem_malloc(sizeof(*wds_entry));
  94. if (!wds_entry) {
  95. dp_peer_err("%pK: fail to allocate wds_entry", soc);
  96. dp_peer_free_peer_ase_list(soc, list);
  97. return;
  98. }
  99. DP_STATS_INC(soc, ast.aged_out, 1);
  100. ase->delete_in_progress = true;
  101. wds_entry->dest_addr = ase->mac_addr.raw;
  102. wds_entry->type = ase->type;
  103. if (dp_peer_state_cmp(peer, DP_PEER_STATE_LOGICAL_DELETE))
  104. wds_entry->delete_in_fw = false;
  105. else
  106. wds_entry->delete_in_fw = true;
  107. dp_peer_debug("ase->type: %d pdev: %u vdev: %u mac_addr: " QDF_MAC_ADDR_FMT " next_hop: %u peer: %u",
  108. ase->type, ase->pdev_id, ase->vdev_id,
  109. QDF_MAC_ADDR_REF(ase->mac_addr.raw),
  110. ase->next_hop, ase->peer_id);
  111. TAILQ_INSERT_TAIL(&list->ase_list, wds_entry, ase_list_elem);
  112. list->num_entries++;
  113. }
  114. dp_peer_info("Total num of entries :%d", list->num_entries);
  115. }
  116. static void
  117. dp_peer_age_multi_ast_entries(struct dp_soc *soc, void *arg,
  118. enum dp_mod_id mod_id)
  119. {
  120. uint8_t i;
  121. struct dp_pdev *pdev = NULL;
  122. struct peer_del_multi_wds_entries wds_list = {0};
  123. TAILQ_INIT(&wds_list.ase_list);
  124. for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
  125. pdev = soc->pdev_list[i];
  126. dp_pdev_iterate_peer(pdev, dp_pdev_build_peer_ase_list,
  127. &wds_list, mod_id);
  128. if (wds_list.num_entries > 0) {
  129. dp_peer_ast_send_multi_wds_del(soc, wds_list.vdev_id,
  130. &wds_list);
  131. dp_peer_free_peer_ase_list(soc, &wds_list);
  132. } else {
  133. dp_peer_debug("No AST entries for pdev:%u",
  134. pdev->pdev_id);
  135. }
  136. }
  137. }
  138. #endif /* WLAN_FEATURE_MULTI_AST_DEL */
  139. static void
  140. dp_peer_age_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
  141. {
  142. struct dp_ast_entry *ase, *temp_ase;
  143. struct ast_del_ctxt *del_ctxt = (struct ast_del_ctxt *)arg;
  144. if ((del_ctxt->del_count >= soc->max_ast_ageout_count) &&
  145. !del_ctxt->age) {
  146. return;
  147. }
  148. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  149. /*
  150. * Do not expire static ast entries and HM WDS entries
  151. */
  152. if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
  153. ase->type != CDP_TXRX_AST_TYPE_DA)
  154. continue;
  155. if (ase->is_active) {
  156. if (del_ctxt->age)
  157. ase->is_active = FALSE;
  158. continue;
  159. }
  160. if (del_ctxt->del_count < soc->max_ast_ageout_count) {
  161. DP_STATS_INC(soc, ast.aged_out, 1);
  162. dp_peer_del_ast(soc, ase);
  163. del_ctxt->del_count++;
  164. } else {
  165. soc->pending_ageout = true;
  166. if (!del_ctxt->age)
  167. break;
  168. }
  169. }
  170. }
  171. static void
  172. dp_peer_age_mec_entries(struct dp_soc *soc)
  173. {
  174. uint32_t index;
  175. struct dp_mec_entry *mecentry, *mecentry_next;
  176. TAILQ_HEAD(, dp_mec_entry) free_list;
  177. TAILQ_INIT(&free_list);
  178. for (index = 0; index <= soc->mec_hash.mask; index++) {
  179. qdf_spin_lock_bh(&soc->mec_lock);
  180. /*
  181. * Expire MEC entry every n sec.
  182. */
  183. if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
  184. TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
  185. hash_list_elem, mecentry_next) {
  186. if (mecentry->is_active) {
  187. mecentry->is_active = FALSE;
  188. continue;
  189. }
  190. dp_peer_mec_detach_entry(soc, mecentry,
  191. &free_list);
  192. }
  193. }
  194. qdf_spin_unlock_bh(&soc->mec_lock);
  195. }
  196. dp_peer_mec_free_list(soc, &free_list);
  197. }
  198. #ifdef WLAN_FEATURE_MULTI_AST_DEL
  199. static void dp_ast_aging_timer_fn(void *soc_hdl)
  200. {
  201. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  202. struct ast_del_ctxt del_ctxt = {0};
  203. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  204. del_ctxt.age = true;
  205. soc->wds_ast_aging_timer_cnt = 0;
  206. }
  207. if (soc->pending_ageout || del_ctxt.age) {
  208. soc->pending_ageout = false;
  209. /* AST list access lock */
  210. qdf_spin_lock_bh(&soc->ast_lock);
  211. if (soc->multi_peer_grp_cmd_supported)
  212. dp_peer_age_multi_ast_entries(soc, NULL, DP_MOD_ID_AST);
  213. else
  214. dp_soc_iterate_peer(soc, dp_peer_age_ast_entries,
  215. &del_ctxt, DP_MOD_ID_AST);
  216. qdf_spin_unlock_bh(&soc->ast_lock);
  217. }
  218. /*
  219. * If NSS offload is enabled, the MEC timeout
  220. * will be managed by NSS.
  221. */
  222. if (qdf_atomic_read(&soc->mec_cnt) &&
  223. !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  224. dp_peer_age_mec_entries(soc);
  225. if (qdf_atomic_read(&soc->cmn_init_done))
  226. qdf_timer_mod(&soc->ast_aging_timer,
  227. DP_AST_AGING_TIMER_DEFAULT_MS);
  228. }
  229. #else
  230. static void dp_ast_aging_timer_fn(void *soc_hdl)
  231. {
  232. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  233. struct ast_del_ctxt del_ctxt = {0};
  234. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  235. del_ctxt.age = true;
  236. soc->wds_ast_aging_timer_cnt = 0;
  237. }
  238. if (soc->pending_ageout || del_ctxt.age) {
  239. soc->pending_ageout = false;
  240. /* AST list access lock */
  241. qdf_spin_lock_bh(&soc->ast_lock);
  242. dp_soc_iterate_peer(soc, dp_peer_age_ast_entries,
  243. &del_ctxt, DP_MOD_ID_AST);
  244. qdf_spin_unlock_bh(&soc->ast_lock);
  245. }
  246. /*
  247. * If NSS offload is enabled, the MEC timeout
  248. * will be managed by NSS.
  249. */
  250. if (qdf_atomic_read(&soc->mec_cnt) &&
  251. !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  252. dp_peer_age_mec_entries(soc);
  253. if (qdf_atomic_read(&soc->cmn_init_done))
  254. qdf_timer_mod(&soc->ast_aging_timer,
  255. DP_AST_AGING_TIMER_DEFAULT_MS);
  256. }
  257. #endif /* WLAN_FEATURE_MULTI_AST_DEL */
  258. #ifndef IPA_WDS_EASYMESH_FEATURE
  259. void dp_soc_wds_attach(struct dp_soc *soc)
  260. {
  261. if (soc->ast_offload_support)
  262. return;
  263. soc->wds_ast_aging_timer_cnt = 0;
  264. soc->pending_ageout = false;
  265. qdf_timer_init(soc->osdev, &soc->ast_aging_timer,
  266. dp_ast_aging_timer_fn, (void *)soc,
  267. QDF_TIMER_TYPE_WAKE_APPS);
  268. qdf_timer_mod(&soc->ast_aging_timer, DP_AST_AGING_TIMER_DEFAULT_MS);
  269. }
  270. void dp_soc_wds_detach(struct dp_soc *soc)
  271. {
  272. qdf_timer_stop(&soc->ast_aging_timer);
  273. qdf_timer_free(&soc->ast_aging_timer);
  274. }
  275. #else
  276. void dp_soc_wds_attach(struct dp_soc *soc)
  277. {
  278. }
  279. void dp_soc_wds_detach(struct dp_soc *soc)
  280. {
  281. }
  282. #endif
  283. void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
  284. {
  285. struct dp_soc *soc;
  286. QDF_STATUS add_mec_status;
  287. uint8_t mac_addr[QDF_MAC_ADDR_SIZE], i;
  288. if (!vdev->mec_enabled)
  289. return;
  290. /* MEC required only in STA mode */
  291. if (vdev->opmode != wlan_op_mode_sta)
  292. return;
  293. soc = vdev->pdev->soc;
  294. for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
  295. mac_addr[(QDF_MAC_ADDR_SIZE - 1) - i] =
  296. status[(QDF_MAC_ADDR_SIZE - 2) + i];
  297. dp_peer_debug("%pK: MEC add for mac_addr "QDF_MAC_ADDR_FMT,
  298. soc, QDF_MAC_ADDR_REF(mac_addr));
  299. if (qdf_mem_cmp(mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE)) {
  300. add_mec_status = dp_peer_mec_add_entry(soc, vdev, mac_addr);
  301. dp_peer_debug("%pK: MEC add status %d", vdev, add_mec_status);
  302. }
  303. }
  304. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  305. void
  306. dp_rx_da_learn(struct dp_soc *soc,
  307. uint8_t *rx_tlv_hdr,
  308. struct dp_txrx_peer *ta_txrx_peer,
  309. qdf_nbuf_t nbuf)
  310. {
  311. struct dp_peer *base_peer;
  312. /* For HKv2 DA port learing is not needed */
  313. if (qdf_likely(soc->ast_override_support))
  314. return;
  315. if (qdf_unlikely(!ta_txrx_peer))
  316. return;
  317. if (qdf_unlikely(ta_txrx_peer->vdev->opmode != wlan_op_mode_ap))
  318. return;
  319. if (!soc->da_war_enabled)
  320. return;
  321. if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
  322. !qdf_nbuf_is_da_mcbc(nbuf))) {
  323. base_peer = dp_peer_get_ref_by_id(soc, ta_txrx_peer->peer_id,
  324. DP_MOD_ID_AST);
  325. if (base_peer) {
  326. dp_peer_add_ast(soc,
  327. base_peer,
  328. qdf_nbuf_data(nbuf),
  329. CDP_TXRX_AST_TYPE_DA,
  330. DP_AST_FLAGS_HM);
  331. dp_peer_unref_delete(base_peer, DP_MOD_ID_AST);
  332. }
  333. }
  334. }
  335. #ifdef WDS_VENDOR_EXTENSION
  336. QDF_STATUS
  337. dp_txrx_set_wds_rx_policy(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  338. u_int32_t val)
  339. {
  340. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  341. struct dp_peer *peer;
  342. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  343. DP_MOD_ID_MISC);
  344. if (!vdev) {
  345. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  346. FL("vdev is NULL for vdev_id %d"), vdev_id);
  347. return QDF_STATUS_E_INVAL;
  348. }
  349. peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  350. if (peer) {
  351. peer->txrx_peer->wds_ecm.wds_rx_filter = 1;
  352. peer->txrx_peer->wds_ecm.wds_rx_ucast_4addr =
  353. (val & WDS_POLICY_RX_UCAST_4ADDR) ? 1 : 0;
  354. peer->txrx_peer->wds_ecm.wds_rx_mcast_4addr =
  355. (val & WDS_POLICY_RX_MCAST_4ADDR) ? 1 : 0;
  356. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  357. }
  358. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
  359. return QDF_STATUS_SUCCESS;
  360. }
  361. QDF_STATUS
  362. dp_txrx_peer_wds_tx_policy_update(struct cdp_soc_t *soc, uint8_t vdev_id,
  363. uint8_t *peer_mac, int wds_tx_ucast,
  364. int wds_tx_mcast)
  365. {
  366. struct dp_peer *peer =
  367. dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
  368. peer_mac, 0,
  369. vdev_id,
  370. DP_MOD_ID_AST);
  371. if (!peer) {
  372. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  373. FL("peer is NULL for mac %pM vdev_id %d"),
  374. peer_mac, vdev_id);
  375. return QDF_STATUS_E_INVAL;
  376. }
  377. if (!peer->txrx_peer) {
  378. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  379. return QDF_STATUS_E_INVAL;
  380. }
  381. if (wds_tx_ucast || wds_tx_mcast) {
  382. peer->txrx_peer->wds_enabled = 1;
  383. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr = wds_tx_ucast;
  384. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr = wds_tx_mcast;
  385. } else {
  386. peer->txrx_peer->wds_enabled = 0;
  387. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr = 0;
  388. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr = 0;
  389. }
  390. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  391. "Policy Update set to :\n");
  392. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  393. "peer->wds_enabled %d\n", peer->wds_enabled);
  394. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  395. "peer->wds_ecm.wds_tx_ucast_4addr %d\n",
  396. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr);
  397. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  398. "peer->wds_ecm.wds_tx_mcast_4addr %d\n",
  399. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr);
  400. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  401. return QDF_STATUS_SUCCESS;
  402. }
  403. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  404. struct dp_vdev *vdev,
  405. struct dp_txrx_peer *txrx_peer)
  406. {
  407. struct dp_peer *bss_peer;
  408. int fr_ds, to_ds, rx_3addr, rx_4addr;
  409. int rx_policy_ucast, rx_policy_mcast;
  410. hal_soc_handle_t hal_soc = vdev->pdev->soc->hal_soc;
  411. int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(hal_soc, rx_tlv_hdr);
  412. if (vdev->opmode == wlan_op_mode_ap) {
  413. bss_peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  414. /* if wds policy check is not enabled on this vdev, accept all frames */
  415. if (bss_peer && !bss_peer->txrx_peer->wds_ecm.wds_rx_filter) {
  416. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  417. return 1;
  418. }
  419. rx_policy_ucast = bss_peer->txrx_peerwds_ecm.wds_rx_ucast_4addr;
  420. rx_policy_mcast = bss_peer->txrx_peerwds_ecm.wds_rx_mcast_4addr;
  421. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  422. } else { /* sta mode */
  423. if (!txrx_peer->wds_ecm.wds_rx_filter)
  424. return 1;
  425. rx_policy_ucast = txrx_peer->wds_ecm.wds_rx_ucast_4addr;
  426. rx_policy_mcast = txrx_peer->wds_ecm.wds_rx_mcast_4addr;
  427. }
  428. /* ------------------------------------------------
  429. * self
  430. * peer- rx rx-
  431. * wds ucast mcast dir policy accept note
  432. * ------------------------------------------------
  433. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  434. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  435. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  436. * 1 1 0 00 x1 0 bad frame, won't see it
  437. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  438. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  439. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  440. * 1 0 1 00 1x 0 bad frame, won't see it
  441. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  442. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  443. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  444. * 1 1 0 00 x0 0 bad frame, won't see it
  445. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  446. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  447. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  448. * 1 0 1 00 0x 0 bad frame, won't see it
  449. *
  450. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  451. * 0 x x 01 xx 1
  452. * 0 x x 10 xx 0
  453. * 0 x x 00 xx 0 bad frame, won't see it
  454. * ------------------------------------------------
  455. */
  456. fr_ds = hal_rx_mpdu_get_fr_ds(hal_soc, rx_tlv_hdr);
  457. to_ds = hal_rx_mpdu_get_to_ds(hal_soc, rx_tlv_hdr);
  458. rx_3addr = fr_ds ^ to_ds;
  459. rx_4addr = fr_ds & to_ds;
  460. if (vdev->opmode == wlan_op_mode_ap) {
  461. if ((!txrx_peer->wds_enabled && rx_3addr && to_ds) ||
  462. (txrx_peer->wds_enabled && !rx_mcast &&
  463. (rx_4addr == rx_policy_ucast)) ||
  464. (txrx_peer->wds_enabled && rx_mcast &&
  465. (rx_4addr == rx_policy_mcast))) {
  466. return 1;
  467. }
  468. } else { /* sta mode */
  469. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  470. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  471. return 1;
  472. }
  473. }
  474. return 0;
  475. }
  476. #endif
  477. #ifdef QCA_MULTIPASS_SUPPORT
  478. void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
  479. struct dp_tx_msdu_info_s *msdu_info, uint16_t group_key)
  480. {
  481. struct htt_tx_msdu_desc_ext2_t *meta_data =
  482. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  483. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  484. /*
  485. * When attempting to send a multicast packet with multi-passphrase,
  486. * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
  487. * ref htt.h indicating the group_id field in "key_flags" also having
  488. * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
  489. */
  490. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0], 1);
  491. HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
  492. }
  493. void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  494. {
  495. struct vlan_ethhdr veth_hdr;
  496. struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
  497. /*
  498. * Extract VLAN header of 4 bytes:
  499. * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4], EtherType[2], Payload}
  500. * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02 08 00 45 00 00...
  501. * After Removal : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00 00...
  502. */
  503. qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
  504. qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
  505. veh = (struct vlan_ethhdr *)nbuf->data;
  506. qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
  507. return;
  508. }
  509. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  510. defined(WLAN_MCAST_MLO)
  511. /**
  512. * dp_tx_need_mcast_reinject() - If frame needs to be processed in reinject path
  513. * @vdev: DP vdev handle
  514. *
  515. * Return: true if reinject handling is required else false
  516. */
  517. static inline bool
  518. dp_tx_need_mcast_reinject(struct dp_vdev *vdev)
  519. {
  520. if (vdev->mlo_vdev && vdev->opmode == wlan_op_mode_ap)
  521. return true;
  522. return false;
  523. }
  524. #else
  525. static inline bool
  526. dp_tx_need_mcast_reinject(struct dp_vdev *vdev)
  527. {
  528. return false;
  529. }
  530. #endif
  531. /**
  532. * dp_tx_need_multipass_process() - If frame needs multipass phrase processing
  533. * @soc: dp soc handle
  534. * @vdev: DP vdev handle
  535. * @buf: frame
  536. * @vlan_id: vlan id of frame
  537. *
  538. * Return: whether peer is special or classic
  539. */
  540. static
  541. uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  542. qdf_nbuf_t buf, uint16_t *vlan_id)
  543. {
  544. struct dp_txrx_peer *txrx_peer = NULL;
  545. struct dp_peer *peer = NULL;
  546. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
  547. struct vlan_ethhdr *veh = NULL;
  548. bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
  549. (htons(eh->ether_type) != ETH_P_8021Q));
  550. if (qdf_unlikely(not_vlan))
  551. return DP_VLAN_UNTAGGED;
  552. veh = (struct vlan_ethhdr *)eh;
  553. *vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
  554. if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
  555. /* look for handling of multicast packets in reinject path */
  556. if (dp_tx_need_mcast_reinject(vdev))
  557. return DP_VLAN_UNTAGGED;
  558. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  559. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list,
  560. mpass_peer_list_elem) {
  561. if (*vlan_id == txrx_peer->vlan_id) {
  562. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  563. return DP_VLAN_TAGGED_MULTICAST;
  564. }
  565. }
  566. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  567. return DP_VLAN_UNTAGGED;
  568. }
  569. peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL,
  570. DP_MOD_ID_TX_MULTIPASS);
  571. if (qdf_unlikely(peer == NULL))
  572. return DP_VLAN_UNTAGGED;
  573. /*
  574. * Do not drop the frame when vlan_id doesn't match.
  575. * Send the frame as it is.
  576. */
  577. if (*vlan_id == peer->txrx_peer->vlan_id) {
  578. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  579. return DP_VLAN_TAGGED_UNICAST;
  580. }
  581. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  582. return DP_VLAN_UNTAGGED;
  583. }
  584. bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  585. qdf_nbuf_t nbuf,
  586. struct dp_tx_msdu_info_s *msdu_info)
  587. {
  588. uint16_t vlan_id = 0;
  589. uint16_t group_key = 0;
  590. uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
  591. qdf_nbuf_t nbuf_copy = NULL;
  592. if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0])) {
  593. return true;
  594. }
  595. is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
  596. if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
  597. (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
  598. return true;
  599. if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
  600. dp_tx_remove_vlan_tag(vdev, nbuf);
  601. return true;
  602. }
  603. /* AP can have classic clients, special clients &
  604. * classic repeaters.
  605. * 1. Classic clients & special client:
  606. * Remove vlan header, find corresponding group key
  607. * index, fill in metaheader and enqueue multicast
  608. * frame to TCL.
  609. * 2. Classic repeater:
  610. * Pass through to classic repeater with vlan tag
  611. * intact without any group key index. Hardware
  612. * will know which key to use to send frame to
  613. * repeater.
  614. */
  615. nbuf_copy = qdf_nbuf_copy(nbuf);
  616. /*
  617. * Send multicast frame to special peers even
  618. * if pass through to classic repeater fails.
  619. */
  620. if (nbuf_copy) {
  621. struct dp_tx_msdu_info_s msdu_info_copy;
  622. qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
  623. msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
  624. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
  625. nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy, &msdu_info_copy, HTT_INVALID_PEER, NULL);
  626. if (nbuf_copy) {
  627. qdf_nbuf_free(nbuf_copy);
  628. qdf_err("nbuf_copy send failed");
  629. }
  630. }
  631. group_key = vdev->iv_vlan_map[vlan_id];
  632. /*
  633. * If group key is not installed, drop the frame.
  634. */
  635. if (!group_key)
  636. return false;
  637. dp_tx_remove_vlan_tag(vdev, nbuf);
  638. dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
  639. msdu_info->exception_fw = 1;
  640. return true;
  641. }
  642. bool dp_rx_multipass_process(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf,
  643. uint8_t tid)
  644. {
  645. struct vlan_ethhdr *vethhdrp;
  646. if (qdf_unlikely(!txrx_peer->vlan_id))
  647. return true;
  648. vethhdrp = (struct vlan_ethhdr *)qdf_nbuf_data(nbuf);
  649. /*
  650. * h_vlan_proto & h_vlan_TCI should be 0x8100 & zero respectively
  651. * as it is expected to be padded by 0
  652. * return false if frame doesn't have above tag so that caller will
  653. * drop the frame.
  654. */
  655. if (qdf_unlikely(vethhdrp->h_vlan_proto != htons(QDF_ETH_TYPE_8021Q)) ||
  656. qdf_unlikely(vethhdrp->h_vlan_TCI != 0))
  657. return false;
  658. vethhdrp->h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
  659. (txrx_peer->vlan_id & VLAN_VID_MASK));
  660. if (vethhdrp->h_vlan_encapsulated_proto == htons(ETHERTYPE_PAE))
  661. dp_tx_remove_vlan_tag(txrx_peer->vdev, nbuf);
  662. return true;
  663. }
  664. #endif /* QCA_MULTIPASS_SUPPORT */
  665. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  666. #ifdef QCA_MULTIPASS_SUPPORT
  667. void dp_peer_multipass_list_remove(struct dp_peer *peer)
  668. {
  669. struct dp_vdev *vdev = peer->vdev;
  670. struct dp_txrx_peer *tpeer = NULL;
  671. bool found = 0;
  672. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  673. TAILQ_FOREACH(tpeer, &vdev->mpass_peer_list, mpass_peer_list_elem) {
  674. if (tpeer == peer->txrx_peer) {
  675. found = 1;
  676. TAILQ_REMOVE(&vdev->mpass_peer_list, peer->txrx_peer,
  677. mpass_peer_list_elem);
  678. break;
  679. }
  680. }
  681. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  682. if (found)
  683. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  684. }
  685. /**
  686. * dp_peer_multipass_list_add() - add to new multipass list
  687. * @soc: soc handle
  688. * @peer_mac: mac address
  689. * @vdev_id: vdev id for peer
  690. * @vlan_id: vlan_id
  691. *
  692. * return: void
  693. */
  694. static void dp_peer_multipass_list_add(struct dp_soc *soc, uint8_t *peer_mac,
  695. uint8_t vdev_id, uint16_t vlan_id)
  696. {
  697. struct dp_peer *peer =
  698. dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
  699. vdev_id,
  700. DP_MOD_ID_TX_MULTIPASS);
  701. if (qdf_unlikely(!peer)) {
  702. qdf_err("NULL peer");
  703. return;
  704. }
  705. if (qdf_unlikely(!peer->txrx_peer))
  706. goto fail;
  707. /* If peer already exists in vdev multipass list, do not add it.
  708. * This may happen if key install comes twice or re-key
  709. * happens for a peer.
  710. */
  711. if (peer->txrx_peer->vlan_id) {
  712. dp_debug("peer already added to vdev multipass list"
  713. "MAC: "QDF_MAC_ADDR_FMT" vlan: %d ",
  714. QDF_MAC_ADDR_REF(peer->mac_addr.raw),
  715. peer->txrx_peer->vlan_id);
  716. goto fail;
  717. }
  718. /*
  719. * Ref_cnt is incremented inside dp_peer_find_hash_find().
  720. * Decrement it when element is deleted from the list.
  721. */
  722. peer->txrx_peer->vlan_id = vlan_id;
  723. qdf_spin_lock_bh(&peer->txrx_peer->vdev->mpass_peer_mutex);
  724. TAILQ_INSERT_HEAD(&peer->txrx_peer->vdev->mpass_peer_list,
  725. peer->txrx_peer,
  726. mpass_peer_list_elem);
  727. qdf_spin_unlock_bh(&peer->txrx_peer->vdev->mpass_peer_mutex);
  728. return;
  729. fail:
  730. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  731. return;
  732. }
  733. void dp_peer_set_vlan_id(struct cdp_soc_t *cdp_soc,
  734. uint8_t vdev_id, uint8_t *peer_mac,
  735. uint16_t vlan_id)
  736. {
  737. struct dp_soc *soc = (struct dp_soc *)cdp_soc;
  738. struct dp_vdev *vdev =
  739. dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
  740. DP_MOD_ID_TX_MULTIPASS);
  741. if (vdev && vdev->multipass_en) {
  742. dp_peer_multipass_list_add(soc, peer_mac, vdev_id, vlan_id);
  743. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  744. }
  745. }
  746. QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  747. uint16_t vlan_id, uint16_t group_key)
  748. {
  749. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  750. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  751. DP_MOD_ID_TX_MULTIPASS);
  752. QDF_STATUS status;
  753. if (!vdev || !vdev->multipass_en) {
  754. status = QDF_STATUS_E_INVAL;
  755. goto fail;
  756. }
  757. if (!vdev->iv_vlan_map) {
  758. uint16_t vlan_map_size = (sizeof(uint16_t))*DP_MAX_VLAN_IDS;
  759. vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
  760. if (!vdev->iv_vlan_map) {
  761. QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
  762. status = QDF_STATUS_E_NOMEM;
  763. goto fail;
  764. }
  765. /*
  766. * 0 is invalid group key.
  767. * Initilalize array with invalid group keys.
  768. */
  769. qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
  770. }
  771. if (vlan_id >= DP_MAX_VLAN_IDS) {
  772. status = QDF_STATUS_E_INVAL;
  773. goto fail;
  774. }
  775. vdev->iv_vlan_map[vlan_id] = group_key;
  776. status = QDF_STATUS_SUCCESS;
  777. fail:
  778. if (vdev)
  779. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  780. return status;
  781. }
  782. void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
  783. {
  784. struct dp_txrx_peer *txrx_peer = NULL;
  785. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  786. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
  787. qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
  788. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  789. if (vdev->iv_vlan_map) {
  790. qdf_mem_free(vdev->iv_vlan_map);
  791. vdev->iv_vlan_map = NULL;
  792. }
  793. qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
  794. }
  795. void dp_peer_multipass_list_init(struct dp_vdev *vdev)
  796. {
  797. /*
  798. * vdev->iv_vlan_map is allocated when the first configuration command
  799. * is issued to avoid unnecessary allocation for regular mode VAP.
  800. */
  801. TAILQ_INIT(&vdev->mpass_peer_list);
  802. qdf_spinlock_create(&vdev->mpass_peer_mutex);
  803. }
  804. #endif /* QCA_MULTIPASS_SUPPORT */
  805. #ifdef QCA_PEER_MULTIQ_SUPPORT
  806. void dp_peer_reset_flowq_map(struct dp_peer *peer)
  807. {
  808. int i = 0;
  809. if (!peer)
  810. return;
  811. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  812. peer->peer_ast_flowq_idx[i].is_valid = false;
  813. peer->peer_ast_flowq_idx[i].valid_tid_mask = false;
  814. peer->peer_ast_flowq_idx[i].ast_idx = DP_INVALID_AST_IDX;
  815. peer->peer_ast_flowq_idx[i].flowQ = DP_INVALID_FLOW_PRIORITY;
  816. }
  817. }
  818. /**
  819. * dp_peer_get_flowid_from_flowmask() - get flow id from flow mask
  820. * @peer: dp peer handle
  821. * @mask: flow mask
  822. *
  823. * Return: flow id
  824. */
  825. static int dp_peer_get_flowid_from_flowmask(struct dp_peer *peer,
  826. uint8_t mask)
  827. {
  828. if (!peer) {
  829. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  830. "%s: Invalid peer\n", __func__);
  831. return -1;
  832. }
  833. if (mask & DP_PEER_AST0_FLOW_MASK)
  834. return DP_PEER_AST_FLOWQ_UDP;
  835. else if (mask & DP_PEER_AST1_FLOW_MASK)
  836. return DP_PEER_AST_FLOWQ_NON_UDP;
  837. else if (mask & DP_PEER_AST2_FLOW_MASK)
  838. return DP_PEER_AST_FLOWQ_HI_PRIO;
  839. else if (mask & DP_PEER_AST3_FLOW_MASK)
  840. return DP_PEER_AST_FLOWQ_LOW_PRIO;
  841. return DP_PEER_AST_FLOWQ_MAX;
  842. }
  843. /**
  844. * dp_peer_get_ast_valid() - get ast index valid from mask
  845. * @mask: mask for ast valid bits
  846. * @index: index for an ast
  847. *
  848. * Return: 1 if ast index is valid from mask else 0
  849. */
  850. static inline bool dp_peer_get_ast_valid(uint8_t mask, uint16_t index)
  851. {
  852. if (index == 0)
  853. return 1;
  854. return ((mask) & (1 << ((index) - 1)));
  855. }
  856. void dp_peer_ast_index_flow_queue_map_create(void *soc_hdl,
  857. bool is_wds, uint16_t peer_id, uint8_t *peer_mac_addr,
  858. struct dp_ast_flow_override_info *ast_info)
  859. {
  860. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  861. struct dp_peer *peer = NULL;
  862. uint8_t i;
  863. /*
  864. * Ast flow override feature is supported
  865. * only for connected client
  866. */
  867. if (is_wds)
  868. return;
  869. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_AST);
  870. if (!peer) {
  871. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  872. "%s: Invalid peer\n", __func__);
  873. return;
  874. }
  875. /* Valid only in AP mode */
  876. if (peer->vdev->opmode != wlan_op_mode_ap) {
  877. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  878. "%s: Peer ast flow map not in STA mode\n", __func__);
  879. goto end;
  880. }
  881. /* Making sure the peer is for this mac address */
  882. if (!qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  883. (struct qdf_mac_addr *)peer->mac_addr.raw)) {
  884. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  885. "%s: Peer mac address mismatch\n", __func__);
  886. goto end;
  887. }
  888. /* Ast entry flow mapping not valid for self peer map */
  889. if (qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  890. (struct qdf_mac_addr *)peer->vdev->mac_addr.raw)) {
  891. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  892. "%s: Ast flow mapping not valid for self peer \n", __func__);
  893. goto end;
  894. }
  895. /* Fill up ast index <---> flow id mapping table for this peer */
  896. for (i = 0; i < DP_MAX_AST_INDEX_PER_PEER; i++) {
  897. /* Check if this ast index is valid */
  898. peer->peer_ast_flowq_idx[i].is_valid =
  899. dp_peer_get_ast_valid(ast_info->ast_valid_mask, i);
  900. if (!peer->peer_ast_flowq_idx[i].is_valid)
  901. continue;
  902. /* Get the flow queue id which is mapped to this ast index */
  903. peer->peer_ast_flowq_idx[i].flowQ =
  904. dp_peer_get_flowid_from_flowmask(peer,
  905. ast_info->ast_flow_mask[i]);
  906. /*
  907. * Update tid valid mask only if flow id HIGH or
  908. * Low priority
  909. */
  910. if (peer->peer_ast_flowq_idx[i].flowQ ==
  911. DP_PEER_AST_FLOWQ_HI_PRIO) {
  912. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  913. ast_info->tid_valid_hi_pri_mask;
  914. } else if (peer->peer_ast_flowq_idx[i].flowQ ==
  915. DP_PEER_AST_FLOWQ_LOW_PRIO) {
  916. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  917. ast_info->tid_valid_low_pri_mask;
  918. }
  919. /* Save the ast index for this entry */
  920. peer->peer_ast_flowq_idx[i].ast_idx = ast_info->ast_idx[i];
  921. }
  922. if (soc->cdp_soc.ol_ops->peer_ast_flowid_map) {
  923. soc->cdp_soc.ol_ops->peer_ast_flowid_map(
  924. soc->ctrl_psoc, peer->peer_id,
  925. peer->vdev->vdev_id, peer_mac_addr);
  926. }
  927. end:
  928. /* Release peer reference */
  929. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  930. }
  931. int dp_peer_find_ast_index_by_flowq_id(struct cdp_soc_t *soc,
  932. uint16_t vdev_id, uint8_t *peer_mac_addr,
  933. uint8_t flow_id, uint8_t tid)
  934. {
  935. struct dp_peer *peer = NULL;
  936. uint8_t i;
  937. uint16_t ast_index;
  938. if (flow_id >= DP_PEER_AST_FLOWQ_MAX) {
  939. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  940. "Invalid Flow ID %d\n", flow_id);
  941. return -1;
  942. }
  943. peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  944. peer_mac_addr, 0, vdev_id,
  945. DP_MOD_ID_AST);
  946. if (!peer) {
  947. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  948. "%s: Invalid peer\n", __func__);
  949. return -1;
  950. }
  951. /*
  952. * Loop over the ast entry <----> flow-id mapping to find
  953. * which ast index entry has this flow queue id enabled.
  954. */
  955. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  956. if (peer->peer_ast_flowq_idx[i].flowQ == flow_id)
  957. /*
  958. * Found the matching index for this flow id
  959. */
  960. break;
  961. }
  962. /*
  963. * No match found for this flow id
  964. */
  965. if (i == DP_PEER_AST_FLOWQ_MAX) {
  966. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  967. "%s: ast index not found for flow %d\n", __func__, flow_id);
  968. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  969. return -1;
  970. }
  971. /* Check whether this ast entry is valid */
  972. if (!peer->peer_ast_flowq_idx[i].is_valid) {
  973. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  974. "%s: ast index is invalid for flow %d\n", __func__, flow_id);
  975. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  976. return -1;
  977. }
  978. if (flow_id == DP_PEER_AST_FLOWQ_HI_PRIO ||
  979. flow_id == DP_PEER_AST_FLOWQ_LOW_PRIO) {
  980. /*
  981. * check if this tid is valid for Hi
  982. * and Low priority flow id
  983. */
  984. if ((peer->peer_ast_flowq_idx[i].valid_tid_mask
  985. & (1 << tid))) {
  986. /* Release peer reference */
  987. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  988. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  989. return ast_index;
  990. } else {
  991. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  992. "%s: TID %d is not valid for flow %d\n",
  993. __func__, tid, flow_id);
  994. /*
  995. * TID is not valid for this flow
  996. * Return -1
  997. */
  998. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  999. return -1;
  1000. }
  1001. }
  1002. /*
  1003. * TID valid check not required for
  1004. * UDP/NON UDP flow id
  1005. */
  1006. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  1007. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1008. return ast_index;
  1009. }
  1010. #endif
  1011. void dp_hmwds_ast_add_notify(struct dp_peer *peer,
  1012. uint8_t *mac_addr,
  1013. enum cdp_txrx_ast_entry_type type,
  1014. QDF_STATUS err,
  1015. bool is_peer_map)
  1016. {
  1017. struct dp_vdev *dp_vdev = peer->vdev;
  1018. struct dp_pdev *dp_pdev = dp_vdev->pdev;
  1019. struct cdp_peer_hmwds_ast_add_status add_status;
  1020. /* Ignore ast types other than HM */
  1021. if ((type != CDP_TXRX_AST_TYPE_WDS_HM) &&
  1022. (type != CDP_TXRX_AST_TYPE_WDS_HM_SEC))
  1023. return;
  1024. /* existing ast delete in progress, will be attempted
  1025. * to add again after delete is complete. Send status then.
  1026. */
  1027. if (err == QDF_STATUS_E_AGAIN)
  1028. return;
  1029. /* peer map pending, notify actual status
  1030. * when peer map is received.
  1031. */
  1032. if (!is_peer_map && (err == QDF_STATUS_SUCCESS))
  1033. return;
  1034. qdf_mem_zero(&add_status, sizeof(add_status));
  1035. add_status.vdev_id = dp_vdev->vdev_id;
  1036. /* For type CDP_TXRX_AST_TYPE_WDS_HM_SEC dp_peer_add_ast()
  1037. * returns QDF_STATUS_E_FAILURE as it is host only entry.
  1038. * In such cases set err as success. Also err code set to
  1039. * QDF_STATUS_E_ALREADY indicates entry already exist in
  1040. * such cases set err as success too. Any other error code
  1041. * is actual error.
  1042. */
  1043. if (((type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) &&
  1044. (err == QDF_STATUS_E_FAILURE)) ||
  1045. (err == QDF_STATUS_E_ALREADY)) {
  1046. err = QDF_STATUS_SUCCESS;
  1047. }
  1048. add_status.status = err;
  1049. qdf_mem_copy(add_status.peer_mac, peer->mac_addr.raw,
  1050. QDF_MAC_ADDR_SIZE);
  1051. qdf_mem_copy(add_status.ast_mac, mac_addr,
  1052. QDF_MAC_ADDR_SIZE);
  1053. #ifdef WDI_EVENT_ENABLE
  1054. dp_wdi_event_handler(WDI_EVENT_HMWDS_AST_ADD_STATUS, dp_pdev->soc,
  1055. (void *)&add_status, 0,
  1056. WDI_NO_VAL, dp_pdev->pdev_id);
  1057. #endif
  1058. }
  1059. #if defined(QCA_SUPPORT_LATENCY_CAPTURE) || \
  1060. defined(QCA_TX_CAPTURE_SUPPORT) || \
  1061. defined(QCA_MCOPY_SUPPORT)
  1062. #ifdef FEATURE_PERPKT_INFO
  1063. QDF_STATUS
  1064. dp_get_completion_indication_for_stack(struct dp_soc *soc,
  1065. struct dp_pdev *pdev,
  1066. struct dp_txrx_peer *txrx_peer,
  1067. struct hal_tx_completion_status *ts,
  1068. qdf_nbuf_t netbuf,
  1069. uint64_t time_latency)
  1070. {
  1071. struct tx_capture_hdr *ppdu_hdr;
  1072. uint16_t peer_id = ts->peer_id;
  1073. uint32_t ppdu_id = ts->ppdu_id;
  1074. uint8_t first_msdu = ts->first_msdu;
  1075. uint8_t last_msdu = ts->last_msdu;
  1076. uint32_t txcap_hdr_size = sizeof(struct tx_capture_hdr);
  1077. struct dp_peer *peer;
  1078. if (qdf_unlikely(!dp_monitor_is_enable_tx_sniffer(pdev) &&
  1079. !dp_monitor_is_enable_mcopy_mode(pdev) &&
  1080. !pdev->latency_capture_enable))
  1081. return QDF_STATUS_E_NOSUPPORT;
  1082. if (!txrx_peer) {
  1083. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1084. FL("Peer Invalid"));
  1085. return QDF_STATUS_E_INVAL;
  1086. }
  1087. /* If mcopy is enabled and mcopy_mode is M_COPY deliver 1st MSDU
  1088. * per PPDU. If mcopy_mode is M_COPY_EXTENDED deliver 1st MSDU
  1089. * for each MPDU
  1090. */
  1091. if (dp_monitor_mcopy_check_deliver(pdev,
  1092. peer_id,
  1093. ppdu_id,
  1094. first_msdu) != QDF_STATUS_SUCCESS)
  1095. return QDF_STATUS_E_INVAL;
  1096. if (qdf_unlikely(qdf_nbuf_headroom(netbuf) < txcap_hdr_size)) {
  1097. netbuf = qdf_nbuf_realloc_headroom(netbuf, txcap_hdr_size);
  1098. if (!netbuf) {
  1099. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1100. FL("No headroom"));
  1101. return QDF_STATUS_E_NOMEM;
  1102. }
  1103. }
  1104. if (!qdf_nbuf_push_head(netbuf, txcap_hdr_size)) {
  1105. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1106. FL("No headroom"));
  1107. return QDF_STATUS_E_NOMEM;
  1108. }
  1109. ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
  1110. qdf_mem_copy(ppdu_hdr->ta, txrx_peer->vdev->mac_addr.raw,
  1111. QDF_MAC_ADDR_SIZE);
  1112. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_TX_COMP);
  1113. if (peer) {
  1114. qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
  1115. QDF_MAC_ADDR_SIZE);
  1116. dp_peer_unref_delete(peer, DP_MOD_ID_TX_COMP);
  1117. }
  1118. ppdu_hdr->ppdu_id = ppdu_id;
  1119. ppdu_hdr->peer_id = peer_id;
  1120. ppdu_hdr->first_msdu = first_msdu;
  1121. ppdu_hdr->last_msdu = last_msdu;
  1122. if (qdf_unlikely(pdev->latency_capture_enable)) {
  1123. ppdu_hdr->tsf = ts->tsf;
  1124. ppdu_hdr->time_latency = (uint32_t)time_latency;
  1125. }
  1126. return QDF_STATUS_SUCCESS;
  1127. }
  1128. void dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev,
  1129. uint16_t peer_id, uint32_t ppdu_id,
  1130. qdf_nbuf_t netbuf)
  1131. {
  1132. dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
  1133. netbuf, peer_id,
  1134. WDI_NO_VAL, pdev->pdev_id);
  1135. }
  1136. #endif
  1137. #endif