hal_api.h 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_H_
  19. #define _HAL_API_H_
  20. #include "qdf_types.h"
  21. #include "qdf_util.h"
  22. #include "qdf_atomic.h"
  23. #include "hal_internal.h"
  24. #include "hif.h"
  25. #include "hif_io32.h"
  26. #include "qdf_platform.h"
  27. #ifdef DUMP_REO_QUEUE_INFO_IN_DDR
  28. #include "hal_hw_headers.h"
  29. #endif
  30. /* Ring index for WBM2SW2 release ring */
  31. #define HAL_IPA_TX_COMP_RING_IDX 2
  32. /* calculate the register address offset from bar0 of shadow register x */
  33. #if defined(QCA_WIFI_QCA6390) || defined(QCA_WIFI_QCA6490) || \
  34. defined(QCA_WIFI_WCN7850)
  35. #define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x000008FC
  36. #define SHADOW_REGISTER_END_ADDRESS_OFFSET \
  37. ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
  38. #define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
  39. #elif defined(QCA_WIFI_QCA6290) || defined(QCA_WIFI_QCN9000)
  40. #define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x00003024
  41. #define SHADOW_REGISTER_END_ADDRESS_OFFSET \
  42. ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
  43. #define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
  44. #elif defined(QCA_WIFI_QCA6750)
  45. #define SHADOW_REGISTER_START_ADDRESS_OFFSET 0x00000504
  46. #define SHADOW_REGISTER_END_ADDRESS_OFFSET \
  47. ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (MAX_SHADOW_REGISTERS)))
  48. #define SHADOW_REGISTER(x) ((SHADOW_REGISTER_START_ADDRESS_OFFSET) + (4 * (x)))
  49. #else
  50. #define SHADOW_REGISTER(x) 0
  51. #endif /* QCA_WIFI_QCA6390 || QCA_WIFI_QCA6490 || QCA_WIFI_QCA6750 */
  52. /*
  53. * BAR + 4K is always accessible, any access outside this
  54. * space requires force wake procedure.
  55. * OFFSET = 4K - 32 bytes = 0xFE0
  56. */
  57. #define MAPPED_REF_OFF 0xFE0
  58. #define HAL_OFFSET(block, field) block ## _ ## field ## _OFFSET
  59. #ifdef ENABLE_VERBOSE_DEBUG
  60. static inline void
  61. hal_set_verbose_debug(bool flag)
  62. {
  63. is_hal_verbose_debug_enabled = flag;
  64. }
  65. #endif
  66. #ifdef ENABLE_HAL_SOC_STATS
  67. #define HAL_STATS_INC(_handle, _field, _delta) \
  68. { \
  69. if (likely(_handle)) \
  70. _handle->stats._field += _delta; \
  71. }
  72. #else
  73. #define HAL_STATS_INC(_handle, _field, _delta)
  74. #endif
  75. #ifdef ENABLE_HAL_REG_WR_HISTORY
  76. #define HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, wr_val, rd_val) \
  77. hal_reg_wr_fail_history_add(hal_soc, offset, wr_val, rd_val)
  78. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  79. uint32_t offset,
  80. uint32_t wr_val,
  81. uint32_t rd_val);
  82. static inline int hal_history_get_next_index(qdf_atomic_t *table_index,
  83. int array_size)
  84. {
  85. int record_index = qdf_atomic_inc_return(table_index);
  86. return record_index & (array_size - 1);
  87. }
  88. #else
  89. #define HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, wr_val, rd_val) \
  90. hal_err("write failed at reg offset 0x%x, write 0x%x read 0x%x\n", \
  91. offset, \
  92. wr_val, \
  93. rd_val)
  94. #endif
  95. /**
  96. * hal_reg_write_result_check() - check register writing result
  97. * @hal_soc: HAL soc handle
  98. * @offset: register offset to read
  99. * @exp_val: the expected value of register
  100. * @ret_confirm: result confirm flag
  101. *
  102. * Return: none
  103. */
  104. static inline void hal_reg_write_result_check(struct hal_soc *hal_soc,
  105. uint32_t offset,
  106. uint32_t exp_val)
  107. {
  108. uint32_t value;
  109. value = qdf_ioread32(hal_soc->dev_base_addr + offset);
  110. if (exp_val != value) {
  111. HAL_REG_WRITE_FAIL_HIST_ADD(hal_soc, offset, exp_val, value);
  112. HAL_STATS_INC(hal_soc, reg_write_fail, 1);
  113. }
  114. }
  115. #if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
  116. !defined(QCA_WIFI_WCN7850)
  117. static inline void hal_lock_reg_access(struct hal_soc *soc,
  118. unsigned long *flags)
  119. {
  120. qdf_spin_lock_irqsave(&soc->register_access_lock);
  121. }
  122. static inline void hal_unlock_reg_access(struct hal_soc *soc,
  123. unsigned long *flags)
  124. {
  125. qdf_spin_unlock_irqrestore(&soc->register_access_lock);
  126. }
  127. #else
  128. static inline void hal_lock_reg_access(struct hal_soc *soc,
  129. unsigned long *flags)
  130. {
  131. pld_lock_reg_window(soc->qdf_dev->dev, flags);
  132. }
  133. static inline void hal_unlock_reg_access(struct hal_soc *soc,
  134. unsigned long *flags)
  135. {
  136. pld_unlock_reg_window(soc->qdf_dev->dev, flags);
  137. }
  138. #endif
  139. #ifdef PCIE_REG_WINDOW_LOCAL_NO_CACHE
  140. /**
  141. * hal_select_window_confirm() - write remap window register and
  142. check writing result
  143. *
  144. */
  145. static inline void hal_select_window_confirm(struct hal_soc *hal_soc,
  146. uint32_t offset)
  147. {
  148. uint32_t window = (offset >> WINDOW_SHIFT) & WINDOW_VALUE_MASK;
  149. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_REG_ADDRESS,
  150. WINDOW_ENABLE_BIT | window);
  151. hal_soc->register_window = window;
  152. hal_reg_write_result_check(hal_soc, WINDOW_REG_ADDRESS,
  153. WINDOW_ENABLE_BIT | window);
  154. }
  155. #else
  156. static inline void hal_select_window_confirm(struct hal_soc *hal_soc,
  157. uint32_t offset)
  158. {
  159. uint32_t window = (offset >> WINDOW_SHIFT) & WINDOW_VALUE_MASK;
  160. if (window != hal_soc->register_window) {
  161. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_REG_ADDRESS,
  162. WINDOW_ENABLE_BIT | window);
  163. hal_soc->register_window = window;
  164. hal_reg_write_result_check(
  165. hal_soc,
  166. WINDOW_REG_ADDRESS,
  167. WINDOW_ENABLE_BIT | window);
  168. }
  169. }
  170. #endif
  171. static inline qdf_iomem_t hal_get_window_address(struct hal_soc *hal_soc,
  172. qdf_iomem_t addr)
  173. {
  174. return hal_soc->ops->hal_get_window_address(hal_soc, addr);
  175. }
  176. static inline void hal_tx_init_cmd_credit_ring(hal_soc_handle_t hal_soc_hdl,
  177. hal_ring_handle_t hal_ring_hdl)
  178. {
  179. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  180. return hal_soc->ops->hal_tx_init_cmd_credit_ring(hal_soc_hdl,
  181. hal_ring_hdl);
  182. }
  183. /**
  184. * hal_write32_mb() - Access registers to update configuration
  185. * @hal_soc: hal soc handle
  186. * @offset: offset address from the BAR
  187. * @value: value to write
  188. *
  189. * Return: None
  190. *
  191. * Description: Register address space is split below:
  192. * SHADOW REGION UNWINDOWED REGION WINDOWED REGION
  193. * |--------------------|-------------------|------------------|
  194. * BAR NO FORCE WAKE BAR+4K FORCE WAKE BAR+512K FORCE WAKE
  195. *
  196. * 1. Any access to the shadow region, doesn't need force wake
  197. * and windowing logic to access.
  198. * 2. Any access beyond BAR + 4K:
  199. * If init_phase enabled, no force wake is needed and access
  200. * should be based on windowed or unwindowed access.
  201. * If init_phase disabled, force wake is needed and access
  202. * should be based on windowed or unwindowed access.
  203. *
  204. * note1: WINDOW_RANGE_MASK = (1 << WINDOW_SHIFT) -1
  205. * note2: 1 << WINDOW_SHIFT = MAX_UNWINDOWED_ADDRESS
  206. * note3: WINDOW_VALUE_MASK = big enough that trying to write past
  207. * that window would be a bug
  208. */
  209. #if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
  210. !defined(QCA_WIFI_QCA6750) && !defined(QCA_WIFI_WCN7850)
  211. static inline void hal_write32_mb(struct hal_soc *hal_soc, uint32_t offset,
  212. uint32_t value)
  213. {
  214. unsigned long flags;
  215. qdf_iomem_t new_addr;
  216. if (!hal_soc->use_register_windowing ||
  217. offset < MAX_UNWINDOWED_ADDRESS) {
  218. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  219. } else if (hal_soc->static_window_map) {
  220. new_addr = hal_get_window_address(hal_soc,
  221. hal_soc->dev_base_addr + offset);
  222. qdf_iowrite32(new_addr, value);
  223. } else {
  224. hal_lock_reg_access(hal_soc, &flags);
  225. hal_select_window_confirm(hal_soc, offset);
  226. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  227. (offset & WINDOW_RANGE_MASK), value);
  228. hal_unlock_reg_access(hal_soc, &flags);
  229. }
  230. }
  231. #define hal_write32_mb_confirm(_hal_soc, _offset, _value) \
  232. hal_write32_mb(_hal_soc, _offset, _value)
  233. #define hal_write32_mb_cmem(_hal_soc, _offset, _value)
  234. #else
  235. static inline void hal_write32_mb(struct hal_soc *hal_soc, uint32_t offset,
  236. uint32_t value)
  237. {
  238. int ret;
  239. unsigned long flags;
  240. qdf_iomem_t new_addr;
  241. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  242. hal_soc->hif_handle))) {
  243. hal_err_rl("target access is not allowed");
  244. return;
  245. }
  246. /* Region < BAR + 4K can be directly accessed */
  247. if (offset < MAPPED_REF_OFF) {
  248. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  249. return;
  250. }
  251. /* Region greater than BAR + 4K */
  252. if (!hal_soc->init_phase) {
  253. ret = hif_force_wake_request(hal_soc->hif_handle);
  254. if (ret) {
  255. hal_err_rl("Wake up request failed");
  256. qdf_check_state_before_panic(__func__, __LINE__);
  257. return;
  258. }
  259. }
  260. if (!hal_soc->use_register_windowing ||
  261. offset < MAX_UNWINDOWED_ADDRESS) {
  262. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  263. } else if (hal_soc->static_window_map) {
  264. new_addr = hal_get_window_address(
  265. hal_soc,
  266. hal_soc->dev_base_addr + offset);
  267. qdf_iowrite32(new_addr, value);
  268. } else {
  269. hal_lock_reg_access(hal_soc, &flags);
  270. hal_select_window_confirm(hal_soc, offset);
  271. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  272. (offset & WINDOW_RANGE_MASK), value);
  273. hal_unlock_reg_access(hal_soc, &flags);
  274. }
  275. if (!hal_soc->init_phase) {
  276. ret = hif_force_wake_release(hal_soc->hif_handle);
  277. if (ret) {
  278. hal_err("Wake up release failed");
  279. qdf_check_state_before_panic(__func__, __LINE__);
  280. return;
  281. }
  282. }
  283. }
  284. /**
  285. * hal_write32_mb_confirm() - write register and check wirting result
  286. *
  287. */
  288. static inline void hal_write32_mb_confirm(struct hal_soc *hal_soc,
  289. uint32_t offset,
  290. uint32_t value)
  291. {
  292. int ret;
  293. unsigned long flags;
  294. qdf_iomem_t new_addr;
  295. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  296. hal_soc->hif_handle))) {
  297. hal_err_rl("target access is not allowed");
  298. return;
  299. }
  300. /* Region < BAR + 4K can be directly accessed */
  301. if (offset < MAPPED_REF_OFF) {
  302. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  303. return;
  304. }
  305. /* Region greater than BAR + 4K */
  306. if (!hal_soc->init_phase) {
  307. ret = hif_force_wake_request(hal_soc->hif_handle);
  308. if (ret) {
  309. hal_err("Wake up request failed");
  310. qdf_check_state_before_panic(__func__, __LINE__);
  311. return;
  312. }
  313. }
  314. if (!hal_soc->use_register_windowing ||
  315. offset < MAX_UNWINDOWED_ADDRESS) {
  316. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  317. hal_reg_write_result_check(hal_soc, offset,
  318. value);
  319. } else if (hal_soc->static_window_map) {
  320. new_addr = hal_get_window_address(
  321. hal_soc,
  322. hal_soc->dev_base_addr + offset);
  323. qdf_iowrite32(new_addr, value);
  324. hal_reg_write_result_check(hal_soc,
  325. new_addr - hal_soc->dev_base_addr,
  326. value);
  327. } else {
  328. hal_lock_reg_access(hal_soc, &flags);
  329. hal_select_window_confirm(hal_soc, offset);
  330. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  331. (offset & WINDOW_RANGE_MASK), value);
  332. hal_reg_write_result_check(
  333. hal_soc,
  334. WINDOW_START + (offset & WINDOW_RANGE_MASK),
  335. value);
  336. hal_unlock_reg_access(hal_soc, &flags);
  337. }
  338. if (!hal_soc->init_phase) {
  339. ret = hif_force_wake_release(hal_soc->hif_handle);
  340. if (ret) {
  341. hal_err("Wake up release failed");
  342. qdf_check_state_before_panic(__func__, __LINE__);
  343. return;
  344. }
  345. }
  346. }
  347. static inline void hal_write32_mb_cmem(struct hal_soc *hal_soc, uint32_t offset,
  348. uint32_t value)
  349. {
  350. unsigned long flags;
  351. qdf_iomem_t new_addr;
  352. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  353. hal_soc->hif_handle))) {
  354. hal_err_rl("%s: target access is not allowed", __func__);
  355. return;
  356. }
  357. if (!hal_soc->use_register_windowing ||
  358. offset < MAX_UNWINDOWED_ADDRESS) {
  359. qdf_iowrite32(hal_soc->dev_base_addr + offset, value);
  360. } else if (hal_soc->static_window_map) {
  361. new_addr = hal_get_window_address(
  362. hal_soc,
  363. hal_soc->dev_base_addr + offset);
  364. qdf_iowrite32(new_addr, value);
  365. } else {
  366. hal_lock_reg_access(hal_soc, &flags);
  367. hal_select_window_confirm(hal_soc, offset);
  368. qdf_iowrite32(hal_soc->dev_base_addr + WINDOW_START +
  369. (offset & WINDOW_RANGE_MASK), value);
  370. hal_unlock_reg_access(hal_soc, &flags);
  371. }
  372. }
  373. #endif
  374. /**
  375. * hal_write_address_32_mb - write a value to a register
  376. *
  377. */
  378. static inline
  379. void hal_write_address_32_mb(struct hal_soc *hal_soc,
  380. qdf_iomem_t addr, uint32_t value, bool wr_confirm)
  381. {
  382. uint32_t offset;
  383. if (!hal_soc->use_register_windowing)
  384. return qdf_iowrite32(addr, value);
  385. offset = addr - hal_soc->dev_base_addr;
  386. if (qdf_unlikely(wr_confirm))
  387. hal_write32_mb_confirm(hal_soc, offset, value);
  388. else
  389. hal_write32_mb(hal_soc, offset, value);
  390. }
  391. #ifdef DP_HAL_MULTIWINDOW_DIRECT_ACCESS
  392. static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
  393. struct hal_srng *srng,
  394. void __iomem *addr,
  395. uint32_t value)
  396. {
  397. qdf_iowrite32(addr, value);
  398. }
  399. #elif defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  400. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  401. static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
  402. struct hal_srng *srng,
  403. void __iomem *addr,
  404. uint32_t value)
  405. {
  406. hal_delayed_reg_write(hal_soc, srng, addr, value);
  407. }
  408. #else
  409. static inline void hal_srng_write_address_32_mb(struct hal_soc *hal_soc,
  410. struct hal_srng *srng,
  411. void __iomem *addr,
  412. uint32_t value)
  413. {
  414. hal_write_address_32_mb(hal_soc, addr, value, false);
  415. }
  416. #endif
  417. #if !defined(QCA_WIFI_QCA6390) && !defined(QCA_WIFI_QCA6490) && \
  418. !defined(QCA_WIFI_QCA6750) && !defined(QCA_WIFI_WCN7850)
  419. /**
  420. * hal_read32_mb() - Access registers to read configuration
  421. * @hal_soc: hal soc handle
  422. * @offset: offset address from the BAR
  423. * @value: value to write
  424. *
  425. * Description: Register address space is split below:
  426. * SHADOW REGION UNWINDOWED REGION WINDOWED REGION
  427. * |--------------------|-------------------|------------------|
  428. * BAR NO FORCE WAKE BAR+4K FORCE WAKE BAR+512K FORCE WAKE
  429. *
  430. * 1. Any access to the shadow region, doesn't need force wake
  431. * and windowing logic to access.
  432. * 2. Any access beyond BAR + 4K:
  433. * If init_phase enabled, no force wake is needed and access
  434. * should be based on windowed or unwindowed access.
  435. * If init_phase disabled, force wake is needed and access
  436. * should be based on windowed or unwindowed access.
  437. *
  438. * Return: < 0 for failure/>= 0 for success
  439. */
  440. static inline uint32_t hal_read32_mb(struct hal_soc *hal_soc, uint32_t offset)
  441. {
  442. uint32_t ret;
  443. unsigned long flags;
  444. qdf_iomem_t new_addr;
  445. if (!hal_soc->use_register_windowing ||
  446. offset < MAX_UNWINDOWED_ADDRESS) {
  447. return qdf_ioread32(hal_soc->dev_base_addr + offset);
  448. } else if (hal_soc->static_window_map) {
  449. new_addr = hal_get_window_address(hal_soc, hal_soc->dev_base_addr + offset);
  450. return qdf_ioread32(new_addr);
  451. }
  452. hal_lock_reg_access(hal_soc, &flags);
  453. hal_select_window_confirm(hal_soc, offset);
  454. ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
  455. (offset & WINDOW_RANGE_MASK));
  456. hal_unlock_reg_access(hal_soc, &flags);
  457. return ret;
  458. }
  459. #define hal_read32_mb_cmem(_hal_soc, _offset)
  460. #else
  461. static
  462. uint32_t hal_read32_mb(struct hal_soc *hal_soc, uint32_t offset)
  463. {
  464. uint32_t ret;
  465. unsigned long flags;
  466. qdf_iomem_t new_addr;
  467. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  468. hal_soc->hif_handle))) {
  469. hal_err_rl("target access is not allowed");
  470. return 0;
  471. }
  472. /* Region < BAR + 4K can be directly accessed */
  473. if (offset < MAPPED_REF_OFF)
  474. return qdf_ioread32(hal_soc->dev_base_addr + offset);
  475. if ((!hal_soc->init_phase) &&
  476. hif_force_wake_request(hal_soc->hif_handle)) {
  477. hal_err("Wake up request failed");
  478. qdf_check_state_before_panic(__func__, __LINE__);
  479. return 0;
  480. }
  481. if (!hal_soc->use_register_windowing ||
  482. offset < MAX_UNWINDOWED_ADDRESS) {
  483. ret = qdf_ioread32(hal_soc->dev_base_addr + offset);
  484. } else if (hal_soc->static_window_map) {
  485. new_addr = hal_get_window_address(
  486. hal_soc,
  487. hal_soc->dev_base_addr + offset);
  488. ret = qdf_ioread32(new_addr);
  489. } else {
  490. hal_lock_reg_access(hal_soc, &flags);
  491. hal_select_window_confirm(hal_soc, offset);
  492. ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
  493. (offset & WINDOW_RANGE_MASK));
  494. hal_unlock_reg_access(hal_soc, &flags);
  495. }
  496. if ((!hal_soc->init_phase) &&
  497. hif_force_wake_release(hal_soc->hif_handle)) {
  498. hal_err("Wake up release failed");
  499. qdf_check_state_before_panic(__func__, __LINE__);
  500. return 0;
  501. }
  502. return ret;
  503. }
  504. static inline
  505. uint32_t hal_read32_mb_cmem(struct hal_soc *hal_soc, uint32_t offset)
  506. {
  507. uint32_t ret;
  508. unsigned long flags;
  509. qdf_iomem_t new_addr;
  510. if (!TARGET_ACCESS_ALLOWED(HIF_GET_SOFTC(
  511. hal_soc->hif_handle))) {
  512. hal_err_rl("%s: target access is not allowed", __func__);
  513. return 0;
  514. }
  515. if (!hal_soc->use_register_windowing ||
  516. offset < MAX_UNWINDOWED_ADDRESS) {
  517. ret = qdf_ioread32(hal_soc->dev_base_addr + offset);
  518. } else if (hal_soc->static_window_map) {
  519. new_addr = hal_get_window_address(
  520. hal_soc,
  521. hal_soc->dev_base_addr + offset);
  522. ret = qdf_ioread32(new_addr);
  523. } else {
  524. hal_lock_reg_access(hal_soc, &flags);
  525. hal_select_window_confirm(hal_soc, offset);
  526. ret = qdf_ioread32(hal_soc->dev_base_addr + WINDOW_START +
  527. (offset & WINDOW_RANGE_MASK));
  528. hal_unlock_reg_access(hal_soc, &flags);
  529. }
  530. return ret;
  531. }
  532. #endif
  533. /* Max times allowed for register writing retry */
  534. #define HAL_REG_WRITE_RETRY_MAX 5
  535. /* Delay milliseconds for each time retry */
  536. #define HAL_REG_WRITE_RETRY_DELAY 1
  537. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  538. /* To check shadow config index range between 0..31 */
  539. #define HAL_SHADOW_REG_INDEX_LOW 32
  540. /* To check shadow config index range between 32..39 */
  541. #define HAL_SHADOW_REG_INDEX_HIGH 40
  542. /* Dirty bit reg offsets corresponding to shadow config index */
  543. #define HAL_SHADOW_REG_DIRTY_BIT_DATA_LOW_OFFSET 0x30C8
  544. #define HAL_SHADOW_REG_DIRTY_BIT_DATA_HIGH_OFFSET 0x30C4
  545. /* PCIE_PCIE_TOP base addr offset */
  546. #define HAL_PCIE_PCIE_TOP_WRAPPER 0x01E00000
  547. /* Max retry attempts to read the dirty bit reg */
  548. #ifdef HAL_CONFIG_SLUB_DEBUG_ON
  549. #define HAL_SHADOW_DIRTY_BIT_POLL_MAX 10000
  550. #else
  551. #define HAL_SHADOW_DIRTY_BIT_POLL_MAX 2000
  552. #endif
  553. /* Delay in usecs for polling dirty bit reg */
  554. #define HAL_SHADOW_DIRTY_BIT_POLL_DELAY 5
  555. /**
  556. * hal_poll_dirty_bit_reg() - Poll dirty register bit to confirm
  557. * write was successful
  558. * @hal_soc: hal soc handle
  559. * @shadow_config_index: index of shadow reg used to confirm
  560. * write
  561. *
  562. * Return: QDF_STATUS_SUCCESS on success
  563. */
  564. static inline QDF_STATUS hal_poll_dirty_bit_reg(struct hal_soc *hal,
  565. int shadow_config_index)
  566. {
  567. uint32_t read_value = 0;
  568. int retry_cnt = 0;
  569. uint32_t reg_offset = 0;
  570. if (shadow_config_index > 0 &&
  571. shadow_config_index < HAL_SHADOW_REG_INDEX_LOW) {
  572. reg_offset =
  573. HAL_SHADOW_REG_DIRTY_BIT_DATA_LOW_OFFSET;
  574. } else if (shadow_config_index >= HAL_SHADOW_REG_INDEX_LOW &&
  575. shadow_config_index < HAL_SHADOW_REG_INDEX_HIGH) {
  576. reg_offset =
  577. HAL_SHADOW_REG_DIRTY_BIT_DATA_HIGH_OFFSET;
  578. } else {
  579. hal_err("Invalid shadow_config_index = %d",
  580. shadow_config_index);
  581. return QDF_STATUS_E_INVAL;
  582. }
  583. while (retry_cnt < HAL_SHADOW_DIRTY_BIT_POLL_MAX) {
  584. read_value = hal_read32_mb(
  585. hal, HAL_PCIE_PCIE_TOP_WRAPPER + reg_offset);
  586. /* Check if dirty bit corresponding to shadow_index is set */
  587. if (read_value & BIT(shadow_config_index)) {
  588. /* Dirty reg bit not reset */
  589. qdf_udelay(HAL_SHADOW_DIRTY_BIT_POLL_DELAY);
  590. retry_cnt++;
  591. } else {
  592. hal_debug("Shadow write: offset 0x%x read val 0x%x",
  593. reg_offset, read_value);
  594. return QDF_STATUS_SUCCESS;
  595. }
  596. }
  597. return QDF_STATUS_E_TIMEOUT;
  598. }
  599. /**
  600. * hal_write32_mb_shadow_confirm() - write to shadow reg and
  601. * poll dirty register bit to confirm write
  602. * @hal_soc: hal soc handle
  603. * @reg_offset: target reg offset address from BAR
  604. * @value: value to write
  605. *
  606. * Return: QDF_STATUS_SUCCESS on success
  607. */
  608. static inline QDF_STATUS hal_write32_mb_shadow_confirm(
  609. struct hal_soc *hal,
  610. uint32_t reg_offset,
  611. uint32_t value)
  612. {
  613. int i;
  614. QDF_STATUS ret;
  615. uint32_t shadow_reg_offset;
  616. int shadow_config_index;
  617. bool is_reg_offset_present = false;
  618. for (i = 0; i < MAX_GENERIC_SHADOW_REG; i++) {
  619. /* Found the shadow config for the reg_offset */
  620. struct shadow_reg_config *hal_shadow_reg_list =
  621. &hal->list_shadow_reg_config[i];
  622. if (hal_shadow_reg_list->target_register ==
  623. reg_offset) {
  624. shadow_config_index =
  625. hal_shadow_reg_list->shadow_config_index;
  626. shadow_reg_offset =
  627. SHADOW_REGISTER(shadow_config_index);
  628. hal_write32_mb_confirm(
  629. hal, shadow_reg_offset, value);
  630. is_reg_offset_present = true;
  631. break;
  632. }
  633. ret = QDF_STATUS_E_FAILURE;
  634. }
  635. if (is_reg_offset_present) {
  636. ret = hal_poll_dirty_bit_reg(hal, shadow_config_index);
  637. hal_info("Shadow write:reg 0x%x val 0x%x ret %d",
  638. reg_offset, value, ret);
  639. if (QDF_IS_STATUS_ERROR(ret)) {
  640. HAL_STATS_INC(hal, shadow_reg_write_fail, 1);
  641. return ret;
  642. }
  643. HAL_STATS_INC(hal, shadow_reg_write_succ, 1);
  644. }
  645. return ret;
  646. }
  647. /**
  648. * hal_write32_mb_confirm_retry() - write register with confirming and
  649. do retry/recovery if writing failed
  650. * @hal_soc: hal soc handle
  651. * @offset: offset address from the BAR
  652. * @value: value to write
  653. * @recovery: is recovery needed or not.
  654. *
  655. * Write the register value with confirming and read it back, if
  656. * read back value is not as expected, do retry for writing, if
  657. * retry hit max times allowed but still fail, check if recovery
  658. * needed.
  659. *
  660. * Return: None
  661. */
  662. static inline void hal_write32_mb_confirm_retry(struct hal_soc *hal_soc,
  663. uint32_t offset,
  664. uint32_t value,
  665. bool recovery)
  666. {
  667. QDF_STATUS ret;
  668. ret = hal_write32_mb_shadow_confirm(hal_soc, offset, value);
  669. if (QDF_IS_STATUS_ERROR(ret) && recovery)
  670. qdf_trigger_self_recovery(NULL, QDF_HAL_REG_WRITE_FAILURE);
  671. }
  672. #else /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  673. static inline void hal_write32_mb_confirm_retry(struct hal_soc *hal_soc,
  674. uint32_t offset,
  675. uint32_t value,
  676. bool recovery)
  677. {
  678. uint8_t retry_cnt = 0;
  679. uint32_t read_value;
  680. while (retry_cnt <= HAL_REG_WRITE_RETRY_MAX) {
  681. hal_write32_mb_confirm(hal_soc, offset, value);
  682. read_value = hal_read32_mb(hal_soc, offset);
  683. if (qdf_likely(read_value == value))
  684. break;
  685. /* write failed, do retry */
  686. hal_warn("Retry reg offset 0x%x, value 0x%x, read value 0x%x",
  687. offset, value, read_value);
  688. qdf_mdelay(HAL_REG_WRITE_RETRY_DELAY);
  689. retry_cnt++;
  690. }
  691. if (retry_cnt > HAL_REG_WRITE_RETRY_MAX && recovery)
  692. qdf_trigger_self_recovery(NULL, QDF_HAL_REG_WRITE_FAILURE);
  693. }
  694. #endif /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  695. #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  696. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  697. /**
  698. * hal_dump_reg_write_srng_stats() - dump SRNG reg write stats
  699. * @hal_soc: HAL soc handle
  700. *
  701. * Return: none
  702. */
  703. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl);
  704. /**
  705. * hal_dump_reg_write_stats() - dump reg write stats
  706. * @hal_soc: HAL soc handle
  707. *
  708. * Return: none
  709. */
  710. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl);
  711. /**
  712. * hal_get_reg_write_pending_work() - get the number of entries
  713. * pending in the workqueue to be processed.
  714. * @hal_soc: HAL soc handle
  715. *
  716. * Returns: the number of entries pending to be processed
  717. */
  718. int hal_get_reg_write_pending_work(void *hal_soc);
  719. #else
  720. static inline void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  721. {
  722. }
  723. static inline void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  724. {
  725. }
  726. static inline int hal_get_reg_write_pending_work(void *hal_soc)
  727. {
  728. return 0;
  729. }
  730. #endif
  731. /**
  732. * hal_read_address_32_mb() - Read 32-bit value from the register
  733. * @soc: soc handle
  734. * @addr: register address to read
  735. *
  736. * Return: 32-bit value
  737. */
  738. static inline
  739. uint32_t hal_read_address_32_mb(struct hal_soc *soc,
  740. qdf_iomem_t addr)
  741. {
  742. uint32_t offset;
  743. uint32_t ret;
  744. if (!soc->use_register_windowing)
  745. return qdf_ioread32(addr);
  746. offset = addr - soc->dev_base_addr;
  747. ret = hal_read32_mb(soc, offset);
  748. return ret;
  749. }
  750. /**
  751. * hal_attach - Initialize HAL layer
  752. * @hif_handle: Opaque HIF handle
  753. * @qdf_dev: QDF device
  754. *
  755. * Return: Opaque HAL SOC handle
  756. * NULL on failure (if given ring is not available)
  757. *
  758. * This function should be called as part of HIF initialization (for accessing
  759. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  760. */
  761. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev);
  762. /**
  763. * hal_detach - Detach HAL layer
  764. * @hal_soc: HAL SOC handle
  765. *
  766. * This function should be called as part of HIF detach
  767. *
  768. */
  769. extern void hal_detach(void *hal_soc);
  770. #define HAL_SRNG_LMAC_RING 0x80000000
  771. /* SRNG flags passed in hal_srng_params.flags */
  772. #define HAL_SRNG_MSI_SWAP 0x00000008
  773. #define HAL_SRNG_RING_PTR_SWAP 0x00000010
  774. #define HAL_SRNG_DATA_TLV_SWAP 0x00000020
  775. #define HAL_SRNG_LOW_THRES_INTR_ENABLE 0x00010000
  776. #define HAL_SRNG_MSI_INTR 0x00020000
  777. #define HAL_SRNG_CACHED_DESC 0x00040000
  778. #if defined(QCA_WIFI_QCA6490) || defined(QCA_WIFI_WCN7850)
  779. #define HAL_SRNG_PREFETCH_TIMER 1
  780. #else
  781. #define HAL_SRNG_PREFETCH_TIMER 0
  782. #endif
  783. #define PN_SIZE_24 0
  784. #define PN_SIZE_48 1
  785. #define PN_SIZE_128 2
  786. #ifdef FORCE_WAKE
  787. /**
  788. * hal_set_init_phase() - Indicate initialization of
  789. * datapath rings
  790. * @soc: hal_soc handle
  791. * @init_phase: flag to indicate datapath rings
  792. * initialization status
  793. *
  794. * Return: None
  795. */
  796. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase);
  797. #else
  798. static inline
  799. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  800. {
  801. }
  802. #endif /* FORCE_WAKE */
  803. /**
  804. * hal_srng_get_entrysize - Returns size of ring entry in bytes. Should be
  805. * used by callers for calculating the size of memory to be allocated before
  806. * calling hal_srng_setup to setup the ring
  807. *
  808. * @hal_soc: Opaque HAL SOC handle
  809. * @ring_type: one of the types from hal_ring_type
  810. *
  811. */
  812. extern uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type);
  813. /**
  814. * hal_srng_max_entries - Returns maximum possible number of ring entries
  815. * @hal_soc: Opaque HAL SOC handle
  816. * @ring_type: one of the types from hal_ring_type
  817. *
  818. * Return: Maximum number of entries for the given ring_type
  819. */
  820. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type);
  821. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  822. uint32_t low_threshold);
  823. /**
  824. * hal_srng_dump - Dump ring status
  825. * @srng: hal srng pointer
  826. */
  827. void hal_srng_dump(struct hal_srng *srng);
  828. /**
  829. * hal_srng_get_dir - Returns the direction of the ring
  830. * @hal_soc: Opaque HAL SOC handle
  831. * @ring_type: one of the types from hal_ring_type
  832. *
  833. * Return: Ring direction
  834. */
  835. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type);
  836. /* HAL memory information */
  837. struct hal_mem_info {
  838. /* dev base virutal addr */
  839. void *dev_base_addr;
  840. /* dev base physical addr */
  841. void *dev_base_paddr;
  842. /* dev base ce virutal addr - applicable only for qca5018 */
  843. /* In qca5018 CE register are outside wcss block */
  844. /* using a separate address space to access CE registers */
  845. void *dev_base_addr_ce;
  846. /* dev base ce physical addr */
  847. void *dev_base_paddr_ce;
  848. /* Remote virtual pointer memory for HW/FW updates */
  849. void *shadow_rdptr_mem_vaddr;
  850. /* Remote physical pointer memory for HW/FW updates */
  851. void *shadow_rdptr_mem_paddr;
  852. /* Shared memory for ring pointer updates from host to FW */
  853. void *shadow_wrptr_mem_vaddr;
  854. /* Shared physical memory for ring pointer updates from host to FW */
  855. void *shadow_wrptr_mem_paddr;
  856. /* lmac srng start id */
  857. uint8_t lmac_srng_start_id;
  858. };
  859. /* SRNG parameters to be passed to hal_srng_setup */
  860. struct hal_srng_params {
  861. /* Physical base address of the ring */
  862. qdf_dma_addr_t ring_base_paddr;
  863. /* Virtual base address of the ring */
  864. void *ring_base_vaddr;
  865. /* Number of entries in ring */
  866. uint32_t num_entries;
  867. /* max transfer length */
  868. uint16_t max_buffer_length;
  869. /* MSI Address */
  870. qdf_dma_addr_t msi_addr;
  871. /* MSI data */
  872. uint32_t msi_data;
  873. /* Interrupt timer threshold – in micro seconds */
  874. uint32_t intr_timer_thres_us;
  875. /* Interrupt batch counter threshold – in number of ring entries */
  876. uint32_t intr_batch_cntr_thres_entries;
  877. /* Low threshold – in number of ring entries
  878. * (valid for src rings only)
  879. */
  880. uint32_t low_threshold;
  881. /* Misc flags */
  882. uint32_t flags;
  883. /* Unique ring id */
  884. uint8_t ring_id;
  885. /* Source or Destination ring */
  886. enum hal_srng_dir ring_dir;
  887. /* Size of ring entry */
  888. uint32_t entry_size;
  889. /* hw register base address */
  890. void *hwreg_base[MAX_SRNG_REG_GROUPS];
  891. /* prefetch timer config - in micro seconds */
  892. uint32_t prefetch_timer;
  893. };
  894. /* hal_construct_srng_shadow_regs() - initialize the shadow
  895. * registers for srngs
  896. * @hal_soc: hal handle
  897. *
  898. * Return: QDF_STATUS_OK on success
  899. */
  900. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc);
  901. /* hal_set_one_shadow_config() - add a config for the specified ring
  902. * @hal_soc: hal handle
  903. * @ring_type: ring type
  904. * @ring_num: ring num
  905. *
  906. * The ring type and ring num uniquely specify the ring. After this call,
  907. * the hp/tp will be added as the next entry int the shadow register
  908. * configuration table. The hal code will use the shadow register address
  909. * in place of the hp/tp address.
  910. *
  911. * This function is exposed, so that the CE module can skip configuring shadow
  912. * registers for unused ring and rings assigned to the firmware.
  913. *
  914. * Return: QDF_STATUS_OK on success
  915. */
  916. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  917. int ring_num);
  918. /**
  919. * hal_get_shadow_config() - retrieve the config table
  920. * @hal_soc: hal handle
  921. * @shadow_config: will point to the table after
  922. * @num_shadow_registers_configured: will contain the number of valid entries
  923. */
  924. extern void hal_get_shadow_config(void *hal_soc,
  925. struct pld_shadow_reg_v2_cfg **shadow_config,
  926. int *num_shadow_registers_configured);
  927. /**
  928. * hal_srng_setup - Initialize HW SRNG ring.
  929. *
  930. * @hal_soc: Opaque HAL SOC handle
  931. * @ring_type: one of the types from hal_ring_type
  932. * @ring_num: Ring number if there are multiple rings of
  933. * same type (staring from 0)
  934. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  935. * @ring_params: SRNG ring params in hal_srng_params structure.
  936. * Callers are expected to allocate contiguous ring memory of size
  937. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  938. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in hal_srng_params
  939. * structure. Ring base address should be 8 byte aligned and size of each ring
  940. * entry should be queried using the API hal_srng_get_entrysize
  941. *
  942. * Return: Opaque pointer to ring on success
  943. * NULL on failure (if given ring is not available)
  944. */
  945. extern void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  946. int mac_id, struct hal_srng_params *ring_params);
  947. /* Remapping ids of REO rings */
  948. #define REO_REMAP_TCL 0
  949. #define REO_REMAP_SW1 1
  950. #define REO_REMAP_SW2 2
  951. #define REO_REMAP_SW3 3
  952. #define REO_REMAP_SW4 4
  953. #define REO_REMAP_RELEASE 5
  954. #define REO_REMAP_FW 6
  955. /*
  956. * In Beryllium: 4 bits REO destination ring value is defined as: 0: TCL
  957. * 1:SW1 2:SW2 3:SW3 4:SW4 5:Release 6:FW(WIFI) 7:SW5
  958. * 8:SW6 9:SW7 10:SW8 11: NOT_USED.
  959. *
  960. */
  961. #define REO_REMAP_SW5 7
  962. #define REO_REMAP_SW6 8
  963. #define REO_REMAP_SW7 9
  964. #define REO_REMAP_SW8 10
  965. /*
  966. * Macro to access HWIO_REO_R0_ERROR_DESTINATION_RING_CTRL_IX_0
  967. * to map destination to rings
  968. */
  969. #define HAL_REO_ERR_REMAP_IX0(_VALUE, _OFFSET) \
  970. ((_VALUE) << \
  971. (HWIO_REO_R0_ERROR_DESTINATION_MAPPING_IX_0_ERROR_ ## \
  972. DESTINATION_RING_ ## _OFFSET ## _SHFT))
  973. /*
  974. * Macro to access HWIO_REO_R0_ERROR_DESTINATION_RING_CTRL_IX_1
  975. * to map destination to rings
  976. */
  977. #define HAL_REO_ERR_REMAP_IX1(_VALUE, _OFFSET) \
  978. ((_VALUE) << \
  979. (HWIO_REO_R0_ERROR_DESTINATION_MAPPING_IX_1_ERROR_ ## \
  980. DESTINATION_RING_ ## _OFFSET ## _SHFT))
  981. /*
  982. * Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0
  983. * to map destination to rings
  984. */
  985. #define HAL_REO_REMAP_IX0(_VALUE, _OFFSET) \
  986. ((_VALUE) << \
  987. (HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_DEST_RING_MAPPING_ ## \
  988. _OFFSET ## _SHFT))
  989. /*
  990. * Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1
  991. * to map destination to rings
  992. */
  993. #define HAL_REO_REMAP_IX2(_VALUE, _OFFSET) \
  994. ((_VALUE) << \
  995. (HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_DEST_RING_MAPPING_ ## \
  996. _OFFSET ## _SHFT))
  997. /*
  998. * Macro to access HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3
  999. * to map destination to rings
  1000. */
  1001. #define HAL_REO_REMAP_IX3(_VALUE, _OFFSET) \
  1002. ((_VALUE) << \
  1003. (HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_DEST_RING_MAPPING_ ## \
  1004. _OFFSET ## _SHFT))
  1005. /**
  1006. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1007. * @hal_soc_hdl: HAL SOC handle
  1008. * @read: boolean value to indicate if read or write
  1009. * @ix0: pointer to store IX0 reg value
  1010. * @ix1: pointer to store IX1 reg value
  1011. * @ix2: pointer to store IX2 reg value
  1012. * @ix3: pointer to store IX3 reg value
  1013. */
  1014. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1015. uint32_t *ix0, uint32_t *ix1,
  1016. uint32_t *ix2, uint32_t *ix3);
  1017. /**
  1018. * hal_srng_set_hp_paddr_confirm() - Set physical address to dest SRNG head
  1019. * pointer and confirm that write went through by reading back the value
  1020. * @sring: sring pointer
  1021. * @paddr: physical address
  1022. *
  1023. * Return: None
  1024. */
  1025. extern void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *sring,
  1026. uint64_t paddr);
  1027. /**
  1028. * hal_srng_dst_init_hp() - Initilaize head pointer with cached head pointer
  1029. * @hal_soc: hal_soc handle
  1030. * @srng: sring pointer
  1031. * @vaddr: virtual address
  1032. */
  1033. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1034. struct hal_srng *srng,
  1035. uint32_t *vaddr);
  1036. /**
  1037. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1038. * @hal_soc: Opaque HAL SOC handle
  1039. * @hal_srng: Opaque HAL SRNG pointer
  1040. */
  1041. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl);
  1042. static inline bool hal_srng_initialized(hal_ring_handle_t hal_ring_hdl)
  1043. {
  1044. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1045. return !!srng->initialized;
  1046. }
  1047. /**
  1048. * hal_srng_dst_peek - Check if there are any entries in the ring (peek)
  1049. * @hal_soc: Opaque HAL SOC handle
  1050. * @hal_ring_hdl: Destination ring pointer
  1051. *
  1052. * Caller takes responsibility for any locking needs.
  1053. *
  1054. * Return: Opaque pointer for next ring entry; NULL on failire
  1055. */
  1056. static inline
  1057. void *hal_srng_dst_peek(hal_soc_handle_t hal_soc_hdl,
  1058. hal_ring_handle_t hal_ring_hdl)
  1059. {
  1060. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1061. if (srng->u.dst_ring.tp != srng->u.dst_ring.cached_hp)
  1062. return (void *)(&srng->ring_base_vaddr[srng->u.dst_ring.tp]);
  1063. return NULL;
  1064. }
  1065. /**
  1066. * hal_mem_dma_cache_sync - Cache sync the specified virtual address Range
  1067. * @hal_soc: HAL soc handle
  1068. * @desc: desc start address
  1069. * @entry_size: size of memory to sync
  1070. *
  1071. * Return: void
  1072. */
  1073. #if defined(__LINUX_MIPS32_ARCH__) || defined(__LINUX_MIPS64_ARCH__)
  1074. static inline void hal_mem_dma_cache_sync(struct hal_soc *soc, uint32_t *desc,
  1075. uint32_t entry_size)
  1076. {
  1077. qdf_nbuf_dma_inv_range((void *)desc, (void *)(desc + entry_size));
  1078. }
  1079. #else
  1080. static inline void hal_mem_dma_cache_sync(struct hal_soc *soc, uint32_t *desc,
  1081. uint32_t entry_size)
  1082. {
  1083. qdf_mem_dma_cache_sync(soc->qdf_dev, qdf_mem_virt_to_phys(desc),
  1084. QDF_DMA_FROM_DEVICE,
  1085. (entry_size * sizeof(uint32_t)));
  1086. }
  1087. #endif
  1088. /**
  1089. * hal_srng_access_start_unlocked - Start ring access (unlocked). Should use
  1090. * hal_srng_access_start if locked access is required
  1091. *
  1092. * @hal_soc: Opaque HAL SOC handle
  1093. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1094. *
  1095. * This API doesn't implement any byte-order conversion on reading hp/tp.
  1096. * So, Use API only for those srngs for which the target writes hp/tp values to
  1097. * the DDR in the Host order.
  1098. *
  1099. * Return: 0 on success; error on failire
  1100. */
  1101. static inline int
  1102. hal_srng_access_start_unlocked(hal_soc_handle_t hal_soc_hdl,
  1103. hal_ring_handle_t hal_ring_hdl)
  1104. {
  1105. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1106. struct hal_soc *soc = (struct hal_soc *)hal_soc_hdl;
  1107. uint32_t *desc;
  1108. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1109. srng->u.src_ring.cached_tp =
  1110. *(volatile uint32_t *)(srng->u.src_ring.tp_addr);
  1111. else {
  1112. srng->u.dst_ring.cached_hp =
  1113. *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1114. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1115. desc = hal_srng_dst_peek(hal_soc_hdl, hal_ring_hdl);
  1116. if (qdf_likely(desc)) {
  1117. hal_mem_dma_cache_sync(soc, desc,
  1118. srng->entry_size);
  1119. qdf_prefetch(desc);
  1120. }
  1121. }
  1122. }
  1123. return 0;
  1124. }
  1125. /**
  1126. * hal_le_srng_access_start_unlocked_in_cpu_order - Start ring access
  1127. * (unlocked) with endianness correction.
  1128. * @hal_soc: Opaque HAL SOC handle
  1129. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1130. *
  1131. * This API provides same functionally as hal_srng_access_start_unlocked()
  1132. * except that it converts the little-endian formatted hp/tp values to
  1133. * Host order on reading them. So, this API should only be used for those srngs
  1134. * for which the target always writes hp/tp values in little-endian order
  1135. * regardless of Host order.
  1136. *
  1137. * Also, this API doesn't take the lock. For locked access, use
  1138. * hal_srng_access_start/hal_le_srng_access_start_in_cpu_order.
  1139. *
  1140. * Return: 0 on success; error on failire
  1141. */
  1142. static inline int
  1143. hal_le_srng_access_start_unlocked_in_cpu_order(
  1144. hal_soc_handle_t hal_soc_hdl,
  1145. hal_ring_handle_t hal_ring_hdl)
  1146. {
  1147. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1148. struct hal_soc *soc = (struct hal_soc *)hal_soc_hdl;
  1149. uint32_t *desc;
  1150. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1151. srng->u.src_ring.cached_tp =
  1152. qdf_le32_to_cpu(*(volatile uint32_t *)
  1153. (srng->u.src_ring.tp_addr));
  1154. else {
  1155. srng->u.dst_ring.cached_hp =
  1156. qdf_le32_to_cpu(*(volatile uint32_t *)
  1157. (srng->u.dst_ring.hp_addr));
  1158. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1159. desc = hal_srng_dst_peek(hal_soc_hdl, hal_ring_hdl);
  1160. if (qdf_likely(desc)) {
  1161. hal_mem_dma_cache_sync(soc, desc,
  1162. srng->entry_size);
  1163. qdf_prefetch(desc);
  1164. }
  1165. }
  1166. }
  1167. return 0;
  1168. }
  1169. /**
  1170. * hal_srng_try_access_start - Try to start (locked) ring access
  1171. *
  1172. * @hal_soc: Opaque HAL SOC handle
  1173. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1174. *
  1175. * Return: 0 on success; error on failure
  1176. */
  1177. static inline int hal_srng_try_access_start(hal_soc_handle_t hal_soc_hdl,
  1178. hal_ring_handle_t hal_ring_hdl)
  1179. {
  1180. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1181. if (qdf_unlikely(!hal_ring_hdl)) {
  1182. qdf_print("Error: Invalid hal_ring\n");
  1183. return -EINVAL;
  1184. }
  1185. if (!SRNG_TRY_LOCK(&(srng->lock)))
  1186. return -EINVAL;
  1187. return hal_srng_access_start_unlocked(hal_soc_hdl, hal_ring_hdl);
  1188. }
  1189. /**
  1190. * hal_srng_access_start - Start (locked) ring access
  1191. *
  1192. * @hal_soc: Opaque HAL SOC handle
  1193. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1194. *
  1195. * This API doesn't implement any byte-order conversion on reading hp/tp.
  1196. * So, Use API only for those srngs for which the target writes hp/tp values to
  1197. * the DDR in the Host order.
  1198. *
  1199. * Return: 0 on success; error on failire
  1200. */
  1201. static inline int hal_srng_access_start(hal_soc_handle_t hal_soc_hdl,
  1202. hal_ring_handle_t hal_ring_hdl)
  1203. {
  1204. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1205. if (qdf_unlikely(!hal_ring_hdl)) {
  1206. qdf_print("Error: Invalid hal_ring\n");
  1207. return -EINVAL;
  1208. }
  1209. SRNG_LOCK(&(srng->lock));
  1210. return hal_srng_access_start_unlocked(hal_soc_hdl, hal_ring_hdl);
  1211. }
  1212. /**
  1213. * hal_le_srng_access_start_in_cpu_order - Start (locked) ring access with
  1214. * endianness correction
  1215. * @hal_soc: Opaque HAL SOC handle
  1216. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1217. *
  1218. * This API provides same functionally as hal_srng_access_start()
  1219. * except that it converts the little-endian formatted hp/tp values to
  1220. * Host order on reading them. So, this API should only be used for those srngs
  1221. * for which the target always writes hp/tp values in little-endian order
  1222. * regardless of Host order.
  1223. *
  1224. * Return: 0 on success; error on failire
  1225. */
  1226. static inline int
  1227. hal_le_srng_access_start_in_cpu_order(
  1228. hal_soc_handle_t hal_soc_hdl,
  1229. hal_ring_handle_t hal_ring_hdl)
  1230. {
  1231. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1232. if (qdf_unlikely(!hal_ring_hdl)) {
  1233. qdf_print("Error: Invalid hal_ring\n");
  1234. return -EINVAL;
  1235. }
  1236. SRNG_LOCK(&(srng->lock));
  1237. return hal_le_srng_access_start_unlocked_in_cpu_order(
  1238. hal_soc_hdl, hal_ring_hdl);
  1239. }
  1240. /**
  1241. * hal_srng_dst_get_next - Get next entry from a destination ring
  1242. * @hal_soc: Opaque HAL SOC handle
  1243. * @hal_ring_hdl: Destination ring pointer
  1244. *
  1245. * Return: Opaque pointer for next ring entry; NULL on failure
  1246. */
  1247. static inline
  1248. void *hal_srng_dst_get_next(void *hal_soc,
  1249. hal_ring_handle_t hal_ring_hdl)
  1250. {
  1251. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1252. uint32_t *desc;
  1253. if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
  1254. return NULL;
  1255. desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1256. /* TODO: Using % is expensive, but we have to do this since
  1257. * size of some SRNG rings is not power of 2 (due to descriptor
  1258. * sizes). Need to create separate API for rings used
  1259. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1260. * SW2RXDMA and CE rings)
  1261. */
  1262. srng->u.dst_ring.tp = (srng->u.dst_ring.tp + srng->entry_size);
  1263. if (srng->u.dst_ring.tp == srng->ring_size)
  1264. srng->u.dst_ring.tp = 0;
  1265. if (srng->flags & HAL_SRNG_CACHED_DESC) {
  1266. struct hal_soc *soc = (struct hal_soc *)hal_soc;
  1267. uint32_t *desc_next;
  1268. uint32_t tp;
  1269. tp = srng->u.dst_ring.tp;
  1270. desc_next = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1271. hal_mem_dma_cache_sync(soc, desc_next, srng->entry_size);
  1272. qdf_prefetch(desc_next);
  1273. }
  1274. return (void *)desc;
  1275. }
  1276. /**
  1277. * hal_srng_dst_get_next_cached - Get cached next entry
  1278. * @hal_soc: Opaque HAL SOC handle
  1279. * @hal_ring_hdl: Destination ring pointer
  1280. *
  1281. * Get next entry from a destination ring and move cached tail pointer
  1282. *
  1283. * Return: Opaque pointer for next ring entry; NULL on failure
  1284. */
  1285. static inline
  1286. void *hal_srng_dst_get_next_cached(void *hal_soc,
  1287. hal_ring_handle_t hal_ring_hdl)
  1288. {
  1289. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1290. uint32_t *desc;
  1291. uint32_t *desc_next;
  1292. if (srng->u.dst_ring.tp == srng->u.dst_ring.cached_hp)
  1293. return NULL;
  1294. desc = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1295. /* TODO: Using % is expensive, but we have to do this since
  1296. * size of some SRNG rings is not power of 2 (due to descriptor
  1297. * sizes). Need to create separate API for rings used
  1298. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1299. * SW2RXDMA and CE rings)
  1300. */
  1301. srng->u.dst_ring.tp = (srng->u.dst_ring.tp + srng->entry_size);
  1302. if (srng->u.dst_ring.tp == srng->ring_size)
  1303. srng->u.dst_ring.tp = 0;
  1304. desc_next = &srng->ring_base_vaddr[srng->u.dst_ring.tp];
  1305. qdf_prefetch(desc_next);
  1306. return (void *)desc;
  1307. }
  1308. static inline int hal_srng_lock(hal_ring_handle_t hal_ring_hdl)
  1309. {
  1310. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1311. if (qdf_unlikely(!hal_ring_hdl)) {
  1312. qdf_print("error: invalid hal_ring\n");
  1313. return -EINVAL;
  1314. }
  1315. SRNG_LOCK(&(srng->lock));
  1316. return 0;
  1317. }
  1318. static inline int hal_srng_unlock(hal_ring_handle_t hal_ring_hdl)
  1319. {
  1320. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1321. if (qdf_unlikely(!hal_ring_hdl)) {
  1322. qdf_print("error: invalid hal_ring\n");
  1323. return -EINVAL;
  1324. }
  1325. SRNG_UNLOCK(&(srng->lock));
  1326. return 0;
  1327. }
  1328. /**
  1329. * hal_srng_dst_get_next_hp - Get next entry from a destination ring and move
  1330. * cached head pointer
  1331. *
  1332. * @hal_soc: Opaque HAL SOC handle
  1333. * @hal_ring_hdl: Destination ring pointer
  1334. *
  1335. * Return: Opaque pointer for next ring entry; NULL on failire
  1336. */
  1337. static inline void *
  1338. hal_srng_dst_get_next_hp(hal_soc_handle_t hal_soc_hdl,
  1339. hal_ring_handle_t hal_ring_hdl)
  1340. {
  1341. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1342. uint32_t *desc;
  1343. /* TODO: Using % is expensive, but we have to do this since
  1344. * size of some SRNG rings is not power of 2 (due to descriptor
  1345. * sizes). Need to create separate API for rings used
  1346. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1347. * SW2RXDMA and CE rings)
  1348. */
  1349. uint32_t next_hp = (srng->u.dst_ring.cached_hp + srng->entry_size) %
  1350. srng->ring_size;
  1351. if (next_hp != srng->u.dst_ring.tp) {
  1352. desc = &(srng->ring_base_vaddr[srng->u.dst_ring.cached_hp]);
  1353. srng->u.dst_ring.cached_hp = next_hp;
  1354. return (void *)desc;
  1355. }
  1356. return NULL;
  1357. }
  1358. /**
  1359. * hal_srng_dst_peek_sync - Check if there are any entries in the ring (peek)
  1360. * @hal_soc: Opaque HAL SOC handle
  1361. * @hal_ring_hdl: Destination ring pointer
  1362. *
  1363. * Sync cached head pointer with HW.
  1364. * Caller takes responsibility for any locking needs.
  1365. *
  1366. * Return: Opaque pointer for next ring entry; NULL on failire
  1367. */
  1368. static inline
  1369. void *hal_srng_dst_peek_sync(hal_soc_handle_t hal_soc_hdl,
  1370. hal_ring_handle_t hal_ring_hdl)
  1371. {
  1372. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1373. srng->u.dst_ring.cached_hp =
  1374. *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1375. if (srng->u.dst_ring.tp != srng->u.dst_ring.cached_hp)
  1376. return (void *)(&(srng->ring_base_vaddr[srng->u.dst_ring.tp]));
  1377. return NULL;
  1378. }
  1379. /**
  1380. * hal_srng_dst_peek_sync_locked - Peek for any entries in the ring
  1381. * @hal_soc: Opaque HAL SOC handle
  1382. * @hal_ring_hdl: Destination ring pointer
  1383. *
  1384. * Sync cached head pointer with HW.
  1385. * This function takes up SRNG_LOCK. Should not be called with SRNG lock held.
  1386. *
  1387. * Return: Opaque pointer for next ring entry; NULL on failire
  1388. */
  1389. static inline
  1390. void *hal_srng_dst_peek_sync_locked(hal_soc_handle_t hal_soc_hdl,
  1391. hal_ring_handle_t hal_ring_hdl)
  1392. {
  1393. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1394. void *ring_desc_ptr = NULL;
  1395. if (qdf_unlikely(!hal_ring_hdl)) {
  1396. qdf_print("Error: Invalid hal_ring\n");
  1397. return NULL;
  1398. }
  1399. SRNG_LOCK(&srng->lock);
  1400. ring_desc_ptr = hal_srng_dst_peek_sync(hal_soc_hdl, hal_ring_hdl);
  1401. SRNG_UNLOCK(&srng->lock);
  1402. return ring_desc_ptr;
  1403. }
  1404. /**
  1405. * hal_srng_dst_num_valid - Returns number of valid entries (to be processed
  1406. * by SW) in destination ring
  1407. *
  1408. * @hal_soc: Opaque HAL SOC handle
  1409. * @hal_ring_hdl: Destination ring pointer
  1410. * @sync_hw_ptr: Sync cached head pointer with HW
  1411. *
  1412. */
  1413. static inline
  1414. uint32_t hal_srng_dst_num_valid(void *hal_soc,
  1415. hal_ring_handle_t hal_ring_hdl,
  1416. int sync_hw_ptr)
  1417. {
  1418. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1419. uint32_t hp;
  1420. uint32_t tp = srng->u.dst_ring.tp;
  1421. if (sync_hw_ptr) {
  1422. hp = *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1423. srng->u.dst_ring.cached_hp = hp;
  1424. } else {
  1425. hp = srng->u.dst_ring.cached_hp;
  1426. }
  1427. if (hp >= tp)
  1428. return (hp - tp) / srng->entry_size;
  1429. return (srng->ring_size - tp + hp) / srng->entry_size;
  1430. }
  1431. /**
  1432. * hal_srng_dst_inv_cached_descs - API to invalidate descriptors in batch mode
  1433. * @hal_soc: Opaque HAL SOC handle
  1434. * @hal_ring_hdl: Destination ring pointer
  1435. * @entry_count: Number of descriptors to be invalidated
  1436. *
  1437. * Invalidates a set of cached descriptors starting from tail to
  1438. * provided count worth
  1439. *
  1440. * Return - None
  1441. */
  1442. static inline void hal_srng_dst_inv_cached_descs(void *hal_soc,
  1443. hal_ring_handle_t hal_ring_hdl,
  1444. uint32_t entry_count)
  1445. {
  1446. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1447. uint32_t hp = srng->u.dst_ring.cached_hp;
  1448. uint32_t tp = srng->u.dst_ring.tp;
  1449. uint32_t sync_p = 0;
  1450. /*
  1451. * If SRNG does not have cached descriptors this
  1452. * API call should be a no op
  1453. */
  1454. if (!(srng->flags & HAL_SRNG_CACHED_DESC))
  1455. return;
  1456. if (qdf_unlikely(entry_count == 0))
  1457. return;
  1458. sync_p = (entry_count - 1) * srng->entry_size;
  1459. if (hp > tp) {
  1460. qdf_nbuf_dma_inv_range(&srng->ring_base_vaddr[tp],
  1461. &srng->ring_base_vaddr[tp + sync_p]
  1462. + (srng->entry_size * sizeof(uint32_t)));
  1463. } else {
  1464. /*
  1465. * We have wrapped around
  1466. */
  1467. uint32_t wrap_cnt = ((srng->ring_size - tp) / srng->entry_size);
  1468. if (entry_count <= wrap_cnt) {
  1469. qdf_nbuf_dma_inv_range(&srng->ring_base_vaddr[tp],
  1470. &srng->ring_base_vaddr[tp + sync_p] +
  1471. (srng->entry_size * sizeof(uint32_t)));
  1472. return;
  1473. }
  1474. entry_count -= wrap_cnt;
  1475. sync_p = (entry_count - 1) * srng->entry_size;
  1476. qdf_nbuf_dma_inv_range(&srng->ring_base_vaddr[tp],
  1477. &srng->ring_base_vaddr[srng->ring_size - srng->entry_size] +
  1478. (srng->entry_size * sizeof(uint32_t)));
  1479. qdf_nbuf_dma_inv_range(&srng->ring_base_vaddr[0],
  1480. &srng->ring_base_vaddr[sync_p]
  1481. + (srng->entry_size * sizeof(uint32_t)));
  1482. }
  1483. }
  1484. /**
  1485. * hal_srng_dst_num_valid_locked - Returns num valid entries to be processed
  1486. *
  1487. * @hal_soc: Opaque HAL SOC handle
  1488. * @hal_ring_hdl: Destination ring pointer
  1489. * @sync_hw_ptr: Sync cached head pointer with HW
  1490. *
  1491. * Returns number of valid entries to be processed by the host driver. The
  1492. * function takes up SRNG lock.
  1493. *
  1494. * Return: Number of valid destination entries
  1495. */
  1496. static inline uint32_t
  1497. hal_srng_dst_num_valid_locked(hal_soc_handle_t hal_soc,
  1498. hal_ring_handle_t hal_ring_hdl,
  1499. int sync_hw_ptr)
  1500. {
  1501. uint32_t num_valid;
  1502. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1503. SRNG_LOCK(&srng->lock);
  1504. num_valid = hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, sync_hw_ptr);
  1505. SRNG_UNLOCK(&srng->lock);
  1506. return num_valid;
  1507. }
  1508. /**
  1509. * hal_srng_sync_cachedhp - sync cachehp pointer from hw hp
  1510. *
  1511. * @hal_soc: Opaque HAL SOC handle
  1512. * @hal_ring_hdl: Destination ring pointer
  1513. *
  1514. */
  1515. static inline
  1516. void hal_srng_sync_cachedhp(void *hal_soc,
  1517. hal_ring_handle_t hal_ring_hdl)
  1518. {
  1519. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1520. uint32_t hp;
  1521. hp = *(volatile uint32_t *)(srng->u.dst_ring.hp_addr);
  1522. srng->u.dst_ring.cached_hp = hp;
  1523. }
  1524. /**
  1525. * hal_srng_src_reap_next - Reap next entry from a source ring and move reap
  1526. * pointer. This can be used to release any buffers associated with completed
  1527. * ring entries. Note that this should not be used for posting new descriptor
  1528. * entries. Posting of new entries should be done only using
  1529. * hal_srng_src_get_next_reaped when this function is used for reaping.
  1530. *
  1531. * @hal_soc: Opaque HAL SOC handle
  1532. * @hal_ring_hdl: Source ring pointer
  1533. *
  1534. * Return: Opaque pointer for next ring entry; NULL on failire
  1535. */
  1536. static inline void *
  1537. hal_srng_src_reap_next(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1538. {
  1539. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1540. uint32_t *desc;
  1541. /* TODO: Using % is expensive, but we have to do this since
  1542. * size of some SRNG rings is not power of 2 (due to descriptor
  1543. * sizes). Need to create separate API for rings used
  1544. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1545. * SW2RXDMA and CE rings)
  1546. */
  1547. uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
  1548. srng->ring_size;
  1549. if (next_reap_hp != srng->u.src_ring.cached_tp) {
  1550. desc = &(srng->ring_base_vaddr[next_reap_hp]);
  1551. srng->u.src_ring.reap_hp = next_reap_hp;
  1552. return (void *)desc;
  1553. }
  1554. return NULL;
  1555. }
  1556. /**
  1557. * hal_srng_src_get_next_reaped - Get next entry from a source ring that is
  1558. * already reaped using hal_srng_src_reap_next, for posting new entries to
  1559. * the ring
  1560. *
  1561. * @hal_soc: Opaque HAL SOC handle
  1562. * @hal_ring_hdl: Source ring pointer
  1563. *
  1564. * Return: Opaque pointer for next (reaped) source ring entry; NULL on failire
  1565. */
  1566. static inline void *
  1567. hal_srng_src_get_next_reaped(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1568. {
  1569. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1570. uint32_t *desc;
  1571. if (srng->u.src_ring.hp != srng->u.src_ring.reap_hp) {
  1572. desc = &(srng->ring_base_vaddr[srng->u.src_ring.hp]);
  1573. srng->u.src_ring.hp = (srng->u.src_ring.hp + srng->entry_size) %
  1574. srng->ring_size;
  1575. return (void *)desc;
  1576. }
  1577. return NULL;
  1578. }
  1579. /**
  1580. * hal_srng_src_pending_reap_next - Reap next entry from a source ring and
  1581. * move reap pointer. This API is used in detach path to release any buffers
  1582. * associated with ring entries which are pending reap.
  1583. *
  1584. * @hal_soc: Opaque HAL SOC handle
  1585. * @hal_ring_hdl: Source ring pointer
  1586. *
  1587. * Return: Opaque pointer for next ring entry; NULL on failire
  1588. */
  1589. static inline void *
  1590. hal_srng_src_pending_reap_next(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1591. {
  1592. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1593. uint32_t *desc;
  1594. uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
  1595. srng->ring_size;
  1596. if (next_reap_hp != srng->u.src_ring.hp) {
  1597. desc = &(srng->ring_base_vaddr[next_reap_hp]);
  1598. srng->u.src_ring.reap_hp = next_reap_hp;
  1599. return (void *)desc;
  1600. }
  1601. return NULL;
  1602. }
  1603. /**
  1604. * hal_srng_src_done_val -
  1605. *
  1606. * @hal_soc: Opaque HAL SOC handle
  1607. * @hal_ring_hdl: Source ring pointer
  1608. *
  1609. * Return: Opaque pointer for next ring entry; NULL on failire
  1610. */
  1611. static inline uint32_t
  1612. hal_srng_src_done_val(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1613. {
  1614. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1615. /* TODO: Using % is expensive, but we have to do this since
  1616. * size of some SRNG rings is not power of 2 (due to descriptor
  1617. * sizes). Need to create separate API for rings used
  1618. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1619. * SW2RXDMA and CE rings)
  1620. */
  1621. uint32_t next_reap_hp = (srng->u.src_ring.reap_hp + srng->entry_size) %
  1622. srng->ring_size;
  1623. if (next_reap_hp == srng->u.src_ring.cached_tp)
  1624. return 0;
  1625. if (srng->u.src_ring.cached_tp > next_reap_hp)
  1626. return (srng->u.src_ring.cached_tp - next_reap_hp) /
  1627. srng->entry_size;
  1628. else
  1629. return ((srng->ring_size - next_reap_hp) +
  1630. srng->u.src_ring.cached_tp) / srng->entry_size;
  1631. }
  1632. /**
  1633. * hal_get_entrysize_from_srng() - Retrieve ring entry size
  1634. * @hal_ring_hdl: Source ring pointer
  1635. *
  1636. * srng->entry_size value is in 4 byte dwords so left shifting
  1637. * this by 2 to return the value of entry_size in bytes.
  1638. *
  1639. * Return: uint8_t
  1640. */
  1641. static inline
  1642. uint8_t hal_get_entrysize_from_srng(hal_ring_handle_t hal_ring_hdl)
  1643. {
  1644. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1645. return srng->entry_size << 2;
  1646. }
  1647. /**
  1648. * hal_get_sw_hptp - Get SW head and tail pointer location for any ring
  1649. * @hal_soc: Opaque HAL SOC handle
  1650. * @hal_ring_hdl: Source ring pointer
  1651. * @tailp: Tail Pointer
  1652. * @headp: Head Pointer
  1653. *
  1654. * Return: Update tail pointer and head pointer in arguments.
  1655. */
  1656. static inline
  1657. void hal_get_sw_hptp(void *hal_soc, hal_ring_handle_t hal_ring_hdl,
  1658. uint32_t *tailp, uint32_t *headp)
  1659. {
  1660. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1661. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1662. *headp = srng->u.src_ring.hp;
  1663. *tailp = *srng->u.src_ring.tp_addr;
  1664. } else {
  1665. *tailp = srng->u.dst_ring.tp;
  1666. *headp = *srng->u.dst_ring.hp_addr;
  1667. }
  1668. }
  1669. /**
  1670. * hal_srng_src_get_next - Get next entry from a source ring and move cached tail pointer
  1671. *
  1672. * @hal_soc: Opaque HAL SOC handle
  1673. * @hal_ring_hdl: Source ring pointer
  1674. *
  1675. * Return: Opaque pointer for next ring entry; NULL on failire
  1676. */
  1677. static inline
  1678. void *hal_srng_src_get_next(void *hal_soc,
  1679. hal_ring_handle_t hal_ring_hdl)
  1680. {
  1681. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1682. uint32_t *desc;
  1683. /* TODO: Using % is expensive, but we have to do this since
  1684. * size of some SRNG rings is not power of 2 (due to descriptor
  1685. * sizes). Need to create separate API for rings used
  1686. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1687. * SW2RXDMA and CE rings)
  1688. */
  1689. uint32_t next_hp = (srng->u.src_ring.hp + srng->entry_size) %
  1690. srng->ring_size;
  1691. if (next_hp != srng->u.src_ring.cached_tp) {
  1692. desc = &(srng->ring_base_vaddr[srng->u.src_ring.hp]);
  1693. srng->u.src_ring.hp = next_hp;
  1694. /* TODO: Since reap function is not used by all rings, we can
  1695. * remove the following update of reap_hp in this function
  1696. * if we can ensure that only hal_srng_src_get_next_reaped
  1697. * is used for the rings requiring reap functionality
  1698. */
  1699. srng->u.src_ring.reap_hp = next_hp;
  1700. return (void *)desc;
  1701. }
  1702. return NULL;
  1703. }
  1704. /**
  1705. * hal_srng_src_peek_n_get_next - Get next entry from a ring without
  1706. * moving head pointer.
  1707. * hal_srng_src_get_next should be called subsequently to move the head pointer
  1708. *
  1709. * @hal_soc: Opaque HAL SOC handle
  1710. * @hal_ring_hdl: Source ring pointer
  1711. *
  1712. * Return: Opaque pointer for next ring entry; NULL on failire
  1713. */
  1714. static inline
  1715. void *hal_srng_src_peek_n_get_next(hal_soc_handle_t hal_soc_hdl,
  1716. hal_ring_handle_t hal_ring_hdl)
  1717. {
  1718. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1719. uint32_t *desc;
  1720. /* TODO: Using % is expensive, but we have to do this since
  1721. * size of some SRNG rings is not power of 2 (due to descriptor
  1722. * sizes). Need to create separate API for rings used
  1723. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1724. * SW2RXDMA and CE rings)
  1725. */
  1726. if (((srng->u.src_ring.hp + srng->entry_size) %
  1727. srng->ring_size) != srng->u.src_ring.cached_tp) {
  1728. desc = &(srng->ring_base_vaddr[(srng->u.src_ring.hp +
  1729. srng->entry_size) %
  1730. srng->ring_size]);
  1731. return (void *)desc;
  1732. }
  1733. return NULL;
  1734. }
  1735. /**
  1736. * hal_srng_src_peek_n_get_next_next - Get next to next, i.e HP + 2 entry
  1737. * from a ring without moving head pointer.
  1738. *
  1739. * @hal_soc: Opaque HAL SOC handle
  1740. * @hal_ring_hdl: Source ring pointer
  1741. *
  1742. * Return: Opaque pointer for next to next ring entry; NULL on failire
  1743. */
  1744. static inline
  1745. void *hal_srng_src_peek_n_get_next_next(hal_soc_handle_t hal_soc_hdl,
  1746. hal_ring_handle_t hal_ring_hdl)
  1747. {
  1748. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1749. uint32_t *desc;
  1750. /* TODO: Using % is expensive, but we have to do this since
  1751. * size of some SRNG rings is not power of 2 (due to descriptor
  1752. * sizes). Need to create separate API for rings used
  1753. * per-packet, with sizes power of 2 (TCL2SW, REO2SW,
  1754. * SW2RXDMA and CE rings)
  1755. */
  1756. if ((((srng->u.src_ring.hp + (srng->entry_size)) %
  1757. srng->ring_size) != srng->u.src_ring.cached_tp) &&
  1758. (((srng->u.src_ring.hp + (srng->entry_size * 2)) %
  1759. srng->ring_size) != srng->u.src_ring.cached_tp)) {
  1760. desc = &(srng->ring_base_vaddr[(srng->u.src_ring.hp +
  1761. (srng->entry_size * 2)) %
  1762. srng->ring_size]);
  1763. return (void *)desc;
  1764. }
  1765. return NULL;
  1766. }
  1767. /**
  1768. * hal_srng_src_get_cur_hp_n_move_next () - API returns current hp
  1769. * and move hp to next in src ring
  1770. *
  1771. * Usage: This API should only be used at init time replenish.
  1772. *
  1773. * @hal_soc_hdl: HAL soc handle
  1774. * @hal_ring_hdl: Source ring pointer
  1775. *
  1776. */
  1777. static inline void *
  1778. hal_srng_src_get_cur_hp_n_move_next(hal_soc_handle_t hal_soc_hdl,
  1779. hal_ring_handle_t hal_ring_hdl)
  1780. {
  1781. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1782. uint32_t *cur_desc = NULL;
  1783. uint32_t next_hp;
  1784. cur_desc = &srng->ring_base_vaddr[(srng->u.src_ring.hp)];
  1785. next_hp = (srng->u.src_ring.hp + srng->entry_size) %
  1786. srng->ring_size;
  1787. if (next_hp != srng->u.src_ring.cached_tp)
  1788. srng->u.src_ring.hp = next_hp;
  1789. return (void *)cur_desc;
  1790. }
  1791. /**
  1792. * hal_srng_src_num_avail - Returns number of available entries in src ring
  1793. *
  1794. * @hal_soc: Opaque HAL SOC handle
  1795. * @hal_ring_hdl: Source ring pointer
  1796. * @sync_hw_ptr: Sync cached tail pointer with HW
  1797. *
  1798. */
  1799. static inline uint32_t
  1800. hal_srng_src_num_avail(void *hal_soc,
  1801. hal_ring_handle_t hal_ring_hdl, int sync_hw_ptr)
  1802. {
  1803. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1804. uint32_t tp;
  1805. uint32_t hp = srng->u.src_ring.hp;
  1806. if (sync_hw_ptr) {
  1807. tp = *(srng->u.src_ring.tp_addr);
  1808. srng->u.src_ring.cached_tp = tp;
  1809. } else {
  1810. tp = srng->u.src_ring.cached_tp;
  1811. }
  1812. if (tp > hp)
  1813. return ((tp - hp) / srng->entry_size) - 1;
  1814. else
  1815. return ((srng->ring_size - hp + tp) / srng->entry_size) - 1;
  1816. }
  1817. /**
  1818. * hal_srng_access_end_unlocked - End ring access (unlocked) - update cached
  1819. * ring head/tail pointers to HW.
  1820. *
  1821. * @hal_soc: Opaque HAL SOC handle
  1822. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1823. *
  1824. * The target expects cached head/tail pointer to be updated to the
  1825. * shared location in the little-endian order, This API ensures that.
  1826. * This API should be used only if hal_srng_access_start_unlocked was used to
  1827. * start ring access
  1828. *
  1829. * Return: None
  1830. */
  1831. static inline void
  1832. hal_srng_access_end_unlocked(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1833. {
  1834. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1835. /* TODO: See if we need a write memory barrier here */
  1836. if (srng->flags & HAL_SRNG_LMAC_RING) {
  1837. /* For LMAC rings, ring pointer updates are done through FW and
  1838. * hence written to a shared memory location that is read by FW
  1839. */
  1840. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1841. *srng->u.src_ring.hp_addr =
  1842. qdf_cpu_to_le32(srng->u.src_ring.hp);
  1843. } else {
  1844. *srng->u.dst_ring.tp_addr =
  1845. qdf_cpu_to_le32(srng->u.dst_ring.tp);
  1846. }
  1847. } else {
  1848. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1849. hal_srng_write_address_32_mb(hal_soc,
  1850. srng,
  1851. srng->u.src_ring.hp_addr,
  1852. srng->u.src_ring.hp);
  1853. else
  1854. hal_srng_write_address_32_mb(hal_soc,
  1855. srng,
  1856. srng->u.dst_ring.tp_addr,
  1857. srng->u.dst_ring.tp);
  1858. }
  1859. }
  1860. /* hal_srng_access_end_unlocked already handles endianness conversion,
  1861. * use the same.
  1862. */
  1863. #define hal_le_srng_access_end_unlocked_in_cpu_order \
  1864. hal_srng_access_end_unlocked
  1865. /**
  1866. * hal_srng_access_end - Unlock ring access and update cached ring head/tail
  1867. * pointers to HW
  1868. *
  1869. * @hal_soc: Opaque HAL SOC handle
  1870. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1871. *
  1872. * The target expects cached head/tail pointer to be updated to the
  1873. * shared location in the little-endian order, This API ensures that.
  1874. * This API should be used only if hal_srng_access_start was used to
  1875. * start ring access
  1876. *
  1877. * Return: 0 on success; error on failire
  1878. */
  1879. static inline void
  1880. hal_srng_access_end(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1881. {
  1882. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1883. if (qdf_unlikely(!hal_ring_hdl)) {
  1884. qdf_print("Error: Invalid hal_ring\n");
  1885. return;
  1886. }
  1887. hal_srng_access_end_unlocked(hal_soc, hal_ring_hdl);
  1888. SRNG_UNLOCK(&(srng->lock));
  1889. }
  1890. /* hal_srng_access_end already handles endianness conversion, so use the same */
  1891. #define hal_le_srng_access_end_in_cpu_order \
  1892. hal_srng_access_end
  1893. /**
  1894. * hal_srng_access_end_reap - Unlock ring access
  1895. * This should be used only if hal_srng_access_start to start ring access
  1896. * and should be used only while reaping SRC ring completions
  1897. *
  1898. * @hal_soc: Opaque HAL SOC handle
  1899. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  1900. *
  1901. * Return: 0 on success; error on failire
  1902. */
  1903. static inline void
  1904. hal_srng_access_end_reap(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1905. {
  1906. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1907. SRNG_UNLOCK(&(srng->lock));
  1908. }
  1909. /* TODO: Check if the following definitions is available in HW headers */
  1910. #define WBM_IDLE_SCATTER_BUF_SIZE 32704
  1911. #define NUM_MPDUS_PER_LINK_DESC 6
  1912. #define NUM_MSDUS_PER_LINK_DESC 7
  1913. #define REO_QUEUE_DESC_ALIGN 128
  1914. #define LINK_DESC_ALIGN 128
  1915. #define ADDRESS_MATCH_TAG_VAL 0x5
  1916. /* Number of mpdu link pointers is 9 in case of TX_MPDU_QUEUE_HEAD and 14 in
  1917. * of TX_MPDU_QUEUE_EXT. We are defining a common average count here
  1918. */
  1919. #define NUM_MPDU_LINKS_PER_QUEUE_DESC 12
  1920. /* TODO: Check with HW team on the scatter buffer size supported. As per WBM
  1921. * MLD, scatter_buffer_size in IDLE_LIST_CONTROL register is 9 bits and size
  1922. * should be specified in 16 word units. But the number of bits defined for
  1923. * this field in HW header files is 5.
  1924. */
  1925. #define WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE 8
  1926. /**
  1927. * hal_idle_list_scatter_buf_size - Get the size of each scatter buffer
  1928. * in an idle list
  1929. *
  1930. * @hal_soc: Opaque HAL SOC handle
  1931. *
  1932. */
  1933. static inline
  1934. uint32_t hal_idle_list_scatter_buf_size(hal_soc_handle_t hal_soc_hdl)
  1935. {
  1936. return WBM_IDLE_SCATTER_BUF_SIZE;
  1937. }
  1938. /**
  1939. * hal_get_link_desc_size - Get the size of each link descriptor
  1940. *
  1941. * @hal_soc: Opaque HAL SOC handle
  1942. *
  1943. */
  1944. static inline uint32_t hal_get_link_desc_size(hal_soc_handle_t hal_soc_hdl)
  1945. {
  1946. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  1947. if (!hal_soc || !hal_soc->ops) {
  1948. qdf_print("Error: Invalid ops\n");
  1949. QDF_BUG(0);
  1950. return -EINVAL;
  1951. }
  1952. if (!hal_soc->ops->hal_get_link_desc_size) {
  1953. qdf_print("Error: Invalid function pointer\n");
  1954. QDF_BUG(0);
  1955. return -EINVAL;
  1956. }
  1957. return hal_soc->ops->hal_get_link_desc_size();
  1958. }
  1959. /**
  1960. * hal_get_link_desc_align - Get the required start address alignment for
  1961. * link descriptors
  1962. *
  1963. * @hal_soc: Opaque HAL SOC handle
  1964. *
  1965. */
  1966. static inline
  1967. uint32_t hal_get_link_desc_align(hal_soc_handle_t hal_soc_hdl)
  1968. {
  1969. return LINK_DESC_ALIGN;
  1970. }
  1971. /**
  1972. * hal_num_mpdus_per_link_desc - Get number of mpdus each link desc can hold
  1973. *
  1974. * @hal_soc: Opaque HAL SOC handle
  1975. *
  1976. */
  1977. static inline
  1978. uint32_t hal_num_mpdus_per_link_desc(hal_soc_handle_t hal_soc_hdl)
  1979. {
  1980. return NUM_MPDUS_PER_LINK_DESC;
  1981. }
  1982. /**
  1983. * hal_num_msdus_per_link_desc - Get number of msdus each link desc can hold
  1984. *
  1985. * @hal_soc: Opaque HAL SOC handle
  1986. *
  1987. */
  1988. static inline
  1989. uint32_t hal_num_msdus_per_link_desc(hal_soc_handle_t hal_soc_hdl)
  1990. {
  1991. return NUM_MSDUS_PER_LINK_DESC;
  1992. }
  1993. /**
  1994. * hal_num_mpdu_links_per_queue_desc - Get number of mpdu links each queue
  1995. * descriptor can hold
  1996. *
  1997. * @hal_soc: Opaque HAL SOC handle
  1998. *
  1999. */
  2000. static inline
  2001. uint32_t hal_num_mpdu_links_per_queue_desc(hal_soc_handle_t hal_soc_hdl)
  2002. {
  2003. return NUM_MPDU_LINKS_PER_QUEUE_DESC;
  2004. }
  2005. /**
  2006. * hal_idle_list_scatter_buf_num_entries - Get the number of link desc entries
  2007. * that the given buffer size
  2008. *
  2009. * @hal_soc: Opaque HAL SOC handle
  2010. * @scatter_buf_size: Size of scatter buffer
  2011. *
  2012. */
  2013. static inline
  2014. uint32_t hal_idle_scatter_buf_num_entries(hal_soc_handle_t hal_soc_hdl,
  2015. uint32_t scatter_buf_size)
  2016. {
  2017. return (scatter_buf_size - WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE) /
  2018. hal_srng_get_entrysize(hal_soc_hdl, WBM_IDLE_LINK);
  2019. }
  2020. /**
  2021. * hal_idle_list_num_scatter_bufs - Get the number of sctater buffer
  2022. * each given buffer size
  2023. *
  2024. * @hal_soc: Opaque HAL SOC handle
  2025. * @total_mem: size of memory to be scattered
  2026. * @scatter_buf_size: Size of scatter buffer
  2027. *
  2028. */
  2029. static inline
  2030. uint32_t hal_idle_list_num_scatter_bufs(hal_soc_handle_t hal_soc_hdl,
  2031. uint32_t total_mem,
  2032. uint32_t scatter_buf_size)
  2033. {
  2034. uint8_t rem = (total_mem % (scatter_buf_size -
  2035. WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE)) ? 1 : 0;
  2036. uint32_t num_scatter_bufs = (total_mem / (scatter_buf_size -
  2037. WBM_IDLE_SCATTER_BUF_NEXT_PTR_SIZE)) + rem;
  2038. return num_scatter_bufs;
  2039. }
  2040. enum hal_pn_type {
  2041. HAL_PN_NONE,
  2042. HAL_PN_WPA,
  2043. HAL_PN_WAPI_EVEN,
  2044. HAL_PN_WAPI_UNEVEN,
  2045. };
  2046. #define HAL_RX_MAX_BA_WINDOW 256
  2047. /**
  2048. * hal_get_reo_qdesc_align - Get start address alignment for reo
  2049. * queue descriptors
  2050. *
  2051. * @hal_soc: Opaque HAL SOC handle
  2052. *
  2053. */
  2054. static inline
  2055. uint32_t hal_get_reo_qdesc_align(hal_soc_handle_t hal_soc_hdl)
  2056. {
  2057. return REO_QUEUE_DESC_ALIGN;
  2058. }
  2059. /**
  2060. * hal_srng_get_hp_addr - Get head pointer physical address
  2061. *
  2062. * @hal_soc: Opaque HAL SOC handle
  2063. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2064. *
  2065. */
  2066. static inline qdf_dma_addr_t
  2067. hal_srng_get_hp_addr(void *hal_soc,
  2068. hal_ring_handle_t hal_ring_hdl)
  2069. {
  2070. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2071. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  2072. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  2073. return hal->shadow_wrptr_mem_paddr +
  2074. ((unsigned long)(srng->u.src_ring.hp_addr) -
  2075. (unsigned long)(hal->shadow_wrptr_mem_vaddr));
  2076. } else {
  2077. return hal->shadow_rdptr_mem_paddr +
  2078. ((unsigned long)(srng->u.dst_ring.hp_addr) -
  2079. (unsigned long)(hal->shadow_rdptr_mem_vaddr));
  2080. }
  2081. }
  2082. /**
  2083. * hal_srng_get_tp_addr - Get tail pointer physical address
  2084. *
  2085. * @hal_soc: Opaque HAL SOC handle
  2086. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2087. *
  2088. */
  2089. static inline qdf_dma_addr_t
  2090. hal_srng_get_tp_addr(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  2091. {
  2092. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2093. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  2094. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  2095. return hal->shadow_rdptr_mem_paddr +
  2096. ((unsigned long)(srng->u.src_ring.tp_addr) -
  2097. (unsigned long)(hal->shadow_rdptr_mem_vaddr));
  2098. } else {
  2099. return hal->shadow_wrptr_mem_paddr +
  2100. ((unsigned long)(srng->u.dst_ring.tp_addr) -
  2101. (unsigned long)(hal->shadow_wrptr_mem_vaddr));
  2102. }
  2103. }
  2104. /**
  2105. * hal_srng_get_num_entries - Get total entries in the HAL Srng
  2106. *
  2107. * @hal_soc: Opaque HAL SOC handle
  2108. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2109. *
  2110. * Return: total number of entries in hal ring
  2111. */
  2112. static inline
  2113. uint32_t hal_srng_get_num_entries(hal_soc_handle_t hal_soc_hdl,
  2114. hal_ring_handle_t hal_ring_hdl)
  2115. {
  2116. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2117. return srng->num_entries;
  2118. }
  2119. /**
  2120. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  2121. *
  2122. * @hal_soc: Opaque HAL SOC handle
  2123. * @hal_ring_hdl: Ring pointer (Source or Destination ring)
  2124. * @ring_params: SRNG parameters will be returned through this structure
  2125. */
  2126. void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  2127. hal_ring_handle_t hal_ring_hdl,
  2128. struct hal_srng_params *ring_params);
  2129. /**
  2130. * hal_mem_info - Retrieve hal memory base address
  2131. *
  2132. * @hal_soc: Opaque HAL SOC handle
  2133. * @mem: pointer to structure to be updated with hal mem info
  2134. */
  2135. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem);
  2136. /**
  2137. * hal_get_target_type - Return target type
  2138. *
  2139. * @hal_soc: Opaque HAL SOC handle
  2140. */
  2141. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl);
  2142. /**
  2143. * hal_srng_dst_hw_init - Private function to initialize SRNG
  2144. * destination ring HW
  2145. * @hal_soc: HAL SOC handle
  2146. * @srng: SRNG ring pointer
  2147. */
  2148. static inline void hal_srng_dst_hw_init(struct hal_soc *hal,
  2149. struct hal_srng *srng)
  2150. {
  2151. hal->ops->hal_srng_dst_hw_init(hal, srng);
  2152. }
  2153. /**
  2154. * hal_srng_src_hw_init - Private function to initialize SRNG
  2155. * source ring HW
  2156. * @hal_soc: HAL SOC handle
  2157. * @srng: SRNG ring pointer
  2158. */
  2159. static inline void hal_srng_src_hw_init(struct hal_soc *hal,
  2160. struct hal_srng *srng)
  2161. {
  2162. hal->ops->hal_srng_src_hw_init(hal, srng);
  2163. }
  2164. /**
  2165. * hal_get_hw_hptp() - Get HW head and tail pointer value for any ring
  2166. * @hal_soc: Opaque HAL SOC handle
  2167. * @hal_ring_hdl: Source ring pointer
  2168. * @headp: Head Pointer
  2169. * @tailp: Tail Pointer
  2170. * @ring_type: Ring
  2171. *
  2172. * Return: Update tail pointer and head pointer in arguments.
  2173. */
  2174. static inline
  2175. void hal_get_hw_hptp(hal_soc_handle_t hal_soc_hdl,
  2176. hal_ring_handle_t hal_ring_hdl,
  2177. uint32_t *headp, uint32_t *tailp,
  2178. uint8_t ring_type)
  2179. {
  2180. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2181. hal_soc->ops->hal_get_hw_hptp(hal_soc, hal_ring_hdl,
  2182. headp, tailp, ring_type);
  2183. }
  2184. /**
  2185. * hal_reo_setup - Initialize HW REO block
  2186. *
  2187. * @hal_soc: Opaque HAL SOC handle
  2188. * @reo_params: parameters needed by HAL for REO config
  2189. */
  2190. static inline void hal_reo_setup(hal_soc_handle_t hal_soc_hdl,
  2191. void *reoparams)
  2192. {
  2193. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2194. hal_soc->ops->hal_reo_setup(hal_soc, reoparams);
  2195. }
  2196. static inline
  2197. void hal_compute_reo_remap_ix2_ix3(hal_soc_handle_t hal_soc_hdl,
  2198. uint32_t *ring, uint32_t num_rings,
  2199. uint32_t *remap1, uint32_t *remap2)
  2200. {
  2201. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2202. return hal_soc->ops->hal_compute_reo_remap_ix2_ix3(ring,
  2203. num_rings, remap1, remap2);
  2204. }
  2205. /**
  2206. * hal_setup_link_idle_list - Setup scattered idle list using the
  2207. * buffer list provided
  2208. *
  2209. * @hal_soc: Opaque HAL SOC handle
  2210. * @scatter_bufs_base_paddr: Array of physical base addresses
  2211. * @scatter_bufs_base_vaddr: Array of virtual base addresses
  2212. * @num_scatter_bufs: Number of scatter buffers in the above lists
  2213. * @scatter_buf_size: Size of each scatter buffer
  2214. * @last_buf_end_offset: Offset to the last entry
  2215. * @num_entries: Total entries of all scatter bufs
  2216. *
  2217. */
  2218. static inline
  2219. void hal_setup_link_idle_list(hal_soc_handle_t hal_soc_hdl,
  2220. qdf_dma_addr_t scatter_bufs_base_paddr[],
  2221. void *scatter_bufs_base_vaddr[],
  2222. uint32_t num_scatter_bufs,
  2223. uint32_t scatter_buf_size,
  2224. uint32_t last_buf_end_offset,
  2225. uint32_t num_entries)
  2226. {
  2227. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2228. hal_soc->ops->hal_setup_link_idle_list(hal_soc, scatter_bufs_base_paddr,
  2229. scatter_bufs_base_vaddr, num_scatter_bufs,
  2230. scatter_buf_size, last_buf_end_offset,
  2231. num_entries);
  2232. }
  2233. #ifdef DUMP_REO_QUEUE_INFO_IN_DDR
  2234. /**
  2235. * hal_dump_rx_reo_queue_desc() - Dump reo queue descriptor fields
  2236. * @hw_qdesc_vaddr_aligned: Pointer to hw reo queue desc virtual addr
  2237. *
  2238. * Use the virtual addr pointer to reo h/w queue desc to read
  2239. * the values from ddr and log them.
  2240. *
  2241. * Return: none
  2242. */
  2243. static inline void hal_dump_rx_reo_queue_desc(
  2244. void *hw_qdesc_vaddr_aligned)
  2245. {
  2246. struct rx_reo_queue *hw_qdesc =
  2247. (struct rx_reo_queue *)hw_qdesc_vaddr_aligned;
  2248. if (!hw_qdesc)
  2249. return;
  2250. hal_info("receive_queue_number %u vld %u window_jump_2k %u"
  2251. " hole_count %u ba_window_size %u ignore_ampdu_flag %u"
  2252. " svld %u ssn %u current_index %u"
  2253. " disable_duplicate_detection %u soft_reorder_enable %u"
  2254. " chk_2k_mode %u oor_mode %u mpdu_frames_processed_count %u"
  2255. " msdu_frames_processed_count %u total_processed_byte_count %u"
  2256. " late_receive_mpdu_count %u seq_2k_error_detected_flag %u"
  2257. " pn_error_detected_flag %u current_mpdu_count %u"
  2258. " current_msdu_count %u timeout_count %u"
  2259. " forward_due_to_bar_count %u duplicate_count %u"
  2260. " frames_in_order_count %u bar_received_count %u"
  2261. " pn_check_needed %u pn_shall_be_even %u"
  2262. " pn_shall_be_uneven %u pn_size %u",
  2263. hw_qdesc->receive_queue_number,
  2264. hw_qdesc->vld,
  2265. hw_qdesc->window_jump_2k,
  2266. hw_qdesc->hole_count,
  2267. hw_qdesc->ba_window_size,
  2268. hw_qdesc->ignore_ampdu_flag,
  2269. hw_qdesc->svld,
  2270. hw_qdesc->ssn,
  2271. hw_qdesc->current_index,
  2272. hw_qdesc->disable_duplicate_detection,
  2273. hw_qdesc->soft_reorder_enable,
  2274. hw_qdesc->chk_2k_mode,
  2275. hw_qdesc->oor_mode,
  2276. hw_qdesc->mpdu_frames_processed_count,
  2277. hw_qdesc->msdu_frames_processed_count,
  2278. hw_qdesc->total_processed_byte_count,
  2279. hw_qdesc->late_receive_mpdu_count,
  2280. hw_qdesc->seq_2k_error_detected_flag,
  2281. hw_qdesc->pn_error_detected_flag,
  2282. hw_qdesc->current_mpdu_count,
  2283. hw_qdesc->current_msdu_count,
  2284. hw_qdesc->timeout_count,
  2285. hw_qdesc->forward_due_to_bar_count,
  2286. hw_qdesc->duplicate_count,
  2287. hw_qdesc->frames_in_order_count,
  2288. hw_qdesc->bar_received_count,
  2289. hw_qdesc->pn_check_needed,
  2290. hw_qdesc->pn_shall_be_even,
  2291. hw_qdesc->pn_shall_be_uneven,
  2292. hw_qdesc->pn_size);
  2293. }
  2294. #else /* DUMP_REO_QUEUE_INFO_IN_DDR */
  2295. static inline void hal_dump_rx_reo_queue_desc(
  2296. void *hw_qdesc_vaddr_aligned)
  2297. {
  2298. }
  2299. #endif /* DUMP_REO_QUEUE_INFO_IN_DDR */
  2300. /**
  2301. * hal_srng_dump_ring_desc() - Dump ring descriptor info
  2302. *
  2303. * @hal_soc: Opaque HAL SOC handle
  2304. * @hal_ring_hdl: Source ring pointer
  2305. * @ring_desc: Opaque ring descriptor handle
  2306. */
  2307. static inline void hal_srng_dump_ring_desc(hal_soc_handle_t hal_soc_hdl,
  2308. hal_ring_handle_t hal_ring_hdl,
  2309. hal_ring_desc_t ring_desc)
  2310. {
  2311. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2312. QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  2313. ring_desc, (srng->entry_size << 2));
  2314. }
  2315. /**
  2316. * hal_srng_dump_ring() - Dump last 128 descs of the ring
  2317. *
  2318. * @hal_soc: Opaque HAL SOC handle
  2319. * @hal_ring_hdl: Source ring pointer
  2320. */
  2321. static inline void hal_srng_dump_ring(hal_soc_handle_t hal_soc_hdl,
  2322. hal_ring_handle_t hal_ring_hdl)
  2323. {
  2324. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2325. uint32_t *desc;
  2326. uint32_t tp, i;
  2327. tp = srng->u.dst_ring.tp;
  2328. for (i = 0; i < 128; i++) {
  2329. if (!tp)
  2330. tp = srng->ring_size;
  2331. desc = &srng->ring_base_vaddr[tp - srng->entry_size];
  2332. QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP,
  2333. QDF_TRACE_LEVEL_DEBUG,
  2334. desc, (srng->entry_size << 2));
  2335. tp -= srng->entry_size;
  2336. }
  2337. }
  2338. /*
  2339. * hal_rxdma_desc_to_hal_ring_desc - API to convert rxdma ring desc
  2340. * to opaque dp_ring desc type
  2341. * @ring_desc - rxdma ring desc
  2342. *
  2343. * Return: hal_rxdma_desc_t type
  2344. */
  2345. static inline
  2346. hal_ring_desc_t hal_rxdma_desc_to_hal_ring_desc(hal_rxdma_desc_t ring_desc)
  2347. {
  2348. return (hal_ring_desc_t)ring_desc;
  2349. }
  2350. /**
  2351. * hal_srng_set_event() - Set hal_srng event
  2352. * @hal_ring_hdl: Source ring pointer
  2353. * @event: SRNG ring event
  2354. *
  2355. * Return: None
  2356. */
  2357. static inline void hal_srng_set_event(hal_ring_handle_t hal_ring_hdl, int event)
  2358. {
  2359. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2360. qdf_atomic_set_bit(event, &srng->srng_event);
  2361. }
  2362. /**
  2363. * hal_srng_clear_event() - Clear hal_srng event
  2364. * @hal_ring_hdl: Source ring pointer
  2365. * @event: SRNG ring event
  2366. *
  2367. * Return: None
  2368. */
  2369. static inline
  2370. void hal_srng_clear_event(hal_ring_handle_t hal_ring_hdl, int event)
  2371. {
  2372. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2373. qdf_atomic_clear_bit(event, &srng->srng_event);
  2374. }
  2375. /**
  2376. * hal_srng_get_clear_event() - Clear srng event and return old value
  2377. * @hal_ring_hdl: Source ring pointer
  2378. * @event: SRNG ring event
  2379. *
  2380. * Return: Return old event value
  2381. */
  2382. static inline
  2383. int hal_srng_get_clear_event(hal_ring_handle_t hal_ring_hdl, int event)
  2384. {
  2385. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2386. return qdf_atomic_test_and_clear_bit(event, &srng->srng_event);
  2387. }
  2388. /**
  2389. * hal_srng_set_flush_last_ts() - Record last flush time stamp
  2390. * @hal_ring_hdl: Source ring pointer
  2391. *
  2392. * Return: None
  2393. */
  2394. static inline void hal_srng_set_flush_last_ts(hal_ring_handle_t hal_ring_hdl)
  2395. {
  2396. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2397. srng->last_flush_ts = qdf_get_log_timestamp();
  2398. }
  2399. /**
  2400. * hal_srng_inc_flush_cnt() - Increment flush counter
  2401. * @hal_ring_hdl: Source ring pointer
  2402. *
  2403. * Return: None
  2404. */
  2405. static inline void hal_srng_inc_flush_cnt(hal_ring_handle_t hal_ring_hdl)
  2406. {
  2407. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2408. srng->flush_count++;
  2409. }
  2410. /**
  2411. * hal_rx_sw_mon_desc_info_get () - Get SW monitor desc info
  2412. *
  2413. * @hal: Core HAL soc handle
  2414. * @ring_desc: Mon dest ring descriptor
  2415. * @desc_info: Desc info to be populated
  2416. *
  2417. * Return void
  2418. */
  2419. static inline void
  2420. hal_rx_sw_mon_desc_info_get(struct hal_soc *hal,
  2421. hal_ring_desc_t ring_desc,
  2422. hal_rx_mon_desc_info_t desc_info)
  2423. {
  2424. return hal->ops->hal_rx_sw_mon_desc_info_get(ring_desc, desc_info);
  2425. }
  2426. /**
  2427. * hal_reo_set_err_dst_remap() - Set REO error destination ring remap
  2428. * register value.
  2429. *
  2430. * @hal_soc_hdl: Opaque HAL soc handle
  2431. *
  2432. * Return: None
  2433. */
  2434. static inline void hal_reo_set_err_dst_remap(hal_soc_handle_t hal_soc_hdl)
  2435. {
  2436. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  2437. if (hal_soc->ops->hal_reo_set_err_dst_remap)
  2438. hal_soc->ops->hal_reo_set_err_dst_remap(hal_soc);
  2439. }
  2440. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  2441. /**
  2442. * hal_set_one_target_reg_config() - Populate the target reg
  2443. * offset in hal_soc for one non srng related register at the
  2444. * given list index
  2445. * @hal_soc: hal handle
  2446. * @target_reg_offset: target register offset
  2447. * @list_index: index in hal list for shadow regs
  2448. *
  2449. * Return: none
  2450. */
  2451. void hal_set_one_target_reg_config(struct hal_soc *hal,
  2452. uint32_t target_reg_offset,
  2453. int list_index);
  2454. /**
  2455. * hal_set_shadow_regs() - Populate register offset for
  2456. * registers that need to be populated in list_shadow_reg_config
  2457. * in order to be sent to FW. These reg offsets will be mapped
  2458. * to shadow registers.
  2459. * @hal_soc: hal handle
  2460. *
  2461. * Return: QDF_STATUS_OK on success
  2462. */
  2463. QDF_STATUS hal_set_shadow_regs(void *hal_soc);
  2464. /**
  2465. * hal_construct_shadow_regs() - initialize the shadow registers
  2466. * for non-srng related register configs
  2467. * @hal_soc: hal handle
  2468. *
  2469. * Return: QDF_STATUS_OK on success
  2470. */
  2471. QDF_STATUS hal_construct_shadow_regs(void *hal_soc);
  2472. #else /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  2473. static inline void hal_set_one_target_reg_config(
  2474. struct hal_soc *hal,
  2475. uint32_t target_reg_offset,
  2476. int list_index)
  2477. {
  2478. }
  2479. static inline QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  2480. {
  2481. return QDF_STATUS_SUCCESS;
  2482. }
  2483. static inline QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  2484. {
  2485. return QDF_STATUS_SUCCESS;
  2486. }
  2487. #endif /* GENERIC_SHADOW_REGISTER_ACCESS_ENABLE */
  2488. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  2489. /**
  2490. * hal_flush_reg_write_work() - flush all writes from register write queue
  2491. * @arg: hal_soc pointer
  2492. *
  2493. * Return: None
  2494. */
  2495. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle);
  2496. #else
  2497. static inline void hal_flush_reg_write_work(hal_soc_handle_t hal_handle) { }
  2498. #endif
  2499. /**
  2500. * hal_get_ring_usage - Calculate the ring usage percentage
  2501. * @hal_ring_hdl: Ring pointer
  2502. * @ring_type: Ring type
  2503. * @headp: pointer to head value
  2504. * @tailp: pointer to tail value
  2505. *
  2506. * Calculate the ring usage percentage for src and dest rings
  2507. *
  2508. * Return: Ring usage percentage
  2509. */
  2510. static inline
  2511. uint32_t hal_get_ring_usage(
  2512. hal_ring_handle_t hal_ring_hdl,
  2513. enum hal_ring_type ring_type, uint32_t *headp, uint32_t *tailp)
  2514. {
  2515. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  2516. uint32_t num_avail, num_valid = 0;
  2517. uint32_t ring_usage;
  2518. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  2519. if (*tailp > *headp)
  2520. num_avail = ((*tailp - *headp) / srng->entry_size) - 1;
  2521. else
  2522. num_avail = ((srng->ring_size - *headp + *tailp) /
  2523. srng->entry_size) - 1;
  2524. if (ring_type == WBM_IDLE_LINK)
  2525. num_valid = num_avail;
  2526. else
  2527. num_valid = srng->num_entries - num_avail;
  2528. } else {
  2529. if (*headp >= *tailp)
  2530. num_valid = ((*headp - *tailp) / srng->entry_size);
  2531. else
  2532. num_valid = ((srng->ring_size - *tailp + *headp) /
  2533. srng->entry_size);
  2534. }
  2535. ring_usage = (100 * num_valid) / srng->num_entries;
  2536. return ring_usage;
  2537. }
  2538. /**
  2539. * hal_cmem_write() - function for CMEM buffer writing
  2540. * @hal_soc_hdl: HAL SOC handle
  2541. * @offset: CMEM address
  2542. * @value: value to write
  2543. *
  2544. * Return: None.
  2545. */
  2546. static inline void hal_cmem_write(hal_soc_handle_t hal_soc_hdl,
  2547. uint32_t offset,
  2548. uint32_t value)
  2549. {
  2550. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  2551. hal_write32_mb(hal, offset, value);
  2552. }
  2553. #endif /* _HAL_APIH_ */