lpass-cdc-rx-macro.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/pm_runtime.h>
  10. #include <sound/soc.h>
  11. #include <sound/pcm.h>
  12. #include <sound/pcm_params.h>
  13. #include <sound/soc-dapm.h>
  14. #include <sound/tlv.h>
  15. #include <soc/swr-common.h>
  16. #include <soc/swr-wcd.h>
  17. #include <asoc/msm-cdc-pinctrl.h>
  18. #include "lpass-cdc.h"
  19. #include "lpass-cdc-comp.h"
  20. #include "lpass-cdc-registers.h"
  21. #include "lpass-cdc-clk-rsc.h"
  22. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  23. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  24. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  25. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  26. SNDRV_PCM_RATE_384000)
  27. /* Fractional Rates */
  28. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  29. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  30. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  31. SNDRV_PCM_FMTBIT_S24_LE |\
  32. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  33. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  34. SNDRV_PCM_RATE_48000)
  35. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  36. SNDRV_PCM_FMTBIT_S24_LE |\
  37. SNDRV_PCM_FMTBIT_S24_3LE)
  38. #define SAMPLING_RATE_44P1KHZ 44100
  39. #define SAMPLING_RATE_88P2KHZ 88200
  40. #define SAMPLING_RATE_176P4KHZ 176400
  41. #define SAMPLING_RATE_352P8KHZ 352800
  42. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  43. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  44. #define RX_SWR_STRING_LEN 80
  45. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  46. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  47. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  48. #define STRING(name) #name
  49. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  50. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  51. static const struct snd_kcontrol_new name##_mux = \
  52. SOC_DAPM_ENUM(STRING(name), name##_enum)
  53. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  54. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  55. static const struct snd_kcontrol_new name##_mux = \
  56. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  57. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  58. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  59. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET 0x80
  60. #define LPASS_CDC_RX_MACRO_COMP_OFFSET 0x40
  61. #define MAX_IMPED_PARAMS 6
  62. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  63. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  64. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  65. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  66. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  67. /* Define macros to increase PA Gain by half */
  68. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  69. #define COMP_MAX_COEFF 25
  70. struct wcd_imped_val {
  71. u32 imped_val;
  72. u8 index;
  73. };
  74. static const struct wcd_imped_val imped_index[] = {
  75. {4, 0},
  76. {5, 1},
  77. {6, 2},
  78. {7, 3},
  79. {8, 4},
  80. {9, 5},
  81. {10, 6},
  82. {11, 7},
  83. {12, 8},
  84. {13, 9},
  85. };
  86. enum {
  87. HPH_ULP,
  88. HPH_LOHIFI,
  89. HPH_MODE_MAX,
  90. };
  91. static struct comp_coeff_val
  92. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  93. {
  94. {0x40, 0x00},
  95. {0x4C, 0x00},
  96. {0x5A, 0x00},
  97. {0x6B, 0x00},
  98. {0x7F, 0x00},
  99. {0x97, 0x00},
  100. {0xB3, 0x00},
  101. {0xD5, 0x00},
  102. {0xFD, 0x00},
  103. {0x2D, 0x01},
  104. {0x66, 0x01},
  105. {0xA7, 0x01},
  106. {0xF8, 0x01},
  107. {0x57, 0x02},
  108. {0xC7, 0x02},
  109. {0x4B, 0x03},
  110. {0xE9, 0x03},
  111. {0xA3, 0x04},
  112. {0x7D, 0x05},
  113. {0x90, 0x06},
  114. {0xD1, 0x07},
  115. {0x49, 0x09},
  116. {0x00, 0x0B},
  117. {0x01, 0x0D},
  118. {0x59, 0x0F},
  119. },
  120. {
  121. {0x40, 0x00},
  122. {0x4C, 0x00},
  123. {0x5A, 0x00},
  124. {0x6B, 0x00},
  125. {0x80, 0x00},
  126. {0x98, 0x00},
  127. {0xB4, 0x00},
  128. {0xD5, 0x00},
  129. {0xFE, 0x00},
  130. {0x2E, 0x01},
  131. {0x66, 0x01},
  132. {0xA9, 0x01},
  133. {0xF8, 0x01},
  134. {0x56, 0x02},
  135. {0xC4, 0x02},
  136. {0x4F, 0x03},
  137. {0xF0, 0x03},
  138. {0xAE, 0x04},
  139. {0x8B, 0x05},
  140. {0x8E, 0x06},
  141. {0xBC, 0x07},
  142. {0x56, 0x09},
  143. {0x0F, 0x0B},
  144. {0x13, 0x0D},
  145. {0x6F, 0x0F},
  146. },
  147. };
  148. enum {
  149. RX_MODE_ULP,
  150. RX_MODE_LOHIFI,
  151. RX_MODE_EAR,
  152. RX_MODE_MAX
  153. };
  154. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  155. {
  156. {12, -60, 12},
  157. {0, -60, 12},
  158. {12, -36, 12},
  159. };
  160. struct lpass_cdc_rx_macro_reg_mask_val {
  161. u16 reg;
  162. u8 mask;
  163. u8 val;
  164. };
  165. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  166. {
  167. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  168. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  169. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  170. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  171. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  172. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  173. },
  174. {
  175. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  176. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  177. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  178. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  179. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  180. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  181. },
  182. {
  183. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  184. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  185. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  186. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  187. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  188. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  189. },
  190. {
  191. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  192. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  193. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  194. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  195. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  196. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  197. },
  198. {
  199. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  200. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  201. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  202. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  203. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  204. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  205. },
  206. {
  207. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  208. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  209. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  210. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  211. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  212. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  213. },
  214. {
  215. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  216. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  217. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  218. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  219. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  220. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  221. },
  222. {
  223. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  224. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  225. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  226. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  227. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  228. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  229. },
  230. {
  231. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  232. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  233. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  234. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  235. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  236. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  237. },
  238. };
  239. enum {
  240. INTERP_HPHL,
  241. INTERP_HPHR,
  242. INTERP_AUX,
  243. INTERP_MAX
  244. };
  245. enum {
  246. LPASS_CDC_RX_MACRO_RX0,
  247. LPASS_CDC_RX_MACRO_RX1,
  248. LPASS_CDC_RX_MACRO_RX2,
  249. LPASS_CDC_RX_MACRO_RX3,
  250. LPASS_CDC_RX_MACRO_RX4,
  251. LPASS_CDC_RX_MACRO_RX5,
  252. LPASS_CDC_RX_MACRO_PORTS_MAX
  253. };
  254. enum {
  255. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  256. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  257. LPASS_CDC_RX_MACRO_COMP_MAX
  258. };
  259. enum {
  260. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  261. LPASS_CDC_RX_MACRO_EC1_MUX,
  262. LPASS_CDC_RX_MACRO_EC2_MUX,
  263. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  264. };
  265. enum {
  266. INTn_1_INP_SEL_ZERO = 0,
  267. INTn_1_INP_SEL_DEC0,
  268. INTn_1_INP_SEL_DEC1,
  269. INTn_1_INP_SEL_IIR0,
  270. INTn_1_INP_SEL_IIR1,
  271. INTn_1_INP_SEL_RX0,
  272. INTn_1_INP_SEL_RX1,
  273. INTn_1_INP_SEL_RX2,
  274. INTn_1_INP_SEL_RX3,
  275. INTn_1_INP_SEL_RX4,
  276. INTn_1_INP_SEL_RX5,
  277. };
  278. enum {
  279. INTn_2_INP_SEL_ZERO = 0,
  280. INTn_2_INP_SEL_RX0,
  281. INTn_2_INP_SEL_RX1,
  282. INTn_2_INP_SEL_RX2,
  283. INTn_2_INP_SEL_RX3,
  284. INTn_2_INP_SEL_RX4,
  285. INTn_2_INP_SEL_RX5,
  286. };
  287. enum {
  288. INTERP_MAIN_PATH,
  289. INTERP_MIX_PATH,
  290. };
  291. /* Codec supports 2 IIR filters */
  292. enum {
  293. IIR0 = 0,
  294. IIR1,
  295. IIR_MAX,
  296. };
  297. /* Each IIR has 5 Filter Stages */
  298. enum {
  299. BAND1 = 0,
  300. BAND2,
  301. BAND3,
  302. BAND4,
  303. BAND5,
  304. BAND_MAX,
  305. };
  306. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  307. struct lpass_cdc_rx_macro_iir_filter_ctl {
  308. unsigned int iir_idx;
  309. unsigned int band_idx;
  310. struct soc_bytes_ext bytes_ext;
  311. };
  312. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  313. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  314. .info = lpass_cdc_rx_macro_iir_filter_info, \
  315. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  316. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  317. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  318. .iir_idx = iidx, \
  319. .band_idx = bidx, \
  320. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  321. } \
  322. }
  323. struct lpass_cdc_rx_macro_idle_detect_config {
  324. u8 hph_idle_thr;
  325. u8 hph_idle_detect_en;
  326. };
  327. struct interp_sample_rate {
  328. int sample_rate;
  329. int rate_val;
  330. };
  331. static struct interp_sample_rate sr_val_tbl[] = {
  332. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  333. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  334. {176400, 0xB}, {352800, 0xC},
  335. };
  336. struct lpass_cdc_rx_macro_bcl_pmic_params {
  337. u8 id;
  338. u8 sid;
  339. u8 ppid;
  340. };
  341. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  342. struct snd_pcm_hw_params *params,
  343. struct snd_soc_dai *dai);
  344. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  345. unsigned int *tx_num, unsigned int *tx_slot,
  346. unsigned int *rx_num, unsigned int *rx_slot);
  347. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  348. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  349. struct snd_ctl_elem_value *ucontrol);
  350. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  351. struct snd_ctl_elem_value *ucontrol);
  352. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  353. struct snd_ctl_elem_value *ucontrol);
  354. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  355. int event, int interp_idx);
  356. /* Hold instance to soundwire platform device */
  357. struct rx_swr_ctrl_data {
  358. struct platform_device *rx_swr_pdev;
  359. };
  360. struct rx_swr_ctrl_platform_data {
  361. void *handle; /* holds codec private data */
  362. int (*read)(void *handle, int reg);
  363. int (*write)(void *handle, int reg, int val);
  364. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  365. int (*clk)(void *handle, bool enable);
  366. int (*core_vote)(void *handle, bool enable);
  367. int (*handle_irq)(void *handle,
  368. irqreturn_t (*swrm_irq_handler)(int irq,
  369. void *data),
  370. void *swrm_handle,
  371. int action);
  372. };
  373. enum {
  374. RX_MACRO_AIF_INVALID = 0,
  375. RX_MACRO_AIF1_PB,
  376. RX_MACRO_AIF2_PB,
  377. RX_MACRO_AIF3_PB,
  378. RX_MACRO_AIF4_PB,
  379. RX_MACRO_AIF_ECHO,
  380. RX_MACRO_AIF5_PB,
  381. RX_MACRO_AIF6_PB,
  382. LPASS_CDC_RX_MACRO_MAX_DAIS,
  383. };
  384. enum {
  385. RX_MACRO_AIF1_CAP = 0,
  386. RX_MACRO_AIF2_CAP,
  387. RX_MACRO_AIF3_CAP,
  388. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  389. };
  390. /*
  391. * @dev: rx macro device pointer
  392. * @comp_enabled: compander enable mixer value set
  393. * @prim_int_users: Users of interpolator
  394. * @rx_mclk_users: RX MCLK users count
  395. * @vi_feed_value: VI sense mask
  396. * @swr_clk_lock: to lock swr master clock operations
  397. * @swr_ctrl_data: SoundWire data structure
  398. * @swr_plat_data: Soundwire platform data
  399. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  400. * @rx_swr_gpio_p: used by pinctrl API
  401. * @component: codec handle
  402. */
  403. struct lpass_cdc_rx_macro_priv {
  404. struct device *dev;
  405. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  406. /* Main path clock users count */
  407. int main_clk_users[INTERP_MAX];
  408. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  409. u16 prim_int_users[INTERP_MAX];
  410. int rx_mclk_users;
  411. int swr_clk_users;
  412. bool dapm_mclk_enable;
  413. bool reset_swr;
  414. int clsh_users;
  415. int rx_mclk_cnt;
  416. bool is_native_on;
  417. bool is_ear_mode_on;
  418. bool dev_up;
  419. bool hph_pwr_mode;
  420. bool hph_hd2_mode;
  421. struct mutex mclk_lock;
  422. struct mutex swr_clk_lock;
  423. struct rx_swr_ctrl_data *swr_ctrl_data;
  424. struct rx_swr_ctrl_platform_data swr_plat_data;
  425. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  426. struct device_node *rx_swr_gpio_p;
  427. struct snd_soc_component *component;
  428. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  429. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  430. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  431. char __iomem *rx_io_base;
  432. char __iomem *rx_mclk_mode_muxsel;
  433. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  434. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  435. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  436. struct platform_device *pdev_child_devices
  437. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  438. int child_count;
  439. int is_softclip_on;
  440. int is_aux_hpf_on;
  441. int softclip_clk_users;
  442. struct lpass_cdc_rx_macro_bcl_pmic_params bcl_pmic_params;
  443. u16 clk_id;
  444. u16 default_clk_id;
  445. int8_t rx0_gain_val;
  446. int8_t rx1_gain_val;
  447. };
  448. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  449. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  450. static const char * const rx_int_mix_mux_text[] = {
  451. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  452. };
  453. static const char * const rx_prim_mix_text[] = {
  454. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  455. "RX3", "RX4", "RX5"
  456. };
  457. static const char * const rx_sidetone_mix_text[] = {
  458. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  459. };
  460. static const char * const iir_inp_mux_text[] = {
  461. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  462. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  463. };
  464. static const char * const rx_int_dem_inp_mux_text[] = {
  465. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  466. };
  467. static const char * const rx_int0_1_interp_mux_text[] = {
  468. "ZERO", "RX INT0_1 MIX1",
  469. };
  470. static const char * const rx_int1_1_interp_mux_text[] = {
  471. "ZERO", "RX INT1_1 MIX1",
  472. };
  473. static const char * const rx_int2_1_interp_mux_text[] = {
  474. "ZERO", "RX INT2_1 MIX1",
  475. };
  476. static const char * const rx_int0_2_interp_mux_text[] = {
  477. "ZERO", "RX INT0_2 MUX",
  478. };
  479. static const char * const rx_int1_2_interp_mux_text[] = {
  480. "ZERO", "RX INT1_2 MUX",
  481. };
  482. static const char * const rx_int2_2_interp_mux_text[] = {
  483. "ZERO", "RX INT2_2 MUX",
  484. };
  485. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  486. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  487. };
  488. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  489. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  490. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  491. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  492. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  493. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  494. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  495. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  496. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  497. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  498. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  499. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  500. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  501. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  502. };
  503. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  504. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  505. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  506. rx_int_mix_mux_text);
  507. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  508. rx_int_mix_mux_text);
  509. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  510. rx_int_mix_mux_text);
  511. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  512. rx_prim_mix_text);
  513. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  514. rx_prim_mix_text);
  515. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  516. rx_prim_mix_text);
  517. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  518. rx_prim_mix_text);
  519. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  520. rx_prim_mix_text);
  521. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  522. rx_prim_mix_text);
  523. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  524. rx_prim_mix_text);
  525. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  526. rx_prim_mix_text);
  527. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  528. rx_prim_mix_text);
  529. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  530. rx_sidetone_mix_text);
  531. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  532. rx_sidetone_mix_text);
  533. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  534. rx_sidetone_mix_text);
  535. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  536. iir_inp_mux_text);
  537. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  538. iir_inp_mux_text);
  539. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  540. iir_inp_mux_text);
  541. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  542. iir_inp_mux_text);
  543. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  544. iir_inp_mux_text);
  545. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  546. iir_inp_mux_text);
  547. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  548. iir_inp_mux_text);
  549. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  550. iir_inp_mux_text);
  551. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  552. rx_int0_1_interp_mux_text);
  553. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  554. rx_int1_1_interp_mux_text);
  555. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  556. rx_int2_1_interp_mux_text);
  557. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  558. rx_int0_2_interp_mux_text);
  559. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  560. rx_int1_2_interp_mux_text);
  561. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  562. rx_int2_2_interp_mux_text);
  563. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  564. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  565. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  566. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  567. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  568. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  569. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  570. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  571. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  572. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  573. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  574. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  575. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  576. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  577. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  578. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  579. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  580. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  581. static const char * const rx_echo_mux_text[] = {
  582. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  583. };
  584. static const struct soc_enum rx_mix_tx2_mux_enum =
  585. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  586. rx_echo_mux_text);
  587. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  588. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  589. static const struct soc_enum rx_mix_tx1_mux_enum =
  590. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  591. rx_echo_mux_text);
  592. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  593. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  594. static const struct soc_enum rx_mix_tx0_mux_enum =
  595. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  596. rx_echo_mux_text);
  597. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  598. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  599. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  600. .hw_params = lpass_cdc_rx_macro_hw_params,
  601. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  602. .mute_stream = lpass_cdc_rx_macro_mute_stream,
  603. };
  604. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  605. {
  606. .name = "rx_macro_rx1",
  607. .id = RX_MACRO_AIF1_PB,
  608. .playback = {
  609. .stream_name = "RX_MACRO_AIF1 Playback",
  610. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  611. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  612. .rate_max = 384000,
  613. .rate_min = 8000,
  614. .channels_min = 1,
  615. .channels_max = 2,
  616. },
  617. .ops = &lpass_cdc_rx_macro_dai_ops,
  618. },
  619. {
  620. .name = "rx_macro_rx2",
  621. .id = RX_MACRO_AIF2_PB,
  622. .playback = {
  623. .stream_name = "RX_MACRO_AIF2 Playback",
  624. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  625. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  626. .rate_max = 384000,
  627. .rate_min = 8000,
  628. .channels_min = 1,
  629. .channels_max = 2,
  630. },
  631. .ops = &lpass_cdc_rx_macro_dai_ops,
  632. },
  633. {
  634. .name = "rx_macro_rx3",
  635. .id = RX_MACRO_AIF3_PB,
  636. .playback = {
  637. .stream_name = "RX_MACRO_AIF3 Playback",
  638. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  639. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  640. .rate_max = 384000,
  641. .rate_min = 8000,
  642. .channels_min = 1,
  643. .channels_max = 2,
  644. },
  645. .ops = &lpass_cdc_rx_macro_dai_ops,
  646. },
  647. {
  648. .name = "rx_macro_rx4",
  649. .id = RX_MACRO_AIF4_PB,
  650. .playback = {
  651. .stream_name = "RX_MACRO_AIF4 Playback",
  652. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  653. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  654. .rate_max = 384000,
  655. .rate_min = 8000,
  656. .channels_min = 1,
  657. .channels_max = 2,
  658. },
  659. .ops = &lpass_cdc_rx_macro_dai_ops,
  660. },
  661. {
  662. .name = "rx_macro_echo",
  663. .id = RX_MACRO_AIF_ECHO,
  664. .capture = {
  665. .stream_name = "RX_AIF_ECHO Capture",
  666. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  667. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  668. .rate_max = 48000,
  669. .rate_min = 8000,
  670. .channels_min = 1,
  671. .channels_max = 3,
  672. },
  673. .ops = &lpass_cdc_rx_macro_dai_ops,
  674. },
  675. {
  676. .name = "rx_macro_rx5",
  677. .id = RX_MACRO_AIF5_PB,
  678. .playback = {
  679. .stream_name = "RX_MACRO_AIF5 Playback",
  680. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  681. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  682. .rate_max = 384000,
  683. .rate_min = 8000,
  684. .channels_min = 1,
  685. .channels_max = 4,
  686. },
  687. .ops = &lpass_cdc_rx_macro_dai_ops,
  688. },
  689. {
  690. .name = "rx_macro_rx6",
  691. .id = RX_MACRO_AIF6_PB,
  692. .playback = {
  693. .stream_name = "RX_MACRO_AIF6 Playback",
  694. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  695. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  696. .rate_max = 384000,
  697. .rate_min = 8000,
  698. .channels_min = 1,
  699. .channels_max = 4,
  700. },
  701. .ops = &lpass_cdc_rx_macro_dai_ops,
  702. },
  703. };
  704. static int get_impedance_index(int imped)
  705. {
  706. int i = 0;
  707. if (imped < imped_index[i].imped_val) {
  708. pr_debug("%s, detected impedance is less than %d Ohm\n",
  709. __func__, imped_index[i].imped_val);
  710. i = 0;
  711. goto ret;
  712. }
  713. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  714. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  715. __func__,
  716. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  717. i = ARRAY_SIZE(imped_index) - 1;
  718. goto ret;
  719. }
  720. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  721. if (imped >= imped_index[i].imped_val &&
  722. imped < imped_index[i + 1].imped_val)
  723. break;
  724. }
  725. ret:
  726. pr_debug("%s: selected impedance index = %d\n",
  727. __func__, imped_index[i].index);
  728. return imped_index[i].index;
  729. }
  730. /*
  731. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  732. * This function updates HPHL and HPHR gain settings
  733. * according to the impedance value.
  734. *
  735. * @component: codec pointer handle
  736. * @imped: impedance value of HPHL/R
  737. * @reset: bool variable to reset registers when teardown
  738. */
  739. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  740. int imped, bool reset)
  741. {
  742. int i;
  743. int index = 0;
  744. int table_size;
  745. static const struct lpass_cdc_rx_macro_reg_mask_val
  746. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  747. table_size = ARRAY_SIZE(imped_table);
  748. imped_table_ptr = imped_table;
  749. /* reset = 1, which means request is to reset the register values */
  750. if (reset) {
  751. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  752. snd_soc_component_update_bits(component,
  753. imped_table_ptr[index][i].reg,
  754. imped_table_ptr[index][i].mask, 0);
  755. return;
  756. }
  757. index = get_impedance_index(imped);
  758. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  759. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  760. return;
  761. }
  762. if (index >= table_size) {
  763. pr_debug("%s, impedance index not in range = %d\n", __func__,
  764. index);
  765. return;
  766. }
  767. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  768. snd_soc_component_update_bits(component,
  769. imped_table_ptr[index][i].reg,
  770. imped_table_ptr[index][i].mask,
  771. imped_table_ptr[index][i].val);
  772. }
  773. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  774. struct device **rx_dev,
  775. struct lpass_cdc_rx_macro_priv **rx_priv,
  776. const char *func_name)
  777. {
  778. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  779. if (!(*rx_dev)) {
  780. dev_err(component->dev,
  781. "%s: null device for macro!\n", func_name);
  782. return false;
  783. }
  784. *rx_priv = dev_get_drvdata((*rx_dev));
  785. if (!(*rx_priv)) {
  786. dev_err(component->dev,
  787. "%s: priv is null for macro!\n", func_name);
  788. return false;
  789. }
  790. if (!(*rx_priv)->component) {
  791. dev_err(component->dev,
  792. "%s: rx_priv component is not initialized!\n", func_name);
  793. return false;
  794. }
  795. return true;
  796. }
  797. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  798. u32 usecase, u32 size, void *data)
  799. {
  800. struct device *rx_dev = NULL;
  801. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  802. struct swrm_port_config port_cfg;
  803. int ret = 0;
  804. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  805. return -EINVAL;
  806. memset(&port_cfg, 0, sizeof(port_cfg));
  807. port_cfg.uc = usecase;
  808. port_cfg.size = size;
  809. port_cfg.params = data;
  810. if (rx_priv->swr_ctrl_data)
  811. ret = swrm_wcd_notify(
  812. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  813. SWR_SET_PORT_MAP, &port_cfg);
  814. return ret;
  815. }
  816. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  817. struct snd_ctl_elem_value *ucontrol)
  818. {
  819. struct snd_soc_dapm_widget *widget =
  820. snd_soc_dapm_kcontrol_widget(kcontrol);
  821. struct snd_soc_component *component =
  822. snd_soc_dapm_to_component(widget->dapm);
  823. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  824. unsigned int val = 0;
  825. unsigned short look_ahead_dly_reg =
  826. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  827. val = ucontrol->value.enumerated.item[0];
  828. if (val >= e->items)
  829. return -EINVAL;
  830. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  831. widget->name, val);
  832. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  833. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  834. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  835. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  836. /* Set Look Ahead Delay */
  837. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  838. 0x08, (val ? 0x08 : 0x00));
  839. /* Set DEM INP Select */
  840. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  841. }
  842. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  843. u8 rate_reg_val,
  844. u32 sample_rate)
  845. {
  846. u8 int_1_mix1_inp = 0;
  847. u32 j = 0, port = 0;
  848. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  849. u16 int_fs_reg = 0;
  850. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  851. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  852. struct snd_soc_component *component = dai->component;
  853. struct device *rx_dev = NULL;
  854. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  855. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  856. return -EINVAL;
  857. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  858. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  859. int_1_mix1_inp = port;
  860. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  861. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  862. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  863. __func__, dai->id);
  864. return -EINVAL;
  865. }
  866. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  867. /*
  868. * Loop through all interpolator MUX inputs and find out
  869. * to which interpolator input, the rx port
  870. * is connected
  871. */
  872. for (j = 0; j < INTERP_MAX; j++) {
  873. int_mux_cfg1 = int_mux_cfg0 + 4;
  874. int_mux_cfg0_val = snd_soc_component_read(
  875. component, int_mux_cfg0);
  876. int_mux_cfg1_val = snd_soc_component_read(
  877. component, int_mux_cfg1);
  878. inp0_sel = int_mux_cfg0_val & 0x0F;
  879. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  880. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  881. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  882. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  883. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  884. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  885. 0x80 * j;
  886. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  887. __func__, dai->id, j);
  888. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  889. __func__, j, sample_rate);
  890. /* sample_rate is in Hz */
  891. snd_soc_component_update_bits(component,
  892. int_fs_reg,
  893. 0x0F, rate_reg_val);
  894. }
  895. int_mux_cfg0 += 8;
  896. }
  897. }
  898. return 0;
  899. }
  900. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  901. u8 rate_reg_val,
  902. u32 sample_rate)
  903. {
  904. u8 int_2_inp = 0;
  905. u32 j = 0, port = 0;
  906. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  907. u8 int_mux_cfg1_val = 0;
  908. struct snd_soc_component *component = dai->component;
  909. struct device *rx_dev = NULL;
  910. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  911. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  912. return -EINVAL;
  913. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  914. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  915. int_2_inp = port;
  916. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  917. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  918. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  919. __func__, dai->id);
  920. return -EINVAL;
  921. }
  922. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  923. for (j = 0; j < INTERP_MAX; j++) {
  924. int_mux_cfg1_val = snd_soc_component_read(
  925. component, int_mux_cfg1) &
  926. 0x0F;
  927. if (int_mux_cfg1_val == int_2_inp +
  928. INTn_2_INP_SEL_RX0) {
  929. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  930. 0x80 * j;
  931. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  932. __func__, dai->id, j);
  933. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  934. __func__, j, sample_rate);
  935. snd_soc_component_update_bits(
  936. component, int_fs_reg,
  937. 0x0F, rate_reg_val);
  938. }
  939. int_mux_cfg1 += 8;
  940. }
  941. }
  942. return 0;
  943. }
  944. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  945. {
  946. switch (sample_rate) {
  947. case SAMPLING_RATE_44P1KHZ:
  948. case SAMPLING_RATE_88P2KHZ:
  949. case SAMPLING_RATE_176P4KHZ:
  950. case SAMPLING_RATE_352P8KHZ:
  951. return true;
  952. default:
  953. return false;
  954. }
  955. return false;
  956. }
  957. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  958. u32 sample_rate)
  959. {
  960. struct snd_soc_component *component = dai->component;
  961. int rate_val = 0;
  962. int i = 0, ret = 0;
  963. struct device *rx_dev = NULL;
  964. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  965. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  966. return -EINVAL;
  967. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  968. if (sample_rate == sr_val_tbl[i].sample_rate) {
  969. rate_val = sr_val_tbl[i].rate_val;
  970. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  971. rx_priv->is_native_on = true;
  972. else
  973. rx_priv->is_native_on = false;
  974. break;
  975. }
  976. }
  977. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  978. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  979. __func__, sample_rate);
  980. return -EINVAL;
  981. }
  982. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  983. if (ret)
  984. return ret;
  985. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  986. if (ret)
  987. return ret;
  988. return ret;
  989. }
  990. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  991. struct snd_pcm_hw_params *params,
  992. struct snd_soc_dai *dai)
  993. {
  994. struct snd_soc_component *component = dai->component;
  995. int ret = 0;
  996. struct device *rx_dev = NULL;
  997. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  998. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  999. return -EINVAL;
  1000. dev_dbg(component->dev,
  1001. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1002. dai->name, dai->id, params_rate(params),
  1003. params_channels(params));
  1004. switch (substream->stream) {
  1005. case SNDRV_PCM_STREAM_PLAYBACK:
  1006. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1007. if (ret) {
  1008. pr_err("%s: cannot set sample rate: %u\n",
  1009. __func__, params_rate(params));
  1010. return ret;
  1011. }
  1012. rx_priv->bit_width[dai->id] = params_width(params);
  1013. break;
  1014. case SNDRV_PCM_STREAM_CAPTURE:
  1015. default:
  1016. break;
  1017. }
  1018. return 0;
  1019. }
  1020. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1021. unsigned int *tx_num, unsigned int *tx_slot,
  1022. unsigned int *rx_num, unsigned int *rx_slot)
  1023. {
  1024. struct snd_soc_component *component = dai->component;
  1025. struct device *rx_dev = NULL;
  1026. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1027. unsigned int temp = 0, ch_mask = 0;
  1028. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1029. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1030. return -EINVAL;
  1031. switch (dai->id) {
  1032. case RX_MACRO_AIF1_PB:
  1033. case RX_MACRO_AIF2_PB:
  1034. case RX_MACRO_AIF3_PB:
  1035. case RX_MACRO_AIF4_PB:
  1036. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1037. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1038. ch_mask |= (1 << temp);
  1039. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1040. break;
  1041. }
  1042. /*
  1043. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1044. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1045. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1046. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1047. * AIFn can pair to any CDC_DMA_RX_n port.
  1048. * In general, below convention is used::
  1049. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1050. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1051. * Above is reflected in machine driver BE dailink
  1052. */
  1053. if (ch_mask & 0x0C)
  1054. ch_mask = ch_mask >> 2;
  1055. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1056. ch_mask = 0x1;
  1057. *rx_slot = ch_mask;
  1058. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1059. dev_dbg(rx_priv->dev,
  1060. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1061. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1062. break;
  1063. case RX_MACRO_AIF5_PB:
  1064. *rx_slot = 0x1;
  1065. *rx_num = 0x01;
  1066. dev_dbg(rx_priv->dev,
  1067. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1068. __func__, dai->id, *rx_slot, *rx_num);
  1069. break;
  1070. case RX_MACRO_AIF6_PB:
  1071. *rx_slot = 0x1;
  1072. *rx_num = 0x01;
  1073. dev_dbg(rx_priv->dev,
  1074. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1075. __func__, dai->id, *rx_slot, *rx_num);
  1076. break;
  1077. case RX_MACRO_AIF_ECHO:
  1078. val = snd_soc_component_read(component,
  1079. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1080. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1081. mask |= 0x1;
  1082. cnt++;
  1083. }
  1084. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1085. mask |= 0x2;
  1086. cnt++;
  1087. }
  1088. val = snd_soc_component_read(component,
  1089. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1090. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1091. mask |= 0x4;
  1092. cnt++;
  1093. }
  1094. *tx_slot = mask;
  1095. *tx_num = cnt;
  1096. break;
  1097. default:
  1098. dev_err(rx_dev, "%s: Invalid AIF\n", __func__);
  1099. break;
  1100. }
  1101. return 0;
  1102. }
  1103. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  1104. {
  1105. struct snd_soc_component *component = dai->component;
  1106. struct device *rx_dev = NULL;
  1107. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1108. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  1109. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1110. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1111. if (mute)
  1112. return 0;
  1113. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1114. return -EINVAL;
  1115. switch (dai->id) {
  1116. case RX_MACRO_AIF1_PB:
  1117. case RX_MACRO_AIF2_PB:
  1118. case RX_MACRO_AIF3_PB:
  1119. case RX_MACRO_AIF4_PB:
  1120. for (j = 0; j < INTERP_MAX; j++) {
  1121. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1122. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1123. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1124. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1125. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  1126. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1127. if (j == INTERP_AUX)
  1128. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  1129. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  1130. int_mux_cfg1 = int_mux_cfg0 + 4;
  1131. int_mux_cfg0_val = snd_soc_component_read(component,
  1132. int_mux_cfg0);
  1133. int_mux_cfg1_val = snd_soc_component_read(component,
  1134. int_mux_cfg1);
  1135. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  1136. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0xF0))
  1137. snd_soc_component_update_bits(component,
  1138. reg, 0x20, 0x20);
  1139. if (int_mux_cfg1_val & 0x0F) {
  1140. snd_soc_component_update_bits(component,
  1141. reg, 0x20, 0x20);
  1142. snd_soc_component_update_bits(component,
  1143. mix_reg, 0x20, 0x20);
  1144. }
  1145. }
  1146. }
  1147. break;
  1148. default:
  1149. break;
  1150. }
  1151. return 0;
  1152. }
  1153. static int lpass_cdc_rx_macro_mclk_enable(
  1154. struct lpass_cdc_rx_macro_priv *rx_priv,
  1155. bool mclk_enable, bool dapm)
  1156. {
  1157. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1158. int ret = 0;
  1159. if (regmap == NULL) {
  1160. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1161. return -EINVAL;
  1162. }
  1163. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1164. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1165. mutex_lock(&rx_priv->mclk_lock);
  1166. if (mclk_enable) {
  1167. if (rx_priv->rx_mclk_users == 0) {
  1168. if (rx_priv->is_native_on)
  1169. rx_priv->clk_id = RX_CORE_CLK;
  1170. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1171. rx_priv->default_clk_id,
  1172. rx_priv->clk_id,
  1173. true);
  1174. if (ret < 0) {
  1175. dev_err(rx_priv->dev,
  1176. "%s: rx request clock enable failed\n",
  1177. __func__);
  1178. goto exit;
  1179. }
  1180. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1181. true);
  1182. regcache_mark_dirty(regmap);
  1183. regcache_sync_region(regmap,
  1184. RX_START_OFFSET,
  1185. RX_MAX_OFFSET);
  1186. regmap_update_bits(regmap,
  1187. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1188. 0x01, 0x01);
  1189. regmap_update_bits(regmap,
  1190. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1191. 0x02, 0x02);
  1192. regmap_update_bits(regmap,
  1193. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1194. 0x02, 0x00);
  1195. regmap_update_bits(regmap,
  1196. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1197. 0x01, 0x01);
  1198. }
  1199. rx_priv->rx_mclk_users++;
  1200. } else {
  1201. if (rx_priv->rx_mclk_users <= 0) {
  1202. dev_err(rx_priv->dev, "%s: clock already disabled\n",
  1203. __func__);
  1204. rx_priv->rx_mclk_users = 0;
  1205. goto exit;
  1206. }
  1207. rx_priv->rx_mclk_users--;
  1208. if (rx_priv->rx_mclk_users == 0) {
  1209. regmap_update_bits(regmap,
  1210. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1211. 0x01, 0x00);
  1212. regmap_update_bits(regmap,
  1213. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1214. 0x02, 0x02);
  1215. regmap_update_bits(regmap,
  1216. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1217. 0x02, 0x00);
  1218. regmap_update_bits(regmap,
  1219. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1220. 0x01, 0x00);
  1221. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1222. false);
  1223. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1224. rx_priv->default_clk_id,
  1225. rx_priv->clk_id,
  1226. false);
  1227. rx_priv->clk_id = rx_priv->default_clk_id;
  1228. }
  1229. }
  1230. exit:
  1231. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1232. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1233. mutex_unlock(&rx_priv->mclk_lock);
  1234. return ret;
  1235. }
  1236. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1237. struct snd_kcontrol *kcontrol, int event)
  1238. {
  1239. struct snd_soc_component *component =
  1240. snd_soc_dapm_to_component(w->dapm);
  1241. int ret = 0;
  1242. struct device *rx_dev = NULL;
  1243. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1244. int mclk_freq = MCLK_FREQ;
  1245. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1246. return -EINVAL;
  1247. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1248. switch (event) {
  1249. case SND_SOC_DAPM_PRE_PMU:
  1250. if (rx_priv->is_native_on)
  1251. mclk_freq = MCLK_FREQ_NATIVE;
  1252. if (rx_priv->swr_ctrl_data)
  1253. swrm_wcd_notify(
  1254. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1255. SWR_CLK_FREQ, &mclk_freq);
  1256. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1257. if (ret)
  1258. rx_priv->dapm_mclk_enable = false;
  1259. else
  1260. rx_priv->dapm_mclk_enable = true;
  1261. break;
  1262. case SND_SOC_DAPM_POST_PMD:
  1263. if (rx_priv->dapm_mclk_enable)
  1264. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1265. break;
  1266. default:
  1267. dev_err(rx_priv->dev,
  1268. "%s: invalid DAPM event %d\n", __func__, event);
  1269. ret = -EINVAL;
  1270. }
  1271. return ret;
  1272. }
  1273. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1274. u16 event, u32 data)
  1275. {
  1276. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1277. struct device *rx_dev = NULL;
  1278. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1279. int ret = 0;
  1280. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1281. return -EINVAL;
  1282. switch (event) {
  1283. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1284. rx_idx = data >> 0x10;
  1285. mute = data & 0xffff;
  1286. val = mute ? 0x10 : 0x00;
  1287. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1288. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1289. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1290. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1291. snd_soc_component_update_bits(component, reg,
  1292. 0x10, val);
  1293. snd_soc_component_update_bits(component, reg_mix,
  1294. 0x10, val);
  1295. break;
  1296. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1297. rx_idx = data >> 0x10;
  1298. if (rx_idx == INTERP_AUX)
  1299. goto done;
  1300. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1301. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1302. snd_soc_component_write(component, reg,
  1303. snd_soc_component_read(component, reg));
  1304. break;
  1305. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1306. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1307. break;
  1308. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1309. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1310. break;
  1311. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1312. trace_printk("%s, enter SSR down\n", __func__);
  1313. rx_priv->dev_up = false;
  1314. if (rx_priv->swr_ctrl_data) {
  1315. swrm_wcd_notify(
  1316. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1317. SWR_DEVICE_SSR_DOWN, NULL);
  1318. }
  1319. if ((!pm_runtime_enabled(rx_dev) ||
  1320. !pm_runtime_suspended(rx_dev))) {
  1321. ret = lpass_cdc_runtime_suspend(rx_dev);
  1322. if (!ret) {
  1323. pm_runtime_disable(rx_dev);
  1324. pm_runtime_set_suspended(rx_dev);
  1325. pm_runtime_enable(rx_dev);
  1326. }
  1327. }
  1328. break;
  1329. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1330. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1331. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1332. rx_priv->default_clk_id,
  1333. RX_CORE_CLK, true);
  1334. if (ret < 0)
  1335. dev_err_ratelimited(rx_priv->dev,
  1336. "%s, failed to enable clk, ret:%d\n",
  1337. __func__, ret);
  1338. else
  1339. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1340. rx_priv->default_clk_id,
  1341. RX_CORE_CLK, false);
  1342. break;
  1343. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1344. trace_printk("%s, enter SSR up\n", __func__);
  1345. rx_priv->dev_up = true;
  1346. /* reset swr after ssr/pdr */
  1347. rx_priv->reset_swr = true;
  1348. if (rx_priv->swr_ctrl_data)
  1349. swrm_wcd_notify(
  1350. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1351. SWR_DEVICE_SSR_UP, NULL);
  1352. break;
  1353. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1354. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1355. break;
  1356. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1357. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1358. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1359. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1360. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1361. if (data) {
  1362. /* Reduce gain by half only if its greater than -6DB */
  1363. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1364. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1365. snd_soc_component_update_bits(component,
  1366. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1367. (rx_priv->rx0_gain_val -
  1368. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1369. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1370. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1371. snd_soc_component_update_bits(component,
  1372. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1373. (rx_priv->rx1_gain_val -
  1374. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1375. }
  1376. else {
  1377. /* Reset gain value to default */
  1378. if ((rx_priv->rx0_gain_val >=
  1379. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1380. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1381. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1382. snd_soc_component_update_bits(component,
  1383. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1384. (rx_priv->rx0_gain_val +
  1385. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1386. if ((rx_priv->rx1_gain_val >=
  1387. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1388. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1389. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1390. snd_soc_component_update_bits(component,
  1391. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1392. (rx_priv->rx1_gain_val +
  1393. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1394. }
  1395. break;
  1396. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1397. /* Enable hd2 config for hphl*/
  1398. snd_soc_component_update_bits(component,
  1399. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1400. break;
  1401. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1402. /* Enable hd2 config for hphr*/
  1403. snd_soc_component_update_bits(component,
  1404. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1405. break;
  1406. }
  1407. done:
  1408. return ret;
  1409. }
  1410. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1411. struct lpass_cdc_rx_macro_priv *rx_priv)
  1412. {
  1413. int i = 0;
  1414. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1415. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1416. return i;
  1417. }
  1418. return -EINVAL;
  1419. }
  1420. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1421. struct lpass_cdc_rx_macro_priv *rx_priv,
  1422. int interp, int path_type)
  1423. {
  1424. int port_id[4] = { 0, 0, 0, 0 };
  1425. int *port_ptr = NULL;
  1426. int num_ports = 0;
  1427. int bit_width = 0, i = 0;
  1428. int mux_reg = 0, mux_reg_val = 0;
  1429. int dai_id = 0, idle_thr = 0;
  1430. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1431. return 0;
  1432. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1433. return 0;
  1434. port_ptr = &port_id[0];
  1435. num_ports = 0;
  1436. /*
  1437. * Read interpolator MUX input registers and find
  1438. * which cdc_dma port is connected and store the port
  1439. * numbers in port_id array.
  1440. */
  1441. if (path_type == INTERP_MIX_PATH) {
  1442. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1443. 2 * interp;
  1444. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1445. 0x0f;
  1446. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1447. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1448. *port_ptr++ = mux_reg_val - 1;
  1449. num_ports++;
  1450. }
  1451. }
  1452. if (path_type == INTERP_MAIN_PATH) {
  1453. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1454. 2 * (interp - 1);
  1455. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1456. 0x0f;
  1457. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1458. while (i) {
  1459. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1460. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1461. *port_ptr++ = mux_reg_val -
  1462. INTn_1_INP_SEL_RX0;
  1463. num_ports++;
  1464. }
  1465. mux_reg_val =
  1466. (snd_soc_component_read(component, mux_reg) &
  1467. 0xf0) >> 4;
  1468. mux_reg += 1;
  1469. i--;
  1470. }
  1471. }
  1472. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1473. __func__, num_ports, port_id[0], port_id[1],
  1474. port_id[2], port_id[3]);
  1475. i = 0;
  1476. while (num_ports) {
  1477. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1478. rx_priv);
  1479. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1480. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1481. __func__, dai_id,
  1482. rx_priv->bit_width[dai_id]);
  1483. if (rx_priv->bit_width[dai_id] > bit_width)
  1484. bit_width = rx_priv->bit_width[dai_id];
  1485. }
  1486. num_ports--;
  1487. }
  1488. switch (bit_width) {
  1489. case 16:
  1490. idle_thr = 0xff; /* F16 */
  1491. break;
  1492. case 24:
  1493. case 32:
  1494. idle_thr = 0x03; /* F22 */
  1495. break;
  1496. default:
  1497. idle_thr = 0x00;
  1498. break;
  1499. }
  1500. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1501. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1502. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1503. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1504. snd_soc_component_write(component,
  1505. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1506. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1507. }
  1508. return 0;
  1509. }
  1510. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1511. struct snd_kcontrol *kcontrol, int event)
  1512. {
  1513. struct snd_soc_component *component =
  1514. snd_soc_dapm_to_component(w->dapm);
  1515. u16 gain_reg = 0, mix_reg = 0;
  1516. struct device *rx_dev = NULL;
  1517. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1518. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1519. return -EINVAL;
  1520. if (w->shift >= INTERP_MAX) {
  1521. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1522. __func__, w->shift, w->name);
  1523. return -EINVAL;
  1524. }
  1525. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1526. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1527. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1528. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1529. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1530. switch (event) {
  1531. case SND_SOC_DAPM_PRE_PMU:
  1532. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1533. INTERP_MIX_PATH);
  1534. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1535. break;
  1536. case SND_SOC_DAPM_POST_PMU:
  1537. snd_soc_component_write(component, gain_reg,
  1538. snd_soc_component_read(component, gain_reg));
  1539. break;
  1540. case SND_SOC_DAPM_POST_PMD:
  1541. /* Clk Disable */
  1542. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1543. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1544. /* Reset enable and disable */
  1545. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1546. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1547. break;
  1548. }
  1549. return 0;
  1550. }
  1551. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1552. int interp_idx)
  1553. {
  1554. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1555. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1556. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1557. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1558. int_mux_cfg1 = int_mux_cfg0 + 4;
  1559. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1560. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1561. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1562. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1563. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1564. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1565. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1566. return true;
  1567. int_n_inp1 = int_mux_cfg0_val >> 4;
  1568. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1569. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1570. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1571. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1572. return true;
  1573. int_n_inp2 = int_mux_cfg1_val >> 4;
  1574. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1575. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1576. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1577. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1578. return true;
  1579. return false;
  1580. }
  1581. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1582. struct snd_kcontrol *kcontrol,
  1583. int event)
  1584. {
  1585. struct snd_soc_component *component =
  1586. snd_soc_dapm_to_component(w->dapm);
  1587. u16 gain_reg = 0;
  1588. u16 reg = 0;
  1589. struct device *rx_dev = NULL;
  1590. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1591. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1592. return -EINVAL;
  1593. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1594. if (w->shift >= INTERP_MAX) {
  1595. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1596. __func__, w->shift, w->name);
  1597. return -EINVAL;
  1598. }
  1599. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1600. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1601. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1602. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1603. switch (event) {
  1604. case SND_SOC_DAPM_PRE_PMU:
  1605. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1606. INTERP_MAIN_PATH);
  1607. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1608. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1609. snd_soc_component_update_bits(component,
  1610. reg, 0x20, 0x20);
  1611. break;
  1612. case SND_SOC_DAPM_POST_PMU:
  1613. snd_soc_component_write(component, gain_reg,
  1614. snd_soc_component_read(component, gain_reg));
  1615. break;
  1616. case SND_SOC_DAPM_POST_PMD:
  1617. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1618. break;
  1619. }
  1620. return 0;
  1621. }
  1622. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1623. int interp_n, int event)
  1624. {
  1625. u8 pcm_rate = 0, val = 0;
  1626. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1627. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1628. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1629. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1630. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1631. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1632. & 0x0F);
  1633. if (pcm_rate < 0x06)
  1634. val = 0x03;
  1635. else if (pcm_rate < 0x08)
  1636. val = 0x01;
  1637. else if (pcm_rate < 0x0B)
  1638. val = 0x02;
  1639. else
  1640. val = 0x00;
  1641. if (SND_SOC_DAPM_EVENT_ON(event))
  1642. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1643. 0x03, val);
  1644. if (SND_SOC_DAPM_EVENT_OFF(event))
  1645. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1646. 0x03, 0x03);
  1647. }
  1648. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1649. struct lpass_cdc_rx_macro_priv *rx_priv,
  1650. int interp_n, int event)
  1651. {
  1652. int comp = 0;
  1653. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1654. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1655. u16 mode = rx_priv->hph_pwr_mode;
  1656. comp = interp_n;
  1657. if (!rx_priv->comp_enabled[comp])
  1658. return 0;
  1659. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1660. mode = RX_MODE_EAR;
  1661. if (interp_n == INTERP_HPHL) {
  1662. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1663. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1664. } else if (interp_n == INTERP_HPHR) {
  1665. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1666. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1667. } else {
  1668. /* compander coefficients are loaded only for hph path */
  1669. return 0;
  1670. }
  1671. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1672. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1673. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1674. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1675. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1676. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1677. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1678. lpass_cdc_load_compander_coeff(component,
  1679. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1680. comp_coeff_table[rx_priv->hph_pwr_mode],
  1681. COMP_MAX_COEFF);
  1682. lpass_cdc_update_compander_setting(component,
  1683. comp_ctl8_reg,
  1684. &comp_setting_table[mode]);
  1685. /* Enable Compander Clock */
  1686. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1687. 0x01, 0x01);
  1688. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1689. 0x02, 0x02);
  1690. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1691. 0x02, 0x00);
  1692. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1693. 0x02, 0x02);
  1694. }
  1695. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1696. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1697. 0x04, 0x04);
  1698. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1699. 0x02, 0x00);
  1700. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1701. 0x01, 0x00);
  1702. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1703. 0x04, 0x00);
  1704. }
  1705. return 0;
  1706. }
  1707. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1708. struct lpass_cdc_rx_macro_priv *rx_priv,
  1709. bool enable)
  1710. {
  1711. if (enable) {
  1712. if (rx_priv->softclip_clk_users == 0)
  1713. snd_soc_component_update_bits(component,
  1714. LPASS_CDC_RX_SOFTCLIP_CRC,
  1715. 0x01, 0x01);
  1716. rx_priv->softclip_clk_users++;
  1717. } else {
  1718. rx_priv->softclip_clk_users--;
  1719. if (rx_priv->softclip_clk_users == 0)
  1720. snd_soc_component_update_bits(component,
  1721. LPASS_CDC_RX_SOFTCLIP_CRC,
  1722. 0x01, 0x00);
  1723. }
  1724. }
  1725. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1726. struct lpass_cdc_rx_macro_priv *rx_priv,
  1727. int event)
  1728. {
  1729. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1730. __func__, event, rx_priv->is_softclip_on);
  1731. if (!rx_priv->is_softclip_on)
  1732. return 0;
  1733. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1734. /* Enable Softclip clock */
  1735. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1736. /* Enable Softclip control */
  1737. snd_soc_component_update_bits(component,
  1738. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1739. }
  1740. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1741. snd_soc_component_update_bits(component,
  1742. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1743. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1744. }
  1745. return 0;
  1746. }
  1747. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1748. struct lpass_cdc_rx_macro_priv *rx_priv,
  1749. int event)
  1750. {
  1751. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1752. __func__, event, rx_priv->is_aux_hpf_on);
  1753. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1754. /* Update Aux HPF control */
  1755. if (!rx_priv->is_aux_hpf_on)
  1756. snd_soc_component_update_bits(component,
  1757. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1758. }
  1759. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1760. /* Reset to default (HPF=ON) */
  1761. snd_soc_component_update_bits(component,
  1762. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1763. }
  1764. return 0;
  1765. }
  1766. static inline void
  1767. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1768. {
  1769. if ((enable && ++rx_priv->clsh_users == 1) ||
  1770. (!enable && --rx_priv->clsh_users == 0))
  1771. snd_soc_component_update_bits(rx_priv->component,
  1772. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1773. (u8) enable);
  1774. if (rx_priv->clsh_users < 0)
  1775. rx_priv->clsh_users = 0;
  1776. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1777. rx_priv->clsh_users, enable);
  1778. }
  1779. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1780. struct lpass_cdc_rx_macro_priv *rx_priv,
  1781. int interp_n, int event)
  1782. {
  1783. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1784. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1785. return 0;
  1786. }
  1787. if (!SND_SOC_DAPM_EVENT_ON(event))
  1788. return 0;
  1789. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1790. if (interp_n == INTERP_HPHL ||
  1791. interp_n == INTERP_HPHR) {
  1792. /*
  1793. * These K1 values depend on the Headphone Impedance
  1794. * For now it is assumed to be 16 ohm
  1795. */
  1796. snd_soc_component_update_bits(component,
  1797. LPASS_CDC_RX_CLSH_K1_LSB,
  1798. 0xFF, 0xC0);
  1799. snd_soc_component_update_bits(component,
  1800. LPASS_CDC_RX_CLSH_K1_MSB,
  1801. 0x0F, 0x00);
  1802. }
  1803. switch (interp_n) {
  1804. case INTERP_HPHL:
  1805. if (rx_priv->is_ear_mode_on)
  1806. snd_soc_component_update_bits(component,
  1807. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1808. 0x3F, 0x39);
  1809. else
  1810. snd_soc_component_update_bits(component,
  1811. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1812. 0x3F, 0x1C);
  1813. snd_soc_component_update_bits(component,
  1814. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1815. 0x07, 0x00);
  1816. snd_soc_component_update_bits(component,
  1817. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1818. 0x40, 0x40);
  1819. break;
  1820. case INTERP_HPHR:
  1821. if (rx_priv->is_ear_mode_on)
  1822. snd_soc_component_update_bits(component,
  1823. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1824. 0x3F, 0x39);
  1825. else
  1826. snd_soc_component_update_bits(component,
  1827. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1828. 0x3F, 0x1C);
  1829. snd_soc_component_update_bits(component,
  1830. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1831. 0x07, 0x00);
  1832. snd_soc_component_update_bits(component,
  1833. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1834. 0x40, 0x40);
  1835. break;
  1836. case INTERP_AUX:
  1837. snd_soc_component_update_bits(component,
  1838. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1839. 0x08, 0x08);
  1840. snd_soc_component_update_bits(component,
  1841. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1842. 0x10, 0x10);
  1843. break;
  1844. }
  1845. return 0;
  1846. }
  1847. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1848. u16 interp_idx, int event)
  1849. {
  1850. u16 hd2_scale_reg = 0;
  1851. u16 hd2_enable_reg = 0;
  1852. switch (interp_idx) {
  1853. case INTERP_HPHL:
  1854. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1855. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1856. break;
  1857. case INTERP_HPHR:
  1858. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1859. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1860. break;
  1861. }
  1862. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1863. snd_soc_component_update_bits(component, hd2_scale_reg,
  1864. 0x3C, 0x14);
  1865. snd_soc_component_update_bits(component, hd2_enable_reg,
  1866. 0x04, 0x04);
  1867. }
  1868. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1869. snd_soc_component_update_bits(component, hd2_enable_reg,
  1870. 0x04, 0x00);
  1871. snd_soc_component_update_bits(component, hd2_scale_reg,
  1872. 0x3C, 0x00);
  1873. }
  1874. }
  1875. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1876. struct snd_ctl_elem_value *ucontrol)
  1877. {
  1878. struct snd_soc_component *component =
  1879. snd_soc_kcontrol_component(kcontrol);
  1880. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1881. struct device *rx_dev = NULL;
  1882. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1883. return -EINVAL;
  1884. ucontrol->value.integer.value[0] =
  1885. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1886. return 0;
  1887. }
  1888. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1889. struct snd_ctl_elem_value *ucontrol)
  1890. {
  1891. struct snd_soc_component *component =
  1892. snd_soc_kcontrol_component(kcontrol);
  1893. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1894. struct device *rx_dev = NULL;
  1895. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1896. return -EINVAL;
  1897. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1898. ucontrol->value.integer.value[0];
  1899. return 0;
  1900. }
  1901. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1902. struct snd_ctl_elem_value *ucontrol)
  1903. {
  1904. struct snd_soc_component *component =
  1905. snd_soc_kcontrol_component(kcontrol);
  1906. int comp = ((struct soc_multi_mixer_control *)
  1907. kcontrol->private_value)->shift;
  1908. struct device *rx_dev = NULL;
  1909. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1910. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1911. return -EINVAL;
  1912. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1913. return 0;
  1914. }
  1915. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1916. struct snd_ctl_elem_value *ucontrol)
  1917. {
  1918. struct snd_soc_component *component =
  1919. snd_soc_kcontrol_component(kcontrol);
  1920. int comp = ((struct soc_multi_mixer_control *)
  1921. kcontrol->private_value)->shift;
  1922. int value = ucontrol->value.integer.value[0];
  1923. struct device *rx_dev = NULL;
  1924. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1925. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1926. return -EINVAL;
  1927. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1928. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  1929. rx_priv->comp_enabled[comp] = value;
  1930. return 0;
  1931. }
  1932. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  1933. struct snd_ctl_elem_value *ucontrol)
  1934. {
  1935. struct snd_soc_dapm_widget *widget =
  1936. snd_soc_dapm_kcontrol_widget(kcontrol);
  1937. struct snd_soc_component *component =
  1938. snd_soc_dapm_to_component(widget->dapm);
  1939. struct device *rx_dev = NULL;
  1940. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1941. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1942. return -EINVAL;
  1943. ucontrol->value.integer.value[0] =
  1944. rx_priv->rx_port_value[widget->shift];
  1945. return 0;
  1946. }
  1947. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  1948. struct snd_ctl_elem_value *ucontrol)
  1949. {
  1950. struct snd_soc_dapm_widget *widget =
  1951. snd_soc_dapm_kcontrol_widget(kcontrol);
  1952. struct snd_soc_component *component =
  1953. snd_soc_dapm_to_component(widget->dapm);
  1954. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1955. struct snd_soc_dapm_update *update = NULL;
  1956. u32 rx_port_value = ucontrol->value.integer.value[0];
  1957. u32 aif_rst = 0;
  1958. struct device *rx_dev = NULL;
  1959. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1960. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1961. return -EINVAL;
  1962. aif_rst = rx_priv->rx_port_value[widget->shift];
  1963. if (!rx_port_value) {
  1964. if (aif_rst == 0) {
  1965. dev_err(rx_dev, "%s:AIF reset already\n", __func__);
  1966. return 0;
  1967. }
  1968. if (aif_rst > RX_MACRO_AIF4_PB) {
  1969. dev_err(rx_dev, "%s: Invalid AIF reset\n", __func__);
  1970. return 0;
  1971. }
  1972. }
  1973. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  1974. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  1975. __func__, rx_port_value, widget->shift, aif_rst);
  1976. switch (rx_port_value) {
  1977. case 0:
  1978. if (rx_priv->active_ch_cnt[aif_rst]) {
  1979. clear_bit(widget->shift,
  1980. &rx_priv->active_ch_mask[aif_rst]);
  1981. rx_priv->active_ch_cnt[aif_rst]--;
  1982. }
  1983. break;
  1984. case 1:
  1985. case 2:
  1986. case 3:
  1987. case 4:
  1988. set_bit(widget->shift,
  1989. &rx_priv->active_ch_mask[rx_port_value]);
  1990. rx_priv->active_ch_cnt[rx_port_value]++;
  1991. break;
  1992. default:
  1993. dev_err(component->dev,
  1994. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  1995. __func__, rx_port_value);
  1996. goto err;
  1997. }
  1998. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  1999. rx_port_value, e, update);
  2000. return 0;
  2001. err:
  2002. return -EINVAL;
  2003. }
  2004. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2005. struct snd_ctl_elem_value *ucontrol)
  2006. {
  2007. struct snd_soc_component *component =
  2008. snd_soc_kcontrol_component(kcontrol);
  2009. struct device *rx_dev = NULL;
  2010. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2011. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2012. return -EINVAL;
  2013. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2014. return 0;
  2015. }
  2016. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2017. struct snd_ctl_elem_value *ucontrol)
  2018. {
  2019. struct snd_soc_component *component =
  2020. snd_soc_kcontrol_component(kcontrol);
  2021. struct device *rx_dev = NULL;
  2022. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2023. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2024. return -EINVAL;
  2025. rx_priv->is_ear_mode_on =
  2026. (!ucontrol->value.integer.value[0] ? false : true);
  2027. return 0;
  2028. }
  2029. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2030. struct snd_ctl_elem_value *ucontrol)
  2031. {
  2032. struct snd_soc_component *component =
  2033. snd_soc_kcontrol_component(kcontrol);
  2034. struct device *rx_dev = NULL;
  2035. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2036. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2037. return -EINVAL;
  2038. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2039. return 0;
  2040. }
  2041. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2042. struct snd_ctl_elem_value *ucontrol)
  2043. {
  2044. struct snd_soc_component *component =
  2045. snd_soc_kcontrol_component(kcontrol);
  2046. struct device *rx_dev = NULL;
  2047. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2048. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2049. return -EINVAL;
  2050. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2051. return 0;
  2052. }
  2053. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2054. struct snd_ctl_elem_value *ucontrol)
  2055. {
  2056. struct snd_soc_component *component =
  2057. snd_soc_kcontrol_component(kcontrol);
  2058. struct device *rx_dev = NULL;
  2059. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2060. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2061. return -EINVAL;
  2062. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2063. return 0;
  2064. }
  2065. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2066. struct snd_ctl_elem_value *ucontrol)
  2067. {
  2068. struct snd_soc_component *component =
  2069. snd_soc_kcontrol_component(kcontrol);
  2070. struct device *rx_dev = NULL;
  2071. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2072. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2073. return -EINVAL;
  2074. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2075. return 0;
  2076. }
  2077. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2078. struct snd_ctl_elem_value *ucontrol)
  2079. {
  2080. struct snd_soc_component *component =
  2081. snd_soc_kcontrol_component(kcontrol);
  2082. ucontrol->value.integer.value[0] =
  2083. ((snd_soc_component_read(
  2084. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2085. 1 : 0);
  2086. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2087. ucontrol->value.integer.value[0]);
  2088. return 0;
  2089. }
  2090. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2091. struct snd_ctl_elem_value *ucontrol)
  2092. {
  2093. struct snd_soc_component *component =
  2094. snd_soc_kcontrol_component(kcontrol);
  2095. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2096. ucontrol->value.integer.value[0]);
  2097. /* Set Vbat register configuration for GSM mode bit based on value */
  2098. if (ucontrol->value.integer.value[0])
  2099. snd_soc_component_update_bits(component,
  2100. LPASS_CDC_RX_BCL_VBAT_CFG,
  2101. 0x04, 0x04);
  2102. else
  2103. snd_soc_component_update_bits(component,
  2104. LPASS_CDC_RX_BCL_VBAT_CFG,
  2105. 0x04, 0x00);
  2106. return 0;
  2107. }
  2108. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2109. struct snd_ctl_elem_value *ucontrol)
  2110. {
  2111. struct snd_soc_component *component =
  2112. snd_soc_kcontrol_component(kcontrol);
  2113. struct device *rx_dev = NULL;
  2114. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2115. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2116. return -EINVAL;
  2117. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2118. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2119. __func__, ucontrol->value.integer.value[0]);
  2120. return 0;
  2121. }
  2122. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2123. struct snd_ctl_elem_value *ucontrol)
  2124. {
  2125. struct snd_soc_component *component =
  2126. snd_soc_kcontrol_component(kcontrol);
  2127. struct device *rx_dev = NULL;
  2128. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2129. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2130. return -EINVAL;
  2131. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2132. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2133. rx_priv->is_softclip_on);
  2134. return 0;
  2135. }
  2136. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2137. struct snd_ctl_elem_value *ucontrol)
  2138. {
  2139. struct snd_soc_component *component =
  2140. snd_soc_kcontrol_component(kcontrol);
  2141. struct device *rx_dev = NULL;
  2142. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2143. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2144. return -EINVAL;
  2145. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2146. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2147. __func__, ucontrol->value.integer.value[0]);
  2148. return 0;
  2149. }
  2150. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2151. struct snd_ctl_elem_value *ucontrol)
  2152. {
  2153. struct snd_soc_component *component =
  2154. snd_soc_kcontrol_component(kcontrol);
  2155. struct device *rx_dev = NULL;
  2156. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2157. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2158. return -EINVAL;
  2159. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2160. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2161. rx_priv->is_aux_hpf_on);
  2162. return 0;
  2163. }
  2164. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2165. struct snd_kcontrol *kcontrol,
  2166. int event)
  2167. {
  2168. struct snd_soc_component *component =
  2169. snd_soc_dapm_to_component(w->dapm);
  2170. struct device *rx_dev = NULL;
  2171. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2172. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2173. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2174. return -EINVAL;
  2175. switch (event) {
  2176. case SND_SOC_DAPM_PRE_PMU:
  2177. /* Enable clock for VBAT block */
  2178. snd_soc_component_update_bits(component,
  2179. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2180. /* Enable VBAT block */
  2181. snd_soc_component_update_bits(component,
  2182. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2183. /* Update interpolator with 384K path */
  2184. snd_soc_component_update_bits(component,
  2185. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2186. /* Update DSM FS rate */
  2187. snd_soc_component_update_bits(component,
  2188. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2189. /* Use attenuation mode */
  2190. snd_soc_component_update_bits(component,
  2191. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2192. /* BCL block needs softclip clock to be enabled */
  2193. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2194. /* Enable VBAT at channel level */
  2195. snd_soc_component_update_bits(component,
  2196. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2197. /* Set the ATTK1 gain */
  2198. snd_soc_component_update_bits(component,
  2199. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2200. 0xFF, 0xFF);
  2201. snd_soc_component_update_bits(component,
  2202. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2203. 0xFF, 0x03);
  2204. snd_soc_component_update_bits(component,
  2205. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2206. 0xFF, 0x00);
  2207. /* Set the ATTK2 gain */
  2208. snd_soc_component_update_bits(component,
  2209. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2210. 0xFF, 0xFF);
  2211. snd_soc_component_update_bits(component,
  2212. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2213. 0xFF, 0x03);
  2214. snd_soc_component_update_bits(component,
  2215. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2216. 0xFF, 0x00);
  2217. /* Set the ATTK3 gain */
  2218. snd_soc_component_update_bits(component,
  2219. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2220. 0xFF, 0xFF);
  2221. snd_soc_component_update_bits(component,
  2222. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2223. 0xFF, 0x03);
  2224. snd_soc_component_update_bits(component,
  2225. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2226. 0xFF, 0x00);
  2227. break;
  2228. case SND_SOC_DAPM_POST_PMD:
  2229. snd_soc_component_update_bits(component,
  2230. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2231. 0x80, 0x00);
  2232. snd_soc_component_update_bits(component,
  2233. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2234. 0x02, 0x00);
  2235. snd_soc_component_update_bits(component,
  2236. LPASS_CDC_RX_BCL_VBAT_CFG,
  2237. 0x02, 0x02);
  2238. snd_soc_component_update_bits(component,
  2239. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2240. 0x02, 0x00);
  2241. snd_soc_component_update_bits(component,
  2242. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2243. 0xFF, 0x00);
  2244. snd_soc_component_update_bits(component,
  2245. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2246. 0xFF, 0x00);
  2247. snd_soc_component_update_bits(component,
  2248. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2249. 0xFF, 0x00);
  2250. snd_soc_component_update_bits(component,
  2251. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2252. 0xFF, 0x00);
  2253. snd_soc_component_update_bits(component,
  2254. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2255. 0xFF, 0x00);
  2256. snd_soc_component_update_bits(component,
  2257. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2258. 0xFF, 0x00);
  2259. snd_soc_component_update_bits(component,
  2260. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2261. 0xFF, 0x00);
  2262. snd_soc_component_update_bits(component,
  2263. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2264. 0xFF, 0x00);
  2265. snd_soc_component_update_bits(component,
  2266. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2267. 0xFF, 0x00);
  2268. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2269. snd_soc_component_update_bits(component,
  2270. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2271. snd_soc_component_update_bits(component,
  2272. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2273. break;
  2274. default:
  2275. dev_err(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2276. break;
  2277. }
  2278. return 0;
  2279. }
  2280. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2281. struct lpass_cdc_rx_macro_priv *rx_priv,
  2282. int interp, int event)
  2283. {
  2284. int reg = 0, mask = 0, val = 0;
  2285. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2286. return;
  2287. if (interp == INTERP_HPHL) {
  2288. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2289. mask = 0x01;
  2290. val = 0x01;
  2291. }
  2292. if (interp == INTERP_HPHR) {
  2293. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2294. mask = 0x02;
  2295. val = 0x02;
  2296. }
  2297. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2298. snd_soc_component_update_bits(component, reg, mask, val);
  2299. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2300. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2301. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2302. snd_soc_component_write(component,
  2303. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2304. }
  2305. }
  2306. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2307. struct lpass_cdc_rx_macro_priv *rx_priv,
  2308. u16 interp_idx, int event)
  2309. {
  2310. u16 hph_lut_bypass_reg = 0;
  2311. u16 hph_comp_ctrl7 = 0;
  2312. switch (interp_idx) {
  2313. case INTERP_HPHL:
  2314. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2315. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2316. break;
  2317. case INTERP_HPHR:
  2318. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2319. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2320. break;
  2321. default:
  2322. break;
  2323. }
  2324. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2325. if (interp_idx == INTERP_HPHL) {
  2326. if (rx_priv->is_ear_mode_on)
  2327. snd_soc_component_update_bits(component,
  2328. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2329. 0x02, 0x02);
  2330. else
  2331. snd_soc_component_update_bits(component,
  2332. hph_lut_bypass_reg,
  2333. 0x80, 0x80);
  2334. } else {
  2335. snd_soc_component_update_bits(component,
  2336. hph_lut_bypass_reg,
  2337. 0x80, 0x80);
  2338. }
  2339. if (rx_priv->hph_pwr_mode)
  2340. snd_soc_component_update_bits(component,
  2341. hph_comp_ctrl7,
  2342. 0x20, 0x00);
  2343. }
  2344. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2345. snd_soc_component_update_bits(component,
  2346. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2347. 0x02, 0x00);
  2348. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2349. 0x80, 0x00);
  2350. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2351. 0x20, 0x20);
  2352. }
  2353. }
  2354. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2355. int event, int interp_idx)
  2356. {
  2357. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2358. struct device *rx_dev = NULL;
  2359. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2360. if (!component) {
  2361. pr_err("%s: component is NULL\n", __func__);
  2362. return -EINVAL;
  2363. }
  2364. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2365. return -EINVAL;
  2366. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2367. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2368. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2369. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2370. if (interp_idx == INTERP_AUX)
  2371. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2372. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2373. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2374. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2375. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2376. /* Main path PGA mute enable */
  2377. snd_soc_component_update_bits(component, main_reg,
  2378. 0x10, 0x10);
  2379. snd_soc_component_update_bits(component, dsm_reg,
  2380. 0x01, 0x01);
  2381. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2382. 0x03, 0x03);
  2383. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2384. interp_idx, event);
  2385. if (rx_priv->hph_hd2_mode)
  2386. lpass_cdc_rx_macro_hd2_control(
  2387. component, interp_idx, event);
  2388. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2389. interp_idx, event);
  2390. lpass_cdc_rx_macro_droop_setting(component,
  2391. interp_idx, event);
  2392. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2393. interp_idx, event);
  2394. if (interp_idx == INTERP_AUX) {
  2395. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2396. event);
  2397. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2398. event);
  2399. }
  2400. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2401. interp_idx, event);
  2402. }
  2403. rx_priv->main_clk_users[interp_idx]++;
  2404. }
  2405. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2406. rx_priv->main_clk_users[interp_idx]--;
  2407. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2408. rx_priv->main_clk_users[interp_idx] = 0;
  2409. /* Main path PGA mute enable */
  2410. snd_soc_component_update_bits(component, main_reg,
  2411. 0x10, 0x10);
  2412. /* Clk Disable */
  2413. snd_soc_component_update_bits(component, dsm_reg,
  2414. 0x01, 0x00);
  2415. snd_soc_component_update_bits(component, main_reg,
  2416. 0x20, 0x00);
  2417. /* Reset enable and disable */
  2418. snd_soc_component_update_bits(component, main_reg,
  2419. 0x40, 0x40);
  2420. snd_soc_component_update_bits(component, main_reg,
  2421. 0x40, 0x00);
  2422. /* Reset rate to 48K*/
  2423. snd_soc_component_update_bits(component, main_reg,
  2424. 0x0F, 0x04);
  2425. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2426. 0x03, 0x00);
  2427. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2428. interp_idx, event);
  2429. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2430. interp_idx, event);
  2431. if (interp_idx == INTERP_AUX) {
  2432. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2433. event);
  2434. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2435. event);
  2436. }
  2437. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2438. interp_idx, event);
  2439. if (rx_priv->hph_hd2_mode)
  2440. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2441. event);
  2442. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2443. interp_idx, event);
  2444. }
  2445. }
  2446. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2447. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2448. return rx_priv->main_clk_users[interp_idx];
  2449. }
  2450. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2451. struct snd_kcontrol *kcontrol, int event)
  2452. {
  2453. struct snd_soc_component *component =
  2454. snd_soc_dapm_to_component(w->dapm);
  2455. u16 sidetone_reg = 0, fs_reg = 0;
  2456. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2457. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2458. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2459. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2460. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2461. switch (event) {
  2462. case SND_SOC_DAPM_PRE_PMU:
  2463. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2464. snd_soc_component_update_bits(component, sidetone_reg,
  2465. 0x10, 0x10);
  2466. snd_soc_component_update_bits(component, fs_reg,
  2467. 0x20, 0x20);
  2468. break;
  2469. case SND_SOC_DAPM_POST_PMD:
  2470. snd_soc_component_update_bits(component, sidetone_reg,
  2471. 0x10, 0x00);
  2472. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2473. break;
  2474. default:
  2475. break;
  2476. };
  2477. return 0;
  2478. }
  2479. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2480. int band_idx)
  2481. {
  2482. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2483. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2484. if (regmap == NULL) {
  2485. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2486. return;
  2487. }
  2488. regmap_write(regmap,
  2489. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2490. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2491. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2492. /* 5 coefficients per band and 4 writes per coefficient */
  2493. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2494. coeff_idx++) {
  2495. /* Four 8 bit values(one 32 bit) per coefficient */
  2496. regmap_write(regmap, reg_add,
  2497. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2498. regmap_write(regmap, reg_add,
  2499. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2500. regmap_write(regmap, reg_add,
  2501. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2502. regmap_write(regmap, reg_add,
  2503. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2504. }
  2505. }
  2506. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2507. struct snd_ctl_elem_value *ucontrol)
  2508. {
  2509. struct snd_soc_component *component =
  2510. snd_soc_kcontrol_component(kcontrol);
  2511. int iir_idx = ((struct soc_multi_mixer_control *)
  2512. kcontrol->private_value)->reg;
  2513. int band_idx = ((struct soc_multi_mixer_control *)
  2514. kcontrol->private_value)->shift;
  2515. /* IIR filter band registers are at integer multiples of 0x80 */
  2516. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2517. ucontrol->value.integer.value[0] = (
  2518. snd_soc_component_read(component, iir_reg) &
  2519. (1 << band_idx)) != 0;
  2520. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2521. iir_idx, band_idx,
  2522. (uint32_t)ucontrol->value.integer.value[0]);
  2523. return 0;
  2524. }
  2525. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2526. struct snd_ctl_elem_value *ucontrol)
  2527. {
  2528. struct snd_soc_component *component =
  2529. snd_soc_kcontrol_component(kcontrol);
  2530. int iir_idx = ((struct soc_multi_mixer_control *)
  2531. kcontrol->private_value)->reg;
  2532. int band_idx = ((struct soc_multi_mixer_control *)
  2533. kcontrol->private_value)->shift;
  2534. bool iir_band_en_status = 0;
  2535. int value = ucontrol->value.integer.value[0];
  2536. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2537. struct device *rx_dev = NULL;
  2538. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2539. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2540. return -EINVAL;
  2541. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2542. /* Mask first 5 bits, 6-8 are reserved */
  2543. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2544. (value << band_idx));
  2545. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2546. (1 << band_idx)) != 0);
  2547. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2548. iir_idx, band_idx, iir_band_en_status);
  2549. return 0;
  2550. }
  2551. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2552. int iir_idx, int band_idx,
  2553. int coeff_idx)
  2554. {
  2555. uint32_t value = 0;
  2556. /* Address does not automatically update if reading */
  2557. snd_soc_component_write(component,
  2558. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2559. ((band_idx * BAND_MAX + coeff_idx)
  2560. * sizeof(uint32_t)) & 0x7F);
  2561. value |= snd_soc_component_read(component,
  2562. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2563. snd_soc_component_write(component,
  2564. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2565. ((band_idx * BAND_MAX + coeff_idx)
  2566. * sizeof(uint32_t) + 1) & 0x7F);
  2567. value |= (snd_soc_component_read(component,
  2568. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2569. 0x80 * iir_idx)) << 8);
  2570. snd_soc_component_write(component,
  2571. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2572. ((band_idx * BAND_MAX + coeff_idx)
  2573. * sizeof(uint32_t) + 2) & 0x7F);
  2574. value |= (snd_soc_component_read(component,
  2575. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2576. 0x80 * iir_idx)) << 16);
  2577. snd_soc_component_write(component,
  2578. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2579. ((band_idx * BAND_MAX + coeff_idx)
  2580. * sizeof(uint32_t) + 3) & 0x7F);
  2581. /* Mask bits top 2 bits since they are reserved */
  2582. value |= ((snd_soc_component_read(component,
  2583. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2584. 16 * iir_idx)) & 0x3F) << 24);
  2585. return value;
  2586. }
  2587. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2588. struct snd_ctl_elem_info *ucontrol)
  2589. {
  2590. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2591. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2592. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2593. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2594. ucontrol->count = params->max;
  2595. return 0;
  2596. }
  2597. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2598. struct snd_ctl_elem_value *ucontrol)
  2599. {
  2600. struct snd_soc_component *component =
  2601. snd_soc_kcontrol_component(kcontrol);
  2602. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2603. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2604. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2605. int iir_idx = ctl->iir_idx;
  2606. int band_idx = ctl->band_idx;
  2607. u32 coeff[BAND_MAX];
  2608. int coeff_idx = 0;
  2609. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2610. coeff_idx++) {
  2611. coeff[coeff_idx] =
  2612. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2613. }
  2614. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2615. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2616. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2617. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2618. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2619. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2620. __func__, iir_idx, band_idx, coeff[0],
  2621. __func__, iir_idx, band_idx, coeff[1],
  2622. __func__, iir_idx, band_idx, coeff[2],
  2623. __func__, iir_idx, band_idx, coeff[3],
  2624. __func__, iir_idx, band_idx, coeff[4]);
  2625. return 0;
  2626. }
  2627. static void set_iir_band_coeff(struct snd_soc_component *component,
  2628. int iir_idx, int band_idx,
  2629. uint32_t value)
  2630. {
  2631. snd_soc_component_write(component,
  2632. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2633. (value & 0xFF));
  2634. snd_soc_component_write(component,
  2635. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2636. (value >> 8) & 0xFF);
  2637. snd_soc_component_write(component,
  2638. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2639. (value >> 16) & 0xFF);
  2640. /* Mask top 2 bits, 7-8 are reserved */
  2641. snd_soc_component_write(component,
  2642. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2643. (value >> 24) & 0x3F);
  2644. }
  2645. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2646. struct snd_ctl_elem_value *ucontrol)
  2647. {
  2648. struct snd_soc_component *component =
  2649. snd_soc_kcontrol_component(kcontrol);
  2650. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2651. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2652. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2653. int iir_idx = ctl->iir_idx;
  2654. int band_idx = ctl->band_idx;
  2655. u32 coeff[BAND_MAX];
  2656. int coeff_idx, idx = 0;
  2657. struct device *rx_dev = NULL;
  2658. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2659. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2660. return -EINVAL;
  2661. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2662. /*
  2663. * Mask top bit it is reserved
  2664. * Updates addr automatically for each B2 write
  2665. */
  2666. snd_soc_component_write(component,
  2667. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 16 * iir_idx),
  2668. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2669. /* Store the coefficients in sidetone coeff array */
  2670. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2671. coeff_idx++) {
  2672. uint32_t value = coeff[coeff_idx];
  2673. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2674. /* Four 8 bit values(one 32 bit) per coefficient */
  2675. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2676. (value & 0xFF);
  2677. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2678. (value >> 8) & 0xFF;
  2679. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2680. (value >> 16) & 0xFF;
  2681. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2682. (value >> 24) & 0xFF;
  2683. }
  2684. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2685. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2686. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2687. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2688. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2689. __func__, iir_idx, band_idx,
  2690. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2691. __func__, iir_idx, band_idx,
  2692. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2693. __func__, iir_idx, band_idx,
  2694. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2695. __func__, iir_idx, band_idx,
  2696. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2697. __func__, iir_idx, band_idx,
  2698. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2699. return 0;
  2700. }
  2701. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2702. struct snd_kcontrol *kcontrol, int event)
  2703. {
  2704. struct snd_soc_component *component =
  2705. snd_soc_dapm_to_component(w->dapm);
  2706. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2707. switch (event) {
  2708. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2709. case SND_SOC_DAPM_PRE_PMD:
  2710. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2711. snd_soc_component_write(component,
  2712. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2713. snd_soc_component_read(component,
  2714. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2715. snd_soc_component_write(component,
  2716. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2717. snd_soc_component_read(component,
  2718. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2719. snd_soc_component_write(component,
  2720. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2721. snd_soc_component_read(component,
  2722. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2723. snd_soc_component_write(component,
  2724. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2725. snd_soc_component_read(component,
  2726. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2727. } else {
  2728. snd_soc_component_write(component,
  2729. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2730. snd_soc_component_read(component,
  2731. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2732. snd_soc_component_write(component,
  2733. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2734. snd_soc_component_read(component,
  2735. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2736. snd_soc_component_write(component,
  2737. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2738. snd_soc_component_read(component,
  2739. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2740. snd_soc_component_write(component,
  2741. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2742. snd_soc_component_read(component,
  2743. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2744. }
  2745. break;
  2746. }
  2747. return 0;
  2748. }
  2749. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  2750. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  2751. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  2752. -84, 40, digital_gain),
  2753. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  2754. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  2755. -84, 40, digital_gain),
  2756. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  2757. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  2758. -84, 40, digital_gain),
  2759. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  2760. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  2761. -84, 40, digital_gain),
  2762. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  2763. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  2764. -84, 40, digital_gain),
  2765. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  2766. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  2767. -84, 40, digital_gain),
  2768. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  2769. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  2770. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  2771. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  2772. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  2773. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  2774. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  2775. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  2776. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  2777. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  2778. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  2779. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  2780. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  2781. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  2782. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  2783. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  2784. lpass_cdc_rx_macro_soft_clip_enable_get,
  2785. lpass_cdc_rx_macro_soft_clip_enable_put),
  2786. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  2787. lpass_cdc_rx_macro_aux_hpf_mode_get,
  2788. lpass_cdc_rx_macro_aux_hpf_mode_put),
  2789. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  2790. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  2791. digital_gain),
  2792. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  2793. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  2794. digital_gain),
  2795. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  2796. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  2797. digital_gain),
  2798. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  2799. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  2800. digital_gain),
  2801. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  2802. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  2803. digital_gain),
  2804. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  2805. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  2806. digital_gain),
  2807. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  2808. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  2809. digital_gain),
  2810. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  2811. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  2812. digital_gain),
  2813. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  2814. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2815. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2816. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  2817. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2818. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2819. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  2820. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2821. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2822. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  2823. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2824. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2825. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  2826. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2827. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2828. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  2829. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2830. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2831. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  2832. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2833. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2834. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  2835. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2836. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2837. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  2838. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2839. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2840. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  2841. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2842. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2843. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  2844. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  2845. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  2846. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  2847. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  2848. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  2849. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  2850. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  2851. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  2852. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  2853. };
  2854. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  2855. struct snd_kcontrol *kcontrol,
  2856. int event)
  2857. {
  2858. struct snd_soc_component *component =
  2859. snd_soc_dapm_to_component(w->dapm);
  2860. struct device *rx_dev = NULL;
  2861. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2862. u16 val = 0, ec_hq_reg = 0;
  2863. int ec_tx = 0;
  2864. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2865. return -EINVAL;
  2866. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  2867. val = snd_soc_component_read(component,
  2868. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  2869. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  2870. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  2871. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  2872. ec_tx = (val & 0x0f) - 1;
  2873. val = snd_soc_component_read(component,
  2874. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  2875. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  2876. ec_tx = (val & 0x0f) - 1;
  2877. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  2878. dev_err(rx_dev, "%s: EC mix control not set correctly\n",
  2879. __func__);
  2880. return -EINVAL;
  2881. }
  2882. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  2883. 0x40 * ec_tx;
  2884. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  2885. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  2886. 0x40 * ec_tx;
  2887. /* default set to 48k */
  2888. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  2889. return 0;
  2890. }
  2891. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  2892. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  2893. SND_SOC_NOPM, 0, 0),
  2894. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  2895. SND_SOC_NOPM, 0, 0),
  2896. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  2897. SND_SOC_NOPM, 0, 0),
  2898. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  2899. SND_SOC_NOPM, 0, 0),
  2900. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  2901. SND_SOC_NOPM, 0, 0),
  2902. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  2903. SND_SOC_NOPM, 0, 0),
  2904. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  2905. SND_SOC_NOPM, 0, 0),
  2906. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  2907. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  2908. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  2909. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  2910. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  2911. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  2912. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2913. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2914. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  2915. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  2916. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  2917. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  2918. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  2919. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  2920. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  2921. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  2922. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  2923. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  2924. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  2925. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  2926. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  2927. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  2928. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  2929. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2930. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  2931. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  2932. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  2933. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2934. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  2935. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  2936. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  2937. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2938. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  2939. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  2940. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  2941. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  2942. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  2943. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  2944. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  2945. 4, 0, NULL, 0),
  2946. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  2947. 4, 0, NULL, 0),
  2948. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  2949. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  2950. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  2951. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2952. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2953. SND_SOC_DAPM_POST_PMD),
  2954. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  2955. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2956. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2957. SND_SOC_DAPM_POST_PMD),
  2958. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  2959. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2960. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2961. SND_SOC_DAPM_POST_PMD),
  2962. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  2963. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  2964. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  2965. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  2966. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  2967. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  2968. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  2969. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  2970. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  2971. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  2972. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2973. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2974. SND_SOC_DAPM_POST_PMD),
  2975. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  2976. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2977. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2978. SND_SOC_DAPM_POST_PMD),
  2979. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  2980. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2981. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2982. SND_SOC_DAPM_POST_PMD),
  2983. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  2984. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  2985. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  2986. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2987. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2988. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2989. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2990. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2991. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2992. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  2993. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  2994. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2995. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  2996. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  2997. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2998. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  2999. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3000. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3001. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3002. 0, 0, rx_int2_1_vbat_mix_switch,
  3003. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3004. lpass_cdc_rx_macro_enable_vbat,
  3005. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3006. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3007. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3008. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3009. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3010. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3011. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3012. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3013. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3014. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3015. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3016. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3017. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3018. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3019. };
  3020. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3021. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3022. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3023. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3024. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3025. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3026. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3027. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3028. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3029. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3030. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3031. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3032. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3033. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3034. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3035. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3036. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3037. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3038. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3039. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3040. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3041. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3042. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3043. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3044. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3045. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3046. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3047. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3048. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3049. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3050. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3051. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3052. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3053. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3054. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3055. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3056. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3057. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3058. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3059. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3060. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3061. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3062. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3063. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3064. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3065. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3066. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3067. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3068. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3069. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3070. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3071. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3072. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3073. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3074. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3075. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3076. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3077. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3078. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3079. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3080. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3081. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3082. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3083. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3084. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3085. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3086. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3087. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3088. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3089. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3090. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3091. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3092. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3093. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3094. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3095. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3096. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3097. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3098. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3099. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3100. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3101. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3102. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3103. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3104. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3105. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3106. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3107. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3108. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3109. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3110. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3111. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3112. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3113. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3114. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3115. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3116. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3117. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3118. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3119. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3120. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3121. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3122. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3123. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3124. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3125. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3126. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3127. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3128. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3129. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3130. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3131. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3132. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3133. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3134. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3135. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3136. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3137. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3138. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3139. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3140. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3141. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3142. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3143. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3144. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3145. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3146. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3147. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3148. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3149. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3150. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3151. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3152. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3153. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3154. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3155. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3156. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3157. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3158. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3159. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3160. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3161. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3162. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3163. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3164. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3165. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3166. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3167. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3168. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3169. /* Mixing path INT0 */
  3170. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3171. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3172. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3173. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3174. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3175. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3176. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3177. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3178. /* Mixing path INT1 */
  3179. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3180. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3181. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3182. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3183. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3184. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3185. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3186. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3187. /* Mixing path INT2 */
  3188. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3189. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3190. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3191. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3192. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3193. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3194. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3195. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3196. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3197. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3198. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3199. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3200. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3201. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3202. {"HPHL_OUT", NULL, "RX_MCLK"},
  3203. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3204. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3205. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3206. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3207. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3208. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3209. {"HPHR_OUT", NULL, "RX_MCLK"},
  3210. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3211. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3212. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3213. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3214. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3215. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3216. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3217. {"AUX_OUT", NULL, "RX_MCLK"},
  3218. {"IIR0", NULL, "RX_MCLK"},
  3219. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3220. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3221. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3222. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3223. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3224. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3225. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3226. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3227. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3228. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3229. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3230. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3231. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3232. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3233. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3234. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3235. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3236. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3237. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3238. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3239. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3240. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3241. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3242. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3243. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3244. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3245. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3246. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3247. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3248. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3249. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3250. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3251. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3252. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3253. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3254. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3255. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3256. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3257. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3258. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3259. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3260. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3261. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3262. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3263. {"IIR1", NULL, "RX_MCLK"},
  3264. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3265. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3266. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3267. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3268. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3269. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3270. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3271. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3272. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3273. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3274. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3275. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3276. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3277. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3278. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3279. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3280. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3281. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3282. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3283. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3284. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3285. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3286. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3287. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3288. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3289. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3290. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3291. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3292. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3293. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3294. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3295. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3296. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3297. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3298. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3299. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3300. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3301. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3302. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3303. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3304. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3305. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3306. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3307. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3308. {"SRC0", NULL, "IIR0"},
  3309. {"SRC1", NULL, "IIR1"},
  3310. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3311. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3312. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3313. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3314. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3315. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3316. };
  3317. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3318. {
  3319. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3320. if (rx_priv == NULL) {
  3321. pr_err("%s: rx priv data is NULL\n", __func__);
  3322. return -EINVAL;
  3323. }
  3324. if (enable) {
  3325. pm_runtime_get_sync(rx_priv->dev);
  3326. pm_runtime_put_autosuspend(rx_priv->dev);
  3327. pm_runtime_mark_last_busy(rx_priv->dev);
  3328. }
  3329. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3330. return 0;
  3331. else
  3332. return -EINVAL;
  3333. }
  3334. static int rx_swrm_clock(void *handle, bool enable)
  3335. {
  3336. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3337. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3338. int ret = 0;
  3339. if (regmap == NULL) {
  3340. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3341. return -EINVAL;
  3342. }
  3343. mutex_lock(&rx_priv->swr_clk_lock);
  3344. trace_printk("%s: swrm clock %s\n",
  3345. __func__, (enable ? "enable" : "disable"));
  3346. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3347. __func__, (enable ? "enable" : "disable"));
  3348. if (enable) {
  3349. pm_runtime_get_sync(rx_priv->dev);
  3350. if (rx_priv->swr_clk_users == 0) {
  3351. ret = msm_cdc_pinctrl_select_active_state(
  3352. rx_priv->rx_swr_gpio_p);
  3353. if (ret < 0) {
  3354. dev_err(rx_priv->dev,
  3355. "%s: rx swr pinctrl enable failed\n",
  3356. __func__);
  3357. pm_runtime_mark_last_busy(rx_priv->dev);
  3358. pm_runtime_put_autosuspend(rx_priv->dev);
  3359. goto exit;
  3360. }
  3361. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3362. if (ret < 0) {
  3363. msm_cdc_pinctrl_select_sleep_state(
  3364. rx_priv->rx_swr_gpio_p);
  3365. dev_err(rx_priv->dev,
  3366. "%s: rx request clock enable failed\n",
  3367. __func__);
  3368. pm_runtime_mark_last_busy(rx_priv->dev);
  3369. pm_runtime_put_autosuspend(rx_priv->dev);
  3370. goto exit;
  3371. }
  3372. if (rx_priv->reset_swr)
  3373. regmap_update_bits(regmap,
  3374. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3375. 0x02, 0x02);
  3376. regmap_update_bits(regmap,
  3377. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3378. 0x01, 0x01);
  3379. if (rx_priv->reset_swr)
  3380. regmap_update_bits(regmap,
  3381. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3382. 0x02, 0x00);
  3383. rx_priv->reset_swr = false;
  3384. }
  3385. pm_runtime_mark_last_busy(rx_priv->dev);
  3386. pm_runtime_put_autosuspend(rx_priv->dev);
  3387. rx_priv->swr_clk_users++;
  3388. } else {
  3389. if (rx_priv->swr_clk_users <= 0) {
  3390. dev_err(rx_priv->dev,
  3391. "%s: rx swrm clock users already reset\n",
  3392. __func__);
  3393. rx_priv->swr_clk_users = 0;
  3394. goto exit;
  3395. }
  3396. rx_priv->swr_clk_users--;
  3397. if (rx_priv->swr_clk_users == 0) {
  3398. regmap_update_bits(regmap,
  3399. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3400. 0x01, 0x00);
  3401. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3402. ret = msm_cdc_pinctrl_select_sleep_state(
  3403. rx_priv->rx_swr_gpio_p);
  3404. if (ret < 0) {
  3405. dev_err(rx_priv->dev,
  3406. "%s: rx swr pinctrl disable failed\n",
  3407. __func__);
  3408. goto exit;
  3409. }
  3410. }
  3411. }
  3412. trace_printk("%s: swrm clock users %d\n",
  3413. __func__, rx_priv->swr_clk_users);
  3414. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3415. __func__, rx_priv->swr_clk_users);
  3416. exit:
  3417. mutex_unlock(&rx_priv->swr_clk_lock);
  3418. return ret;
  3419. }
  3420. static const struct lpass_cdc_rx_macro_reg_mask_val
  3421. lpass_cdc_rx_macro_reg_init[] = {
  3422. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3423. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3424. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3425. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3426. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3427. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3428. };
  3429. static void lpass_cdc_rx_macro_init_bcl_pmic_reg(struct snd_soc_component *component)
  3430. {
  3431. struct device *rx_dev = NULL;
  3432. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3433. if (!component) {
  3434. pr_err("%s: NULL component pointer!\n", __func__);
  3435. return;
  3436. }
  3437. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3438. return;
  3439. switch (rx_priv->bcl_pmic_params.id) {
  3440. case 0:
  3441. break;
  3442. case 1:
  3443. break;
  3444. default:
  3445. dev_err(rx_dev, "%s: PMIC ID is invalid %d\n",
  3446. __func__, rx_priv->bcl_pmic_params.id);
  3447. break;
  3448. }
  3449. }
  3450. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3451. {
  3452. struct snd_soc_dapm_context *dapm =
  3453. snd_soc_component_get_dapm(component);
  3454. int ret = 0;
  3455. struct device *rx_dev = NULL;
  3456. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3457. int i;
  3458. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3459. if (!rx_dev) {
  3460. dev_err(component->dev,
  3461. "%s: null device for macro!\n", __func__);
  3462. return -EINVAL;
  3463. }
  3464. rx_priv = dev_get_drvdata(rx_dev);
  3465. if (!rx_priv) {
  3466. dev_err(component->dev,
  3467. "%s: priv is null for macro!\n", __func__);
  3468. return -EINVAL;
  3469. }
  3470. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3471. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3472. if (ret < 0) {
  3473. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3474. return ret;
  3475. }
  3476. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  3477. ARRAY_SIZE(rx_audio_map));
  3478. if (ret < 0) {
  3479. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  3480. return ret;
  3481. }
  3482. ret = snd_soc_dapm_new_widgets(dapm->card);
  3483. if (ret < 0) {
  3484. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  3485. return ret;
  3486. }
  3487. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  3488. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  3489. if (ret < 0) {
  3490. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  3491. return ret;
  3492. }
  3493. rx_priv->dev_up = true;
  3494. rx_priv->rx0_gain_val = 0;
  3495. rx_priv->rx1_gain_val = 0;
  3496. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  3497. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  3498. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  3499. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  3500. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  3501. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  3502. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  3503. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  3504. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  3505. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  3506. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  3507. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  3508. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  3509. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  3510. snd_soc_dapm_sync(dapm);
  3511. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  3512. snd_soc_component_update_bits(component,
  3513. lpass_cdc_rx_macro_reg_init[i].reg,
  3514. lpass_cdc_rx_macro_reg_init[i].mask,
  3515. lpass_cdc_rx_macro_reg_init[i].val);
  3516. rx_priv->component = component;
  3517. lpass_cdc_rx_macro_init_bcl_pmic_reg(component);
  3518. return 0;
  3519. }
  3520. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  3521. {
  3522. struct device *rx_dev = NULL;
  3523. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3524. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3525. return -EINVAL;
  3526. rx_priv->component = NULL;
  3527. return 0;
  3528. }
  3529. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  3530. {
  3531. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3532. struct platform_device *pdev = NULL;
  3533. struct device_node *node = NULL;
  3534. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  3535. int ret = 0;
  3536. u16 count = 0, ctrl_num = 0;
  3537. struct rx_swr_ctrl_platform_data *platdata = NULL;
  3538. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  3539. bool rx_swr_master_node = false;
  3540. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  3541. lpass_cdc_rx_macro_add_child_devices_work);
  3542. if (!rx_priv) {
  3543. pr_err("%s: Memory for rx_priv does not exist\n",
  3544. __func__);
  3545. return;
  3546. }
  3547. if (!rx_priv->dev) {
  3548. pr_err("%s: RX device does not exist\n", __func__);
  3549. return;
  3550. }
  3551. if(!rx_priv->dev->of_node) {
  3552. dev_err(rx_priv->dev,
  3553. "%s: DT node for RX dev does not exist\n", __func__);
  3554. return;
  3555. }
  3556. platdata = &rx_priv->swr_plat_data;
  3557. rx_priv->child_count = 0;
  3558. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  3559. rx_swr_master_node = false;
  3560. if (strnstr(node->name, "rx_swr_master",
  3561. strlen("rx_swr_master")) != NULL)
  3562. rx_swr_master_node = true;
  3563. if(rx_swr_master_node)
  3564. strlcpy(plat_dev_name, "rx_swr_ctrl",
  3565. (RX_SWR_STRING_LEN - 1));
  3566. else
  3567. strlcpy(plat_dev_name, node->name,
  3568. (RX_SWR_STRING_LEN - 1));
  3569. pdev = platform_device_alloc(plat_dev_name, -1);
  3570. if (!pdev) {
  3571. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  3572. __func__);
  3573. ret = -ENOMEM;
  3574. goto err;
  3575. }
  3576. pdev->dev.parent = rx_priv->dev;
  3577. pdev->dev.of_node = node;
  3578. if (rx_swr_master_node) {
  3579. ret = platform_device_add_data(pdev, platdata,
  3580. sizeof(*platdata));
  3581. if (ret) {
  3582. dev_err(&pdev->dev,
  3583. "%s: cannot add plat data ctrl:%d\n",
  3584. __func__, ctrl_num);
  3585. goto fail_pdev_add;
  3586. }
  3587. }
  3588. ret = platform_device_add(pdev);
  3589. if (ret) {
  3590. dev_err(&pdev->dev,
  3591. "%s: Cannot add platform device\n",
  3592. __func__);
  3593. goto fail_pdev_add;
  3594. }
  3595. if (rx_swr_master_node) {
  3596. temp = krealloc(swr_ctrl_data,
  3597. (ctrl_num + 1) * sizeof(
  3598. struct rx_swr_ctrl_data),
  3599. GFP_KERNEL);
  3600. if (!temp) {
  3601. ret = -ENOMEM;
  3602. goto fail_pdev_add;
  3603. }
  3604. swr_ctrl_data = temp;
  3605. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  3606. ctrl_num++;
  3607. dev_dbg(&pdev->dev,
  3608. "%s: Added soundwire ctrl device(s)\n",
  3609. __func__);
  3610. rx_priv->swr_ctrl_data = swr_ctrl_data;
  3611. }
  3612. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  3613. rx_priv->pdev_child_devices[
  3614. rx_priv->child_count++] = pdev;
  3615. else
  3616. goto err;
  3617. }
  3618. return;
  3619. fail_pdev_add:
  3620. for (count = 0; count < rx_priv->child_count; count++)
  3621. platform_device_put(rx_priv->pdev_child_devices[count]);
  3622. err:
  3623. return;
  3624. }
  3625. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  3626. {
  3627. memset(ops, 0, sizeof(struct macro_ops));
  3628. ops->init = lpass_cdc_rx_macro_init;
  3629. ops->exit = lpass_cdc_rx_macro_deinit;
  3630. ops->io_base = rx_io_base;
  3631. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  3632. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  3633. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  3634. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  3635. }
  3636. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  3637. {
  3638. struct macro_ops ops = {0};
  3639. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3640. u32 rx_base_addr = 0, muxsel = 0;
  3641. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  3642. int ret = 0;
  3643. u8 bcl_pmic_params[3];
  3644. u32 default_clk_id = 0;
  3645. u32 is_used_rx_swr_gpio = 1;
  3646. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  3647. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  3648. dev_err(&pdev->dev,
  3649. "%s: va-macro not registered yet, defer\n", __func__);
  3650. return -EPROBE_DEFER;
  3651. }
  3652. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  3653. GFP_KERNEL);
  3654. if (!rx_priv)
  3655. return -ENOMEM;
  3656. rx_priv->dev = &pdev->dev;
  3657. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  3658. &rx_base_addr);
  3659. if (ret) {
  3660. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3661. __func__, "reg");
  3662. return ret;
  3663. }
  3664. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  3665. &muxsel);
  3666. if (ret) {
  3667. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3668. __func__, "reg");
  3669. return ret;
  3670. }
  3671. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  3672. &default_clk_id);
  3673. if (ret) {
  3674. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3675. __func__, "qcom,default-clk-id");
  3676. default_clk_id = RX_CORE_CLK;
  3677. }
  3678. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  3679. NULL)) {
  3680. ret = of_property_read_u32(pdev->dev.of_node,
  3681. is_used_rx_swr_gpio_dt,
  3682. &is_used_rx_swr_gpio);
  3683. if (ret) {
  3684. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  3685. __func__, is_used_rx_swr_gpio_dt);
  3686. is_used_rx_swr_gpio = 1;
  3687. }
  3688. }
  3689. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  3690. "qcom,rx-swr-gpios", 0);
  3691. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  3692. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  3693. __func__);
  3694. return -EINVAL;
  3695. }
  3696. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  3697. is_used_rx_swr_gpio) {
  3698. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  3699. __func__);
  3700. return -EPROBE_DEFER;
  3701. }
  3702. msm_cdc_pinctrl_set_wakeup_capable(
  3703. rx_priv->rx_swr_gpio_p, false);
  3704. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  3705. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  3706. if (!rx_io_base) {
  3707. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  3708. return -ENOMEM;
  3709. }
  3710. rx_priv->rx_io_base = rx_io_base;
  3711. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  3712. if (!muxsel_io) {
  3713. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  3714. __func__);
  3715. return -ENOMEM;
  3716. }
  3717. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  3718. rx_priv->reset_swr = true;
  3719. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  3720. lpass_cdc_rx_macro_add_child_devices);
  3721. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  3722. rx_priv->swr_plat_data.read = NULL;
  3723. rx_priv->swr_plat_data.write = NULL;
  3724. rx_priv->swr_plat_data.bulk_write = NULL;
  3725. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  3726. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  3727. rx_priv->swr_plat_data.handle_irq = NULL;
  3728. ret = of_property_read_u8_array(pdev->dev.of_node,
  3729. "qcom,rx-bcl-pmic-params", bcl_pmic_params,
  3730. sizeof(bcl_pmic_params));
  3731. if (ret) {
  3732. dev_dbg(&pdev->dev, "%s: could not find %s entry in dt\n",
  3733. __func__, "qcom,rx-bcl-pmic-params");
  3734. } else {
  3735. rx_priv->bcl_pmic_params.id = bcl_pmic_params[0];
  3736. rx_priv->bcl_pmic_params.sid = bcl_pmic_params[1];
  3737. rx_priv->bcl_pmic_params.ppid = bcl_pmic_params[2];
  3738. }
  3739. rx_priv->clk_id = default_clk_id;
  3740. rx_priv->default_clk_id = default_clk_id;
  3741. ops.clk_id_req = rx_priv->clk_id;
  3742. ops.default_clk_id = default_clk_id;
  3743. rx_priv->is_aux_hpf_on = 1;
  3744. dev_set_drvdata(&pdev->dev, rx_priv);
  3745. mutex_init(&rx_priv->mclk_lock);
  3746. mutex_init(&rx_priv->swr_clk_lock);
  3747. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  3748. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  3749. if (ret) {
  3750. dev_err(&pdev->dev,
  3751. "%s: register macro failed\n", __func__);
  3752. goto err_reg_macro;
  3753. }
  3754. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  3755. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  3756. pm_runtime_use_autosuspend(&pdev->dev);
  3757. pm_runtime_set_suspended(&pdev->dev);
  3758. pm_suspend_ignore_children(&pdev->dev, true);
  3759. pm_runtime_enable(&pdev->dev);
  3760. return 0;
  3761. err_reg_macro:
  3762. mutex_destroy(&rx_priv->mclk_lock);
  3763. mutex_destroy(&rx_priv->swr_clk_lock);
  3764. return ret;
  3765. }
  3766. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  3767. {
  3768. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3769. u16 count = 0;
  3770. rx_priv = dev_get_drvdata(&pdev->dev);
  3771. if (!rx_priv)
  3772. return -EINVAL;
  3773. for (count = 0; count < rx_priv->child_count &&
  3774. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  3775. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  3776. pm_runtime_disable(&pdev->dev);
  3777. pm_runtime_set_suspended(&pdev->dev);
  3778. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  3779. mutex_destroy(&rx_priv->mclk_lock);
  3780. mutex_destroy(&rx_priv->swr_clk_lock);
  3781. kfree(rx_priv->swr_ctrl_data);
  3782. return 0;
  3783. }
  3784. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  3785. {.compatible = "qcom,lpass-cdc-rx-macro"},
  3786. {}
  3787. };
  3788. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  3789. SET_SYSTEM_SLEEP_PM_OPS(
  3790. pm_runtime_force_suspend,
  3791. pm_runtime_force_resume
  3792. )
  3793. SET_RUNTIME_PM_OPS(
  3794. lpass_cdc_runtime_suspend,
  3795. lpass_cdc_runtime_resume,
  3796. NULL
  3797. )
  3798. };
  3799. static struct platform_driver lpass_cdc_rx_macro_driver = {
  3800. .driver = {
  3801. .name = "lpass_cdc_rx_macro",
  3802. .owner = THIS_MODULE,
  3803. .pm = &lpass_cdc_dev_pm_ops,
  3804. .of_match_table = lpass_cdc_rx_macro_dt_match,
  3805. .suppress_bind_attrs = true,
  3806. },
  3807. .probe = lpass_cdc_rx_macro_probe,
  3808. .remove = lpass_cdc_rx_macro_remove,
  3809. };
  3810. module_platform_driver(lpass_cdc_rx_macro_driver);
  3811. MODULE_DESCRIPTION("RX macro driver");
  3812. MODULE_LICENSE("GPL v2");