dp_rx_defrag.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919
  1. /*
  2. * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. #include "dp_rx_buffer_pool.h"
  31. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  32. "AES-CCM",
  33. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  34. IEEE80211_WEP_MICLEN,
  35. 0,
  36. };
  37. const struct dp_rx_defrag_cipher dp_f_tkip = {
  38. "TKIP",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_CRCLEN,
  41. IEEE80211_WEP_MICLEN,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_wep = {
  44. "WEP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. 0,
  48. };
  49. /*
  50. * dp_rx_defrag_frames_free(): Free fragment chain
  51. * @frames: Fragment chain
  52. *
  53. * Iterates through the fragment chain and frees them
  54. * Returns: None
  55. */
  56. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  57. {
  58. qdf_nbuf_t next, frag = frames;
  59. while (frag) {
  60. next = qdf_nbuf_next(frag);
  61. qdf_nbuf_free(frag);
  62. frag = next;
  63. }
  64. }
  65. /*
  66. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  67. * @peer: Pointer to the peer data structure
  68. * @tid: Transmit ID (TID)
  69. *
  70. * Saves MPDU descriptor info and MSDU link pointer from REO
  71. * ring descriptor. The cache is created per peer, per TID
  72. *
  73. * Returns: None
  74. */
  75. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  76. {
  77. if (peer->rx_tid[tid].dst_ring_desc)
  78. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  79. peer->rx_tid[tid].dst_ring_desc = NULL;
  80. peer->rx_tid[tid].head_frag_desc = NULL;
  81. }
  82. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  83. unsigned int tid)
  84. {
  85. struct dp_soc *soc;
  86. struct dp_pdev *pdev;
  87. struct dp_srng *dp_rxdma_srng;
  88. struct rx_desc_pool *rx_desc_pool;
  89. union dp_rx_desc_list_elem_t *head = NULL;
  90. union dp_rx_desc_list_elem_t *tail = NULL;
  91. uint8_t pool_id;
  92. pdev = peer->vdev->pdev;
  93. soc = pdev->soc;
  94. if (peer->rx_tid[tid].head_frag_desc) {
  95. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  96. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  97. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  98. dp_rx_add_to_free_desc_list(&head, &tail,
  99. peer->rx_tid[tid].head_frag_desc);
  100. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  101. 1, &head, &tail);
  102. }
  103. if (peer->rx_tid[tid].dst_ring_desc) {
  104. if (dp_rx_link_desc_return(soc,
  105. peer->rx_tid[tid].dst_ring_desc,
  106. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  107. QDF_STATUS_SUCCESS)
  108. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  109. "%s: Failed to return link desc", __func__);
  110. }
  111. }
  112. /*
  113. * dp_rx_reorder_flush_frag(): Flush the frag list
  114. * @peer: Pointer to the peer data structure
  115. * @tid: Transmit ID (TID)
  116. *
  117. * Flush the per-TID frag list
  118. *
  119. * Returns: None
  120. */
  121. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  122. unsigned int tid)
  123. {
  124. dp_info_rl("Flushing TID %d", tid);
  125. if (!peer) {
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: NULL peer", __func__);
  128. return;
  129. }
  130. dp_rx_return_head_frag_desc(peer, tid);
  131. dp_rx_defrag_cleanup(peer, tid);
  132. }
  133. /*
  134. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  135. * @soc: DP SOC
  136. *
  137. * Flush fragments of all waitlisted TID's
  138. *
  139. * Returns: None
  140. */
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid *rx_reorder = NULL;
  144. struct dp_rx_tid *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid) temp_list;
  147. TAILQ_INIT(&temp_list);
  148. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  149. FL("Current time %u"), now_ms);
  150. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  151. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  152. defrag_waitlist_elem, tmp) {
  153. uint32_t tid;
  154. if (rx_reorder->defrag_timeout_ms > now_ms)
  155. break;
  156. tid = rx_reorder->tid;
  157. if (tid >= DP_MAX_TIDS) {
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  162. defrag_waitlist_elem);
  163. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  164. /* Move to temp list and clean-up later */
  165. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  166. defrag_waitlist_elem);
  167. }
  168. if (rx_reorder) {
  169. soc->rx.defrag.next_flush_ms =
  170. rx_reorder->defrag_timeout_ms;
  171. } else {
  172. soc->rx.defrag.next_flush_ms =
  173. now_ms + soc->rx.defrag.timeout_ms;
  174. }
  175. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  176. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  177. defrag_waitlist_elem, tmp) {
  178. struct dp_peer *peer, *temp_peer = NULL;
  179. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  180. TAILQ_REMOVE(&temp_list, rx_reorder,
  181. defrag_waitlist_elem);
  182. /* get address of current peer */
  183. peer =
  184. container_of(rx_reorder, struct dp_peer,
  185. rx_tid[rx_reorder->tid]);
  186. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  187. temp_peer = dp_peer_find_by_id(soc, peer->peer_id);
  188. if (temp_peer == peer) {
  189. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  190. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  191. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  192. }
  193. if (temp_peer)
  194. dp_peer_unref_del_find_by_id(temp_peer);
  195. }
  196. }
  197. /*
  198. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  199. * @peer: Pointer to the peer data structure
  200. * @tid: Transmit ID (TID)
  201. *
  202. * Appends per-tid fragments to global fragment wait list
  203. *
  204. * Returns: None
  205. */
  206. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  207. {
  208. struct dp_soc *psoc = peer->vdev->pdev->soc;
  209. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  210. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
  211. tid, peer, peer->mac_addr.raw);
  212. /* TODO: use LIST macros instead of TAIL macros */
  213. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  214. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  215. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  216. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  217. defrag_waitlist_elem);
  218. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  219. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  220. }
  221. /*
  222. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  223. * @peer: Pointer to the peer data structure
  224. * @tid: Transmit ID (TID)
  225. *
  226. * Remove fragments from waitlist
  227. *
  228. * Returns: None
  229. */
  230. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  231. {
  232. struct dp_pdev *pdev = peer->vdev->pdev;
  233. struct dp_soc *soc = pdev->soc;
  234. struct dp_rx_tid *rx_reorder;
  235. struct dp_rx_tid *tmp;
  236. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
  237. tid, peer, peer->mac_addr.raw);
  238. if (tid >= DP_MAX_TIDS) {
  239. dp_err("TID out of bounds: %d", tid);
  240. qdf_assert_always(0);
  241. }
  242. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  243. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  244. defrag_waitlist_elem, tmp) {
  245. struct dp_peer *peer_on_waitlist;
  246. /* get address of current peer */
  247. peer_on_waitlist =
  248. container_of(rx_reorder, struct dp_peer,
  249. rx_tid[rx_reorder->tid]);
  250. /* Ensure it is TID for same peer */
  251. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  252. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  253. rx_reorder, defrag_waitlist_elem);
  254. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  255. }
  256. }
  257. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  258. }
  259. /*
  260. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  261. * @peer: Pointer to the peer data structure
  262. * @tid: Transmit ID (TID)
  263. * @head_addr: Pointer to head list
  264. * @tail_addr: Pointer to tail list
  265. * @frag: Incoming fragment
  266. * @all_frag_present: Flag to indicate whether all fragments are received
  267. *
  268. * Build a per-tid, per-sequence fragment list.
  269. *
  270. * Returns: Success, if inserted
  271. */
  272. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  273. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  274. uint8_t *all_frag_present)
  275. {
  276. qdf_nbuf_t next;
  277. qdf_nbuf_t prev = NULL;
  278. qdf_nbuf_t cur;
  279. uint16_t head_fragno, cur_fragno, next_fragno;
  280. uint8_t last_morefrag = 1, count = 0;
  281. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  282. uint8_t *rx_desc_info;
  283. qdf_assert(frag);
  284. qdf_assert(head_addr);
  285. qdf_assert(tail_addr);
  286. *all_frag_present = 0;
  287. rx_desc_info = qdf_nbuf_data(frag);
  288. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  289. /* If this is the first fragment */
  290. if (!(*head_addr)) {
  291. *head_addr = *tail_addr = frag;
  292. qdf_nbuf_set_next(*tail_addr, NULL);
  293. rx_tid->curr_frag_num = cur_fragno;
  294. goto insert_done;
  295. }
  296. /* In sequence fragment */
  297. if (cur_fragno > rx_tid->curr_frag_num) {
  298. qdf_nbuf_set_next(*tail_addr, frag);
  299. *tail_addr = frag;
  300. qdf_nbuf_set_next(*tail_addr, NULL);
  301. rx_tid->curr_frag_num = cur_fragno;
  302. } else {
  303. /* Out of sequence fragment */
  304. cur = *head_addr;
  305. rx_desc_info = qdf_nbuf_data(cur);
  306. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  307. if (cur_fragno == head_fragno) {
  308. qdf_nbuf_free(frag);
  309. goto insert_fail;
  310. } else if (head_fragno > cur_fragno) {
  311. qdf_nbuf_set_next(frag, cur);
  312. cur = frag;
  313. *head_addr = frag; /* head pointer to be updated */
  314. } else {
  315. while ((cur_fragno > head_fragno) && cur) {
  316. prev = cur;
  317. cur = qdf_nbuf_next(cur);
  318. rx_desc_info = qdf_nbuf_data(cur);
  319. head_fragno =
  320. dp_rx_frag_get_mpdu_frag_number(
  321. rx_desc_info);
  322. }
  323. if (cur_fragno == head_fragno) {
  324. qdf_nbuf_free(frag);
  325. goto insert_fail;
  326. }
  327. qdf_nbuf_set_next(prev, frag);
  328. qdf_nbuf_set_next(frag, cur);
  329. }
  330. }
  331. next = qdf_nbuf_next(*head_addr);
  332. rx_desc_info = qdf_nbuf_data(*tail_addr);
  333. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  334. /* TODO: optimize the loop */
  335. if (!last_morefrag) {
  336. /* Check if all fragments are present */
  337. do {
  338. rx_desc_info = qdf_nbuf_data(next);
  339. next_fragno =
  340. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  341. count++;
  342. if (next_fragno != count)
  343. break;
  344. next = qdf_nbuf_next(next);
  345. } while (next);
  346. if (!next) {
  347. *all_frag_present = 1;
  348. return QDF_STATUS_SUCCESS;
  349. }
  350. }
  351. insert_done:
  352. return QDF_STATUS_SUCCESS;
  353. insert_fail:
  354. return QDF_STATUS_E_FAILURE;
  355. }
  356. /*
  357. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  358. * @msdu: Pointer to the fragment
  359. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  360. *
  361. * decap tkip encrypted fragment
  362. *
  363. * Returns: QDF_STATUS
  364. */
  365. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  366. {
  367. uint8_t *ivp, *orig_hdr;
  368. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  369. /* start of 802.11 header info */
  370. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  371. /* TKIP header is located post 802.11 header */
  372. ivp = orig_hdr + hdrlen;
  373. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  374. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  375. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  376. return QDF_STATUS_E_DEFRAG_ERROR;
  377. }
  378. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  379. return QDF_STATUS_SUCCESS;
  380. }
  381. /*
  382. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  383. * @nbuf: Pointer to the fragment buffer
  384. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  385. *
  386. * Remove MIC information from CCMP fragment
  387. *
  388. * Returns: QDF_STATUS
  389. */
  390. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  391. {
  392. uint8_t *ivp, *orig_hdr;
  393. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  394. /* start of the 802.11 header */
  395. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  396. /* CCMP header is located after 802.11 header */
  397. ivp = orig_hdr + hdrlen;
  398. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  399. return QDF_STATUS_E_DEFRAG_ERROR;
  400. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  401. return QDF_STATUS_SUCCESS;
  402. }
  403. /*
  404. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  405. * @nbuf: Pointer to the fragment
  406. * @hdrlen: length of the header information
  407. *
  408. * decap CCMP encrypted fragment
  409. *
  410. * Returns: QDF_STATUS
  411. */
  412. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  413. {
  414. uint8_t *ivp, *origHdr;
  415. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  416. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  417. ivp = origHdr + hdrlen;
  418. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  419. return QDF_STATUS_E_DEFRAG_ERROR;
  420. /* Let's pull the header later */
  421. return QDF_STATUS_SUCCESS;
  422. }
  423. /*
  424. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  425. * @msdu: Pointer to the fragment
  426. * @hdrlen: length of the header information
  427. *
  428. * decap WEP encrypted fragment
  429. *
  430. * Returns: QDF_STATUS
  431. */
  432. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  433. {
  434. uint8_t *origHdr;
  435. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  436. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  437. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  438. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  439. return QDF_STATUS_SUCCESS;
  440. }
  441. /*
  442. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  443. * @soc: soc handle
  444. * @nbuf: Pointer to the fragment
  445. *
  446. * Calculate the header size of the received fragment
  447. *
  448. * Returns: header size (uint16_t)
  449. */
  450. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  451. {
  452. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  453. uint16_t size = sizeof(struct ieee80211_frame);
  454. uint16_t fc = 0;
  455. uint32_t to_ds, fr_ds;
  456. uint8_t frm_ctrl_valid;
  457. uint16_t frm_ctrl_field;
  458. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  459. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  460. frm_ctrl_valid =
  461. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  462. rx_tlv_hdr);
  463. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  464. if (to_ds && fr_ds)
  465. size += QDF_MAC_ADDR_SIZE;
  466. if (frm_ctrl_valid) {
  467. fc = frm_ctrl_field;
  468. /* use 1-st byte for validation */
  469. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  470. size += sizeof(uint16_t);
  471. /* use 2-nd byte for validation */
  472. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  473. size += sizeof(struct ieee80211_htc);
  474. }
  475. }
  476. return size;
  477. }
  478. /*
  479. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  480. * @wh0: Pointer to the wireless header of the fragment
  481. * @hdr: Array to hold the pseudo header
  482. *
  483. * Calculate a pseudo MIC header
  484. *
  485. * Returns: None
  486. */
  487. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  488. uint8_t hdr[])
  489. {
  490. const struct ieee80211_frame_addr4 *wh =
  491. (const struct ieee80211_frame_addr4 *)wh0;
  492. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  493. case IEEE80211_FC1_DIR_NODS:
  494. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  495. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  496. wh->i_addr2);
  497. break;
  498. case IEEE80211_FC1_DIR_TODS:
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  501. wh->i_addr2);
  502. break;
  503. case IEEE80211_FC1_DIR_FROMDS:
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  506. wh->i_addr3);
  507. break;
  508. case IEEE80211_FC1_DIR_DSTODS:
  509. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  511. wh->i_addr4);
  512. break;
  513. }
  514. /*
  515. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  516. * it could also be set for deauth, disassoc, action, etc. for
  517. * a mgt type frame. It comes into picture for MFP.
  518. */
  519. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  520. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  521. IEEE80211_FC1_DIR_DSTODS) {
  522. const struct ieee80211_qosframe_addr4 *qwh =
  523. (const struct ieee80211_qosframe_addr4 *)wh;
  524. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  525. } else {
  526. const struct ieee80211_qosframe *qwh =
  527. (const struct ieee80211_qosframe *)wh;
  528. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  529. }
  530. } else {
  531. hdr[12] = 0;
  532. }
  533. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  534. }
  535. /*
  536. * dp_rx_defrag_mic(): Calculate MIC header
  537. * @key: Pointer to the key
  538. * @wbuf: fragment buffer
  539. * @off: Offset
  540. * @data_len: Data length
  541. * @mic: Array to hold MIC
  542. *
  543. * Calculate a pseudo MIC header
  544. *
  545. * Returns: QDF_STATUS
  546. */
  547. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  548. uint16_t off, uint16_t data_len, uint8_t mic[])
  549. {
  550. uint8_t hdr[16] = { 0, };
  551. uint32_t l, r;
  552. const uint8_t *data;
  553. uint32_t space;
  554. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  555. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  556. + rx_desc_len), hdr);
  557. l = dp_rx_get_le32(key);
  558. r = dp_rx_get_le32(key + 4);
  559. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  560. l ^= dp_rx_get_le32(hdr);
  561. dp_rx_michael_block(l, r);
  562. l ^= dp_rx_get_le32(&hdr[4]);
  563. dp_rx_michael_block(l, r);
  564. l ^= dp_rx_get_le32(&hdr[8]);
  565. dp_rx_michael_block(l, r);
  566. l ^= dp_rx_get_le32(&hdr[12]);
  567. dp_rx_michael_block(l, r);
  568. /* first buffer has special handling */
  569. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  570. space = qdf_nbuf_len(wbuf) - off;
  571. for (;; ) {
  572. if (space > data_len)
  573. space = data_len;
  574. /* collect 32-bit blocks from current buffer */
  575. while (space >= sizeof(uint32_t)) {
  576. l ^= dp_rx_get_le32(data);
  577. dp_rx_michael_block(l, r);
  578. data += sizeof(uint32_t);
  579. space -= sizeof(uint32_t);
  580. data_len -= sizeof(uint32_t);
  581. }
  582. if (data_len < sizeof(uint32_t))
  583. break;
  584. wbuf = qdf_nbuf_next(wbuf);
  585. if (!wbuf)
  586. return QDF_STATUS_E_DEFRAG_ERROR;
  587. if (space != 0) {
  588. const uint8_t *data_next;
  589. /*
  590. * Block straddles buffers, split references.
  591. */
  592. data_next =
  593. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  594. if ((qdf_nbuf_len(wbuf)) <
  595. sizeof(uint32_t) - space) {
  596. return QDF_STATUS_E_DEFRAG_ERROR;
  597. }
  598. switch (space) {
  599. case 1:
  600. l ^= dp_rx_get_le32_split(data[0],
  601. data_next[0], data_next[1],
  602. data_next[2]);
  603. data = data_next + 3;
  604. space = (qdf_nbuf_len(wbuf) - off) - 3;
  605. break;
  606. case 2:
  607. l ^= dp_rx_get_le32_split(data[0], data[1],
  608. data_next[0], data_next[1]);
  609. data = data_next + 2;
  610. space = (qdf_nbuf_len(wbuf) - off) - 2;
  611. break;
  612. case 3:
  613. l ^= dp_rx_get_le32_split(data[0], data[1],
  614. data[2], data_next[0]);
  615. data = data_next + 1;
  616. space = (qdf_nbuf_len(wbuf) - off) - 1;
  617. break;
  618. }
  619. dp_rx_michael_block(l, r);
  620. data_len -= sizeof(uint32_t);
  621. } else {
  622. /*
  623. * Setup for next buffer.
  624. */
  625. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  626. space = qdf_nbuf_len(wbuf) - off;
  627. }
  628. }
  629. /* Last block and padding (0x5a, 4..7 x 0) */
  630. switch (data_len) {
  631. case 0:
  632. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  633. break;
  634. case 1:
  635. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  636. break;
  637. case 2:
  638. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  639. break;
  640. case 3:
  641. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  642. break;
  643. }
  644. dp_rx_michael_block(l, r);
  645. dp_rx_michael_block(l, r);
  646. dp_rx_put_le32(mic, l);
  647. dp_rx_put_le32(mic + 4, r);
  648. return QDF_STATUS_SUCCESS;
  649. }
  650. /*
  651. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  652. * @key: Pointer to the key
  653. * @msdu: fragment buffer
  654. * @hdrlen: Length of the header information
  655. *
  656. * Remove MIC information from the TKIP frame
  657. *
  658. * Returns: QDF_STATUS
  659. */
  660. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  661. qdf_nbuf_t msdu, uint16_t hdrlen)
  662. {
  663. QDF_STATUS status;
  664. uint32_t pktlen = 0;
  665. uint8_t mic[IEEE80211_WEP_MICLEN];
  666. uint8_t mic0[IEEE80211_WEP_MICLEN];
  667. qdf_nbuf_t prev = NULL, next;
  668. next = msdu;
  669. while (next) {
  670. pktlen += (qdf_nbuf_len(next) - hdrlen);
  671. prev = next;
  672. dp_debug("%s pktlen %u", __func__,
  673. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  674. next = qdf_nbuf_next(next);
  675. }
  676. if (!prev) {
  677. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  678. "%s Defrag chaining failed !\n", __func__);
  679. return QDF_STATUS_E_DEFRAG_ERROR;
  680. }
  681. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  682. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  683. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  684. pktlen -= dp_f_tkip.ic_miclen;
  685. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  686. pktlen, mic);
  687. if (QDF_IS_STATUS_ERROR(status))
  688. return status;
  689. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  690. return QDF_STATUS_E_DEFRAG_ERROR;
  691. return QDF_STATUS_SUCCESS;
  692. }
  693. /*
  694. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  695. * @nbuf: buffer pointer
  696. * @hdrsize: size of the header to be pulled
  697. *
  698. * Pull the RXTLV & the 802.11 headers
  699. *
  700. * Returns: None
  701. */
  702. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  703. {
  704. qdf_nbuf_pull_head(nbuf,
  705. RX_PKT_TLVS_LEN + hdrsize);
  706. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  707. "%s: final pktlen %d .11len %d",
  708. __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  709. }
  710. /*
  711. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  712. * @peer: Pointer to the peer
  713. * @head: Pointer to list of fragments
  714. * @hdrsize: Size of the header to be pulled
  715. *
  716. * Construct a nbuf fraglist
  717. *
  718. * Returns: None
  719. */
  720. static void
  721. dp_rx_construct_fraglist(struct dp_peer *peer,
  722. qdf_nbuf_t head, uint16_t hdrsize)
  723. {
  724. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  725. qdf_nbuf_t rx_nbuf = msdu;
  726. uint32_t len = 0;
  727. while (msdu) {
  728. dp_rx_frag_pull_hdr(msdu, hdrsize);
  729. len += qdf_nbuf_len(msdu);
  730. msdu = qdf_nbuf_next(msdu);
  731. }
  732. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  733. qdf_nbuf_set_next(head, NULL);
  734. qdf_nbuf_set_is_frag(head, 1);
  735. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  736. "%s: head len %d ext len %d data len %d ",
  737. __func__,
  738. (uint32_t)qdf_nbuf_len(head),
  739. (uint32_t)qdf_nbuf_len(rx_nbuf),
  740. (uint32_t)(head->data_len));
  741. }
  742. /**
  743. * dp_rx_defrag_err() - rx err handler
  744. * @pdev: handle to pdev object
  745. * @vdev_id: vdev id
  746. * @peer_mac_addr: peer mac address
  747. * @tid: TID
  748. * @tsf32: TSF
  749. * @err_type: error type
  750. * @rx_frame: rx frame
  751. * @pn: PN Number
  752. * @key_id: key id
  753. *
  754. * This function handles rx error and send MIC error notification
  755. *
  756. * Return: None
  757. */
  758. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  759. {
  760. struct ol_if_ops *tops = NULL;
  761. struct dp_pdev *pdev = vdev->pdev;
  762. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  763. uint8_t *orig_hdr;
  764. struct ieee80211_frame *wh;
  765. struct cdp_rx_mic_err_info mic_failure_info;
  766. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  767. wh = (struct ieee80211_frame *)orig_hdr;
  768. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  769. (struct qdf_mac_addr *)&wh->i_addr1);
  770. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  771. (struct qdf_mac_addr *)&wh->i_addr2);
  772. mic_failure_info.key_id = 0;
  773. mic_failure_info.multicast =
  774. IEEE80211_IS_MULTICAST(wh->i_addr1);
  775. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  776. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  777. mic_failure_info.data = (uint8_t *)wh;
  778. mic_failure_info.vdev_id = vdev->vdev_id;
  779. tops = pdev->soc->cdp_soc.ol_ops;
  780. if (tops->rx_mic_error)
  781. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  782. &mic_failure_info);
  783. }
  784. /*
  785. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  786. * @soc: dp soc handle
  787. * @nbuf: Pointer to the fragment buffer
  788. * @hdrsize: Size of headers
  789. *
  790. * Transcap the fragment from 802.11 to 802.3
  791. *
  792. * Returns: None
  793. */
  794. static void
  795. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc,
  796. qdf_nbuf_t nbuf, uint16_t hdrsize)
  797. {
  798. struct llc_snap_hdr_t *llchdr;
  799. struct ethernet_hdr_t *eth_hdr;
  800. uint8_t ether_type[2];
  801. uint16_t fc = 0;
  802. union dp_align_mac_addr mac_addr;
  803. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  804. if (!rx_desc_info) {
  805. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  806. "%s: Memory alloc failed ! ", __func__);
  807. QDF_ASSERT(0);
  808. return;
  809. }
  810. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  811. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  812. RX_PKT_TLVS_LEN + hdrsize);
  813. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  814. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  815. sizeof(struct llc_snap_hdr_t) -
  816. sizeof(struct ethernet_hdr_t)));
  817. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  818. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  819. rx_desc_info))
  820. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  821. dp_debug("%s: frame control type: 0x%x", __func__, fc);
  822. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  823. case IEEE80211_FC1_DIR_NODS:
  824. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  825. &mac_addr.raw[0]);
  826. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  827. QDF_MAC_ADDR_SIZE);
  828. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  829. &mac_addr.raw[0]);
  830. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  831. QDF_MAC_ADDR_SIZE);
  832. break;
  833. case IEEE80211_FC1_DIR_TODS:
  834. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  835. &mac_addr.raw[0]);
  836. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  837. QDF_MAC_ADDR_SIZE);
  838. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  839. &mac_addr.raw[0]);
  840. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  841. QDF_MAC_ADDR_SIZE);
  842. break;
  843. case IEEE80211_FC1_DIR_FROMDS:
  844. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  845. &mac_addr.raw[0]);
  846. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  847. QDF_MAC_ADDR_SIZE);
  848. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  849. &mac_addr.raw[0]);
  850. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  851. QDF_MAC_ADDR_SIZE);
  852. break;
  853. case IEEE80211_FC1_DIR_DSTODS:
  854. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  855. &mac_addr.raw[0]);
  856. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  857. QDF_MAC_ADDR_SIZE);
  858. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  859. &mac_addr.raw[0]);
  860. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  861. QDF_MAC_ADDR_SIZE);
  862. break;
  863. default:
  864. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  865. "%s: Unknown frame control type: 0x%x", __func__, fc);
  866. }
  867. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  868. sizeof(ether_type));
  869. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  870. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  871. qdf_mem_free(rx_desc_info);
  872. }
  873. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  874. /**
  875. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  876. * @soc: Datapath soc structure
  877. * @paddr: paddr of the buffer reinjected to SW2REO ring
  878. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  879. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  880. *
  881. * Returns: None
  882. */
  883. static inline void
  884. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  885. uint32_t sw_cookie, uint8_t rbm)
  886. {
  887. struct dp_buf_info_record *record;
  888. uint32_t idx;
  889. if (qdf_unlikely(soc->rx_reinject_ring_history))
  890. return;
  891. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  892. DP_RX_REINJECT_HIST_MAX);
  893. /* No NULL check needed for record since its an array */
  894. record = &soc->rx_reinject_ring_history->entry[idx];
  895. record->timestamp = qdf_get_log_timestamp();
  896. record->hbi.paddr = paddr;
  897. record->hbi.sw_cookie = sw_cookie;
  898. record->hbi.rbm = rbm;
  899. }
  900. #else
  901. static inline void
  902. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  903. uint32_t sw_cookie, uint8_t rbm)
  904. {
  905. }
  906. #endif
  907. /*
  908. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  909. * @peer: Pointer to the peer
  910. * @tid: Transmit Identifier
  911. * @head: Buffer to be reinjected back
  912. *
  913. * Reinject the fragment chain back into REO
  914. *
  915. * Returns: QDF_STATUS
  916. */
  917. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  918. unsigned int tid, qdf_nbuf_t head)
  919. {
  920. struct dp_pdev *pdev = peer->vdev->pdev;
  921. struct dp_soc *soc = pdev->soc;
  922. struct hal_buf_info buf_info;
  923. void *link_desc_va;
  924. void *msdu0, *msdu_desc_info;
  925. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  926. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  927. qdf_dma_addr_t paddr;
  928. uint32_t nbuf_len, seq_no, dst_ind;
  929. uint32_t *mpdu_wrd;
  930. uint32_t ret, cookie;
  931. hal_ring_desc_t dst_ring_desc =
  932. peer->rx_tid[tid].dst_ring_desc;
  933. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  934. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  935. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  936. peer->rx_tid[tid].array;
  937. qdf_nbuf_t nbuf_head;
  938. struct rx_desc_pool *rx_desc_pool = NULL;
  939. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  940. /* do duplicate link desc address check */
  941. dp_rx_link_desc_refill_duplicate_check(
  942. soc,
  943. &soc->last_op_info.reo_reinject_link_desc,
  944. buf_addr_info);
  945. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  946. if (qdf_unlikely(!nbuf_head)) {
  947. dp_err_rl("IPA RX REO reinject failed");
  948. return QDF_STATUS_E_FAILURE;
  949. }
  950. /* update new allocated skb in case IPA is enabled */
  951. if (nbuf_head != head) {
  952. head = nbuf_head;
  953. rx_desc->nbuf = head;
  954. rx_reorder_array_elem->head = head;
  955. }
  956. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  957. if (!ent_ring_desc) {
  958. dp_err_rl("HAL src ring next entry NULL");
  959. return QDF_STATUS_E_FAILURE;
  960. }
  961. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  962. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  963. qdf_assert_always(link_desc_va);
  964. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  965. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  966. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  967. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  968. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  969. /* msdu reconfig */
  970. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  971. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  972. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  973. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  974. FIRST_MSDU_IN_MPDU_FLAG, 1);
  975. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  976. LAST_MSDU_IN_MPDU_FLAG, 1);
  977. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  978. MSDU_CONTINUATION, 0x0);
  979. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  980. REO_DESTINATION_INDICATION, dst_ind);
  981. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  982. MSDU_LENGTH, nbuf_len);
  983. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  984. SA_IS_VALID, 1);
  985. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  986. DA_IS_VALID, 1);
  987. /* change RX TLV's */
  988. hal_rx_msdu_start_msdu_len_set(
  989. qdf_nbuf_data(head), nbuf_len);
  990. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  991. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  992. /* map the nbuf before reinject it into HW */
  993. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  994. QDF_DMA_FROM_DEVICE,
  995. rx_desc_pool->buf_size);
  996. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  997. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  998. "%s: nbuf map failed !", __func__);
  999. return QDF_STATUS_E_FAILURE;
  1000. }
  1001. /*
  1002. * As part of rx frag handler bufffer was unmapped and rx desc
  1003. * unmapped is set to 1. So again for defrag reinject frame reset
  1004. * it back to 0.
  1005. */
  1006. rx_desc->unmapped = 0;
  1007. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1008. rx_desc_pool->buf_size,
  1009. true);
  1010. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1011. ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
  1012. if (ret == QDF_STATUS_E_FAILURE) {
  1013. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1014. "%s: x86 check failed !", __func__);
  1015. return QDF_STATUS_E_FAILURE;
  1016. }
  1017. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
  1018. /* Lets fill entrance ring now !!! */
  1019. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1020. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1021. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1022. hal_srng);
  1023. return QDF_STATUS_E_FAILURE;
  1024. }
  1025. dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
  1026. paddr = (uint64_t)buf_info.paddr;
  1027. /* buf addr */
  1028. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  1029. buf_info.sw_cookie,
  1030. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  1031. /* mpdu desc info */
  1032. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1033. ent_ring_desc);
  1034. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1035. dst_ring_desc);
  1036. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1037. sizeof(struct rx_mpdu_desc_info));
  1038. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1039. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1040. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  1041. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1042. MSDU_COUNT, 0x1);
  1043. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1044. MPDU_SEQUENCE_NUMBER, seq_no);
  1045. /* unset frag bit */
  1046. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1047. FRAGMENT_FLAG, 0x0);
  1048. /* set sa/da valid bits */
  1049. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1050. SA_IS_VALID, 0x1);
  1051. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1052. DA_IS_VALID, 0x1);
  1053. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1054. RAW_MPDU, 0x0);
  1055. /* qdesc addr */
  1056. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1057. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1058. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1059. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1060. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1061. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1062. REO_DESTINATION_INDICATION, dst_ind);
  1063. hal_srng_access_end(soc->hal_soc, hal_srng);
  1064. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1065. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1066. "%s: reinjection done !", __func__);
  1067. return QDF_STATUS_SUCCESS;
  1068. }
  1069. /*
  1070. * dp_rx_defrag(): Defragment the fragment chain
  1071. * @peer: Pointer to the peer
  1072. * @tid: Transmit Identifier
  1073. * @frag_list_head: Pointer to head list
  1074. * @frag_list_tail: Pointer to tail list
  1075. *
  1076. * Defragment the fragment chain
  1077. *
  1078. * Returns: QDF_STATUS
  1079. */
  1080. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1081. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1082. {
  1083. qdf_nbuf_t tmp_next, prev;
  1084. qdf_nbuf_t cur = frag_list_head, msdu;
  1085. uint32_t index, tkip_demic = 0;
  1086. uint16_t hdr_space;
  1087. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1088. struct dp_vdev *vdev = peer->vdev;
  1089. struct dp_soc *soc = vdev->pdev->soc;
  1090. uint8_t status = 0;
  1091. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1092. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1093. dp_sec_mcast : dp_sec_ucast;
  1094. /* Remove FCS from all fragments */
  1095. while (cur) {
  1096. tmp_next = qdf_nbuf_next(cur);
  1097. qdf_nbuf_set_next(cur, NULL);
  1098. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1099. prev = cur;
  1100. qdf_nbuf_set_next(cur, tmp_next);
  1101. cur = tmp_next;
  1102. }
  1103. cur = frag_list_head;
  1104. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1105. "%s: index %d Security type: %d", __func__,
  1106. index, peer->security[index].sec_type);
  1107. switch (peer->security[index].sec_type) {
  1108. case cdp_sec_type_tkip:
  1109. tkip_demic = 1;
  1110. case cdp_sec_type_tkip_nomic:
  1111. while (cur) {
  1112. tmp_next = qdf_nbuf_next(cur);
  1113. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1114. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1115. QDF_TRACE_LEVEL_ERROR,
  1116. "dp_rx_defrag: TKIP decap failed");
  1117. return QDF_STATUS_E_DEFRAG_ERROR;
  1118. }
  1119. cur = tmp_next;
  1120. }
  1121. /* If success, increment header to be stripped later */
  1122. hdr_space += dp_f_tkip.ic_header;
  1123. break;
  1124. case cdp_sec_type_aes_ccmp:
  1125. while (cur) {
  1126. tmp_next = qdf_nbuf_next(cur);
  1127. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1128. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1129. QDF_TRACE_LEVEL_ERROR,
  1130. "dp_rx_defrag: CCMP demic failed");
  1131. return QDF_STATUS_E_DEFRAG_ERROR;
  1132. }
  1133. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1134. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1135. QDF_TRACE_LEVEL_ERROR,
  1136. "dp_rx_defrag: CCMP decap failed");
  1137. return QDF_STATUS_E_DEFRAG_ERROR;
  1138. }
  1139. cur = tmp_next;
  1140. }
  1141. /* If success, increment header to be stripped later */
  1142. hdr_space += dp_f_ccmp.ic_header;
  1143. break;
  1144. case cdp_sec_type_wep40:
  1145. case cdp_sec_type_wep104:
  1146. case cdp_sec_type_wep128:
  1147. while (cur) {
  1148. tmp_next = qdf_nbuf_next(cur);
  1149. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1150. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1151. QDF_TRACE_LEVEL_ERROR,
  1152. "dp_rx_defrag: WEP decap failed");
  1153. return QDF_STATUS_E_DEFRAG_ERROR;
  1154. }
  1155. cur = tmp_next;
  1156. }
  1157. /* If success, increment header to be stripped later */
  1158. hdr_space += dp_f_wep.ic_header;
  1159. break;
  1160. default:
  1161. break;
  1162. }
  1163. if (tkip_demic) {
  1164. msdu = frag_list_head;
  1165. qdf_mem_copy(key,
  1166. &peer->security[index].michael_key[0],
  1167. IEEE80211_WEP_MICLEN);
  1168. status = dp_rx_defrag_tkip_demic(key, msdu,
  1169. RX_PKT_TLVS_LEN +
  1170. hdr_space);
  1171. if (status) {
  1172. dp_rx_defrag_err(vdev, frag_list_head);
  1173. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1174. QDF_TRACE_LEVEL_ERROR,
  1175. "%s: TKIP demic failed status %d",
  1176. __func__, status);
  1177. return QDF_STATUS_E_DEFRAG_ERROR;
  1178. }
  1179. }
  1180. /* Convert the header to 802.3 header */
  1181. dp_rx_defrag_nwifi_to_8023(soc, frag_list_head, hdr_space);
  1182. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1183. return QDF_STATUS_SUCCESS;
  1184. }
  1185. /*
  1186. * dp_rx_defrag_cleanup(): Clean up activities
  1187. * @peer: Pointer to the peer
  1188. * @tid: Transmit Identifier
  1189. *
  1190. * Returns: None
  1191. */
  1192. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1193. {
  1194. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1195. peer->rx_tid[tid].array;
  1196. if (rx_reorder_array_elem) {
  1197. /* Free up nbufs */
  1198. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1199. rx_reorder_array_elem->head = NULL;
  1200. rx_reorder_array_elem->tail = NULL;
  1201. } else {
  1202. dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
  1203. peer, tid, peer->mac_addr.raw);
  1204. }
  1205. /* Free up saved ring descriptors */
  1206. dp_rx_clear_saved_desc_info(peer, tid);
  1207. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1208. peer->rx_tid[tid].curr_frag_num = 0;
  1209. peer->rx_tid[tid].curr_seq_num = 0;
  1210. }
  1211. /*
  1212. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1213. * @ring_desc: Pointer to the dst ring descriptor
  1214. * @peer: Pointer to the peer
  1215. * @tid: Transmit Identifier
  1216. *
  1217. * Returns: None
  1218. */
  1219. static QDF_STATUS
  1220. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1221. struct dp_rx_desc *rx_desc,
  1222. struct dp_peer *peer,
  1223. unsigned int tid)
  1224. {
  1225. void *dst_ring_desc = qdf_mem_malloc(
  1226. sizeof(struct reo_destination_ring));
  1227. if (!dst_ring_desc) {
  1228. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1229. "%s: Memory alloc failed !", __func__);
  1230. QDF_ASSERT(0);
  1231. return QDF_STATUS_E_NOMEM;
  1232. }
  1233. qdf_mem_copy(dst_ring_desc, ring_desc,
  1234. sizeof(struct reo_destination_ring));
  1235. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1236. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1237. return QDF_STATUS_SUCCESS;
  1238. }
  1239. /*
  1240. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1241. * @soc: Pointer to the SOC data structure
  1242. * @ring_desc: Pointer to the ring descriptor
  1243. * @mpdu_desc_info: MPDU descriptor info
  1244. * @tid: Traffic Identifier
  1245. * @rx_desc: Pointer to rx descriptor
  1246. * @rx_bfs: Number of bfs consumed
  1247. *
  1248. * Returns: QDF_STATUS
  1249. */
  1250. static QDF_STATUS
  1251. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1252. hal_ring_desc_t ring_desc,
  1253. union dp_rx_desc_list_elem_t **head,
  1254. union dp_rx_desc_list_elem_t **tail,
  1255. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1256. unsigned int tid, struct dp_rx_desc *rx_desc,
  1257. uint32_t *rx_bfs)
  1258. {
  1259. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1260. struct dp_pdev *pdev;
  1261. struct dp_peer *peer = NULL;
  1262. uint16_t peer_id;
  1263. uint8_t fragno, more_frag, all_frag_present = 0;
  1264. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1265. QDF_STATUS status;
  1266. struct dp_rx_tid *rx_tid;
  1267. uint8_t mpdu_sequence_control_valid;
  1268. uint8_t mpdu_frame_control_valid;
  1269. qdf_nbuf_t frag = rx_desc->nbuf;
  1270. uint32_t msdu_len;
  1271. if (qdf_nbuf_len(frag) > 0) {
  1272. dp_info("Dropping unexpected packet with skb_len: %d,"
  1273. "data len: %d, cookie: %d",
  1274. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1275. rx_desc->cookie);
  1276. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1277. goto discard_frag;
  1278. }
  1279. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1280. /* fragment queued back to the pool, free the link desc */
  1281. goto err_free_desc;
  1282. }
  1283. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1284. qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
  1285. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1286. /* Check if the packet is from a valid peer */
  1287. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1288. mpdu_desc_info->peer_meta_data);
  1289. peer = dp_peer_find_by_id(soc, peer_id);
  1290. if (!peer) {
  1291. /* We should not receive anything from unknown peer
  1292. * however, that might happen while we are in the monitor mode.
  1293. * We don't need to handle that here
  1294. */
  1295. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1296. peer_id);
  1297. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1298. goto discard_frag;
  1299. }
  1300. if (tid >= DP_MAX_TIDS) {
  1301. dp_info("TID out of bounds: %d", tid);
  1302. qdf_assert_always(0);
  1303. }
  1304. pdev = peer->vdev->pdev;
  1305. rx_tid = &peer->rx_tid[tid];
  1306. mpdu_sequence_control_valid =
  1307. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1308. rx_desc->rx_buf_start);
  1309. /* Invalid MPDU sequence control field, MPDU is of no use */
  1310. if (!mpdu_sequence_control_valid) {
  1311. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1312. "Invalid MPDU seq control field, dropping MPDU");
  1313. qdf_assert(0);
  1314. goto discard_frag;
  1315. }
  1316. mpdu_frame_control_valid =
  1317. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1318. rx_desc->rx_buf_start);
  1319. /* Invalid frame control field */
  1320. if (!mpdu_frame_control_valid) {
  1321. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1322. "Invalid frame control field, dropping MPDU");
  1323. qdf_assert(0);
  1324. goto discard_frag;
  1325. }
  1326. /* Current mpdu sequence */
  1327. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1328. /* HW does not populate the fragment number as of now
  1329. * need to get from the 802.11 header
  1330. */
  1331. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1332. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1333. if (!rx_reorder_array_elem) {
  1334. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1335. "Rcvd Fragmented pkt before peer_tid is setup");
  1336. goto discard_frag;
  1337. }
  1338. /*
  1339. * !more_frag: no more fragments to be delivered
  1340. * !frag_no: packet is not fragmented
  1341. * !rx_reorder_array_elem->head: no saved fragments so far
  1342. */
  1343. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1344. /* We should not get into this situation here.
  1345. * It means an unfragmented packet with fragment flag
  1346. * is delivered over the REO exception ring.
  1347. * Typically it follows normal rx path.
  1348. */
  1349. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1350. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1351. qdf_assert(0);
  1352. goto discard_frag;
  1353. }
  1354. /* Check if the fragment is for the same sequence or a different one */
  1355. if (rx_reorder_array_elem->head) {
  1356. if (rxseq != rx_tid->curr_seq_num) {
  1357. /* Drop stored fragments if out of sequence
  1358. * fragment is received
  1359. */
  1360. dp_rx_reorder_flush_frag(peer, tid);
  1361. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1362. /*
  1363. * The sequence number for this fragment becomes the
  1364. * new sequence number to be processed
  1365. */
  1366. rx_tid->curr_seq_num = rxseq;
  1367. }
  1368. } else {
  1369. /* Start of a new sequence */
  1370. dp_rx_defrag_cleanup(peer, tid);
  1371. rx_tid->curr_seq_num = rxseq;
  1372. }
  1373. /*
  1374. * If the earlier sequence was dropped, this will be the fresh start.
  1375. * Else, continue with next fragment in a given sequence
  1376. */
  1377. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1378. &rx_reorder_array_elem->tail, frag,
  1379. &all_frag_present);
  1380. /*
  1381. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1382. * packet sequence has more than 6 MSDUs for some reason, we will
  1383. * have to use the next MSDU link descriptor and chain them together
  1384. * before reinjection
  1385. */
  1386. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1387. (rx_reorder_array_elem->head == frag)) {
  1388. qdf_assert_always(ring_desc);
  1389. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1390. rx_desc, peer, tid);
  1391. if (status != QDF_STATUS_SUCCESS) {
  1392. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1393. "%s: Unable to store ring desc !", __func__);
  1394. goto discard_frag;
  1395. }
  1396. } else {
  1397. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1398. (*rx_bfs)++;
  1399. /* Return the non-head link desc */
  1400. if (ring_desc &&
  1401. dp_rx_link_desc_return(soc, ring_desc,
  1402. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1403. QDF_STATUS_SUCCESS)
  1404. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1405. "%s: Failed to return link desc", __func__);
  1406. }
  1407. if (pdev->soc->rx.flags.defrag_timeout_check)
  1408. dp_rx_defrag_waitlist_remove(peer, tid);
  1409. /* Yet to receive more fragments for this sequence number */
  1410. if (!all_frag_present) {
  1411. uint32_t now_ms =
  1412. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1413. peer->rx_tid[tid].defrag_timeout_ms =
  1414. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1415. dp_rx_defrag_waitlist_add(peer, tid);
  1416. dp_peer_unref_del_find_by_id(peer);
  1417. return QDF_STATUS_SUCCESS;
  1418. }
  1419. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1420. "All fragments received for sequence: %d", rxseq);
  1421. /* Process the fragments */
  1422. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1423. rx_reorder_array_elem->tail);
  1424. if (QDF_IS_STATUS_ERROR(status)) {
  1425. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1426. "Fragment processing failed");
  1427. dp_rx_add_to_free_desc_list(head, tail,
  1428. peer->rx_tid[tid].head_frag_desc);
  1429. (*rx_bfs)++;
  1430. if (dp_rx_link_desc_return(soc,
  1431. peer->rx_tid[tid].dst_ring_desc,
  1432. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1433. QDF_STATUS_SUCCESS)
  1434. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1435. "%s: Failed to return link desc",
  1436. __func__);
  1437. dp_rx_defrag_cleanup(peer, tid);
  1438. goto end;
  1439. }
  1440. /* Re-inject the fragments back to REO for further processing */
  1441. status = dp_rx_defrag_reo_reinject(peer, tid,
  1442. rx_reorder_array_elem->head);
  1443. if (QDF_IS_STATUS_SUCCESS(status)) {
  1444. rx_reorder_array_elem->head = NULL;
  1445. rx_reorder_array_elem->tail = NULL;
  1446. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1447. "Fragmented sequence successfully reinjected");
  1448. } else {
  1449. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1450. "Fragmented sequence reinjection failed");
  1451. dp_rx_return_head_frag_desc(peer, tid);
  1452. }
  1453. dp_rx_defrag_cleanup(peer, tid);
  1454. dp_peer_unref_del_find_by_id(peer);
  1455. return QDF_STATUS_SUCCESS;
  1456. discard_frag:
  1457. qdf_nbuf_free(frag);
  1458. err_free_desc:
  1459. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1460. if (dp_rx_link_desc_return(soc, ring_desc,
  1461. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1462. QDF_STATUS_SUCCESS)
  1463. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1464. "%s: Failed to return link desc", __func__);
  1465. (*rx_bfs)++;
  1466. end:
  1467. if (peer)
  1468. dp_peer_unref_del_find_by_id(peer);
  1469. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1470. return QDF_STATUS_E_DEFRAG_ERROR;
  1471. }
  1472. /**
  1473. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1474. *
  1475. * @soc: core txrx main context
  1476. * @ring_desc: opaque pointer to the REO error ring descriptor
  1477. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1478. * @head: head of the local descriptor free-list
  1479. * @tail: tail of the local descriptor free-list
  1480. * @quota: No. of units (packets) that can be serviced in one shot.
  1481. *
  1482. * This function implements RX 802.11 fragmentation handling
  1483. * The handling is mostly same as legacy fragmentation handling.
  1484. * If required, this function can re-inject the frames back to
  1485. * REO ring (with proper setting to by-pass fragmentation check
  1486. * but use duplicate detection / re-ordering and routing these frames
  1487. * to a different core.
  1488. *
  1489. * Return: uint32_t: No. of elements processed
  1490. */
  1491. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1492. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1493. struct dp_rx_desc *rx_desc,
  1494. uint8_t *mac_id,
  1495. uint32_t quota)
  1496. {
  1497. uint32_t rx_bufs_used = 0;
  1498. qdf_nbuf_t msdu = NULL;
  1499. uint32_t tid;
  1500. uint32_t rx_bfs = 0;
  1501. struct dp_pdev *pdev;
  1502. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1503. struct rx_desc_pool *rx_desc_pool;
  1504. qdf_assert(soc);
  1505. qdf_assert(mpdu_desc_info);
  1506. qdf_assert(rx_desc);
  1507. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1508. mpdu_desc_info->msdu_count);
  1509. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1510. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1511. "Not sufficient MSDUs to process");
  1512. return rx_bufs_used;
  1513. }
  1514. /* all buffers in MSDU link belong to same pdev */
  1515. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1516. if (!pdev) {
  1517. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1518. "pdev is null for pool_id = %d", rx_desc->pool_id);
  1519. return rx_bufs_used;
  1520. }
  1521. *mac_id = rx_desc->pool_id;
  1522. msdu = rx_desc->nbuf;
  1523. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1524. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1525. rx_desc_pool->buf_size,
  1526. false);
  1527. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1528. QDF_DMA_FROM_DEVICE,
  1529. rx_desc_pool->buf_size);
  1530. rx_desc->unmapped = 1;
  1531. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1532. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1533. /* Process fragment-by-fragment */
  1534. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1535. &pdev->free_list_head,
  1536. &pdev->free_list_tail,
  1537. mpdu_desc_info,
  1538. tid, rx_desc, &rx_bfs);
  1539. if (rx_bfs)
  1540. rx_bufs_used += rx_bfs;
  1541. if (!QDF_IS_STATUS_SUCCESS(status))
  1542. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1543. mpdu_desc_info->mpdu_seq,
  1544. mpdu_desc_info->msdu_count,
  1545. mpdu_desc_info->mpdu_flags);
  1546. return rx_bufs_used;
  1547. }
  1548. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1549. struct dp_peer *peer, uint16_t tid,
  1550. uint16_t rxseq, qdf_nbuf_t nbuf)
  1551. {
  1552. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1553. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1554. uint8_t all_frag_present;
  1555. uint32_t msdu_len;
  1556. QDF_STATUS status;
  1557. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1558. /*
  1559. * HW may fill in unexpected peer_id in RX PKT TLV,
  1560. * if this peer_id related peer is valid by coincidence,
  1561. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1562. * self peer), then invalid access to rx_reorder_array_elem happened.
  1563. */
  1564. if (!rx_reorder_array_elem) {
  1565. dp_verbose_debug(
  1566. "peer id:%d mac: %pM drop rx frame!",
  1567. peer->peer_id,
  1568. peer->mac_addr.raw);
  1569. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1570. qdf_nbuf_free(nbuf);
  1571. goto fail;
  1572. }
  1573. if (rx_reorder_array_elem->head &&
  1574. rxseq != rx_tid->curr_seq_num) {
  1575. /* Drop stored fragments if out of sequence
  1576. * fragment is received
  1577. */
  1578. dp_rx_reorder_flush_frag(peer, tid);
  1579. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1580. "%s: No list found for TID %d Seq# %d",
  1581. __func__, tid, rxseq);
  1582. qdf_nbuf_free(nbuf);
  1583. goto fail;
  1584. }
  1585. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1586. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1587. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1588. &rx_reorder_array_elem->head,
  1589. &rx_reorder_array_elem->tail, nbuf,
  1590. &all_frag_present);
  1591. if (QDF_IS_STATUS_ERROR(status)) {
  1592. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1593. "%s Fragment insert failed", __func__);
  1594. goto fail;
  1595. }
  1596. if (soc->rx.flags.defrag_timeout_check)
  1597. dp_rx_defrag_waitlist_remove(peer, tid);
  1598. if (!all_frag_present) {
  1599. uint32_t now_ms =
  1600. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1601. peer->rx_tid[tid].defrag_timeout_ms =
  1602. now_ms + soc->rx.defrag.timeout_ms;
  1603. dp_rx_defrag_waitlist_add(peer, tid);
  1604. return QDF_STATUS_SUCCESS;
  1605. }
  1606. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1607. rx_reorder_array_elem->tail);
  1608. if (QDF_IS_STATUS_ERROR(status)) {
  1609. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1610. "%s Fragment processing failed", __func__);
  1611. dp_rx_return_head_frag_desc(peer, tid);
  1612. dp_rx_defrag_cleanup(peer, tid);
  1613. goto fail;
  1614. }
  1615. /* Re-inject the fragments back to REO for further processing */
  1616. status = dp_rx_defrag_reo_reinject(peer, tid,
  1617. rx_reorder_array_elem->head);
  1618. if (QDF_IS_STATUS_SUCCESS(status)) {
  1619. rx_reorder_array_elem->head = NULL;
  1620. rx_reorder_array_elem->tail = NULL;
  1621. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1622. "%s: Frag seq successfully reinjected",
  1623. __func__);
  1624. } else {
  1625. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1626. "%s: Frag seq reinjection failed", __func__);
  1627. dp_rx_return_head_frag_desc(peer, tid);
  1628. }
  1629. dp_rx_defrag_cleanup(peer, tid);
  1630. return QDF_STATUS_SUCCESS;
  1631. fail:
  1632. return QDF_STATUS_E_DEFRAG_ERROR;
  1633. }