dp_rx.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315
  1. /*
  2. * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef CONFIG_MCL
  41. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  42. {
  43. if (vdev->opmode != wlan_op_mode_sta)
  44. return true;
  45. else
  46. return false;
  47. }
  48. #else
  49. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  50. {
  51. return vdev->ap_bridge_enabled;
  52. }
  53. #endif
  54. /*
  55. * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
  56. *
  57. * @soc: core txrx main context
  58. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  59. * @ring_desc: opaque pointer to the RX ring descriptor
  60. * @rx_desc: host rs descriptor
  61. *
  62. * Return: void
  63. */
  64. void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
  65. void *ring_desc, struct dp_rx_desc *rx_desc)
  66. {
  67. void *hal_soc = soc->hal_soc;
  68. dp_rx_desc_dump(rx_desc);
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. hal_srng_dump_ring(hal_soc, hal_ring);
  71. qdf_assert_always(0);
  72. }
  73. /*
  74. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  75. * called during dp rx initialization
  76. * and at the end of dp_rx_process.
  77. *
  78. * @soc: core txrx main context
  79. * @mac_id: mac_id which is one of 3 mac_ids
  80. * @dp_rxdma_srng: dp rxdma circular ring
  81. * @rx_desc_pool: Pointer to free Rx descriptor pool
  82. * @num_req_buffers: number of buffer to be replenished
  83. * @desc_list: list of descs if called from dp_rx_process
  84. * or NULL during dp rx initialization or out of buffer
  85. * interrupt.
  86. * @tail: tail of descs list
  87. * Return: return success or failure
  88. */
  89. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  90. struct dp_srng *dp_rxdma_srng,
  91. struct rx_desc_pool *rx_desc_pool,
  92. uint32_t num_req_buffers,
  93. union dp_rx_desc_list_elem_t **desc_list,
  94. union dp_rx_desc_list_elem_t **tail)
  95. {
  96. uint32_t num_alloc_desc;
  97. uint16_t num_desc_to_free = 0;
  98. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  99. uint32_t num_entries_avail;
  100. uint32_t count;
  101. int sync_hw_ptr = 1;
  102. qdf_dma_addr_t paddr;
  103. qdf_nbuf_t rx_netbuf;
  104. void *rxdma_ring_entry;
  105. union dp_rx_desc_list_elem_t *next;
  106. QDF_STATUS ret;
  107. void *rxdma_srng;
  108. rxdma_srng = dp_rxdma_srng->hal_srng;
  109. if (!rxdma_srng) {
  110. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  111. "rxdma srng not initialized");
  112. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  113. return QDF_STATUS_E_FAILURE;
  114. }
  115. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  116. "requested %d buffers for replenish", num_req_buffers);
  117. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  118. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  119. rxdma_srng,
  120. sync_hw_ptr);
  121. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  122. "no of available entries in rxdma ring: %d",
  123. num_entries_avail);
  124. if (!(*desc_list) && (num_entries_avail >
  125. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  126. num_req_buffers = num_entries_avail;
  127. } else if (num_entries_avail < num_req_buffers) {
  128. num_desc_to_free = num_req_buffers - num_entries_avail;
  129. num_req_buffers = num_entries_avail;
  130. }
  131. if (qdf_unlikely(!num_req_buffers)) {
  132. num_desc_to_free = num_req_buffers;
  133. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  134. goto free_descs;
  135. }
  136. /*
  137. * if desc_list is NULL, allocate the descs from freelist
  138. */
  139. if (!(*desc_list)) {
  140. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  141. rx_desc_pool,
  142. num_req_buffers,
  143. desc_list,
  144. tail);
  145. if (!num_alloc_desc) {
  146. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  147. "no free rx_descs in freelist");
  148. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  149. num_req_buffers);
  150. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  151. return QDF_STATUS_E_NOMEM;
  152. }
  153. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  154. "%d rx desc allocated", num_alloc_desc);
  155. num_req_buffers = num_alloc_desc;
  156. }
  157. count = 0;
  158. while (count < num_req_buffers) {
  159. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  160. RX_BUFFER_SIZE,
  161. RX_BUFFER_RESERVATION,
  162. RX_BUFFER_ALIGNMENT,
  163. FALSE);
  164. if (qdf_unlikely(!rx_netbuf)) {
  165. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  166. continue;
  167. }
  168. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  169. QDF_DMA_FROM_DEVICE);
  170. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  171. qdf_nbuf_free(rx_netbuf);
  172. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  173. continue;
  174. }
  175. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  176. /*
  177. * check if the physical address of nbuf->data is
  178. * less then 0x50000000 then free the nbuf and try
  179. * allocating new nbuf. We can try for 100 times.
  180. * this is a temp WAR till we fix it properly.
  181. */
  182. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  183. if (ret == QDF_STATUS_E_FAILURE) {
  184. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  185. break;
  186. }
  187. count++;
  188. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  189. rxdma_srng);
  190. qdf_assert_always(rxdma_ring_entry);
  191. next = (*desc_list)->next;
  192. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  193. /* rx_desc.in_use should be zero at this time*/
  194. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  195. (*desc_list)->rx_desc.in_use = 1;
  196. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  197. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  198. (unsigned long long)paddr,
  199. (*desc_list)->rx_desc.cookie);
  200. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  201. (*desc_list)->rx_desc.cookie,
  202. rx_desc_pool->owner);
  203. *desc_list = next;
  204. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  205. }
  206. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  207. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  208. num_req_buffers, num_desc_to_free);
  209. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  210. (RX_BUFFER_SIZE * num_req_buffers));
  211. free_descs:
  212. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  213. /*
  214. * add any available free desc back to the free list
  215. */
  216. if (*desc_list)
  217. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  218. mac_id, rx_desc_pool);
  219. return QDF_STATUS_SUCCESS;
  220. }
  221. /*
  222. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  223. * pkts to RAW mode simulation to
  224. * decapsulate the pkt.
  225. *
  226. * @vdev: vdev on which RAW mode is enabled
  227. * @nbuf_list: list of RAW pkts to process
  228. * @peer: peer object from which the pkt is rx
  229. *
  230. * Return: void
  231. */
  232. void
  233. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  234. struct dp_peer *peer)
  235. {
  236. qdf_nbuf_t deliver_list_head = NULL;
  237. qdf_nbuf_t deliver_list_tail = NULL;
  238. qdf_nbuf_t nbuf;
  239. nbuf = nbuf_list;
  240. while (nbuf) {
  241. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  242. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  243. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  244. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  245. /*
  246. * reset the chfrag_start and chfrag_end bits in nbuf cb
  247. * as this is a non-amsdu pkt and RAW mode simulation expects
  248. * these bit s to be 0 for non-amsdu pkt.
  249. */
  250. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  251. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  252. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  253. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  254. }
  255. nbuf = next;
  256. }
  257. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  258. &deliver_list_tail, (struct cdp_peer*) peer);
  259. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  260. }
  261. #ifdef DP_LFR
  262. /*
  263. * In case of LFR, data of a new peer might be sent up
  264. * even before peer is added.
  265. */
  266. static inline struct dp_vdev *
  267. dp_get_vdev_from_peer(struct dp_soc *soc,
  268. uint16_t peer_id,
  269. struct dp_peer *peer,
  270. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  271. {
  272. struct dp_vdev *vdev;
  273. uint8_t vdev_id;
  274. if (unlikely(!peer)) {
  275. if (peer_id != HTT_INVALID_PEER) {
  276. vdev_id = DP_PEER_METADATA_ID_GET(
  277. mpdu_desc_info.peer_meta_data);
  278. QDF_TRACE(QDF_MODULE_ID_DP,
  279. QDF_TRACE_LEVEL_DEBUG,
  280. FL("PeerID %d not found use vdevID %d"),
  281. peer_id, vdev_id);
  282. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  283. vdev_id);
  284. } else {
  285. QDF_TRACE(QDF_MODULE_ID_DP,
  286. QDF_TRACE_LEVEL_DEBUG,
  287. FL("Invalid PeerID %d"),
  288. peer_id);
  289. return NULL;
  290. }
  291. } else {
  292. vdev = peer->vdev;
  293. }
  294. return vdev;
  295. }
  296. #else
  297. static inline struct dp_vdev *
  298. dp_get_vdev_from_peer(struct dp_soc *soc,
  299. uint16_t peer_id,
  300. struct dp_peer *peer,
  301. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  302. {
  303. if (unlikely(!peer)) {
  304. QDF_TRACE(QDF_MODULE_ID_DP,
  305. QDF_TRACE_LEVEL_DEBUG,
  306. FL("Peer not found for peerID %d"),
  307. peer_id);
  308. return NULL;
  309. } else {
  310. return peer->vdev;
  311. }
  312. }
  313. #endif
  314. #ifndef FEATURE_WDS
  315. static void
  316. dp_rx_da_learn(struct dp_soc *soc,
  317. uint8_t *rx_tlv_hdr,
  318. struct dp_peer *ta_peer,
  319. qdf_nbuf_t nbuf)
  320. {
  321. }
  322. #endif
  323. /*
  324. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  325. *
  326. * @soc: core txrx main context
  327. * @ta_peer : source peer entry
  328. * @rx_tlv_hdr : start address of rx tlvs
  329. * @nbuf : nbuf that has to be intrabss forwarded
  330. *
  331. * Return: bool: true if it is forwarded else false
  332. */
  333. static bool
  334. dp_rx_intrabss_fwd(struct dp_soc *soc,
  335. struct dp_peer *ta_peer,
  336. uint8_t *rx_tlv_hdr,
  337. qdf_nbuf_t nbuf)
  338. {
  339. uint16_t da_idx;
  340. uint16_t len;
  341. uint8_t is_frag;
  342. struct dp_peer *da_peer;
  343. struct dp_ast_entry *ast_entry;
  344. qdf_nbuf_t nbuf_copy;
  345. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  346. struct cdp_tid_rx_stats *tid_stats =
  347. &ta_peer->vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
  348. /* check if the destination peer is available in peer table
  349. * and also check if the source peer and destination peer
  350. * belong to the same vap and destination peer is not bss peer.
  351. */
  352. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  353. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  354. ast_entry = soc->ast_table[da_idx];
  355. if (!ast_entry)
  356. return false;
  357. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  358. ast_entry->is_active = TRUE;
  359. return false;
  360. }
  361. da_peer = ast_entry->peer;
  362. if (!da_peer)
  363. return false;
  364. /* TA peer cannot be same as peer(DA) on which AST is present
  365. * this indicates a change in topology and that AST entries
  366. * are yet to be updated.
  367. */
  368. if (da_peer == ta_peer)
  369. return false;
  370. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  371. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  372. is_frag = qdf_nbuf_is_frag(nbuf);
  373. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  374. /* linearize the nbuf just before we send to
  375. * dp_tx_send()
  376. */
  377. if (qdf_unlikely(is_frag)) {
  378. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  379. return false;
  380. nbuf = qdf_nbuf_unshare(nbuf);
  381. if (!nbuf) {
  382. DP_STATS_INC_PKT(ta_peer,
  383. rx.intra_bss.fail,
  384. 1,
  385. len);
  386. /* return true even though the pkt is
  387. * not forwarded. Basically skb_unshare
  388. * failed and we want to continue with
  389. * next nbuf.
  390. */
  391. tid_stats->fail_cnt[INTRABSS_DROP]++;
  392. return true;
  393. }
  394. }
  395. if (!dp_tx_send(ta_peer->vdev, nbuf)) {
  396. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  397. len);
  398. return true;
  399. } else {
  400. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  401. len);
  402. tid_stats->fail_cnt[INTRABSS_DROP]++;
  403. return false;
  404. }
  405. }
  406. }
  407. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  408. * source, then clone the pkt and send the cloned pkt for
  409. * intra BSS forwarding and original pkt up the network stack
  410. * Note: how do we handle multicast pkts. do we forward
  411. * all multicast pkts as is or let a higher layer module
  412. * like igmpsnoop decide whether to forward or not with
  413. * Mcast enhancement.
  414. */
  415. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  416. !ta_peer->bss_peer))) {
  417. nbuf_copy = qdf_nbuf_copy(nbuf);
  418. if (!nbuf_copy)
  419. return false;
  420. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  421. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  422. if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
  423. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  424. tid_stats->fail_cnt[INTRABSS_DROP]++;
  425. qdf_nbuf_free(nbuf_copy);
  426. } else {
  427. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  428. tid_stats->intrabss_cnt++;
  429. }
  430. }
  431. /* return false as we have to still send the original pkt
  432. * up the stack
  433. */
  434. return false;
  435. }
  436. #ifdef MESH_MODE_SUPPORT
  437. /**
  438. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  439. *
  440. * @vdev: DP Virtual device handle
  441. * @nbuf: Buffer pointer
  442. * @rx_tlv_hdr: start of rx tlv header
  443. * @peer: pointer to peer
  444. *
  445. * This function allocated memory for mesh receive stats and fill the
  446. * required stats. Stores the memory address in skb cb.
  447. *
  448. * Return: void
  449. */
  450. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  451. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  452. {
  453. struct mesh_recv_hdr_s *rx_info = NULL;
  454. uint32_t pkt_type;
  455. uint32_t nss;
  456. uint32_t rate_mcs;
  457. uint32_t bw;
  458. /* fill recv mesh stats */
  459. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  460. /* upper layers are resposible to free this memory */
  461. if (!rx_info) {
  462. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  463. "Memory allocation failed for mesh rx stats");
  464. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  465. return;
  466. }
  467. rx_info->rs_flags = MESH_RXHDR_VER1;
  468. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  469. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  470. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  471. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  472. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  473. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  474. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  475. if (vdev->osif_get_key)
  476. vdev->osif_get_key(vdev->osif_vdev,
  477. &rx_info->rs_decryptkey[0],
  478. &peer->mac_addr.raw[0],
  479. rx_info->rs_keyix);
  480. }
  481. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  482. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  483. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  484. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  485. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  486. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  487. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  488. (bw << 24);
  489. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  490. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  491. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  492. rx_info->rs_flags,
  493. rx_info->rs_rssi,
  494. rx_info->rs_channel,
  495. rx_info->rs_ratephy1,
  496. rx_info->rs_keyix);
  497. }
  498. /**
  499. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  500. *
  501. * @vdev: DP Virtual device handle
  502. * @nbuf: Buffer pointer
  503. * @rx_tlv_hdr: start of rx tlv header
  504. *
  505. * This checks if the received packet is matching any filter out
  506. * catogery and and drop the packet if it matches.
  507. *
  508. * Return: status(0 indicates drop, 1 indicate to no drop)
  509. */
  510. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  511. uint8_t *rx_tlv_hdr)
  512. {
  513. union dp_align_mac_addr mac_addr;
  514. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  515. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  516. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  517. return QDF_STATUS_SUCCESS;
  518. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  519. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  520. return QDF_STATUS_SUCCESS;
  521. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  522. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  523. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  524. return QDF_STATUS_SUCCESS;
  525. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  526. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  527. &mac_addr.raw[0]))
  528. return QDF_STATUS_E_FAILURE;
  529. if (!qdf_mem_cmp(&mac_addr.raw[0],
  530. &vdev->mac_addr.raw[0],
  531. QDF_MAC_ADDR_SIZE))
  532. return QDF_STATUS_SUCCESS;
  533. }
  534. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  535. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  536. &mac_addr.raw[0]))
  537. return QDF_STATUS_E_FAILURE;
  538. if (!qdf_mem_cmp(&mac_addr.raw[0],
  539. &vdev->mac_addr.raw[0],
  540. QDF_MAC_ADDR_SIZE))
  541. return QDF_STATUS_SUCCESS;
  542. }
  543. }
  544. return QDF_STATUS_E_FAILURE;
  545. }
  546. #else
  547. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  548. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  549. {
  550. }
  551. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  552. uint8_t *rx_tlv_hdr)
  553. {
  554. return QDF_STATUS_E_FAILURE;
  555. }
  556. #endif
  557. #ifdef FEATURE_NAC_RSSI
  558. /**
  559. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  560. * clients
  561. * @pdev: DP pdev handle
  562. * @rx_pkt_hdr: Rx packet Header
  563. *
  564. * return: dp_vdev*
  565. */
  566. static
  567. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  568. uint8_t *rx_pkt_hdr)
  569. {
  570. struct ieee80211_frame *wh;
  571. struct dp_neighbour_peer *peer = NULL;
  572. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  573. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  574. return NULL;
  575. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  576. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  577. neighbour_peer_list_elem) {
  578. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  579. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  580. QDF_TRACE(
  581. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  582. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  583. peer->neighbour_peers_macaddr.raw[0],
  584. peer->neighbour_peers_macaddr.raw[1],
  585. peer->neighbour_peers_macaddr.raw[2],
  586. peer->neighbour_peers_macaddr.raw[3],
  587. peer->neighbour_peers_macaddr.raw[4],
  588. peer->neighbour_peers_macaddr.raw[5]);
  589. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  590. return pdev->monitor_vdev;
  591. }
  592. }
  593. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  594. return NULL;
  595. }
  596. /**
  597. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  598. * @soc: DP SOC handle
  599. * @mpdu: mpdu for which peer is invalid
  600. *
  601. * return: integer type
  602. */
  603. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  604. {
  605. struct dp_invalid_peer_msg msg;
  606. struct dp_vdev *vdev = NULL;
  607. struct dp_pdev *pdev = NULL;
  608. struct ieee80211_frame *wh;
  609. uint8_t i;
  610. qdf_nbuf_t curr_nbuf, next_nbuf;
  611. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  612. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  613. if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) {
  614. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  615. "Drop decapped frames");
  616. goto free;
  617. }
  618. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  619. if (!DP_FRAME_IS_DATA(wh)) {
  620. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  621. "NAWDS valid only for data frames");
  622. goto free;
  623. }
  624. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  625. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  626. "Invalid nbuf length");
  627. goto free;
  628. }
  629. for (i = 0; i < MAX_PDEV_CNT; i++) {
  630. pdev = soc->pdev_list[i];
  631. if (!pdev) {
  632. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  633. "PDEV not found");
  634. continue;
  635. }
  636. if (pdev->filter_neighbour_peers) {
  637. /* Next Hop scenario not yet handle */
  638. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  639. if (vdev) {
  640. dp_rx_mon_deliver(soc, i,
  641. pdev->invalid_peer_head_msdu,
  642. pdev->invalid_peer_tail_msdu);
  643. pdev->invalid_peer_head_msdu = NULL;
  644. pdev->invalid_peer_tail_msdu = NULL;
  645. return 0;
  646. }
  647. }
  648. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  649. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  650. QDF_MAC_ADDR_SIZE) == 0) {
  651. goto out;
  652. }
  653. }
  654. }
  655. if (!vdev) {
  656. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  657. "VDEV not found");
  658. goto free;
  659. }
  660. out:
  661. msg.wh = wh;
  662. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  663. msg.nbuf = mpdu;
  664. msg.vdev_id = vdev->vdev_id;
  665. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  666. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  667. &msg);
  668. free:
  669. /* Drop and free packet */
  670. curr_nbuf = mpdu;
  671. while (curr_nbuf) {
  672. next_nbuf = qdf_nbuf_next(curr_nbuf);
  673. qdf_nbuf_free(curr_nbuf);
  674. curr_nbuf = next_nbuf;
  675. }
  676. return 0;
  677. }
  678. /**
  679. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  680. * @soc: DP SOC handle
  681. * @mpdu: mpdu for which peer is invalid
  682. * @mpdu_done: if an mpdu is completed
  683. *
  684. * return: integer type
  685. */
  686. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  687. qdf_nbuf_t mpdu, bool mpdu_done)
  688. {
  689. /* Only trigger the process when mpdu is completed */
  690. if (mpdu_done)
  691. dp_rx_process_invalid_peer(soc, mpdu);
  692. }
  693. #else
  694. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  695. {
  696. qdf_nbuf_t curr_nbuf, next_nbuf;
  697. struct dp_pdev *pdev;
  698. uint8_t i;
  699. struct dp_vdev *vdev = NULL;
  700. struct ieee80211_frame *wh;
  701. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  702. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  703. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  704. if (!DP_FRAME_IS_DATA(wh)) {
  705. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  706. "only for data frames");
  707. goto free;
  708. }
  709. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  710. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  711. "Invalid nbuf length");
  712. goto free;
  713. }
  714. for (i = 0; i < MAX_PDEV_CNT; i++) {
  715. pdev = soc->pdev_list[i];
  716. if (!pdev) {
  717. QDF_TRACE(QDF_MODULE_ID_DP,
  718. QDF_TRACE_LEVEL_ERROR,
  719. "PDEV not found");
  720. continue;
  721. }
  722. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  723. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  724. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  725. QDF_MAC_ADDR_SIZE) == 0) {
  726. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  727. goto out;
  728. }
  729. }
  730. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  731. }
  732. if (!vdev) {
  733. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  734. "VDEV not found");
  735. goto free;
  736. }
  737. out:
  738. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  739. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  740. free:
  741. /* reset the head and tail pointers */
  742. for (i = 0; i < MAX_PDEV_CNT; i++) {
  743. pdev = soc->pdev_list[i];
  744. if (!pdev) {
  745. QDF_TRACE(QDF_MODULE_ID_DP,
  746. QDF_TRACE_LEVEL_ERROR,
  747. "PDEV not found");
  748. continue;
  749. }
  750. pdev->invalid_peer_head_msdu = NULL;
  751. pdev->invalid_peer_tail_msdu = NULL;
  752. }
  753. /* Drop and free packet */
  754. curr_nbuf = mpdu;
  755. while (curr_nbuf) {
  756. next_nbuf = qdf_nbuf_next(curr_nbuf);
  757. qdf_nbuf_free(curr_nbuf);
  758. curr_nbuf = next_nbuf;
  759. }
  760. return 0;
  761. }
  762. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  763. qdf_nbuf_t mpdu, bool mpdu_done)
  764. {
  765. /* Process the nbuf */
  766. dp_rx_process_invalid_peer(soc, mpdu);
  767. }
  768. #endif
  769. #ifdef RECEIVE_OFFLOAD
  770. /**
  771. * dp_rx_print_offload_info() - Print offload info from RX TLV
  772. * @rx_tlv: RX TLV for which offload information is to be printed
  773. *
  774. * Return: None
  775. */
  776. static void dp_rx_print_offload_info(uint8_t *rx_tlv)
  777. {
  778. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  779. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  780. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  781. dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  782. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  783. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  784. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  785. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  786. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  787. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  788. dp_verbose_debug("---------------------------------------------------------");
  789. }
  790. /**
  791. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  792. * @soc: DP SOC handle
  793. * @rx_tlv: RX TLV received for the msdu
  794. * @msdu: msdu for which GRO info needs to be filled
  795. *
  796. * Return: None
  797. */
  798. static
  799. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  800. qdf_nbuf_t msdu)
  801. {
  802. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  803. return;
  804. /* Filling up RX offload info only for TCP packets */
  805. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  806. return;
  807. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  808. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  809. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  810. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  811. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  812. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  813. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  814. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  815. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  816. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  817. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  818. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  819. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  820. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  821. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  822. HAL_RX_TLV_GET_IPV6(rx_tlv);
  823. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  824. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  825. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  826. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  827. dp_rx_print_offload_info(rx_tlv);
  828. }
  829. #else
  830. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  831. qdf_nbuf_t msdu)
  832. {
  833. }
  834. #endif /* RECEIVE_OFFLOAD */
  835. /**
  836. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  837. *
  838. * @nbuf: pointer to msdu.
  839. * @mpdu_len: mpdu length
  840. *
  841. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  842. */
  843. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  844. {
  845. bool last_nbuf;
  846. if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  847. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  848. last_nbuf = false;
  849. } else {
  850. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  851. last_nbuf = true;
  852. }
  853. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  854. return last_nbuf;
  855. }
  856. /**
  857. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  858. * multiple nbufs.
  859. * @nbuf: pointer to the first msdu of an amsdu.
  860. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  861. *
  862. *
  863. * This function implements the creation of RX frag_list for cases
  864. * where an MSDU is spread across multiple nbufs.
  865. *
  866. * Return: returns the head nbuf which contains complete frag_list.
  867. */
  868. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  869. {
  870. qdf_nbuf_t parent, next, frag_list;
  871. uint16_t frag_list_len = 0;
  872. uint16_t mpdu_len;
  873. bool last_nbuf;
  874. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  875. /*
  876. * this is a case where the complete msdu fits in one single nbuf.
  877. * in this case HW sets both start and end bit and we only need to
  878. * reset these bits for RAW mode simulator to decap the pkt
  879. */
  880. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  881. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  882. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  883. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  884. return nbuf;
  885. }
  886. /*
  887. * This is a case where we have multiple msdus (A-MSDU) spread across
  888. * multiple nbufs. here we create a fraglist out of these nbufs.
  889. *
  890. * the moment we encounter a nbuf with continuation bit set we
  891. * know for sure we have an MSDU which is spread across multiple
  892. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  893. */
  894. parent = nbuf;
  895. frag_list = nbuf->next;
  896. nbuf = nbuf->next;
  897. /*
  898. * set the start bit in the first nbuf we encounter with continuation
  899. * bit set. This has the proper mpdu length set as it is the first
  900. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  901. * nbufs will form the frag_list of the parent nbuf.
  902. */
  903. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  904. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  905. /*
  906. * this is where we set the length of the fragments which are
  907. * associated to the parent nbuf. We iterate through the frag_list
  908. * till we hit the last_nbuf of the list.
  909. */
  910. do {
  911. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  912. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  913. frag_list_len += qdf_nbuf_len(nbuf);
  914. if (last_nbuf) {
  915. next = nbuf->next;
  916. nbuf->next = NULL;
  917. break;
  918. }
  919. nbuf = nbuf->next;
  920. } while (!last_nbuf);
  921. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  922. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  923. parent->next = next;
  924. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  925. return parent;
  926. }
  927. /**
  928. * dp_rx_compute_delay() - Compute and fill in all timestamps
  929. * to pass in correct fields
  930. *
  931. * @vdev: pdev handle
  932. * @tx_desc: tx descriptor
  933. * @tid: tid value
  934. * Return: none
  935. */
  936. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  937. {
  938. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  939. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  940. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  941. uint32_t interframe_delay =
  942. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  943. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  944. CDP_DELAY_STATS_REAP_STACK);
  945. /*
  946. * Update interframe delay stats calculated at deliver_data_ol point.
  947. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  948. * interframe delay will not be calculate correctly for 1st frame.
  949. * On the other side, this will help in avoiding extra per packet check
  950. * of vdev->prev_rx_deliver_tstamp.
  951. */
  952. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  953. CDP_DELAY_STATS_RX_INTERFRAME);
  954. vdev->prev_rx_deliver_tstamp = current_ts;
  955. }
  956. /**
  957. * dp_rx_drop_nbuf_list() - drop an nbuf list
  958. * @pdev: dp pdev reference
  959. * @buf_list: buffer list to be dropepd
  960. *
  961. * Return: int (number of bufs dropped)
  962. */
  963. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  964. qdf_nbuf_t buf_list)
  965. {
  966. struct cdp_tid_rx_stats *stats = NULL;
  967. uint8_t tid = 0;
  968. int num_dropped = 0;
  969. qdf_nbuf_t buf, next_buf;
  970. buf = buf_list;
  971. while (buf) {
  972. next_buf = qdf_nbuf_queue_next(buf);
  973. tid = qdf_nbuf_get_tid_val(buf);
  974. stats = &pdev->stats.tid_stats.tid_rx_stats[tid];
  975. stats->fail_cnt[INVALID_PEER_VDEV]++;
  976. stats->delivered_to_stack--;
  977. qdf_nbuf_free(buf);
  978. buf = next_buf;
  979. num_dropped++;
  980. }
  981. return num_dropped;
  982. }
  983. #ifdef PEER_CACHE_RX_PKTS
  984. /**
  985. * dp_rx_flush_rx_cached() - flush cached rx frames
  986. * @peer: peer
  987. * @drop: flag to drop frames or forward to net stack
  988. *
  989. * Return: None
  990. */
  991. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  992. {
  993. struct dp_peer_cached_bufq *bufqi;
  994. struct dp_rx_cached_buf *cache_buf = NULL;
  995. ol_txrx_rx_fp data_rx = NULL;
  996. int num_buff_elem;
  997. QDF_STATUS status;
  998. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  999. qdf_atomic_dec(&peer->flush_in_progress);
  1000. return;
  1001. }
  1002. qdf_spin_lock_bh(&peer->peer_info_lock);
  1003. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1004. data_rx = peer->vdev->osif_rx;
  1005. else
  1006. drop = true;
  1007. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1008. bufqi = &peer->bufq_info;
  1009. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1010. qdf_list_remove_front(&bufqi->cached_bufq,
  1011. (qdf_list_node_t **)&cache_buf);
  1012. while (cache_buf) {
  1013. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1014. cache_buf->buf);
  1015. bufqi->entries -= num_buff_elem;
  1016. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1017. if (drop) {
  1018. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1019. cache_buf->buf);
  1020. } else {
  1021. /* Flush the cached frames to OSIF DEV */
  1022. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1023. if (status != QDF_STATUS_SUCCESS)
  1024. bufqi->dropped = dp_rx_drop_nbuf_list(
  1025. peer->vdev->pdev,
  1026. cache_buf->buf);
  1027. }
  1028. qdf_mem_free(cache_buf);
  1029. cache_buf = NULL;
  1030. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1031. qdf_list_remove_front(&bufqi->cached_bufq,
  1032. (qdf_list_node_t **)&cache_buf);
  1033. }
  1034. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1035. qdf_atomic_dec(&peer->flush_in_progress);
  1036. }
  1037. /**
  1038. * dp_rx_enqueue_rx() - cache rx frames
  1039. * @peer: peer
  1040. * @rx_buf_list: cache buffer list
  1041. *
  1042. * Return: None
  1043. */
  1044. static QDF_STATUS
  1045. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1046. {
  1047. struct dp_rx_cached_buf *cache_buf;
  1048. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1049. int num_buff_elem;
  1050. QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_TXRX, "bufq->curr %d bufq->drops %d",
  1051. bufqi->entries, bufqi->dropped);
  1052. if (!peer->valid) {
  1053. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1054. rx_buf_list);
  1055. return QDF_STATUS_E_INVAL;
  1056. }
  1057. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1058. if (bufqi->entries >= bufqi->thresh) {
  1059. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1060. rx_buf_list);
  1061. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1062. return QDF_STATUS_E_RESOURCES;
  1063. }
  1064. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1065. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1066. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1067. if (!cache_buf) {
  1068. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1069. "Failed to allocate buf to cache rx frames");
  1070. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1071. rx_buf_list);
  1072. return QDF_STATUS_E_NOMEM;
  1073. }
  1074. cache_buf->buf = rx_buf_list;
  1075. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1076. qdf_list_insert_back(&bufqi->cached_bufq,
  1077. &cache_buf->node);
  1078. bufqi->entries += num_buff_elem;
  1079. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1080. return QDF_STATUS_SUCCESS;
  1081. }
  1082. static inline
  1083. bool dp_rx_is_peer_cache_bufq_supported(void)
  1084. {
  1085. return true;
  1086. }
  1087. #else
  1088. static inline
  1089. bool dp_rx_is_peer_cache_bufq_supported(void)
  1090. {
  1091. return false;
  1092. }
  1093. static inline QDF_STATUS
  1094. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1095. {
  1096. return QDF_STATUS_SUCCESS;
  1097. }
  1098. #endif
  1099. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  1100. struct dp_peer *peer,
  1101. qdf_nbuf_t nbuf_head,
  1102. qdf_nbuf_t nbuf_tail)
  1103. {
  1104. /*
  1105. * highly unlikely to have a vdev without a registered rx
  1106. * callback function. if so let us free the nbuf_list.
  1107. */
  1108. if (qdf_unlikely(!vdev->osif_rx)) {
  1109. if (dp_rx_is_peer_cache_bufq_supported())
  1110. dp_rx_enqueue_rx(peer, nbuf_head);
  1111. else
  1112. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1113. return;
  1114. }
  1115. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1116. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1117. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1118. &nbuf_tail, (struct cdp_peer *) peer);
  1119. }
  1120. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1121. }
  1122. /**
  1123. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1124. * @nbuf: pointer to the first msdu of an amsdu.
  1125. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1126. *
  1127. * The ipsumed field of the skb is set based on whether HW validated the
  1128. * IP/TCP/UDP checksum.
  1129. *
  1130. * Return: void
  1131. */
  1132. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1133. qdf_nbuf_t nbuf,
  1134. uint8_t *rx_tlv_hdr)
  1135. {
  1136. qdf_nbuf_rx_cksum_t cksum = {0};
  1137. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1138. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1139. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1140. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1141. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1142. } else {
  1143. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1144. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1145. }
  1146. }
  1147. /**
  1148. * dp_rx_msdu_stats_update() - update per msdu stats.
  1149. * @soc: core txrx main context
  1150. * @nbuf: pointer to the first msdu of an amsdu.
  1151. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1152. * @peer: pointer to the peer object.
  1153. * @ring_id: reo dest ring number on which pkt is reaped.
  1154. * @tid_stats: per tid rx stats.
  1155. *
  1156. * update all the per msdu stats for that nbuf.
  1157. * Return: void
  1158. */
  1159. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1160. qdf_nbuf_t nbuf,
  1161. uint8_t *rx_tlv_hdr,
  1162. struct dp_peer *peer,
  1163. uint8_t ring_id,
  1164. struct cdp_tid_rx_stats *tid_stats)
  1165. {
  1166. bool is_ampdu, is_not_amsdu;
  1167. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1168. struct dp_vdev *vdev = peer->vdev;
  1169. qdf_ether_header_t *eh;
  1170. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1171. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1172. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1173. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1174. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1175. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1176. tid_stats->msdu_cnt++;
  1177. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1178. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1179. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1180. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1181. tid_stats->mcast_msdu_cnt++;
  1182. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1183. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1184. tid_stats->bcast_msdu_cnt++;
  1185. }
  1186. }
  1187. /*
  1188. * currently we can return from here as we have similar stats
  1189. * updated at per ppdu level instead of msdu level
  1190. */
  1191. if (!soc->process_rx_status)
  1192. return;
  1193. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1194. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1195. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1196. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1197. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1198. tid = qdf_nbuf_get_tid_val(nbuf);
  1199. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1200. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1201. rx_tlv_hdr);
  1202. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1203. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1204. DP_STATS_INC(peer, rx.bw[bw], 1);
  1205. /*
  1206. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1207. * then increase index [nss - 1] in array counter.
  1208. */
  1209. if (nss > 0 && (pkt_type == DOT11_N ||
  1210. pkt_type == DOT11_AC ||
  1211. pkt_type == DOT11_AX))
  1212. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1213. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1214. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1215. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1216. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1217. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1218. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1219. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1220. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1221. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1222. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1223. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1224. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1225. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1226. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1227. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1228. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1229. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1230. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1231. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1232. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1233. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1234. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1235. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1236. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1237. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1238. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1239. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1240. if ((soc->process_rx_status) &&
  1241. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1242. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1243. if (!vdev->pdev)
  1244. return;
  1245. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1246. &peer->stats, peer->peer_ids[0],
  1247. UPDATE_PEER_STATS,
  1248. vdev->pdev->pdev_id);
  1249. #endif
  1250. }
  1251. }
  1252. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1253. void *rx_tlv_hdr,
  1254. qdf_nbuf_t nbuf)
  1255. {
  1256. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1257. (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
  1258. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1259. (qdf_nbuf_is_da_valid(nbuf) &&
  1260. (hal_rx_msdu_end_da_idx_get(soc->hal_soc,
  1261. rx_tlv_hdr) >
  1262. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1263. return false;
  1264. return true;
  1265. }
  1266. #ifndef WDS_VENDOR_EXTENSION
  1267. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1268. struct dp_vdev *vdev,
  1269. struct dp_peer *peer)
  1270. {
  1271. return 1;
  1272. }
  1273. #endif
  1274. #ifdef RX_DESC_DEBUG_CHECK
  1275. /**
  1276. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1277. * corruption
  1278. *
  1279. * @ring_desc: REO ring descriptor
  1280. * @rx_desc: Rx descriptor
  1281. *
  1282. * Return: NONE
  1283. */
  1284. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1285. struct dp_rx_desc *rx_desc)
  1286. {
  1287. struct hal_buf_info hbi;
  1288. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1289. /* Sanity check for possible buffer paddr corruption */
  1290. qdf_assert_always((&hbi)->paddr ==
  1291. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1292. }
  1293. #else
  1294. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1295. struct dp_rx_desc *rx_desc)
  1296. {
  1297. }
  1298. #endif
  1299. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1300. static inline
  1301. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1302. {
  1303. bool limit_hit = false;
  1304. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1305. limit_hit =
  1306. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1307. if (limit_hit)
  1308. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1309. return limit_hit;
  1310. }
  1311. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1312. {
  1313. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1314. }
  1315. #else
  1316. static inline
  1317. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1318. {
  1319. return false;
  1320. }
  1321. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1322. {
  1323. return false;
  1324. }
  1325. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1326. /**
  1327. * dp_rx_process() - Brain of the Rx processing functionality
  1328. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1329. * @soc: core txrx main context
  1330. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1331. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1332. * @quota: No. of units (packets) that can be serviced in one shot.
  1333. *
  1334. * This function implements the core of Rx functionality. This is
  1335. * expected to handle only non-error frames.
  1336. *
  1337. * Return: uint32_t: No. of elements processed
  1338. */
  1339. uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
  1340. uint8_t reo_ring_num, uint32_t quota)
  1341. {
  1342. void *hal_soc;
  1343. void *ring_desc;
  1344. struct dp_rx_desc *rx_desc = NULL;
  1345. qdf_nbuf_t nbuf, next;
  1346. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1347. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1348. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1349. uint32_t l2_hdr_offset = 0;
  1350. uint16_t msdu_len = 0;
  1351. uint16_t peer_id;
  1352. struct dp_peer *peer;
  1353. struct dp_vdev *vdev;
  1354. uint32_t pkt_len = 0;
  1355. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1356. struct hal_rx_msdu_desc_info msdu_desc_info;
  1357. enum hal_reo_error_status error;
  1358. uint32_t peer_mdata;
  1359. uint8_t *rx_tlv_hdr;
  1360. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1361. uint8_t mac_id = 0;
  1362. struct dp_pdev *pdev;
  1363. struct dp_pdev *rx_pdev;
  1364. struct dp_srng *dp_rxdma_srng;
  1365. struct rx_desc_pool *rx_desc_pool;
  1366. struct dp_soc *soc = int_ctx->soc;
  1367. uint8_t ring_id = 0;
  1368. uint8_t core_id = 0;
  1369. struct cdp_tid_rx_stats *tid_stats;
  1370. qdf_nbuf_t nbuf_head;
  1371. qdf_nbuf_t nbuf_tail;
  1372. qdf_nbuf_t deliver_list_head;
  1373. qdf_nbuf_t deliver_list_tail;
  1374. uint32_t num_rx_bufs_reaped = 0;
  1375. uint32_t intr_id;
  1376. struct hif_opaque_softc *scn;
  1377. int32_t tid = 0;
  1378. bool is_prev_msdu_last = true;
  1379. uint32_t num_entries_avail = 0;
  1380. DP_HIST_INIT();
  1381. qdf_assert_always(soc && hal_ring);
  1382. hal_soc = soc->hal_soc;
  1383. qdf_assert_always(hal_soc);
  1384. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1385. scn = soc->hif_handle;
  1386. intr_id = int_ctx->dp_intr_id;
  1387. more_data:
  1388. /* reset local variables here to be re-used in the function */
  1389. nbuf_head = NULL;
  1390. nbuf_tail = NULL;
  1391. deliver_list_head = NULL;
  1392. deliver_list_tail = NULL;
  1393. peer = NULL;
  1394. vdev = NULL;
  1395. num_rx_bufs_reaped = 0;
  1396. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1397. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1398. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1399. qdf_mem_zero(head, sizeof(head));
  1400. qdf_mem_zero(tail, sizeof(tail));
  1401. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1402. /*
  1403. * Need API to convert from hal_ring pointer to
  1404. * Ring Type / Ring Id combo
  1405. */
  1406. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1407. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1408. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1409. hal_srng_access_end(hal_soc, hal_ring);
  1410. goto done;
  1411. }
  1412. /*
  1413. * start reaping the buffers from reo ring and queue
  1414. * them in per vdev queue.
  1415. * Process the received pkts in a different per vdev loop.
  1416. */
  1417. while (qdf_likely(quota &&
  1418. (ring_desc = hal_srng_dst_peek(hal_soc, hal_ring)))) {
  1419. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1420. ring_id = hal_srng_ring_id_get(hal_ring);
  1421. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1422. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1423. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1424. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1425. /* Don't know how to deal with this -- assert */
  1426. qdf_assert(0);
  1427. }
  1428. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1429. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1430. qdf_assert(rx_desc);
  1431. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1432. /*
  1433. * this is a unlikely scenario where the host is reaping
  1434. * a descriptor which it already reaped just a while ago
  1435. * but is yet to replenish it back to HW.
  1436. * In this case host will dump the last 128 descriptors
  1437. * including the software descriptor rx_desc and assert.
  1438. */
  1439. if (qdf_unlikely(!rx_desc->in_use)) {
  1440. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1441. dp_err("Reaping rx_desc not in use!");
  1442. dp_rx_dump_info_and_assert(soc, hal_ring,
  1443. ring_desc, rx_desc);
  1444. }
  1445. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1446. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1447. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1448. dp_rx_dump_info_and_assert(soc, hal_ring,
  1449. ring_desc, rx_desc);
  1450. }
  1451. /* TODO */
  1452. /*
  1453. * Need a separate API for unmapping based on
  1454. * phyiscal address
  1455. */
  1456. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1457. QDF_DMA_FROM_DEVICE);
  1458. rx_desc->unmapped = 1;
  1459. core_id = smp_processor_id();
  1460. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1461. /* Get MPDU DESC info */
  1462. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1463. /* Get MSDU DESC info */
  1464. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1465. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1466. HAL_MPDU_F_RAW_AMPDU)) {
  1467. /* previous msdu has end bit set, so current one is
  1468. * the new MPDU
  1469. */
  1470. if (is_prev_msdu_last) {
  1471. is_prev_msdu_last = false;
  1472. /* Get number of entries available in HW ring */
  1473. num_entries_avail =
  1474. hal_srng_dst_num_valid(hal_soc, hal_ring, 1);
  1475. /* For new MPDU check if we can read complete
  1476. * MPDU by comparing the number of buffers
  1477. * available and number of buffers needed to
  1478. * reap this MPDU
  1479. */
  1480. if (((msdu_desc_info.msdu_len /
  1481. (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN) + 1)) >
  1482. num_entries_avail)
  1483. break;
  1484. } else {
  1485. if (msdu_desc_info.msdu_flags &
  1486. HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1487. is_prev_msdu_last = true;
  1488. }
  1489. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1490. }
  1491. /* Pop out the descriptor*/
  1492. hal_srng_dst_get_next(hal_soc, hal_ring);
  1493. rx_bufs_reaped[rx_desc->pool_id]++;
  1494. peer_mdata = mpdu_desc_info.peer_meta_data;
  1495. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1496. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1497. /*
  1498. * save msdu flags first, last and continuation msdu in
  1499. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1500. * length to nbuf->cb. This ensures the info required for
  1501. * per pkt processing is always in the same cache line.
  1502. * This helps in improving throughput for smaller pkt
  1503. * sizes.
  1504. */
  1505. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1506. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1507. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1508. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1509. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1510. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1511. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1512. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1513. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1514. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1515. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1516. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1517. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1518. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1519. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1520. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1521. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1522. /*
  1523. * if continuation bit is set then we have MSDU spread
  1524. * across multiple buffers, let us not decrement quota
  1525. * till we reap all buffers of that MSDU.
  1526. */
  1527. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1528. quota -= 1;
  1529. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1530. &tail[rx_desc->pool_id],
  1531. rx_desc);
  1532. num_rx_bufs_reaped++;
  1533. if (dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1534. break;
  1535. }
  1536. done:
  1537. hal_srng_access_end(hal_soc, hal_ring);
  1538. if (nbuf_tail)
  1539. QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
  1540. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1541. /*
  1542. * continue with next mac_id if no pkts were reaped
  1543. * from that pool
  1544. */
  1545. if (!rx_bufs_reaped[mac_id])
  1546. continue;
  1547. pdev = soc->pdev_list[mac_id];
  1548. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1549. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1550. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1551. rx_desc_pool, rx_bufs_reaped[mac_id],
  1552. &head[mac_id], &tail[mac_id]);
  1553. }
  1554. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1555. /* Peer can be NULL is case of LFR */
  1556. if (qdf_likely(peer))
  1557. vdev = NULL;
  1558. /*
  1559. * BIG loop where each nbuf is dequeued from global queue,
  1560. * processed and queued back on a per vdev basis. These nbufs
  1561. * are sent to stack as and when we run out of nbufs
  1562. * or a new nbuf dequeued from global queue has a different
  1563. * vdev when compared to previous nbuf.
  1564. */
  1565. nbuf = nbuf_head;
  1566. while (nbuf) {
  1567. next = nbuf->next;
  1568. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1569. /* Get TID from struct cb->tid_val, save to tid */
  1570. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1571. tid = qdf_nbuf_get_tid_val(nbuf);
  1572. /*
  1573. * Check if DMA completed -- msdu_done is the last bit
  1574. * to be written
  1575. */
  1576. rx_pdev = soc->pdev_list[rx_desc->pool_id];
  1577. DP_RX_TID_SAVE(nbuf, tid);
  1578. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1579. qdf_nbuf_set_timestamp(nbuf);
  1580. tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[tid];
  1581. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1582. dp_err("MSDU DONE failure");
  1583. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1584. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1585. QDF_TRACE_LEVEL_INFO);
  1586. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1587. qdf_nbuf_free(nbuf);
  1588. qdf_assert(0);
  1589. nbuf = next;
  1590. continue;
  1591. }
  1592. peer_mdata = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1593. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1594. peer = dp_peer_find_by_id(soc, peer_id);
  1595. if (peer) {
  1596. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1597. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1598. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1599. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1600. QDF_NBUF_RX_PKT_DATA_TRACK;
  1601. }
  1602. rx_bufs_used++;
  1603. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1604. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1605. deliver_list_tail);
  1606. deliver_list_head = NULL;
  1607. deliver_list_tail = NULL;
  1608. }
  1609. if (qdf_likely(peer)) {
  1610. vdev = peer->vdev;
  1611. } else {
  1612. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1613. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1614. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1615. qdf_nbuf_free(nbuf);
  1616. nbuf = next;
  1617. continue;
  1618. }
  1619. if (qdf_unlikely(!vdev)) {
  1620. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1621. qdf_nbuf_free(nbuf);
  1622. nbuf = next;
  1623. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1624. dp_peer_unref_del_find_by_id(peer);
  1625. continue;
  1626. }
  1627. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1628. /*
  1629. * First IF condition:
  1630. * 802.11 Fragmented pkts are reinjected to REO
  1631. * HW block as SG pkts and for these pkts we only
  1632. * need to pull the RX TLVS header length.
  1633. * Second IF condition:
  1634. * The below condition happens when an MSDU is spread
  1635. * across multiple buffers. This can happen in two cases
  1636. * 1. The nbuf size is smaller then the received msdu.
  1637. * ex: we have set the nbuf size to 2048 during
  1638. * nbuf_alloc. but we received an msdu which is
  1639. * 2304 bytes in size then this msdu is spread
  1640. * across 2 nbufs.
  1641. *
  1642. * 2. AMSDUs when RAW mode is enabled.
  1643. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1644. * across 1st nbuf and 2nd nbuf and last MSDU is
  1645. * spread across 2nd nbuf and 3rd nbuf.
  1646. *
  1647. * for these scenarios let us create a skb frag_list and
  1648. * append these buffers till the last MSDU of the AMSDU
  1649. * Third condition:
  1650. * This is the most likely case, we receive 802.3 pkts
  1651. * decapsulated by HW, here we need to set the pkt length.
  1652. */
  1653. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1654. bool is_mcbc, is_sa_vld, is_da_vld;
  1655. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr);
  1656. is_sa_vld = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr);
  1657. is_da_vld = hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr);
  1658. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  1659. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  1660. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  1661. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1662. } else if (qdf_nbuf_is_raw_frame(nbuf)) {
  1663. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1664. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1665. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1666. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  1667. next = nbuf->next;
  1668. } else {
  1669. l2_hdr_offset =
  1670. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1671. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1672. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1673. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1674. qdf_nbuf_pull_head(nbuf,
  1675. RX_PKT_TLVS_LEN +
  1676. l2_hdr_offset);
  1677. }
  1678. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  1679. QDF_TRACE(QDF_MODULE_ID_DP,
  1680. QDF_TRACE_LEVEL_ERROR,
  1681. FL("Policy Check Drop pkt"));
  1682. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1683. /* Drop & free packet */
  1684. qdf_nbuf_free(nbuf);
  1685. /* Statistics */
  1686. nbuf = next;
  1687. dp_peer_unref_del_find_by_id(peer);
  1688. continue;
  1689. }
  1690. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  1691. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  1692. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) ==
  1693. false))) {
  1694. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1695. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1696. qdf_nbuf_free(nbuf);
  1697. nbuf = next;
  1698. dp_peer_unref_del_find_by_id(peer);
  1699. continue;
  1700. }
  1701. if (soc->process_rx_status)
  1702. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1703. /* Update the protocol tag in SKB based on CCE metadata */
  1704. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  1705. reo_ring_num, false, true);
  1706. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  1707. ring_id, tid_stats);
  1708. if (qdf_unlikely(vdev->mesh_vdev)) {
  1709. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1710. == QDF_STATUS_SUCCESS) {
  1711. QDF_TRACE(QDF_MODULE_ID_DP,
  1712. QDF_TRACE_LEVEL_INFO_MED,
  1713. FL("mesh pkt filtered"));
  1714. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1715. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1716. 1);
  1717. qdf_nbuf_free(nbuf);
  1718. nbuf = next;
  1719. dp_peer_unref_del_find_by_id(peer);
  1720. continue;
  1721. }
  1722. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1723. }
  1724. if (qdf_likely(vdev->rx_decap_type ==
  1725. htt_cmn_pkt_type_ethernet) &&
  1726. qdf_likely(!vdev->mesh_vdev)) {
  1727. /* WDS Destination Address Learning */
  1728. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1729. /* Due to HW issue, sometimes we see that the sa_idx
  1730. * and da_idx are invalid with sa_valid and da_valid
  1731. * bits set
  1732. *
  1733. * in this case we also see that value of
  1734. * sa_sw_peer_id is set as 0
  1735. *
  1736. * Drop the packet if sa_idx and da_idx OOB or
  1737. * sa_sw_peerid is 0
  1738. */
  1739. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf)) {
  1740. qdf_nbuf_free(nbuf);
  1741. nbuf = next;
  1742. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  1743. dp_peer_unref_del_find_by_id(peer);
  1744. continue;
  1745. }
  1746. /* WDS Source Port Learning */
  1747. if (qdf_likely(vdev->wds_enabled))
  1748. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1749. peer, nbuf);
  1750. /* Intrabss-fwd */
  1751. if (dp_rx_check_ap_bridge(vdev))
  1752. if (dp_rx_intrabss_fwd(soc,
  1753. peer,
  1754. rx_tlv_hdr,
  1755. nbuf)) {
  1756. nbuf = next;
  1757. dp_peer_unref_del_find_by_id(peer);
  1758. tid_stats->intrabss_cnt++;
  1759. continue; /* Get next desc */
  1760. }
  1761. }
  1762. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
  1763. qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
  1764. DP_RX_LIST_APPEND(deliver_list_head,
  1765. deliver_list_tail,
  1766. nbuf);
  1767. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1768. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1769. tid_stats->delivered_to_stack++;
  1770. nbuf = next;
  1771. dp_peer_unref_del_find_by_id(peer);
  1772. }
  1773. if (deliver_list_head)
  1774. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1775. deliver_list_tail);
  1776. if (dp_rx_enable_eol_data_check(soc)) {
  1777. if (quota &&
  1778. hal_srng_dst_peek_sync_locked(soc, hal_ring)) {
  1779. DP_STATS_INC(soc, rx.hp_oos2, 1);
  1780. if (!hif_exec_should_yield(scn, intr_id))
  1781. goto more_data;
  1782. }
  1783. }
  1784. /* Update histogram statistics by looping through pdev's */
  1785. DP_RX_HIST_STATS_PER_PDEV();
  1786. return rx_bufs_used; /* Assume no scale factor for now */
  1787. }
  1788. /**
  1789. * dp_rx_detach() - detach dp rx
  1790. * @pdev: core txrx pdev context
  1791. *
  1792. * This function will detach DP RX into main device context
  1793. * will free DP Rx resources.
  1794. *
  1795. * Return: void
  1796. */
  1797. void
  1798. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1799. {
  1800. uint8_t pdev_id = pdev->pdev_id;
  1801. struct dp_soc *soc = pdev->soc;
  1802. struct rx_desc_pool *rx_desc_pool;
  1803. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1804. if (rx_desc_pool->pool_size != 0) {
  1805. if (!dp_is_soc_reinit(soc))
  1806. dp_rx_desc_nbuf_and_pool_free(soc, pdev_id,
  1807. rx_desc_pool);
  1808. else
  1809. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  1810. }
  1811. return;
  1812. }
  1813. static QDF_STATUS
  1814. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  1815. struct dp_srng *dp_rxdma_srng,
  1816. struct rx_desc_pool *rx_desc_pool,
  1817. uint32_t num_req_buffers,
  1818. union dp_rx_desc_list_elem_t **desc_list,
  1819. union dp_rx_desc_list_elem_t **tail)
  1820. {
  1821. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  1822. void *rxdma_srng = dp_rxdma_srng->hal_srng;
  1823. union dp_rx_desc_list_elem_t *next;
  1824. void *rxdma_ring_entry;
  1825. qdf_dma_addr_t paddr;
  1826. void **rx_nbuf_arr;
  1827. uint32_t nr_descs;
  1828. uint32_t nr_nbuf;
  1829. qdf_nbuf_t nbuf;
  1830. QDF_STATUS ret;
  1831. int i;
  1832. if (qdf_unlikely(!rxdma_srng)) {
  1833. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1834. return QDF_STATUS_E_FAILURE;
  1835. }
  1836. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1837. "requested %u RX buffers for driver attach", num_req_buffers);
  1838. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  1839. num_req_buffers, desc_list, tail);
  1840. if (!nr_descs) {
  1841. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1842. "no free rx_descs in freelist");
  1843. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  1844. return QDF_STATUS_E_NOMEM;
  1845. }
  1846. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1847. "got %u RX descs for driver attach", nr_descs);
  1848. rx_nbuf_arr = qdf_mem_malloc(nr_descs * sizeof(*rx_nbuf_arr));
  1849. if (!rx_nbuf_arr) {
  1850. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1851. "failed to allocate nbuf array");
  1852. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1853. return QDF_STATUS_E_NOMEM;
  1854. }
  1855. for (nr_nbuf = 0; nr_nbuf < nr_descs; nr_nbuf++) {
  1856. nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE,
  1857. RX_BUFFER_RESERVATION,
  1858. RX_BUFFER_ALIGNMENT,
  1859. FALSE);
  1860. if (!nbuf) {
  1861. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1862. "nbuf alloc failed");
  1863. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  1864. break;
  1865. }
  1866. ret = qdf_nbuf_map_single(dp_soc->osdev, nbuf,
  1867. QDF_DMA_FROM_DEVICE);
  1868. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1869. qdf_nbuf_free(nbuf);
  1870. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1871. "nbuf map failed");
  1872. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  1873. break;
  1874. }
  1875. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  1876. ret = check_x86_paddr(dp_soc, &nbuf, &paddr, dp_pdev);
  1877. if (ret == QDF_STATUS_E_FAILURE) {
  1878. qdf_nbuf_unmap_single(dp_soc->osdev, nbuf,
  1879. QDF_DMA_FROM_DEVICE);
  1880. qdf_nbuf_free(nbuf);
  1881. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1882. "nbuf check x86 failed");
  1883. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  1884. break;
  1885. }
  1886. rx_nbuf_arr[nr_nbuf] = (void *)nbuf;
  1887. }
  1888. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1889. "allocated %u nbuf for driver attach", nr_nbuf);
  1890. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1891. for (i = 0; i < nr_nbuf; i++) {
  1892. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  1893. rxdma_srng);
  1894. qdf_assert_always(rxdma_ring_entry);
  1895. next = (*desc_list)->next;
  1896. nbuf = rx_nbuf_arr[i];
  1897. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  1898. dp_rx_desc_prep(&((*desc_list)->rx_desc), nbuf);
  1899. (*desc_list)->rx_desc.in_use = 1;
  1900. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  1901. (*desc_list)->rx_desc.cookie,
  1902. rx_desc_pool->owner);
  1903. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  1904. *desc_list = next;
  1905. }
  1906. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  1907. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1908. "filled %u RX buffers for driver attach", nr_nbuf);
  1909. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, RX_BUFFER_SIZE *
  1910. nr_nbuf);
  1911. qdf_mem_free(rx_nbuf_arr);
  1912. return QDF_STATUS_SUCCESS;
  1913. }
  1914. /**
  1915. * dp_rx_attach() - attach DP RX
  1916. * @pdev: core txrx pdev context
  1917. *
  1918. * This function will attach a DP RX instance into the main
  1919. * device (SOC) context. Will allocate dp rx resource and
  1920. * initialize resources.
  1921. *
  1922. * Return: QDF_STATUS_SUCCESS: success
  1923. * QDF_STATUS_E_RESOURCES: Error return
  1924. */
  1925. QDF_STATUS
  1926. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1927. {
  1928. uint8_t pdev_id = pdev->pdev_id;
  1929. struct dp_soc *soc = pdev->soc;
  1930. uint32_t rxdma_entries;
  1931. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1932. union dp_rx_desc_list_elem_t *tail = NULL;
  1933. struct dp_srng *dp_rxdma_srng;
  1934. struct rx_desc_pool *rx_desc_pool;
  1935. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1936. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  1937. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1938. return QDF_STATUS_SUCCESS;
  1939. }
  1940. pdev = soc->pdev_list[pdev_id];
  1941. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1942. rxdma_entries = dp_rxdma_srng->num_entries;
  1943. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1944. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1945. dp_rx_desc_pool_alloc(soc, pdev_id,
  1946. DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
  1947. rx_desc_pool);
  1948. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1949. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1950. return dp_pdev_rx_buffers_attach(soc, pdev_id, dp_rxdma_srng,
  1951. rx_desc_pool, rxdma_entries - 1,
  1952. &desc_list, &tail);
  1953. }
  1954. /*
  1955. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1956. * @soc: core txrx main context
  1957. * @pdev: core txrx pdev context
  1958. *
  1959. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1960. * until retry times reaches max threshold or succeeded.
  1961. *
  1962. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1963. */
  1964. qdf_nbuf_t
  1965. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1966. {
  1967. uint8_t *buf;
  1968. int32_t nbuf_retry_count;
  1969. QDF_STATUS ret;
  1970. qdf_nbuf_t nbuf = NULL;
  1971. for (nbuf_retry_count = 0; nbuf_retry_count <
  1972. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1973. nbuf_retry_count++) {
  1974. /* Allocate a new skb */
  1975. nbuf = qdf_nbuf_alloc(soc->osdev,
  1976. RX_BUFFER_SIZE,
  1977. RX_BUFFER_RESERVATION,
  1978. RX_BUFFER_ALIGNMENT,
  1979. FALSE);
  1980. if (!nbuf) {
  1981. DP_STATS_INC(pdev,
  1982. replenish.nbuf_alloc_fail, 1);
  1983. continue;
  1984. }
  1985. buf = qdf_nbuf_data(nbuf);
  1986. memset(buf, 0, RX_BUFFER_SIZE);
  1987. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1988. QDF_DMA_FROM_DEVICE);
  1989. /* nbuf map failed */
  1990. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1991. qdf_nbuf_free(nbuf);
  1992. DP_STATS_INC(pdev, replenish.map_err, 1);
  1993. continue;
  1994. }
  1995. /* qdf_nbuf alloc and map succeeded */
  1996. break;
  1997. }
  1998. /* qdf_nbuf still alloc or map failed */
  1999. if (qdf_unlikely(nbuf_retry_count >=
  2000. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2001. return NULL;
  2002. return nbuf;
  2003. }