sde_hw_top.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include "sde_hwio.h"
  6. #include "sde_hw_catalog.h"
  7. #include "sde_hw_top.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #define SSPP_SPARE 0x28
  11. #define UBWC_DEC_HW_VERSION 0x058
  12. #define UBWC_STATIC 0x144
  13. #define UBWC_CTRL_2 0x150
  14. #define UBWC_PREDICTION_MODE 0x154
  15. #define FLD_SPLIT_DISPLAY_CMD BIT(1)
  16. #define FLD_SMART_PANEL_FREE_RUN BIT(2)
  17. #define FLD_INTF_1_SW_TRG_MUX BIT(4)
  18. #define FLD_INTF_2_SW_TRG_MUX BIT(8)
  19. #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
  20. #define MDP_DSPP_DBGBUS_CTRL 0x348
  21. #define MDP_DSPP_DBGBUS_STATUS 0x34C
  22. #define DANGER_STATUS 0x360
  23. #define SAFE_STATUS 0x364
  24. #define TE_LINE_INTERVAL 0x3F4
  25. #define TRAFFIC_SHAPER_EN BIT(31)
  26. #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
  27. #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
  28. #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
  29. #define MDP_WD_TIMER_0_CTL 0x380
  30. #define MDP_WD_TIMER_0_CTL2 0x384
  31. #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
  32. #define MDP_WD_TIMER_1_CTL 0x390
  33. #define MDP_WD_TIMER_1_CTL2 0x394
  34. #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
  35. #define MDP_PERIPH_DBGBUS_CTRL 0x418
  36. #define MDP_WD_TIMER_2_CTL 0x420
  37. #define MDP_WD_TIMER_2_CTL2 0x424
  38. #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
  39. #define MDP_WD_TIMER_3_CTL 0x430
  40. #define MDP_WD_TIMER_3_CTL2 0x434
  41. #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
  42. #define MDP_WD_TIMER_4_CTL 0x440
  43. #define MDP_WD_TIMER_4_CTL2 0x444
  44. #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
  45. #define MDP_TICK_COUNT 16
  46. #define XO_CLK_RATE 19200
  47. #define MS_TICKS_IN_SEC 1000
  48. #define AUTOREFRESH_TEST_POINT 0x2
  49. #define TEST_MASK(id, tp) ((id << 4) | (tp << 1) | BIT(0))
  50. #define CALCULATE_WD_LOAD_VALUE(fps) \
  51. ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
  52. #define DCE_SEL 0x450
  53. #define ROT_SID_RD 0x20
  54. #define ROT_SID_WR 0x24
  55. #define ROT_SID_ID_VAL 0x1c
  56. static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp,
  57. struct split_pipe_cfg *cfg)
  58. {
  59. struct sde_hw_blk_reg_map *c;
  60. u32 upper_pipe = 0;
  61. u32 lower_pipe = 0;
  62. if (!mdp || !cfg)
  63. return;
  64. c = &mdp->hw;
  65. if (cfg->en) {
  66. if (cfg->mode == INTF_MODE_CMD) {
  67. lower_pipe = FLD_SPLIT_DISPLAY_CMD;
  68. /* interface controlling sw trigger */
  69. if (cfg->intf == INTF_2)
  70. lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
  71. else
  72. lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
  73. /* free run */
  74. if (cfg->pp_split_slave != INTF_MAX)
  75. lower_pipe = FLD_SMART_PANEL_FREE_RUN;
  76. upper_pipe = lower_pipe;
  77. /* smart panel align mode */
  78. lower_pipe |= BIT(mdp->caps->smart_panel_align_mode);
  79. } else {
  80. if (cfg->intf == INTF_2) {
  81. lower_pipe = FLD_INTF_1_SW_TRG_MUX;
  82. upper_pipe = FLD_INTF_2_SW_TRG_MUX;
  83. } else {
  84. lower_pipe = FLD_INTF_2_SW_TRG_MUX;
  85. upper_pipe = FLD_INTF_1_SW_TRG_MUX;
  86. }
  87. }
  88. }
  89. SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
  90. SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
  91. SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
  92. SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
  93. }
  94. static u32 sde_hw_get_split_flush(struct sde_hw_mdp *mdp)
  95. {
  96. struct sde_hw_blk_reg_map *c;
  97. if (!mdp)
  98. return 0;
  99. c = &mdp->hw;
  100. return (SDE_REG_READ(c, SSPP_SPARE) & 0x1);
  101. }
  102. static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp,
  103. struct split_pipe_cfg *cfg)
  104. {
  105. u32 ppb_config = 0x0;
  106. u32 ppb_control = 0x0;
  107. if (!mdp || !cfg)
  108. return;
  109. if (cfg->split_link_en) {
  110. ppb_config |= BIT(16); /* split enable */
  111. ppb_control = BIT(5); /* horz split*/
  112. } else if (cfg->en && cfg->pp_split_slave != INTF_MAX) {
  113. ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20;
  114. ppb_config |= BIT(16); /* split enable */
  115. ppb_control = BIT(5); /* horz split*/
  116. }
  117. if (cfg->pp_split_index && !cfg->split_link_en) {
  118. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0);
  119. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0);
  120. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config);
  121. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control);
  122. } else {
  123. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config);
  124. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control);
  125. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0);
  126. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0);
  127. }
  128. }
  129. static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp,
  130. struct cdm_output_cfg *cfg)
  131. {
  132. struct sde_hw_blk_reg_map *c;
  133. u32 out_ctl = 0;
  134. if (!mdp || !cfg)
  135. return;
  136. c = &mdp->hw;
  137. if (cfg->wb_en)
  138. out_ctl |= BIT(24);
  139. else if (cfg->intf_en)
  140. out_ctl |= BIT(19);
  141. SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
  142. }
  143. static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp,
  144. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  145. {
  146. struct sde_hw_blk_reg_map *c;
  147. u32 reg_off, bit_off;
  148. u32 reg_val, new_val;
  149. bool clk_forced_on;
  150. if (!mdp)
  151. return false;
  152. c = &mdp->hw;
  153. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX)
  154. return false;
  155. reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
  156. bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
  157. reg_val = SDE_REG_READ(c, reg_off);
  158. if (enable)
  159. new_val = reg_val | BIT(bit_off);
  160. else
  161. new_val = reg_val & ~BIT(bit_off);
  162. SDE_REG_WRITE(c, reg_off, new_val);
  163. wmb(); /* ensure write finished before progressing */
  164. clk_forced_on = !(reg_val & BIT(bit_off));
  165. return clk_forced_on;
  166. }
  167. static void sde_hw_get_danger_status(struct sde_hw_mdp *mdp,
  168. struct sde_danger_safe_status *status)
  169. {
  170. struct sde_hw_blk_reg_map *c;
  171. u32 value;
  172. if (!mdp || !status)
  173. return;
  174. c = &mdp->hw;
  175. value = SDE_REG_READ(c, DANGER_STATUS);
  176. status->mdp = (value >> 0) & 0x3;
  177. status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
  178. status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
  179. status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
  180. status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
  181. status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
  182. status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
  183. status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
  184. status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
  185. status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
  186. status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
  187. status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
  188. status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
  189. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
  190. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
  191. status->wb[WB_0] = 0;
  192. status->wb[WB_1] = 0;
  193. status->wb[WB_2] = (value >> 2) & 0x3;
  194. status->wb[WB_3] = 0;
  195. }
  196. static void _update_vsync_source(struct sde_hw_mdp *mdp,
  197. struct sde_vsync_source_cfg *cfg)
  198. {
  199. struct sde_hw_blk_reg_map *c;
  200. u32 reg, wd_load_value, wd_ctl, wd_ctl2;
  201. if (!mdp || !cfg)
  202. return;
  203. c = &mdp->hw;
  204. if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 &&
  205. cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) {
  206. switch (cfg->vsync_source) {
  207. case SDE_VSYNC_SOURCE_WD_TIMER_4:
  208. wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
  209. wd_ctl = MDP_WD_TIMER_4_CTL;
  210. wd_ctl2 = MDP_WD_TIMER_4_CTL2;
  211. break;
  212. case SDE_VSYNC_SOURCE_WD_TIMER_3:
  213. wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
  214. wd_ctl = MDP_WD_TIMER_3_CTL;
  215. wd_ctl2 = MDP_WD_TIMER_3_CTL2;
  216. break;
  217. case SDE_VSYNC_SOURCE_WD_TIMER_2:
  218. wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
  219. wd_ctl = MDP_WD_TIMER_2_CTL;
  220. wd_ctl2 = MDP_WD_TIMER_2_CTL2;
  221. break;
  222. case SDE_VSYNC_SOURCE_WD_TIMER_1:
  223. wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
  224. wd_ctl = MDP_WD_TIMER_1_CTL;
  225. wd_ctl2 = MDP_WD_TIMER_1_CTL2;
  226. break;
  227. case SDE_VSYNC_SOURCE_WD_TIMER_0:
  228. default:
  229. wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
  230. wd_ctl = MDP_WD_TIMER_0_CTL;
  231. wd_ctl2 = MDP_WD_TIMER_0_CTL2;
  232. break;
  233. }
  234. if (cfg->is_dummy) {
  235. SDE_REG_WRITE(c, wd_ctl2, 0x0);
  236. } else {
  237. SDE_REG_WRITE(c, wd_load_value,
  238. CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
  239. SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
  240. reg = SDE_REG_READ(c, wd_ctl2);
  241. reg |= BIT(8); /* enable heartbeat timer */
  242. reg |= BIT(0); /* enable WD timer */
  243. SDE_REG_WRITE(c, wd_ctl2, reg);
  244. }
  245. /* make sure that timers are enabled/disabled for vsync state */
  246. wmb();
  247. }
  248. }
  249. static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp,
  250. struct sde_vsync_source_cfg *cfg)
  251. {
  252. struct sde_hw_blk_reg_map *c;
  253. u32 reg, i;
  254. static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
  255. if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
  256. return;
  257. c = &mdp->hw;
  258. reg = SDE_REG_READ(c, MDP_VSYNC_SEL);
  259. for (i = 0; i < cfg->pp_count; i++) {
  260. int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
  261. if (pp_idx >= ARRAY_SIZE(pp_offset))
  262. continue;
  263. reg &= ~(0xf << pp_offset[pp_idx]);
  264. reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
  265. }
  266. SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg);
  267. _update_vsync_source(mdp, cfg);
  268. }
  269. static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp,
  270. struct sde_vsync_source_cfg *cfg)
  271. {
  272. _update_vsync_source(mdp, cfg);
  273. }
  274. static void sde_hw_get_safe_status(struct sde_hw_mdp *mdp,
  275. struct sde_danger_safe_status *status)
  276. {
  277. struct sde_hw_blk_reg_map *c;
  278. u32 value;
  279. if (!mdp || !status)
  280. return;
  281. c = &mdp->hw;
  282. value = SDE_REG_READ(c, SAFE_STATUS);
  283. status->mdp = (value >> 0) & 0x1;
  284. status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
  285. status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
  286. status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
  287. status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
  288. status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
  289. status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
  290. status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
  291. status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
  292. status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
  293. status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
  294. status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
  295. status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
  296. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
  297. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
  298. status->wb[WB_0] = 0;
  299. status->wb[WB_1] = 0;
  300. status->wb[WB_2] = (value >> 2) & 0x1;
  301. status->wb[WB_3] = 0;
  302. }
  303. static void sde_hw_setup_dce(struct sde_hw_mdp *mdp, u32 dce_sel)
  304. {
  305. struct sde_hw_blk_reg_map *c;
  306. if (!mdp)
  307. return;
  308. c = &mdp->hw;
  309. SDE_REG_WRITE(c, DCE_SEL, dce_sel);
  310. }
  311. void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m)
  312. {
  313. struct sde_hw_blk_reg_map c;
  314. u32 ubwc_version;
  315. if (!mdp || !m)
  316. return;
  317. /* force blk offset to zero to access beginning of register region */
  318. c = mdp->hw;
  319. c.blk_off = 0x0;
  320. ubwc_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION);
  321. if (IS_UBWC_40_SUPPORTED(ubwc_version)) {
  322. u32 ver = 2;
  323. u32 mode = 1;
  324. u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) |
  325. ((m->mdp[0].ubwc_static & 0x1) << 3) |
  326. ((m->mdp[0].highest_bank_bit & 0x7) << 4) |
  327. ((m->macrotile_mode & 0x1) << 12);
  328. if (IS_UBWC_30_SUPPORTED(m->ubwc_version)) {
  329. ver = 1;
  330. mode = 0;
  331. }
  332. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  333. SDE_REG_WRITE(&c, UBWC_CTRL_2, ver);
  334. SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode);
  335. } else if (IS_UBWC_20_SUPPORTED(ubwc_version)) {
  336. SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
  337. } else if (IS_UBWC_30_SUPPORTED(ubwc_version)) {
  338. u32 reg = m->mdp[0].ubwc_static |
  339. (m->mdp[0].ubwc_swizzle & 0x1) |
  340. ((m->mdp[0].highest_bank_bit & 0x3) << 4) |
  341. ((m->macrotile_mode & 0x1) << 12);
  342. if (IS_UBWC_30_SUPPORTED(m->ubwc_version))
  343. reg |= BIT(10);
  344. if (IS_UBWC_10_SUPPORTED(m->ubwc_version))
  345. reg |= BIT(8);
  346. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  347. } else {
  348. SDE_ERROR("Unsupported UBWC version 0x%08x\n", ubwc_version);
  349. }
  350. }
  351. static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp)
  352. {
  353. struct sde_hw_blk_reg_map *c;
  354. if (!mdp)
  355. return;
  356. c = &mdp->hw;
  357. SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
  358. }
  359. static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable)
  360. {
  361. struct sde_hw_blk_reg_map *c;
  362. if (!mdp)
  363. return;
  364. c = &mdp->hw;
  365. SDE_REG_WRITE(c, HW_EVENTS_CTL, enable);
  366. }
  367. struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr,
  368. u32 sid_len, const struct sde_mdss_cfg *m)
  369. {
  370. struct sde_hw_sid *c;
  371. c = kzalloc(sizeof(*c), GFP_KERNEL);
  372. if (!c)
  373. return ERR_PTR(-ENOMEM);
  374. c->hw.base_off = addr;
  375. c->hw.blk_off = 0;
  376. c->hw.length = sid_len;
  377. c->hw.hwversion = m->hwversion;
  378. c->hw.log_mask = SDE_DBG_MASK_SID;
  379. return c;
  380. }
  381. void sde_hw_sid_rotator_set(struct sde_hw_sid *sid)
  382. {
  383. SDE_REG_WRITE(&sid->hw, ROT_SID_RD, ROT_SID_ID_VAL);
  384. SDE_REG_WRITE(&sid->hw, ROT_SID_WR, ROT_SID_ID_VAL);
  385. }
  386. static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp,
  387. bool dual, bool dspp_out)
  388. {
  389. u32 value = dspp_out ? 0x4 : 0x0;
  390. SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value);
  391. if (dual) {
  392. value |= 0x1;
  393. SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value);
  394. }
  395. }
  396. static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp,
  397. u8 *payload, u32 len, u32 stream_id)
  398. {
  399. u32 i, b;
  400. u32 length = len - 1;
  401. u32 d_offset, nb_offset, data = 0;
  402. const u32 dword_size = sizeof(u32);
  403. bool is_4k_aligned = mdp->caps->features &
  404. BIT(SDE_MDP_DHDR_MEMPOOL_4K);
  405. if (!payload || !len) {
  406. SDE_ERROR("invalid payload with length: %d\n", len);
  407. return;
  408. }
  409. if (stream_id) {
  410. if (is_4k_aligned) {
  411. d_offset = DP_DHDR_MEM_POOL_1_DATA_4K;
  412. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES_4K;
  413. } else {
  414. d_offset = DP_DHDR_MEM_POOL_1_DATA;
  415. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES;
  416. }
  417. } else {
  418. if (is_4k_aligned) {
  419. d_offset = DP_DHDR_MEM_POOL_0_DATA_4K;
  420. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES_4K;
  421. } else {
  422. d_offset = DP_DHDR_MEM_POOL_0_DATA;
  423. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES;
  424. }
  425. }
  426. /* payload[0] is set in VSCEXT header byte 1, skip programming here */
  427. SDE_REG_WRITE(&mdp->hw, nb_offset, length);
  428. for (i = 1; i < len; i += dword_size) {
  429. for (b = 0; (i + b) < len && b < dword_size; b++)
  430. data |= payload[i + b] << (8 * b);
  431. SDE_REG_WRITE(&mdp->hw, d_offset, data);
  432. data = 0;
  433. }
  434. }
  435. static u32 sde_hw_get_autorefresh_status(struct sde_hw_mdp *mdp, u32 intf_idx)
  436. {
  437. struct sde_hw_blk_reg_map *c;
  438. u32 autorefresh_status;
  439. u32 blk_id = (intf_idx == INTF_2) ? 65 : 64;
  440. if (!mdp)
  441. return 0;
  442. c = &mdp->hw;
  443. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL,
  444. TEST_MASK(blk_id, AUTOREFRESH_TEST_POINT));
  445. SDE_REG_WRITE(&mdp->hw, MDP_DSPP_DBGBUS_CTRL, 0x7001);
  446. wmb(); /* make sure test bits were written */
  447. autorefresh_status = SDE_REG_READ(&mdp->hw, MDP_DSPP_DBGBUS_STATUS);
  448. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL, 0x0);
  449. return autorefresh_status;
  450. }
  451. static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops,
  452. unsigned long cap)
  453. {
  454. ops->setup_split_pipe = sde_hw_setup_split_pipe;
  455. ops->setup_pp_split = sde_hw_setup_pp_split;
  456. ops->setup_cdm_output = sde_hw_setup_cdm_output;
  457. ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl;
  458. ops->get_danger_status = sde_hw_get_danger_status;
  459. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  460. ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl;
  461. ops->get_safe_status = sde_hw_get_safe_status;
  462. ops->get_split_flush_status = sde_hw_get_split_flush;
  463. ops->setup_dce = sde_hw_setup_dce;
  464. ops->reset_ubwc = sde_hw_reset_ubwc;
  465. ops->intf_audio_select = sde_hw_intf_audio_select;
  466. ops->set_mdp_hw_events = sde_hw_mdp_events;
  467. if (cap & BIT(SDE_MDP_VSYNC_SEL))
  468. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  469. else
  470. ops->setup_vsync_source = sde_hw_setup_vsync_source_v1;
  471. if (cap & BIT(SDE_MDP_DHDR_MEMPOOL_4K) ||
  472. cap & BIT(SDE_MDP_DHDR_MEMPOOL))
  473. ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata;
  474. ops->get_autorefresh_status = sde_hw_get_autorefresh_status;
  475. }
  476. static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp,
  477. const struct sde_mdss_cfg *m,
  478. void __iomem *addr,
  479. struct sde_hw_blk_reg_map *b)
  480. {
  481. int i;
  482. if (!m || !addr || !b)
  483. return ERR_PTR(-EINVAL);
  484. for (i = 0; i < m->mdp_count; i++) {
  485. if (mdp == m->mdp[i].id) {
  486. b->base_off = addr;
  487. b->blk_off = m->mdp[i].base;
  488. b->length = m->mdp[i].len;
  489. b->hwversion = m->hwversion;
  490. b->log_mask = SDE_DBG_MASK_TOP;
  491. return &m->mdp[i];
  492. }
  493. }
  494. return ERR_PTR(-EINVAL);
  495. }
  496. static struct sde_hw_blk_ops sde_hw_ops = {
  497. .start = NULL,
  498. .stop = NULL,
  499. };
  500. struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx,
  501. void __iomem *addr,
  502. const struct sde_mdss_cfg *m)
  503. {
  504. struct sde_hw_mdp *mdp;
  505. const struct sde_mdp_cfg *cfg;
  506. int rc;
  507. if (!addr || !m)
  508. return ERR_PTR(-EINVAL);
  509. mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
  510. if (!mdp)
  511. return ERR_PTR(-ENOMEM);
  512. cfg = _top_offset(idx, m, addr, &mdp->hw);
  513. if (IS_ERR_OR_NULL(cfg)) {
  514. kfree(mdp);
  515. return ERR_PTR(-EINVAL);
  516. }
  517. /*
  518. * Assign ops
  519. */
  520. mdp->idx = idx;
  521. mdp->caps = cfg;
  522. _setup_mdp_ops(&mdp->ops, mdp->caps->features);
  523. rc = sde_hw_blk_init(&mdp->base, SDE_HW_BLK_TOP, idx, &sde_hw_ops);
  524. if (rc) {
  525. SDE_ERROR("failed to init hw blk %d\n", rc);
  526. goto blk_init_error;
  527. }
  528. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, "mdss_hw", 0,
  529. m->mdss_hw_block_size, 0);
  530. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name,
  531. mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length,
  532. mdp->hw.xin_id);
  533. sde_dbg_set_sde_top_offset(mdp->hw.blk_off);
  534. return mdp;
  535. blk_init_error:
  536. kzfree(mdp);
  537. return ERR_PTR(rc);
  538. }
  539. void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp)
  540. {
  541. if (mdp)
  542. sde_hw_blk_destroy(&mdp->base);
  543. kfree(mdp);
  544. }