sde_hw_reg_dma_v1.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/iopoll.h>
  6. #include "sde_hw_mdss.h"
  7. #include "sde_hw_ctl.h"
  8. #include "sde_hw_reg_dma_v1.h"
  9. #include "msm_drv.h"
  10. #include "msm_mmu.h"
  11. #include "sde_dbg.h"
  12. #define GUARD_BYTES (BIT(8) - 1)
  13. #define ALIGNED_OFFSET (U32_MAX & ~(GUARD_BYTES))
  14. #define ADDR_ALIGN BIT(8)
  15. #define MAX_RELATIVE_OFF (BIT(20) - 1)
  16. #define ABSOLUTE_RANGE BIT(27)
  17. #define DECODE_SEL_OP (BIT(HW_BLK_SELECT))
  18. #define REG_WRITE_OP ((BIT(REG_SINGLE_WRITE)) | (BIT(REG_BLK_WRITE_SINGLE)) | \
  19. (BIT(REG_BLK_WRITE_INC)) | (BIT(REG_BLK_WRITE_MULTIPLE)) | \
  20. (BIT(REG_SINGLE_MODIFY)) | (BIT(REG_BLK_LUT_WRITE)))
  21. #define REG_DMA_OPS (DECODE_SEL_OP | REG_WRITE_OP)
  22. #define IS_OP_ALLOWED(op, buf_op) (BIT(op) & buf_op)
  23. #define SET_UP_REG_DMA_REG(hw, reg_dma, i) \
  24. do { \
  25. if ((reg_dma)->caps->reg_dma_blks[(i)].valid == false) \
  26. break; \
  27. (hw).base_off = (reg_dma)->addr; \
  28. (hw).blk_off = (reg_dma)->caps->reg_dma_blks[(i)].base; \
  29. (hw).hwversion = (reg_dma)->caps->version; \
  30. (hw).log_mask = SDE_DBG_MASK_REGDMA; \
  31. } while (0)
  32. #define SIZE_DWORD(x) ((x) / (sizeof(u32)))
  33. #define NOT_WORD_ALIGNED(x) ((x) & 0x3)
  34. #define GRP_VIG_HW_BLK_SELECT (VIG0 | VIG1 | VIG2 | VIG3)
  35. #define GRP_DMA_HW_BLK_SELECT (DMA0 | DMA1 | DMA2 | DMA3)
  36. #define GRP_DSPP_HW_BLK_SELECT (DSPP0 | DSPP1 | DSPP2 | DSPP3)
  37. #define GRP_LTM_HW_BLK_SELECT (LTM0 | LTM1)
  38. #define GRP_MDSS_HW_BLK_SELECT (MDSS)
  39. #define BUFFER_SPACE_LEFT(cfg) ((cfg)->dma_buf->buffer_size - \
  40. (cfg)->dma_buf->index)
  41. #define REL_ADDR_OPCODE (BIT(27))
  42. #define NO_OP_OPCODE (0)
  43. #define SINGLE_REG_WRITE_OPCODE (BIT(28))
  44. #define SINGLE_REG_MODIFY_OPCODE (BIT(29))
  45. #define HW_INDEX_REG_WRITE_OPCODE (BIT(28) | BIT(29))
  46. #define AUTO_INC_REG_WRITE_OPCODE (BIT(30))
  47. #define BLK_REG_WRITE_OPCODE (BIT(30) | BIT(28))
  48. #define LUTBUS_WRITE_OPCODE (BIT(30) | BIT(29))
  49. #define WRAP_MIN_SIZE 2
  50. #define WRAP_MAX_SIZE (BIT(4) - 1)
  51. #define MAX_DWORDS_SZ (BIT(14) - 1)
  52. #define REG_DMA_HEADERS_BUFFER_SZ (sizeof(u32) * 128)
  53. #define LUTBUS_TABLE_SEL_MASK 0x10000
  54. #define LUTBUS_BLOCK_SEL_MASK 0xffff
  55. #define LUTBUS_TRANS_SZ_MASK 0xff0000
  56. #define LUTBUS_LUT_SIZE_MASK 0x3fff
  57. static uint32_t reg_dma_register_count;
  58. static uint32_t reg_dma_decode_sel;
  59. static uint32_t reg_dma_opmode_offset;
  60. static uint32_t reg_dma_ctl0_queue0_cmd0_offset;
  61. static uint32_t reg_dma_ctl0_queue1_cmd0_offset;
  62. static uint32_t reg_dma_intr_status_offset;
  63. static uint32_t reg_dma_intr_4_status_offset;
  64. static uint32_t reg_dma_intr_clear_offset;
  65. static uint32_t reg_dma_ctl_trigger_offset;
  66. static uint32_t reg_dma_ctl0_reset_offset;
  67. static uint32_t reg_dma_error_clear_mask;
  68. static uint32_t reg_dma_ctl_queue_off[CTL_MAX];
  69. static uint32_t reg_dma_ctl_queue1_off[CTL_MAX];
  70. typedef int (*reg_dma_internal_ops) (struct sde_reg_dma_setup_ops_cfg *cfg);
  71. static struct sde_hw_reg_dma *reg_dma;
  72. static u32 ops_mem_size[REG_DMA_SETUP_OPS_MAX] = {
  73. [REG_BLK_WRITE_SINGLE] = sizeof(u32) * 2,
  74. [REG_BLK_WRITE_INC] = sizeof(u32) * 2,
  75. [REG_BLK_WRITE_MULTIPLE] = sizeof(u32) * 2,
  76. [HW_BLK_SELECT] = sizeof(u32) * 2,
  77. [REG_SINGLE_WRITE] = sizeof(u32) * 2,
  78. [REG_SINGLE_MODIFY] = sizeof(u32) * 3,
  79. [REG_BLK_LUT_WRITE] = sizeof(u32) * 2,
  80. };
  81. static u32 queue_sel[DMA_CTL_QUEUE_MAX] = {
  82. [DMA_CTL_QUEUE0] = BIT(0),
  83. [DMA_CTL_QUEUE1] = BIT(4),
  84. };
  85. static u32 dspp_read_sel[DSPP_HIST_MAX] = {
  86. [DSPP0_HIST] = 0,
  87. [DSPP1_HIST] = 1,
  88. [DSPP2_HIST] = 2,
  89. [DSPP3_HIST] = 3,
  90. };
  91. static u32 v1_supported[REG_DMA_FEATURES_MAX] = {
  92. [GAMUT] = GRP_VIG_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT,
  93. [VLUT] = GRP_DSPP_HW_BLK_SELECT,
  94. [GC] = GRP_DSPP_HW_BLK_SELECT,
  95. [IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT,
  96. [PCC] = GRP_DSPP_HW_BLK_SELECT,
  97. };
  98. static u32 ctl_trigger_done_mask[CTL_MAX][DMA_CTL_QUEUE_MAX] = {
  99. [CTL_0][0] = BIT(16),
  100. [CTL_0][1] = BIT(21),
  101. [CTL_1][0] = BIT(17),
  102. [CTL_1][1] = BIT(22),
  103. [CTL_2][0] = BIT(18),
  104. [CTL_2][1] = BIT(23),
  105. [CTL_3][0] = BIT(19),
  106. [CTL_3][1] = BIT(24),
  107. [CTL_4][0] = BIT(25),
  108. [CTL_4][1] = BIT(27),
  109. [CTL_5][0] = BIT(26),
  110. [CTL_5][1] = BIT(28),
  111. };
  112. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg);
  113. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  114. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  115. static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg);
  116. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  117. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  118. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  119. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  120. static int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg);
  121. static int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg);
  122. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  123. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg);
  124. static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  125. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  126. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf);
  127. static int check_support_v1(enum sde_reg_dma_features feature,
  128. enum sde_reg_dma_blk blk, bool *is_supported);
  129. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg);
  130. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg);
  131. static int reset_v1(struct sde_hw_ctl *ctl);
  132. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  133. enum sde_reg_dma_last_cmd_mode mode);
  134. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size);
  135. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *lut_buf);
  136. static void dump_regs_v1(void);
  137. static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  138. enum sde_reg_dma_last_cmd_mode mode);
  139. static reg_dma_internal_ops write_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  140. [HW_BLK_SELECT] = write_decode_sel,
  141. [REG_SINGLE_WRITE] = write_single_reg,
  142. [REG_BLK_WRITE_SINGLE] = write_multi_reg_inc,
  143. [REG_BLK_WRITE_INC] = write_multi_reg_index,
  144. [REG_BLK_WRITE_MULTIPLE] = write_multi_lut_reg,
  145. [REG_SINGLE_MODIFY] = write_single_modify,
  146. [REG_BLK_LUT_WRITE] = write_block_lut_reg,
  147. };
  148. static reg_dma_internal_ops validate_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  149. [HW_BLK_SELECT] = validate_write_decode_sel,
  150. [REG_SINGLE_WRITE] = validate_write_reg,
  151. [REG_BLK_WRITE_SINGLE] = validate_write_reg,
  152. [REG_BLK_WRITE_INC] = validate_write_reg,
  153. [REG_BLK_WRITE_MULTIPLE] = validate_write_multi_lut_reg,
  154. [REG_SINGLE_MODIFY] = validate_write_reg,
  155. [REG_BLK_LUT_WRITE] = validate_blk_lut_write,
  156. };
  157. static struct sde_reg_dma_buffer *last_cmd_buf_db[CTL_MAX];
  158. static struct sde_reg_dma_buffer *last_cmd_buf_sb[CTL_MAX];
  159. static void get_decode_sel(unsigned long blk, u32 *decode_sel)
  160. {
  161. int i = 0;
  162. *decode_sel = 0;
  163. for_each_set_bit(i, &blk, REG_DMA_BLK_MAX) {
  164. switch (BIT(i)) {
  165. case VIG0:
  166. *decode_sel |= BIT(0);
  167. break;
  168. case VIG1:
  169. *decode_sel |= BIT(1);
  170. break;
  171. case VIG2:
  172. *decode_sel |= BIT(2);
  173. break;
  174. case VIG3:
  175. *decode_sel |= BIT(3);
  176. break;
  177. case DMA0:
  178. *decode_sel |= BIT(5);
  179. break;
  180. case DMA1:
  181. *decode_sel |= BIT(6);
  182. break;
  183. case DMA2:
  184. *decode_sel |= BIT(7);
  185. break;
  186. case DMA3:
  187. *decode_sel |= BIT(8);
  188. break;
  189. case DSPP0:
  190. *decode_sel |= BIT(17);
  191. break;
  192. case DSPP1:
  193. *decode_sel |= BIT(18);
  194. break;
  195. case DSPP2:
  196. *decode_sel |= BIT(19);
  197. break;
  198. case DSPP3:
  199. *decode_sel |= BIT(20);
  200. break;
  201. case SSPP_IGC:
  202. *decode_sel |= BIT(4);
  203. break;
  204. case DSPP_IGC:
  205. *decode_sel |= BIT(21);
  206. break;
  207. case LTM0:
  208. *decode_sel |= BIT(22);
  209. break;
  210. case LTM1:
  211. *decode_sel |= BIT(23);
  212. break;
  213. case MDSS:
  214. *decode_sel |= BIT(31);
  215. break;
  216. default:
  217. DRM_ERROR("block not supported %zx\n", (size_t)BIT(i));
  218. break;
  219. }
  220. }
  221. }
  222. static int write_multi_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  223. {
  224. u8 *loc = NULL;
  225. loc = (u8 *)cfg->dma_buf->vaddr + cfg->dma_buf->index;
  226. memcpy(loc, cfg->data, cfg->data_size);
  227. cfg->dma_buf->index += cfg->data_size;
  228. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  229. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  230. return 0;
  231. }
  232. int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg)
  233. {
  234. u32 *loc = NULL;
  235. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  236. cfg->dma_buf->index);
  237. loc[0] = HW_INDEX_REG_WRITE_OPCODE;
  238. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  239. if (cfg->blk == MDSS)
  240. loc[0] |= ABSOLUTE_RANGE;
  241. loc[1] = SIZE_DWORD(cfg->data_size);
  242. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  243. return write_multi_reg(cfg);
  244. }
  245. int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg)
  246. {
  247. u32 *loc = NULL;
  248. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  249. cfg->dma_buf->index);
  250. loc[0] = AUTO_INC_REG_WRITE_OPCODE;
  251. if (cfg->blk == MDSS)
  252. loc[0] |= ABSOLUTE_RANGE;
  253. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  254. loc[1] = SIZE_DWORD(cfg->data_size);
  255. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  256. return write_multi_reg(cfg);
  257. }
  258. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  259. {
  260. u32 *loc = NULL;
  261. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  262. cfg->dma_buf->index);
  263. loc[0] = BLK_REG_WRITE_OPCODE;
  264. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  265. if (cfg->blk == MDSS)
  266. loc[0] |= ABSOLUTE_RANGE;
  267. loc[1] = (cfg->inc) ? 0 : BIT(31);
  268. loc[1] |= (cfg->wrap_size & WRAP_MAX_SIZE) << 16;
  269. loc[1] |= ((SIZE_DWORD(cfg->data_size)) & MAX_DWORDS_SZ);
  270. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  271. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  272. return write_multi_reg(cfg);
  273. }
  274. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  275. {
  276. u32 *loc = NULL;
  277. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  278. cfg->dma_buf->index);
  279. loc[0] = SINGLE_REG_WRITE_OPCODE;
  280. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  281. if (cfg->blk == MDSS)
  282. loc[0] |= ABSOLUTE_RANGE;
  283. loc[1] = *cfg->data;
  284. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  285. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  286. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  287. return 0;
  288. }
  289. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg)
  290. {
  291. u32 *loc = NULL;
  292. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  293. cfg->dma_buf->index);
  294. loc[0] = SINGLE_REG_MODIFY_OPCODE;
  295. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  296. if (cfg->blk == MDSS)
  297. loc[0] |= ABSOLUTE_RANGE;
  298. loc[1] = cfg->mask;
  299. loc[2] = *cfg->data;
  300. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  301. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  302. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  303. return 0;
  304. }
  305. static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  306. {
  307. u32 *loc = NULL;
  308. int rc = -EINVAL;
  309. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  310. cfg->dma_buf->index);
  311. loc[0] = LUTBUS_WRITE_OPCODE;
  312. loc[0] |= (cfg->table_sel << 16) & LUTBUS_TABLE_SEL_MASK;
  313. loc[0] |= (cfg->block_sel & LUTBUS_BLOCK_SEL_MASK);
  314. loc[1] = (cfg->trans_size << 16) & LUTBUS_TRANS_SZ_MASK;
  315. loc[1] |= (cfg->lut_size & LUTBUS_LUT_SIZE_MASK);
  316. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  317. rc = write_multi_reg(cfg);
  318. if (rc)
  319. return rc;
  320. /* adding 3 NO OPs as SW workaround for REG_BLK_LUT_WRITE
  321. * HW limitation that requires the residual data plus the
  322. * following opcode to exceed 4 DWORDs length.
  323. */
  324. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  325. cfg->dma_buf->index);
  326. loc[0] = NO_OP_OPCODE;
  327. loc[1] = NO_OP_OPCODE;
  328. loc[2] = NO_OP_OPCODE;
  329. cfg->dma_buf->index += sizeof(u32) * 3;
  330. return 0;
  331. }
  332. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  333. {
  334. u32 *loc = NULL;
  335. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  336. cfg->dma_buf->index);
  337. loc[0] = reg_dma_decode_sel;
  338. get_decode_sel(cfg->blk, &loc[1]);
  339. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  340. cfg->dma_buf->ops_completed |= DECODE_SEL_OP;
  341. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  342. return 0;
  343. }
  344. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  345. {
  346. int rc;
  347. rc = validate_write_reg(cfg);
  348. if (rc)
  349. return rc;
  350. if (cfg->wrap_size < WRAP_MIN_SIZE || cfg->wrap_size > WRAP_MAX_SIZE) {
  351. DRM_ERROR("invalid wrap sz %d min %d max %zd\n",
  352. cfg->wrap_size, WRAP_MIN_SIZE, (size_t)WRAP_MAX_SIZE);
  353. rc = -EINVAL;
  354. }
  355. return rc;
  356. }
  357. static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg)
  358. {
  359. int rc;
  360. rc = validate_write_reg(cfg);
  361. if (rc)
  362. return rc;
  363. if (cfg->table_sel >= LUTBUS_TABLE_SELECT_MAX ||
  364. cfg->block_sel >= LUTBUS_BLOCK_MAX ||
  365. (cfg->trans_size != LUTBUS_IGC_TRANS_SIZE &&
  366. cfg->trans_size != LUTBUS_GAMUT_TRANS_SIZE)) {
  367. DRM_ERROR("invalid table_sel %d block_sel %d trans_size %d\n",
  368. cfg->table_sel, cfg->block_sel,
  369. cfg->trans_size);
  370. rc = -EINVAL;
  371. }
  372. return rc;
  373. }
  374. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  375. {
  376. u32 remain_len, write_len;
  377. remain_len = BUFFER_SPACE_LEFT(cfg);
  378. write_len = ops_mem_size[cfg->ops] + cfg->data_size;
  379. if (remain_len < write_len) {
  380. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  381. remain_len, write_len);
  382. return -EINVAL;
  383. }
  384. if (!cfg->data) {
  385. DRM_ERROR("invalid data %pK size %d exp sz %d\n", cfg->data,
  386. cfg->data_size, write_len);
  387. return -EINVAL;
  388. }
  389. if ((SIZE_DWORD(cfg->data_size)) > MAX_DWORDS_SZ ||
  390. NOT_WORD_ALIGNED(cfg->data_size)) {
  391. DRM_ERROR("Invalid data size %d max %zd align %x\n",
  392. cfg->data_size, (size_t)MAX_DWORDS_SZ,
  393. NOT_WORD_ALIGNED(cfg->data_size));
  394. return -EINVAL;
  395. }
  396. if (cfg->blk_offset > MAX_RELATIVE_OFF ||
  397. NOT_WORD_ALIGNED(cfg->blk_offset)) {
  398. DRM_ERROR("invalid offset %d max %zd align %x\n",
  399. cfg->blk_offset, (size_t)MAX_RELATIVE_OFF,
  400. NOT_WORD_ALIGNED(cfg->blk_offset));
  401. return -EINVAL;
  402. }
  403. return 0;
  404. }
  405. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  406. {
  407. u32 remain_len;
  408. bool vig_blk, dma_blk, dspp_blk, mdss_blk;
  409. remain_len = BUFFER_SPACE_LEFT(cfg);
  410. if (remain_len < ops_mem_size[HW_BLK_SELECT]) {
  411. DRM_ERROR("buffer is full needs %d bytes\n",
  412. ops_mem_size[HW_BLK_SELECT]);
  413. return -EINVAL;
  414. }
  415. if (!cfg->blk) {
  416. DRM_ERROR("blk set as 0\n");
  417. return -EINVAL;
  418. }
  419. vig_blk = (cfg->blk & GRP_VIG_HW_BLK_SELECT) ? true : false;
  420. dma_blk = (cfg->blk & GRP_DMA_HW_BLK_SELECT) ? true : false;
  421. dspp_blk = (cfg->blk & GRP_DSPP_HW_BLK_SELECT) ? true : false;
  422. mdss_blk = (cfg->blk & MDSS) ? true : false;
  423. if ((vig_blk && dspp_blk) || (dma_blk && dspp_blk) ||
  424. (vig_blk && dma_blk) ||
  425. (mdss_blk && (vig_blk | dma_blk | dspp_blk))) {
  426. DRM_ERROR("invalid blk combination %x\n", cfg->blk);
  427. return -EINVAL;
  428. }
  429. return 0;
  430. }
  431. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg)
  432. {
  433. int rc = 0;
  434. bool supported;
  435. if (!cfg || cfg->ops >= REG_DMA_SETUP_OPS_MAX || !cfg->dma_buf) {
  436. DRM_ERROR("invalid param cfg %pK ops %d dma_buf %pK\n",
  437. cfg, ((cfg) ? cfg->ops : REG_DMA_SETUP_OPS_MAX),
  438. ((cfg) ? cfg->dma_buf : NULL));
  439. return -EINVAL;
  440. }
  441. rc = check_support_v1(cfg->feature, cfg->blk, &supported);
  442. if (rc || !supported) {
  443. DRM_ERROR("check support failed rc %d supported %d\n",
  444. rc, supported);
  445. rc = -EINVAL;
  446. return rc;
  447. }
  448. if (cfg->dma_buf->index >= cfg->dma_buf->buffer_size ||
  449. NOT_WORD_ALIGNED(cfg->dma_buf->index)) {
  450. DRM_ERROR("Buf Overflow index %d max size %d align %x\n",
  451. cfg->dma_buf->index, cfg->dma_buf->buffer_size,
  452. NOT_WORD_ALIGNED(cfg->dma_buf->index));
  453. return -EINVAL;
  454. }
  455. if (cfg->dma_buf->iova & GUARD_BYTES || !cfg->dma_buf->vaddr) {
  456. DRM_ERROR("iova not aligned to %zx iova %llx kva %pK",
  457. (size_t)ADDR_ALIGN, cfg->dma_buf->iova,
  458. cfg->dma_buf->vaddr);
  459. return -EINVAL;
  460. }
  461. if (!IS_OP_ALLOWED(cfg->ops, cfg->dma_buf->next_op_allowed)) {
  462. DRM_ERROR("invalid op %x allowed %x\n", cfg->ops,
  463. cfg->dma_buf->next_op_allowed);
  464. return -EINVAL;
  465. }
  466. if (!validate_dma_op_params[cfg->ops] ||
  467. !write_dma_op_params[cfg->ops]) {
  468. DRM_ERROR("invalid op %d validate %pK write %pK\n", cfg->ops,
  469. validate_dma_op_params[cfg->ops],
  470. write_dma_op_params[cfg->ops]);
  471. return -EINVAL;
  472. }
  473. return rc;
  474. }
  475. static int validate_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  476. {
  477. if (!cfg || !cfg->ctl || !cfg->dma_buf ||
  478. cfg->dma_type >= REG_DMA_TYPE_MAX) {
  479. DRM_ERROR("invalid cfg %pK ctl %pK dma_buf %pK dma type %d\n",
  480. cfg, ((!cfg) ? NULL : cfg->ctl),
  481. ((!cfg) ? NULL : cfg->dma_buf),
  482. ((!cfg) ? 0 : cfg->dma_type));
  483. return -EINVAL;
  484. }
  485. if (reg_dma->caps->reg_dma_blks[cfg->dma_type].valid == false) {
  486. DRM_DEBUG("REG dma type %d is not supported\n", cfg->dma_type);
  487. return -EOPNOTSUPP;
  488. }
  489. if (cfg->ctl->idx < CTL_0 && cfg->ctl->idx >= CTL_MAX) {
  490. DRM_ERROR("invalid ctl idx %d\n", cfg->ctl->idx);
  491. return -EINVAL;
  492. }
  493. if (cfg->op >= REG_DMA_OP_MAX) {
  494. DRM_ERROR("invalid op %d\n", cfg->op);
  495. return -EINVAL;
  496. }
  497. if ((cfg->op == REG_DMA_WRITE) &&
  498. (!(cfg->dma_buf->ops_completed & DECODE_SEL_OP) ||
  499. !(cfg->dma_buf->ops_completed & REG_WRITE_OP))) {
  500. DRM_ERROR("incomplete write ops %x\n",
  501. cfg->dma_buf->ops_completed);
  502. return -EINVAL;
  503. }
  504. if (cfg->op == REG_DMA_READ && cfg->block_select >= DSPP_HIST_MAX) {
  505. DRM_ERROR("invalid block for read %d\n", cfg->block_select);
  506. return -EINVAL;
  507. }
  508. /* Only immediate triggers are supported now hence hardcode */
  509. cfg->trigger_mode = (cfg->op == REG_DMA_READ) ? (READ_TRIGGER) :
  510. (WRITE_TRIGGER);
  511. if (cfg->dma_buf->iova & GUARD_BYTES) {
  512. DRM_ERROR("Address is not aligned to %zx iova %llx",
  513. (size_t)ADDR_ALIGN, cfg->dma_buf->iova);
  514. return -EINVAL;
  515. }
  516. if (cfg->queue_select >= DMA_CTL_QUEUE_MAX) {
  517. DRM_ERROR("invalid queue selected %d\n", cfg->queue_select);
  518. return -EINVAL;
  519. }
  520. if (SIZE_DWORD(cfg->dma_buf->index) > MAX_DWORDS_SZ ||
  521. !cfg->dma_buf->index) {
  522. DRM_ERROR("invalid dword size %zd max %zd\n",
  523. (size_t)SIZE_DWORD(cfg->dma_buf->index),
  524. (size_t)MAX_DWORDS_SZ);
  525. return -EINVAL;
  526. }
  527. if (cfg->dma_type == REG_DMA_TYPE_SB &&
  528. (cfg->queue_select != DMA_CTL_QUEUE1 ||
  529. cfg->op == REG_DMA_READ)) {
  530. DRM_ERROR("invalid queue selected %d or op %d for SB LUTDMA\n",
  531. cfg->queue_select, cfg->op);
  532. return -EINVAL;
  533. }
  534. return 0;
  535. }
  536. static int write_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  537. {
  538. u32 cmd1, mask = 0, val = 0;
  539. struct sde_hw_blk_reg_map hw;
  540. memset(&hw, 0, sizeof(hw));
  541. msm_gem_sync(cfg->dma_buf->buf);
  542. cmd1 = (cfg->op == REG_DMA_READ) ?
  543. (dspp_read_sel[cfg->block_select] << 30) : 0;
  544. cmd1 |= (cfg->last_command) ? BIT(24) : 0;
  545. cmd1 |= (cfg->op == REG_DMA_READ) ? (2 << 22) : 0;
  546. cmd1 |= (cfg->op == REG_DMA_WRITE) ? (BIT(22)) : 0;
  547. cmd1 |= (SIZE_DWORD(cfg->dma_buf->index) & MAX_DWORDS_SZ);
  548. if (cfg->dma_type == REG_DMA_TYPE_DB)
  549. SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_DB);
  550. else if (cfg->dma_type == REG_DMA_TYPE_SB)
  551. SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_SB);
  552. if (hw.hwversion == 0) {
  553. DRM_ERROR("DMA type %d is unsupported\n", cfg->dma_type);
  554. return -EOPNOTSUPP;
  555. }
  556. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  557. val = SDE_REG_READ(&hw, reg_dma_intr_4_status_offset);
  558. if (val) {
  559. DRM_DEBUG("LUT dma status %x\n", val);
  560. mask = reg_dma_error_clear_mask;
  561. SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset + sizeof(u32) * 4,
  562. mask);
  563. SDE_EVT32(val);
  564. }
  565. if (cfg->dma_type == REG_DMA_TYPE_DB) {
  566. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx],
  567. cfg->dma_buf->iova);
  568. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx] + 0x4,
  569. cmd1);
  570. } else if (cfg->dma_type == REG_DMA_TYPE_SB) {
  571. SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx],
  572. cfg->dma_buf->iova);
  573. SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx] + 0x4,
  574. cmd1);
  575. }
  576. if (cfg->last_command) {
  577. mask = ctl_trigger_done_mask[cfg->ctl->idx][cfg->queue_select];
  578. SDE_REG_WRITE(&hw, reg_dma_intr_clear_offset, mask);
  579. /* DB LUTDMA use SW trigger while SB LUTDMA uses DSPP_SB
  580. * flush as its trigger event.
  581. */
  582. if (cfg->dma_type == REG_DMA_TYPE_DB) {
  583. SDE_REG_WRITE(&cfg->ctl->hw, reg_dma_ctl_trigger_offset,
  584. queue_sel[cfg->queue_select]);
  585. }
  586. }
  587. return 0;
  588. }
  589. int init_v1(struct sde_hw_reg_dma *cfg)
  590. {
  591. int i = 0, rc = 0;
  592. if (!cfg)
  593. return -EINVAL;
  594. reg_dma = cfg;
  595. for (i = CTL_0; i < CTL_MAX; i++) {
  596. if (!last_cmd_buf_db[i]) {
  597. last_cmd_buf_db[i] =
  598. alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
  599. if (IS_ERR_OR_NULL(last_cmd_buf_db[i])) {
  600. /*
  601. * This will allow reg dma to fall back to
  602. * AHB domain
  603. */
  604. pr_info("Failed to allocate reg dma, ret:%lu\n",
  605. PTR_ERR(last_cmd_buf_db[i]));
  606. return 0;
  607. }
  608. }
  609. if (!last_cmd_buf_sb[i]) {
  610. last_cmd_buf_sb[i] =
  611. alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
  612. if (IS_ERR_OR_NULL(last_cmd_buf_sb[i])) {
  613. /*
  614. * This will allow reg dma to fall back to
  615. * AHB domain
  616. */
  617. pr_info("Failed to allocate reg dma, ret:%lu\n",
  618. PTR_ERR(last_cmd_buf_sb[i]));
  619. return 0;
  620. }
  621. }
  622. }
  623. if (rc) {
  624. for (i = 0; i < CTL_MAX; i++) {
  625. if (!last_cmd_buf_db[i])
  626. continue;
  627. dealloc_reg_dma_v1(last_cmd_buf_db[i]);
  628. last_cmd_buf_db[i] = NULL;
  629. }
  630. for (i = 0; i < CTL_MAX; i++) {
  631. if (!last_cmd_buf_sb[i])
  632. continue;
  633. dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
  634. last_cmd_buf_sb[i] = NULL;
  635. }
  636. return rc;
  637. }
  638. reg_dma->ops.check_support = check_support_v1;
  639. reg_dma->ops.setup_payload = setup_payload_v1;
  640. reg_dma->ops.kick_off = kick_off_v1;
  641. reg_dma->ops.reset = reset_v1;
  642. reg_dma->ops.alloc_reg_dma_buf = alloc_reg_dma_buf_v1;
  643. reg_dma->ops.dealloc_reg_dma = dealloc_reg_dma_v1;
  644. reg_dma->ops.reset_reg_dma_buf = reset_reg_dma_buffer_v1;
  645. reg_dma->ops.last_command = last_cmd_v1;
  646. reg_dma->ops.dump_regs = dump_regs_v1;
  647. reg_dma_register_count = 60;
  648. reg_dma_decode_sel = 0x180ac060;
  649. reg_dma_opmode_offset = 0x4;
  650. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  651. reg_dma_intr_status_offset = 0x90;
  652. reg_dma_intr_4_status_offset = 0xa0;
  653. reg_dma_intr_clear_offset = 0xb0;
  654. reg_dma_ctl_trigger_offset = 0xd4;
  655. reg_dma_ctl0_reset_offset = 0xe4;
  656. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16);
  657. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  658. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  659. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  660. (sizeof(u32) * 4);
  661. return 0;
  662. }
  663. int init_v11(struct sde_hw_reg_dma *cfg)
  664. {
  665. int ret = 0, i = 0;
  666. ret = init_v1(cfg);
  667. if (ret) {
  668. DRM_ERROR("failed to initialize v1: ret %d\n", ret);
  669. return -EINVAL;
  670. }
  671. /* initialize register offsets and v1_supported based on version */
  672. reg_dma_register_count = 133;
  673. reg_dma_decode_sel = 0x180ac114;
  674. reg_dma_opmode_offset = 0x4;
  675. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  676. reg_dma_intr_status_offset = 0x160;
  677. reg_dma_intr_4_status_offset = 0x170;
  678. reg_dma_intr_clear_offset = 0x1a0;
  679. reg_dma_ctl_trigger_offset = 0xd4;
  680. reg_dma_ctl0_reset_offset = 0x200;
  681. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16) |
  682. BIT(17) | BIT(18);
  683. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  684. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  685. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  686. (sizeof(u32) * 4);
  687. v1_supported[IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT |
  688. GRP_VIG_HW_BLK_SELECT | GRP_DMA_HW_BLK_SELECT;
  689. v1_supported[GC] = GRP_DMA_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT;
  690. v1_supported[HSIC] = GRP_DSPP_HW_BLK_SELECT;
  691. v1_supported[SIX_ZONE] = GRP_DSPP_HW_BLK_SELECT;
  692. v1_supported[MEMC_SKIN] = GRP_DSPP_HW_BLK_SELECT;
  693. v1_supported[MEMC_SKY] = GRP_DSPP_HW_BLK_SELECT;
  694. v1_supported[MEMC_FOLIAGE] = GRP_DSPP_HW_BLK_SELECT;
  695. v1_supported[MEMC_PROT] = GRP_DSPP_HW_BLK_SELECT;
  696. v1_supported[QSEED] = GRP_VIG_HW_BLK_SELECT;
  697. return 0;
  698. }
  699. int init_v12(struct sde_hw_reg_dma *cfg)
  700. {
  701. int ret = 0;
  702. ret = init_v11(cfg);
  703. if (ret) {
  704. DRM_ERROR("failed to initialize v11: ret %d\n", ret);
  705. return ret;
  706. }
  707. v1_supported[LTM_INIT] = GRP_LTM_HW_BLK_SELECT;
  708. v1_supported[LTM_ROI] = GRP_LTM_HW_BLK_SELECT;
  709. v1_supported[LTM_VLUT] = GRP_LTM_HW_BLK_SELECT;
  710. v1_supported[RC_DATA] = (GRP_DSPP_HW_BLK_SELECT |
  711. GRP_MDSS_HW_BLK_SELECT);
  712. v1_supported[SPR_INIT] = (GRP_DSPP_HW_BLK_SELECT |
  713. GRP_MDSS_HW_BLK_SELECT);
  714. v1_supported[SPR_PU_CFG] = (GRP_DSPP_HW_BLK_SELECT |
  715. GRP_MDSS_HW_BLK_SELECT);
  716. v1_supported[DEMURA_CFG] = MDSS | DSPP0 | DSPP1;
  717. return 0;
  718. }
  719. int init_v2(struct sde_hw_reg_dma *cfg)
  720. {
  721. int ret = 0, i = 0;
  722. ret = init_v12(cfg);
  723. if (ret) {
  724. DRM_ERROR("failed to initialize v12: ret %d\n", ret);
  725. return ret;
  726. }
  727. /* initialize register offsets based on version delta */
  728. reg_dma_register_count = 0x91;
  729. reg_dma_ctl0_queue1_cmd0_offset = 0x1c;
  730. reg_dma_error_clear_mask |= BIT(19);
  731. reg_dma_ctl_queue1_off[CTL_0] = reg_dma_ctl0_queue1_cmd0_offset;
  732. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  733. reg_dma_ctl_queue1_off[i] = reg_dma_ctl_queue1_off[i - 1] +
  734. (sizeof(u32) * 4);
  735. v1_supported[IGC] = GRP_DSPP_HW_BLK_SELECT | GRP_VIG_HW_BLK_SELECT |
  736. GRP_DMA_HW_BLK_SELECT;
  737. if (cfg->caps->reg_dma_blks[REG_DMA_TYPE_SB].valid == true)
  738. reg_dma->ops.last_command_sb = last_cmd_sb_v2;
  739. return 0;
  740. }
  741. static int check_support_v1(enum sde_reg_dma_features feature,
  742. enum sde_reg_dma_blk blk,
  743. bool *is_supported)
  744. {
  745. int ret = 0;
  746. if (!is_supported)
  747. return -EINVAL;
  748. if (feature >= REG_DMA_FEATURES_MAX || blk >= BIT(REG_DMA_BLK_MAX)) {
  749. *is_supported = false;
  750. return ret;
  751. }
  752. *is_supported = (blk & v1_supported[feature]) ? true : false;
  753. return ret;
  754. }
  755. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg)
  756. {
  757. int rc = 0;
  758. rc = validate_dma_cfg(cfg);
  759. if (!rc)
  760. rc = validate_dma_op_params[cfg->ops](cfg);
  761. if (!rc)
  762. rc = write_dma_op_params[cfg->ops](cfg);
  763. return rc;
  764. }
  765. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  766. {
  767. int rc = 0;
  768. rc = validate_kick_off_v1(cfg);
  769. if (rc)
  770. return rc;
  771. rc = write_kick_off_v1(cfg);
  772. return rc;
  773. }
  774. int reset_v1(struct sde_hw_ctl *ctl)
  775. {
  776. struct sde_hw_blk_reg_map hw;
  777. u32 index, val, i = 0, k = 0;
  778. if (!ctl || ctl->idx > CTL_MAX) {
  779. DRM_ERROR("invalid ctl %pK ctl idx %d\n",
  780. ctl, ((ctl) ? ctl->idx : 0));
  781. return -EINVAL;
  782. }
  783. index = ctl->idx - CTL_0;
  784. for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
  785. memset(&hw, 0, sizeof(hw));
  786. SET_UP_REG_DMA_REG(hw, reg_dma, k);
  787. if (hw.hwversion == 0)
  788. continue;
  789. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  790. SDE_REG_WRITE(&hw, (reg_dma_ctl0_reset_offset +
  791. index * sizeof(u32)), BIT(0));
  792. i = 0;
  793. do {
  794. udelay(1000);
  795. i++;
  796. val = SDE_REG_READ(&hw,
  797. (reg_dma_ctl0_reset_offset +
  798. index * sizeof(u32)));
  799. } while (i < 2 && val);
  800. }
  801. return 0;
  802. }
  803. static void sde_reg_dma_aspace_cb_locked(void *cb_data, bool is_detach)
  804. {
  805. struct sde_reg_dma_buffer *dma_buf = NULL;
  806. struct msm_gem_address_space *aspace = NULL;
  807. u32 iova_aligned, offset;
  808. int rc;
  809. if (!cb_data) {
  810. DRM_ERROR("aspace cb called with invalid dma_buf\n");
  811. return;
  812. }
  813. dma_buf = (struct sde_reg_dma_buffer *)cb_data;
  814. aspace = dma_buf->aspace;
  815. if (is_detach) {
  816. /* invalidate the stored iova */
  817. dma_buf->iova = 0;
  818. /* return the virtual address mapping */
  819. msm_gem_put_vaddr(dma_buf->buf);
  820. msm_gem_vunmap(dma_buf->buf, OBJ_LOCK_NORMAL);
  821. } else {
  822. rc = msm_gem_get_iova(dma_buf->buf, aspace,
  823. &dma_buf->iova);
  824. if (rc) {
  825. DRM_ERROR("failed to get the iova rc %d\n", rc);
  826. return;
  827. }
  828. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  829. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  830. DRM_ERROR("failed to get va rc %d\n", rc);
  831. return;
  832. }
  833. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  834. offset = iova_aligned - dma_buf->iova;
  835. dma_buf->iova = dma_buf->iova + offset;
  836. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  837. dma_buf->next_op_allowed = DECODE_SEL_OP;
  838. }
  839. }
  840. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size)
  841. {
  842. struct sde_reg_dma_buffer *dma_buf = NULL;
  843. u32 iova_aligned, offset;
  844. u32 rsize = size + GUARD_BYTES;
  845. struct msm_gem_address_space *aspace = NULL;
  846. int rc = 0;
  847. if (!size || SIZE_DWORD(size) > MAX_DWORDS_SZ) {
  848. DRM_ERROR("invalid buffer size %d, max %d\n",
  849. SIZE_DWORD(size), MAX_DWORDS_SZ);
  850. return ERR_PTR(-EINVAL);
  851. }
  852. dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
  853. if (!dma_buf)
  854. return ERR_PTR(-ENOMEM);
  855. dma_buf->buf = msm_gem_new(reg_dma->drm_dev,
  856. rsize, MSM_BO_UNCACHED);
  857. if (IS_ERR_OR_NULL(dma_buf->buf)) {
  858. rc = -EINVAL;
  859. goto fail;
  860. }
  861. aspace = msm_gem_smmu_address_space_get(reg_dma->drm_dev,
  862. MSM_SMMU_DOMAIN_UNSECURE);
  863. if (!aspace) {
  864. DRM_ERROR("failed to get aspace\n");
  865. rc = -EINVAL;
  866. goto free_gem;
  867. }
  868. /* register to aspace */
  869. rc = msm_gem_address_space_register_cb(aspace,
  870. sde_reg_dma_aspace_cb_locked,
  871. (void *)dma_buf);
  872. if (rc) {
  873. DRM_ERROR("failed to register callback %d", rc);
  874. goto free_gem;
  875. }
  876. dma_buf->aspace = aspace;
  877. rc = msm_gem_get_iova(dma_buf->buf, aspace, &dma_buf->iova);
  878. if (rc) {
  879. DRM_ERROR("failed to get the iova rc %d\n", rc);
  880. goto free_aspace_cb;
  881. }
  882. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  883. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  884. DRM_ERROR("failed to get va rc %d\n", rc);
  885. rc = -EINVAL;
  886. goto put_iova;
  887. }
  888. dma_buf->buffer_size = size;
  889. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  890. offset = iova_aligned - dma_buf->iova;
  891. dma_buf->iova = dma_buf->iova + offset;
  892. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  893. dma_buf->next_op_allowed = DECODE_SEL_OP;
  894. return dma_buf;
  895. put_iova:
  896. msm_gem_put_iova(dma_buf->buf, aspace);
  897. free_aspace_cb:
  898. msm_gem_address_space_unregister_cb(aspace,
  899. sde_reg_dma_aspace_cb_locked, dma_buf);
  900. free_gem:
  901. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  902. msm_gem_free_object(dma_buf->buf);
  903. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  904. fail:
  905. kfree(dma_buf);
  906. return ERR_PTR(rc);
  907. }
  908. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *dma_buf)
  909. {
  910. if (!dma_buf) {
  911. DRM_ERROR("invalid param reg_buf %pK\n", dma_buf);
  912. return -EINVAL;
  913. }
  914. if (dma_buf->buf) {
  915. msm_gem_put_iova(dma_buf->buf, 0);
  916. msm_gem_address_space_unregister_cb(dma_buf->aspace,
  917. sde_reg_dma_aspace_cb_locked, dma_buf);
  918. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  919. msm_gem_free_object(dma_buf->buf);
  920. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  921. }
  922. kfree(dma_buf);
  923. return 0;
  924. }
  925. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf)
  926. {
  927. if (!lut_buf)
  928. return -EINVAL;
  929. lut_buf->index = 0;
  930. lut_buf->ops_completed = 0;
  931. lut_buf->next_op_allowed = DECODE_SEL_OP;
  932. return 0;
  933. }
  934. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  935. {
  936. u32 remain_len, write_len;
  937. remain_len = BUFFER_SPACE_LEFT(cfg);
  938. write_len = sizeof(u32);
  939. if (remain_len < write_len) {
  940. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  941. remain_len, write_len);
  942. return -EINVAL;
  943. }
  944. return 0;
  945. }
  946. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  947. {
  948. u32 *loc = NULL;
  949. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  950. cfg->dma_buf->index);
  951. loc[0] = reg_dma_decode_sel;
  952. loc[1] = 0;
  953. cfg->dma_buf->index = sizeof(u32) * 2;
  954. cfg->dma_buf->ops_completed = REG_WRITE_OP | DECODE_SEL_OP;
  955. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  956. return 0;
  957. }
  958. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  959. enum sde_reg_dma_last_cmd_mode mode)
  960. {
  961. struct sde_reg_dma_setup_ops_cfg cfg;
  962. struct sde_reg_dma_kickoff_cfg kick_off;
  963. struct sde_hw_blk_reg_map hw;
  964. u32 val;
  965. int rc;
  966. if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
  967. DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
  968. ((ctl) ? ctl->idx : -1));
  969. return -EINVAL;
  970. }
  971. if (!last_cmd_buf_db[ctl->idx] || !last_cmd_buf_db[ctl->idx]->iova) {
  972. DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
  973. return -EINVAL;
  974. }
  975. cfg.dma_buf = last_cmd_buf_db[ctl->idx];
  976. reset_reg_dma_buffer_v1(last_cmd_buf_db[ctl->idx]);
  977. if (validate_last_cmd(&cfg)) {
  978. DRM_ERROR("validate buf failed\n");
  979. return -EINVAL;
  980. }
  981. if (write_last_cmd(&cfg)) {
  982. DRM_ERROR("write buf failed\n");
  983. return -EINVAL;
  984. }
  985. kick_off.ctl = ctl;
  986. kick_off.queue_select = q;
  987. kick_off.trigger_mode = WRITE_IMMEDIATE;
  988. kick_off.last_command = 1;
  989. kick_off.op = REG_DMA_WRITE;
  990. kick_off.dma_type = REG_DMA_TYPE_DB;
  991. kick_off.dma_buf = last_cmd_buf_db[ctl->idx];
  992. rc = kick_off_v1(&kick_off);
  993. if (rc) {
  994. DRM_ERROR("kick off last cmd failed\n");
  995. return rc;
  996. }
  997. //Lack of block support will be caught by kick_off
  998. memset(&hw, 0, sizeof(hw));
  999. SET_UP_REG_DMA_REG(hw, reg_dma, kick_off.dma_type);
  1000. SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, mode);
  1001. if (mode == REG_DMA_WAIT4_COMP) {
  1002. rc = readl_poll_timeout(hw.base_off + hw.blk_off +
  1003. reg_dma_intr_status_offset, val,
  1004. (val & ctl_trigger_done_mask[ctl->idx][q]),
  1005. 10, 20000);
  1006. if (rc)
  1007. DRM_ERROR("poll wait failed %d val %x mask %x\n",
  1008. rc, val, ctl_trigger_done_mask[ctl->idx][q]);
  1009. SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, mode);
  1010. }
  1011. return rc;
  1012. }
  1013. void deinit_v1(void)
  1014. {
  1015. int i = 0;
  1016. for (i = CTL_0; i < CTL_MAX; i++) {
  1017. if (last_cmd_buf_db[i])
  1018. dealloc_reg_dma_v1(last_cmd_buf_db[i]);
  1019. last_cmd_buf_db[i] = NULL;
  1020. if (last_cmd_buf_sb[i])
  1021. dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
  1022. last_cmd_buf_sb[i] = NULL;
  1023. }
  1024. }
  1025. static void dump_regs_v1(void)
  1026. {
  1027. uint32_t i = 0, k = 0;
  1028. u32 val;
  1029. struct sde_hw_blk_reg_map hw;
  1030. for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
  1031. memset(&hw, 0, sizeof(hw));
  1032. SET_UP_REG_DMA_REG(hw, reg_dma, k);
  1033. if (hw.hwversion == 0)
  1034. continue;
  1035. for (i = 0; i < reg_dma_register_count; i++) {
  1036. val = SDE_REG_READ(&hw, i * sizeof(u32));
  1037. DRM_ERROR("offset %x val %x\n", (u32)(i * sizeof(u32)),
  1038. val);
  1039. }
  1040. }
  1041. }
  1042. static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  1043. enum sde_reg_dma_last_cmd_mode mode)
  1044. {
  1045. struct sde_reg_dma_setup_ops_cfg cfg;
  1046. struct sde_reg_dma_kickoff_cfg kick_off;
  1047. int rc = 0;
  1048. if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
  1049. DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
  1050. ((ctl) ? ctl->idx : -1));
  1051. return -EINVAL;
  1052. }
  1053. if (!last_cmd_buf_sb[ctl->idx] || !last_cmd_buf_sb[ctl->idx]->iova) {
  1054. DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
  1055. return -EINVAL;
  1056. }
  1057. cfg.dma_buf = last_cmd_buf_sb[ctl->idx];
  1058. reset_reg_dma_buffer_v1(last_cmd_buf_sb[ctl->idx]);
  1059. if (validate_last_cmd(&cfg)) {
  1060. DRM_ERROR("validate buf failed\n");
  1061. return -EINVAL;
  1062. }
  1063. if (write_last_cmd(&cfg)) {
  1064. DRM_ERROR("write buf failed\n");
  1065. return -EINVAL;
  1066. }
  1067. kick_off.ctl = ctl;
  1068. kick_off.queue_select = q;
  1069. kick_off.trigger_mode = WRITE_IMMEDIATE;
  1070. kick_off.last_command = 1;
  1071. kick_off.op = REG_DMA_WRITE;
  1072. kick_off.dma_type = REG_DMA_TYPE_SB;
  1073. kick_off.queue_select = DMA_CTL_QUEUE1;
  1074. kick_off.dma_buf = last_cmd_buf_sb[ctl->idx];
  1075. rc = kick_off_v1(&kick_off);
  1076. if (rc)
  1077. DRM_ERROR("kick off last cmd failed\n");
  1078. return rc;
  1079. }