dp_txrx_wds.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "htt.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_types.h"
  25. #include "dp_internal.h"
  26. #include "dp_tx.h"
  27. #include "enet.h"
  28. #ifdef WIFI_MONITOR_SUPPORT
  29. #include "dp_mon.h"
  30. #endif
  31. #include "dp_txrx_wds.h"
  32. /* Generic AST entry aging timer value */
  33. #define DP_AST_AGING_TIMER_DEFAULT_MS 5000
  34. #define DP_VLAN_UNTAGGED 0
  35. #define DP_VLAN_TAGGED_MULTICAST 1
  36. #define DP_VLAN_TAGGED_UNICAST 2
  37. #define DP_MAX_VLAN_IDS 4096
  38. #define DP_INVALID_AST_IDX 0xffff
  39. #define DP_INVALID_FLOW_PRIORITY 0xff
  40. #define DP_PEER_AST0_FLOW_MASK 0x4
  41. #define DP_PEER_AST1_FLOW_MASK 0x8
  42. #define DP_PEER_AST2_FLOW_MASK 0x1
  43. #define DP_PEER_AST3_FLOW_MASK 0x2
  44. #define DP_MAX_AST_INDEX_PER_PEER 4
  45. #ifdef WLAN_FEATURE_MULTI_AST_DEL
  46. void dp_peer_free_peer_ase_list(struct dp_soc *soc,
  47. struct peer_del_multi_wds_entries *wds_list)
  48. {
  49. struct peer_wds_entry_list *wds_entry, *tmp_entry;
  50. TAILQ_FOREACH_SAFE(wds_entry, &wds_list->ase_list,
  51. ase_list_elem, tmp_entry) {
  52. dp_peer_debug("type: %d mac_addr: " QDF_MAC_ADDR_FMT,
  53. wds_entry->type,
  54. QDF_MAC_ADDR_REF(wds_entry->dest_addr));
  55. TAILQ_REMOVE(&wds_list->ase_list, wds_entry, ase_list_elem);
  56. wds_list->num_entries--;
  57. qdf_mem_free(wds_entry);
  58. }
  59. }
  60. static void
  61. dp_pdev_build_peer_ase_list(struct dp_soc *soc, struct dp_peer *peer,
  62. void *arg)
  63. {
  64. struct dp_ast_entry *ase, *temp_ase;
  65. struct peer_del_multi_wds_entries *list = arg;
  66. struct peer_wds_entry_list *wds_entry;
  67. if (!soc || !peer || !arg) {
  68. dp_peer_err("Invalid input");
  69. return;
  70. }
  71. list->vdev_id = peer->vdev->vdev_id;
  72. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  73. if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
  74. ase->type != CDP_TXRX_AST_TYPE_DA)
  75. continue;
  76. if (ase->is_active) {
  77. ase->is_active = false;
  78. continue;
  79. }
  80. if (ase->delete_in_progress) {
  81. dp_info_rl("Del set addr:" QDF_MAC_ADDR_FMT " type:%d",
  82. QDF_MAC_ADDR_REF(ase->mac_addr.raw),
  83. ase->type);
  84. continue;
  85. }
  86. if (ase->is_mapped)
  87. soc->ast_table[ase->ast_idx] = NULL;
  88. if (!ase->next_hop) {
  89. dp_peer_unlink_ast_entry(soc, ase, peer);
  90. continue;
  91. }
  92. wds_entry = (struct peer_wds_entry_list *)
  93. qdf_mem_malloc(sizeof(*wds_entry));
  94. if (!wds_entry) {
  95. dp_peer_err("%pK: fail to allocate wds_entry", soc);
  96. dp_peer_free_peer_ase_list(soc, list);
  97. return;
  98. }
  99. DP_STATS_INC(soc, ast.aged_out, 1);
  100. ase->delete_in_progress = true;
  101. wds_entry->dest_addr = ase->mac_addr.raw;
  102. wds_entry->type = ase->type;
  103. if (dp_peer_state_cmp(peer, DP_PEER_STATE_LOGICAL_DELETE))
  104. wds_entry->delete_in_fw = false;
  105. else
  106. wds_entry->delete_in_fw = true;
  107. dp_peer_debug("ase->type: %d pdev: %u vdev: %u mac_addr: " QDF_MAC_ADDR_FMT " next_hop: %u peer: %u",
  108. ase->type, ase->pdev_id, ase->vdev_id,
  109. QDF_MAC_ADDR_REF(ase->mac_addr.raw),
  110. ase->next_hop, ase->peer_id);
  111. TAILQ_INSERT_TAIL(&list->ase_list, wds_entry, ase_list_elem);
  112. list->num_entries++;
  113. }
  114. dp_peer_info("Total num of entries :%d", list->num_entries);
  115. }
  116. static void
  117. dp_peer_age_multi_ast_entries(struct dp_soc *soc, void *arg,
  118. enum dp_mod_id mod_id)
  119. {
  120. uint8_t i;
  121. struct dp_pdev *pdev = NULL;
  122. struct peer_del_multi_wds_entries wds_list = {0};
  123. TAILQ_INIT(&wds_list.ase_list);
  124. for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
  125. pdev = soc->pdev_list[i];
  126. dp_pdev_iterate_peer(pdev, dp_pdev_build_peer_ase_list,
  127. &wds_list, mod_id);
  128. if (wds_list.num_entries > 0) {
  129. dp_peer_ast_send_multi_wds_del(soc, wds_list.vdev_id,
  130. &wds_list);
  131. dp_peer_free_peer_ase_list(soc, &wds_list);
  132. } else {
  133. dp_peer_debug("No AST entries for pdev:%u",
  134. pdev->pdev_id);
  135. }
  136. }
  137. }
  138. #endif /* WLAN_FEATURE_MULTI_AST_DEL */
  139. static void
  140. dp_peer_age_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
  141. {
  142. struct dp_ast_entry *ase, *temp_ase;
  143. struct ast_del_ctxt *del_ctxt = (struct ast_del_ctxt *)arg;
  144. if ((del_ctxt->del_count >= soc->max_ast_ageout_count) &&
  145. !del_ctxt->age) {
  146. return;
  147. }
  148. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  149. /*
  150. * Do not expire static ast entries and HM WDS entries
  151. */
  152. if (ase->type != CDP_TXRX_AST_TYPE_WDS &&
  153. ase->type != CDP_TXRX_AST_TYPE_DA)
  154. continue;
  155. if (ase->is_active) {
  156. if (del_ctxt->age)
  157. ase->is_active = FALSE;
  158. continue;
  159. }
  160. if (del_ctxt->del_count < soc->max_ast_ageout_count) {
  161. DP_STATS_INC(soc, ast.aged_out, 1);
  162. dp_peer_del_ast(soc, ase);
  163. del_ctxt->del_count++;
  164. } else {
  165. soc->pending_ageout = true;
  166. if (!del_ctxt->age)
  167. break;
  168. }
  169. }
  170. }
  171. static void
  172. dp_peer_age_mec_entries(struct dp_soc *soc)
  173. {
  174. uint32_t index;
  175. struct dp_mec_entry *mecentry, *mecentry_next;
  176. TAILQ_HEAD(, dp_mec_entry) free_list;
  177. TAILQ_INIT(&free_list);
  178. for (index = 0; index <= soc->mec_hash.mask; index++) {
  179. qdf_spin_lock_bh(&soc->mec_lock);
  180. /*
  181. * Expire MEC entry every n sec.
  182. */
  183. if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
  184. TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
  185. hash_list_elem, mecentry_next) {
  186. if (mecentry->is_active) {
  187. mecentry->is_active = FALSE;
  188. continue;
  189. }
  190. dp_peer_mec_detach_entry(soc, mecentry,
  191. &free_list);
  192. }
  193. }
  194. qdf_spin_unlock_bh(&soc->mec_lock);
  195. }
  196. dp_peer_mec_free_list(soc, &free_list);
  197. }
  198. #ifdef WLAN_FEATURE_MULTI_AST_DEL
  199. static void dp_ast_aging_timer_fn(void *soc_hdl)
  200. {
  201. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  202. struct ast_del_ctxt del_ctxt = {0};
  203. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  204. del_ctxt.age = true;
  205. soc->wds_ast_aging_timer_cnt = 0;
  206. }
  207. if (soc->pending_ageout || del_ctxt.age) {
  208. soc->pending_ageout = false;
  209. /* AST list access lock */
  210. qdf_spin_lock_bh(&soc->ast_lock);
  211. if (soc->multi_peer_grp_cmd_supported)
  212. dp_peer_age_multi_ast_entries(soc, NULL, DP_MOD_ID_AST);
  213. else
  214. dp_soc_iterate_peer(soc, dp_peer_age_ast_entries,
  215. &del_ctxt, DP_MOD_ID_AST);
  216. qdf_spin_unlock_bh(&soc->ast_lock);
  217. }
  218. /*
  219. * If NSS offload is enabled, the MEC timeout
  220. * will be managed by NSS.
  221. */
  222. if (qdf_atomic_read(&soc->mec_cnt) &&
  223. !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  224. dp_peer_age_mec_entries(soc);
  225. if (qdf_atomic_read(&soc->cmn_init_done))
  226. qdf_timer_mod(&soc->ast_aging_timer,
  227. DP_AST_AGING_TIMER_DEFAULT_MS);
  228. }
  229. #else
  230. static void dp_ast_aging_timer_fn(void *soc_hdl)
  231. {
  232. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  233. struct ast_del_ctxt del_ctxt = {0};
  234. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  235. del_ctxt.age = true;
  236. soc->wds_ast_aging_timer_cnt = 0;
  237. }
  238. if (soc->pending_ageout || del_ctxt.age) {
  239. soc->pending_ageout = false;
  240. /* AST list access lock */
  241. qdf_spin_lock_bh(&soc->ast_lock);
  242. dp_soc_iterate_peer(soc, dp_peer_age_ast_entries,
  243. &del_ctxt, DP_MOD_ID_AST);
  244. qdf_spin_unlock_bh(&soc->ast_lock);
  245. }
  246. /*
  247. * If NSS offload is enabled, the MEC timeout
  248. * will be managed by NSS.
  249. */
  250. if (qdf_atomic_read(&soc->mec_cnt) &&
  251. !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  252. dp_peer_age_mec_entries(soc);
  253. if (qdf_atomic_read(&soc->cmn_init_done))
  254. qdf_timer_mod(&soc->ast_aging_timer,
  255. DP_AST_AGING_TIMER_DEFAULT_MS);
  256. }
  257. #endif /* WLAN_FEATURE_MULTI_AST_DEL */
  258. #ifndef IPA_WDS_EASYMESH_FEATURE
  259. /*
  260. * dp_soc_wds_attach() - Setup WDS timer and AST table
  261. * @soc: Datapath SOC handle
  262. *
  263. * Return: None
  264. */
  265. void dp_soc_wds_attach(struct dp_soc *soc)
  266. {
  267. if (soc->ast_offload_support)
  268. return;
  269. soc->wds_ast_aging_timer_cnt = 0;
  270. soc->pending_ageout = false;
  271. qdf_timer_init(soc->osdev, &soc->ast_aging_timer,
  272. dp_ast_aging_timer_fn, (void *)soc,
  273. QDF_TIMER_TYPE_WAKE_APPS);
  274. qdf_timer_mod(&soc->ast_aging_timer, DP_AST_AGING_TIMER_DEFAULT_MS);
  275. }
  276. /*
  277. * dp_soc_wds_detach() - Detach WDS data structures and timers
  278. * @txrx_soc: DP SOC handle
  279. *
  280. * Return: None
  281. */
  282. void dp_soc_wds_detach(struct dp_soc *soc)
  283. {
  284. qdf_timer_stop(&soc->ast_aging_timer);
  285. qdf_timer_free(&soc->ast_aging_timer);
  286. }
  287. #else
  288. void dp_soc_wds_attach(struct dp_soc *soc)
  289. {
  290. }
  291. void dp_soc_wds_detach(struct dp_soc *soc)
  292. {
  293. }
  294. #endif
  295. /**
  296. * dp_tx_mec_handler() - Tx MEC Notify Handler
  297. * @vdev: pointer to dp dev handler
  298. * @status : Tx completion status from HTT descriptor
  299. *
  300. * Handles MEC notify event sent from fw to Host
  301. *
  302. * Return: none
  303. */
  304. void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
  305. {
  306. struct dp_soc *soc;
  307. QDF_STATUS add_mec_status;
  308. uint8_t mac_addr[QDF_MAC_ADDR_SIZE], i;
  309. if (!vdev->mec_enabled)
  310. return;
  311. /* MEC required only in STA mode */
  312. if (vdev->opmode != wlan_op_mode_sta)
  313. return;
  314. soc = vdev->pdev->soc;
  315. for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
  316. mac_addr[(QDF_MAC_ADDR_SIZE - 1) - i] =
  317. status[(QDF_MAC_ADDR_SIZE - 2) + i];
  318. dp_peer_debug("%pK: MEC add for mac_addr "QDF_MAC_ADDR_FMT,
  319. soc, QDF_MAC_ADDR_REF(mac_addr));
  320. if (qdf_mem_cmp(mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE)) {
  321. add_mec_status = dp_peer_mec_add_entry(soc, vdev, mac_addr);
  322. dp_peer_debug("%pK: MEC add status %d", vdev, add_mec_status);
  323. }
  324. }
  325. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  326. /**
  327. * dp_rx_da_learn() - Add AST entry based on DA lookup
  328. * This is a WAR for HK 1.0 and will
  329. * be removed in HK 2.0
  330. *
  331. * @soc: core txrx main context
  332. * @rx_tlv_hdr : start address of rx tlvs
  333. * @ta_txrx_peer: Transmitter peer entry
  334. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  335. *
  336. */
  337. void
  338. dp_rx_da_learn(struct dp_soc *soc,
  339. uint8_t *rx_tlv_hdr,
  340. struct dp_txrx_peer *ta_txrx_peer,
  341. qdf_nbuf_t nbuf)
  342. {
  343. struct dp_peer *base_peer;
  344. /* For HKv2 DA port learing is not needed */
  345. if (qdf_likely(soc->ast_override_support))
  346. return;
  347. if (qdf_unlikely(!ta_txrx_peer))
  348. return;
  349. if (qdf_unlikely(ta_txrx_peer->vdev->opmode != wlan_op_mode_ap))
  350. return;
  351. if (!soc->da_war_enabled)
  352. return;
  353. if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
  354. !qdf_nbuf_is_da_mcbc(nbuf))) {
  355. base_peer = dp_peer_get_ref_by_id(soc, ta_txrx_peer->peer_id,
  356. DP_MOD_ID_AST);
  357. if (base_peer) {
  358. dp_peer_add_ast(soc,
  359. base_peer,
  360. qdf_nbuf_data(nbuf),
  361. CDP_TXRX_AST_TYPE_DA,
  362. DP_AST_FLAGS_HM);
  363. dp_peer_unref_delete(base_peer, DP_MOD_ID_AST);
  364. }
  365. }
  366. }
  367. /**
  368. * dp_txrx_set_wds_rx_policy() - API to store datapath
  369. * config parameters
  370. * @soc - datapath soc handle
  371. * @vdev_id - id of datapath vdev handle
  372. * @cfg: ini parameter handle
  373. *
  374. * Return: status
  375. */
  376. #ifdef WDS_VENDOR_EXTENSION
  377. QDF_STATUS
  378. dp_txrx_set_wds_rx_policy(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  379. u_int32_t val)
  380. {
  381. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  382. struct dp_peer *peer;
  383. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  384. DP_MOD_ID_MISC);
  385. if (!vdev) {
  386. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  387. FL("vdev is NULL for vdev_id %d"), vdev_id);
  388. return QDF_STATUS_E_INVAL;
  389. }
  390. peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  391. if (peer) {
  392. peer->txrx_peer->wds_ecm.wds_rx_filter = 1;
  393. peer->txrx_peer->wds_ecm.wds_rx_ucast_4addr =
  394. (val & WDS_POLICY_RX_UCAST_4ADDR) ? 1 : 0;
  395. peer->txrx_peer->wds_ecm.wds_rx_mcast_4addr =
  396. (val & WDS_POLICY_RX_MCAST_4ADDR) ? 1 : 0;
  397. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  398. }
  399. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
  400. return QDF_STATUS_SUCCESS;
  401. }
  402. /**
  403. * dp_txrx_peer_wds_tx_policy_update() - API to set tx wds policy
  404. *
  405. * @cdp_soc: DP soc handle
  406. * @vdev_id: id of vdev handle
  407. * @peer_mac: peer mac address
  408. * @wds_tx_ucast: policy for unicast transmission
  409. * @wds_tx_mcast: policy for multicast transmission
  410. *
  411. * Return: void
  412. */
  413. QDF_STATUS
  414. dp_txrx_peer_wds_tx_policy_update(struct cdp_soc_t *soc, uint8_t vdev_id,
  415. uint8_t *peer_mac, int wds_tx_ucast,
  416. int wds_tx_mcast)
  417. {
  418. struct dp_peer *peer =
  419. dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
  420. peer_mac, 0,
  421. vdev_id,
  422. DP_MOD_ID_AST);
  423. if (!peer) {
  424. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  425. FL("peer is NULL for mac %pM vdev_id %d"),
  426. peer_mac, vdev_id);
  427. return QDF_STATUS_E_INVAL;
  428. }
  429. if (!peer->txrx_peer) {
  430. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  431. return QDF_STATUS_E_INVAL;
  432. }
  433. if (wds_tx_ucast || wds_tx_mcast) {
  434. peer->txrx_peer->wds_enabled = 1;
  435. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr = wds_tx_ucast;
  436. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr = wds_tx_mcast;
  437. } else {
  438. peer->txrx_peer->wds_enabled = 0;
  439. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr = 0;
  440. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr = 0;
  441. }
  442. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  443. "Policy Update set to :\n");
  444. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  445. "peer->wds_enabled %d\n", peer->wds_enabled);
  446. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  447. "peer->wds_ecm.wds_tx_ucast_4addr %d\n",
  448. peer->txrx_peer->wds_ecm.wds_tx_ucast_4addr);
  449. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  450. "peer->wds_ecm.wds_tx_mcast_4addr %d\n",
  451. peer->txrx_peer->wds_ecm.wds_tx_mcast_4addr);
  452. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  453. return QDF_STATUS_SUCCESS;
  454. }
  455. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  456. struct dp_vdev *vdev,
  457. struct dp_txrx_peer *txrx_peer)
  458. {
  459. struct dp_peer *bss_peer;
  460. int fr_ds, to_ds, rx_3addr, rx_4addr;
  461. int rx_policy_ucast, rx_policy_mcast;
  462. hal_soc_handle_t hal_soc = vdev->pdev->soc->hal_soc;
  463. int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(hal_soc, rx_tlv_hdr);
  464. if (vdev->opmode == wlan_op_mode_ap) {
  465. bss_peer = dp_vdev_bss_peer_ref_n_get(vdev, DP_MOD_ID_AST);
  466. /* if wds policy check is not enabled on this vdev, accept all frames */
  467. if (bss_peer && !bss_peer->txrx_peer->wds_ecm.wds_rx_filter) {
  468. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  469. return 1;
  470. }
  471. rx_policy_ucast = bss_peer->txrx_peerwds_ecm.wds_rx_ucast_4addr;
  472. rx_policy_mcast = bss_peer->txrx_peerwds_ecm.wds_rx_mcast_4addr;
  473. dp_peer_unref_delete(bss_peer, DP_MOD_ID_AST);
  474. } else { /* sta mode */
  475. if (!txrx_peer->wds_ecm.wds_rx_filter)
  476. return 1;
  477. rx_policy_ucast = txrx_peer->wds_ecm.wds_rx_ucast_4addr;
  478. rx_policy_mcast = txrx_peer->wds_ecm.wds_rx_mcast_4addr;
  479. }
  480. /* ------------------------------------------------
  481. * self
  482. * peer- rx rx-
  483. * wds ucast mcast dir policy accept note
  484. * ------------------------------------------------
  485. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  486. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  487. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  488. * 1 1 0 00 x1 0 bad frame, won't see it
  489. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  490. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  491. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  492. * 1 0 1 00 1x 0 bad frame, won't see it
  493. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  494. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  495. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  496. * 1 1 0 00 x0 0 bad frame, won't see it
  497. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  498. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  499. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  500. * 1 0 1 00 0x 0 bad frame, won't see it
  501. *
  502. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  503. * 0 x x 01 xx 1
  504. * 0 x x 10 xx 0
  505. * 0 x x 00 xx 0 bad frame, won't see it
  506. * ------------------------------------------------
  507. */
  508. fr_ds = hal_rx_mpdu_get_fr_ds(hal_soc, rx_tlv_hdr);
  509. to_ds = hal_rx_mpdu_get_to_ds(hal_soc, rx_tlv_hdr);
  510. rx_3addr = fr_ds ^ to_ds;
  511. rx_4addr = fr_ds & to_ds;
  512. if (vdev->opmode == wlan_op_mode_ap) {
  513. if ((!txrx_peer->wds_enabled && rx_3addr && to_ds) ||
  514. (txrx_peer->wds_enabled && !rx_mcast &&
  515. (rx_4addr == rx_policy_ucast)) ||
  516. (txrx_peer->wds_enabled && rx_mcast &&
  517. (rx_4addr == rx_policy_mcast))) {
  518. return 1;
  519. }
  520. } else { /* sta mode */
  521. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  522. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  523. return 1;
  524. }
  525. }
  526. return 0;
  527. }
  528. #endif
  529. /**
  530. * dp_tx_add_groupkey_metadata - Add group key in metadata
  531. * @vdev: DP vdev handle
  532. * @msdu_info: MSDU info to be setup in MSDU descriptor
  533. * @group_key: Group key index programmed in metadata
  534. *
  535. * Return: void
  536. */
  537. #ifdef QCA_MULTIPASS_SUPPORT
  538. static
  539. void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
  540. struct dp_tx_msdu_info_s *msdu_info, uint16_t group_key)
  541. {
  542. struct htt_tx_msdu_desc_ext2_t *meta_data =
  543. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  544. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  545. /*
  546. * When attempting to send a multicast packet with multi-passphrase,
  547. * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
  548. * ref htt.h indicating the group_id field in "key_flags" also having
  549. * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
  550. */
  551. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0], 1);
  552. HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
  553. }
  554. /**
  555. * dp_tx_remove_vlan_tag - Remove 4 bytes of vlan tag
  556. * @vdev: DP vdev handle
  557. * @tx_desc: Tx Descriptor Handle
  558. *
  559. * Return: void
  560. */
  561. static
  562. void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  563. {
  564. struct vlan_ethhdr veth_hdr;
  565. struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
  566. /*
  567. * Extract VLAN header of 4 bytes:
  568. * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4], EtherType[2], Payload}
  569. * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02 08 00 45 00 00...
  570. * After Removal : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00 00...
  571. */
  572. qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
  573. qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
  574. veh = (struct vlan_ethhdr *)nbuf->data;
  575. qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
  576. return;
  577. }
  578. /**
  579. * dp_tx_need_multipass_process - If frame needs multipass phrase processing
  580. * @vdev: DP vdev handle
  581. * @tx_desc: Tx Descriptor Handle
  582. * @vlan_id: vlan id of frame
  583. *
  584. * Return: whether peer is special or classic
  585. */
  586. static
  587. uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  588. qdf_nbuf_t buf, uint16_t *vlan_id)
  589. {
  590. struct dp_txrx_peer *txrx_peer = NULL;
  591. struct dp_peer *peer = NULL;
  592. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
  593. struct vlan_ethhdr *veh = NULL;
  594. bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
  595. (htons(eh->ether_type) != ETH_P_8021Q));
  596. if (qdf_unlikely(not_vlan))
  597. return DP_VLAN_UNTAGGED;
  598. veh = (struct vlan_ethhdr *)eh;
  599. *vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
  600. if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
  601. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  602. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list,
  603. mpass_peer_list_elem) {
  604. if (*vlan_id == txrx_peer->vlan_id) {
  605. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  606. return DP_VLAN_TAGGED_MULTICAST;
  607. }
  608. }
  609. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  610. return DP_VLAN_UNTAGGED;
  611. }
  612. peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL,
  613. DP_MOD_ID_TX_MULTIPASS);
  614. if (qdf_unlikely(peer == NULL))
  615. return DP_VLAN_UNTAGGED;
  616. /*
  617. * Do not drop the frame when vlan_id doesn't match.
  618. * Send the frame as it is.
  619. */
  620. if (*vlan_id == peer->txrx_peer->vlan_id) {
  621. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  622. return DP_VLAN_TAGGED_UNICAST;
  623. }
  624. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  625. return DP_VLAN_UNTAGGED;
  626. }
  627. /**
  628. * dp_tx_multipass_process - Process vlan frames in tx path
  629. * @soc: dp soc handle
  630. * @vdev: DP vdev handle
  631. * @nbuf: skb
  632. * @msdu_info: msdu descriptor
  633. *
  634. * Return: status whether frame needs to be dropped or transmitted
  635. */
  636. bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  637. qdf_nbuf_t nbuf,
  638. struct dp_tx_msdu_info_s *msdu_info)
  639. {
  640. uint16_t vlan_id = 0;
  641. uint16_t group_key = 0;
  642. uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
  643. qdf_nbuf_t nbuf_copy = NULL;
  644. if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0])) {
  645. return true;
  646. }
  647. is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
  648. if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
  649. (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
  650. return true;
  651. if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
  652. dp_tx_remove_vlan_tag(vdev, nbuf);
  653. return true;
  654. }
  655. /* AP can have classic clients, special clients &
  656. * classic repeaters.
  657. * 1. Classic clients & special client:
  658. * Remove vlan header, find corresponding group key
  659. * index, fill in metaheader and enqueue multicast
  660. * frame to TCL.
  661. * 2. Classic repeater:
  662. * Pass through to classic repeater with vlan tag
  663. * intact without any group key index. Hardware
  664. * will know which key to use to send frame to
  665. * repeater.
  666. */
  667. nbuf_copy = qdf_nbuf_copy(nbuf);
  668. /*
  669. * Send multicast frame to special peers even
  670. * if pass through to classic repeater fails.
  671. */
  672. if (nbuf_copy) {
  673. struct dp_tx_msdu_info_s msdu_info_copy;
  674. qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
  675. msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
  676. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
  677. nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy, &msdu_info_copy, HTT_INVALID_PEER, NULL);
  678. if (nbuf_copy) {
  679. qdf_nbuf_free(nbuf_copy);
  680. qdf_err("nbuf_copy send failed");
  681. }
  682. }
  683. group_key = vdev->iv_vlan_map[vlan_id];
  684. /*
  685. * If group key is not installed, drop the frame.
  686. */
  687. if (!group_key)
  688. return false;
  689. dp_tx_remove_vlan_tag(vdev, nbuf);
  690. dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
  691. msdu_info->exception_fw = 1;
  692. return true;
  693. }
  694. /**
  695. * dp_rx_multipass_process - insert vlan tag on frames for traffic separation
  696. * @txrx_peer: DP txrx peer handle
  697. * @nbuf: skb
  698. * @tid: traffic priority
  699. *
  700. * Return: bool: true in case of success else false
  701. * Success is considered if:
  702. * i. If frame has vlan header
  703. * ii. If the frame comes from different peer and dont need multipass processing
  704. * Failure is considered if:
  705. * i. Frame comes from multipass peer but doesn't contain vlan header.
  706. * In failure case, drop such frames.
  707. */
  708. bool dp_rx_multipass_process(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf,
  709. uint8_t tid)
  710. {
  711. struct vlan_ethhdr *vethhdrp;
  712. if (qdf_unlikely(!txrx_peer->vlan_id))
  713. return true;
  714. vethhdrp = (struct vlan_ethhdr *)qdf_nbuf_data(nbuf);
  715. /*
  716. * h_vlan_proto & h_vlan_TCI should be 0x8100 & zero respectively
  717. * as it is expected to be padded by 0
  718. * return false if frame doesn't have above tag so that caller will
  719. * drop the frame.
  720. */
  721. if (qdf_unlikely(vethhdrp->h_vlan_proto != htons(QDF_ETH_TYPE_8021Q)) ||
  722. qdf_unlikely(vethhdrp->h_vlan_TCI != 0))
  723. return false;
  724. vethhdrp->h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
  725. (txrx_peer->vlan_id & VLAN_VID_MASK));
  726. if (vethhdrp->h_vlan_encapsulated_proto == htons(ETHERTYPE_PAE))
  727. dp_tx_remove_vlan_tag(txrx_peer->vdev, nbuf);
  728. return true;
  729. }
  730. #endif /* QCA_MULTIPASS_SUPPORT */
  731. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  732. #ifdef QCA_MULTIPASS_SUPPORT
  733. /**
  734. * dp_peer_multipass_list_remove: remove peer from list
  735. * @peer: pointer to peer
  736. *
  737. * return: void
  738. */
  739. void dp_peer_multipass_list_remove(struct dp_peer *peer)
  740. {
  741. struct dp_vdev *vdev = peer->vdev;
  742. struct dp_txrx_peer *tpeer = NULL;
  743. bool found = 0;
  744. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  745. TAILQ_FOREACH(tpeer, &vdev->mpass_peer_list, mpass_peer_list_elem) {
  746. if (tpeer == peer->txrx_peer) {
  747. found = 1;
  748. TAILQ_REMOVE(&vdev->mpass_peer_list, peer->txrx_peer,
  749. mpass_peer_list_elem);
  750. break;
  751. }
  752. }
  753. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  754. if (found)
  755. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  756. }
  757. /**
  758. * dp_peer_multipass_list_add: add to new multipass list
  759. * @dp_soc: soc handle
  760. * @peer_mac: mac address
  761. * @vdev_id: vdev id for peer
  762. * @vlan_id: vlan_id
  763. *
  764. * return: void
  765. */
  766. static void dp_peer_multipass_list_add(struct dp_soc *soc, uint8_t *peer_mac,
  767. uint8_t vdev_id, uint16_t vlan_id)
  768. {
  769. struct dp_peer *peer =
  770. dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
  771. vdev_id,
  772. DP_MOD_ID_TX_MULTIPASS);
  773. if (qdf_unlikely(!peer)) {
  774. qdf_err("NULL peer");
  775. return;
  776. }
  777. if (qdf_unlikely(!peer->txrx_peer))
  778. goto fail;
  779. /* If peer already exists in vdev multipass list, do not add it.
  780. * This may happen if key install comes twice or re-key
  781. * happens for a peer.
  782. */
  783. if (peer->txrx_peer->vlan_id) {
  784. dp_debug("peer already added to vdev multipass list"
  785. "MAC: "QDF_MAC_ADDR_FMT" vlan: %d ",
  786. QDF_MAC_ADDR_REF(peer->mac_addr.raw),
  787. peer->txrx_peer->vlan_id);
  788. goto fail;
  789. }
  790. /*
  791. * Ref_cnt is incremented inside dp_peer_find_hash_find().
  792. * Decrement it when element is deleted from the list.
  793. */
  794. peer->txrx_peer->vlan_id = vlan_id;
  795. qdf_spin_lock_bh(&peer->txrx_peer->vdev->mpass_peer_mutex);
  796. TAILQ_INSERT_HEAD(&peer->txrx_peer->vdev->mpass_peer_list,
  797. peer->txrx_peer,
  798. mpass_peer_list_elem);
  799. qdf_spin_unlock_bh(&peer->txrx_peer->vdev->mpass_peer_mutex);
  800. return;
  801. fail:
  802. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  803. return;
  804. }
  805. /**
  806. * dp_peer_set_vlan_id: set vlan_id for this peer
  807. * @cdp_soc: soc handle
  808. * @vdev_id: vdev id for peer
  809. * @peer_mac: mac address
  810. * @vlan_id: vlan id for peer
  811. *
  812. * return: void
  813. */
  814. void dp_peer_set_vlan_id(struct cdp_soc_t *cdp_soc,
  815. uint8_t vdev_id, uint8_t *peer_mac,
  816. uint16_t vlan_id)
  817. {
  818. struct dp_soc *soc = (struct dp_soc *)cdp_soc;
  819. struct dp_vdev *vdev =
  820. dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
  821. DP_MOD_ID_TX_MULTIPASS);
  822. if (vdev && vdev->multipass_en) {
  823. dp_peer_multipass_list_add(soc, peer_mac, vdev_id, vlan_id);
  824. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  825. }
  826. }
  827. /**
  828. * dp_set_vlan_groupkey: set vlan map for vdev
  829. * @soc: pointer to soc
  830. * @vdev_id : id of vdev
  831. * @vlan_id: vlan_id
  832. * @group_key: group key for vlan
  833. *
  834. * return: set success/failure
  835. */
  836. QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  837. uint16_t vlan_id, uint16_t group_key)
  838. {
  839. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  840. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  841. DP_MOD_ID_TX_MULTIPASS);
  842. QDF_STATUS status;
  843. if (!vdev || !vdev->multipass_en) {
  844. status = QDF_STATUS_E_INVAL;
  845. goto fail;
  846. }
  847. if (!vdev->iv_vlan_map) {
  848. uint16_t vlan_map_size = (sizeof(uint16_t))*DP_MAX_VLAN_IDS;
  849. vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
  850. if (!vdev->iv_vlan_map) {
  851. QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
  852. status = QDF_STATUS_E_NOMEM;
  853. goto fail;
  854. }
  855. /*
  856. * 0 is invalid group key.
  857. * Initilalize array with invalid group keys.
  858. */
  859. qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
  860. }
  861. if (vlan_id >= DP_MAX_VLAN_IDS) {
  862. status = QDF_STATUS_E_INVAL;
  863. goto fail;
  864. }
  865. vdev->iv_vlan_map[vlan_id] = group_key;
  866. status = QDF_STATUS_SUCCESS;
  867. fail:
  868. if (vdev)
  869. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
  870. return status;
  871. }
  872. /**
  873. * dp_tx_vdev_multipass_deinit: set vlan map for vdev
  874. * @vdev_handle: pointer to vdev
  875. *
  876. * return: void
  877. */
  878. void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
  879. {
  880. struct dp_txrx_peer *txrx_peer = NULL;
  881. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  882. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
  883. qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
  884. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  885. if (vdev->iv_vlan_map) {
  886. qdf_mem_free(vdev->iv_vlan_map);
  887. vdev->iv_vlan_map = NULL;
  888. }
  889. qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
  890. }
  891. /**
  892. * dp_peer_multipass_list_init: initialize peer mulitpass list
  893. * @vdev_handle: pointer to vdev
  894. *
  895. * return: set success/failure
  896. */
  897. void dp_peer_multipass_list_init(struct dp_vdev *vdev)
  898. {
  899. /*
  900. * vdev->iv_vlan_map is allocated when the first configuration command
  901. * is issued to avoid unnecessary allocation for regular mode VAP.
  902. */
  903. TAILQ_INIT(&vdev->mpass_peer_list);
  904. qdf_spinlock_create(&vdev->mpass_peer_mutex);
  905. }
  906. #endif /* QCA_MULTIPASS_SUPPORT */
  907. #ifdef QCA_PEER_MULTIQ_SUPPORT
  908. /**
  909. * dp_peer_reset_flowq_map() - reset peer flowq map table
  910. * @peer - dp peer handle
  911. *
  912. * Return: none
  913. */
  914. void dp_peer_reset_flowq_map(struct dp_peer *peer)
  915. {
  916. int i = 0;
  917. if (!peer)
  918. return;
  919. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  920. peer->peer_ast_flowq_idx[i].is_valid = false;
  921. peer->peer_ast_flowq_idx[i].valid_tid_mask = false;
  922. peer->peer_ast_flowq_idx[i].ast_idx = DP_INVALID_AST_IDX;
  923. peer->peer_ast_flowq_idx[i].flowQ = DP_INVALID_FLOW_PRIORITY;
  924. }
  925. }
  926. /**
  927. * dp_peer_get_flowid_from_flowmask() - get flow id from flow mask
  928. * @peer - dp peer handle
  929. * @mask - flow mask
  930. *
  931. * Return: flow id
  932. */
  933. static int dp_peer_get_flowid_from_flowmask(struct dp_peer *peer,
  934. uint8_t mask)
  935. {
  936. if (!peer) {
  937. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  938. "%s: Invalid peer\n", __func__);
  939. return -1;
  940. }
  941. if (mask & DP_PEER_AST0_FLOW_MASK)
  942. return DP_PEER_AST_FLOWQ_UDP;
  943. else if (mask & DP_PEER_AST1_FLOW_MASK)
  944. return DP_PEER_AST_FLOWQ_NON_UDP;
  945. else if (mask & DP_PEER_AST2_FLOW_MASK)
  946. return DP_PEER_AST_FLOWQ_HI_PRIO;
  947. else if (mask & DP_PEER_AST3_FLOW_MASK)
  948. return DP_PEER_AST_FLOWQ_LOW_PRIO;
  949. return DP_PEER_AST_FLOWQ_MAX;
  950. }
  951. /**
  952. * dp_peer_get_ast_valid() - get ast index valid from mask
  953. * @mask - mask for ast valid bits
  954. * @index - index for an ast
  955. *
  956. * Return - 1 if ast index is valid from mask else 0
  957. */
  958. static inline bool dp_peer_get_ast_valid(uint8_t mask, uint16_t index)
  959. {
  960. if (index == 0)
  961. return 1;
  962. return ((mask) & (1 << ((index) - 1)));
  963. }
  964. /**
  965. * dp_peer_ast_index_flow_queue_map_create() - create ast index flow queue map
  966. * @soc - genereic soc handle
  967. * @is_wds - flag to indicate if peer is wds
  968. * @peer_id - peer_id from htt peer map message
  969. * @peer_mac_addr - mac address of the peer
  970. * @ast_info - ast flow override information from peer map
  971. *
  972. * Return: none
  973. */
  974. void dp_peer_ast_index_flow_queue_map_create(void *soc_hdl,
  975. bool is_wds, uint16_t peer_id, uint8_t *peer_mac_addr,
  976. struct dp_ast_flow_override_info *ast_info)
  977. {
  978. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  979. struct dp_peer *peer = NULL;
  980. uint8_t i;
  981. /*
  982. * Ast flow override feature is supported
  983. * only for connected client
  984. */
  985. if (is_wds)
  986. return;
  987. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_AST);
  988. if (!peer) {
  989. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  990. "%s: Invalid peer\n", __func__);
  991. return;
  992. }
  993. /* Valid only in AP mode */
  994. if (peer->vdev->opmode != wlan_op_mode_ap) {
  995. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  996. "%s: Peer ast flow map not in STA mode\n", __func__);
  997. goto end;
  998. }
  999. /* Making sure the peer is for this mac address */
  1000. if (!qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  1001. (struct qdf_mac_addr *)peer->mac_addr.raw)) {
  1002. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1003. "%s: Peer mac address mismatch\n", __func__);
  1004. goto end;
  1005. }
  1006. /* Ast entry flow mapping not valid for self peer map */
  1007. if (qdf_is_macaddr_equal((struct qdf_mac_addr *)peer_mac_addr,
  1008. (struct qdf_mac_addr *)peer->vdev->mac_addr.raw)) {
  1009. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1010. "%s: Ast flow mapping not valid for self peer \n", __func__);
  1011. goto end;
  1012. }
  1013. /* Fill up ast index <---> flow id mapping table for this peer */
  1014. for (i = 0; i < DP_MAX_AST_INDEX_PER_PEER; i++) {
  1015. /* Check if this ast index is valid */
  1016. peer->peer_ast_flowq_idx[i].is_valid =
  1017. dp_peer_get_ast_valid(ast_info->ast_valid_mask, i);
  1018. if (!peer->peer_ast_flowq_idx[i].is_valid)
  1019. continue;
  1020. /* Get the flow queue id which is mapped to this ast index */
  1021. peer->peer_ast_flowq_idx[i].flowQ =
  1022. dp_peer_get_flowid_from_flowmask(peer,
  1023. ast_info->ast_flow_mask[i]);
  1024. /*
  1025. * Update tid valid mask only if flow id HIGH or
  1026. * Low priority
  1027. */
  1028. if (peer->peer_ast_flowq_idx[i].flowQ ==
  1029. DP_PEER_AST_FLOWQ_HI_PRIO) {
  1030. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  1031. ast_info->tid_valid_hi_pri_mask;
  1032. } else if (peer->peer_ast_flowq_idx[i].flowQ ==
  1033. DP_PEER_AST_FLOWQ_LOW_PRIO) {
  1034. peer->peer_ast_flowq_idx[i].valid_tid_mask =
  1035. ast_info->tid_valid_low_pri_mask;
  1036. }
  1037. /* Save the ast index for this entry */
  1038. peer->peer_ast_flowq_idx[i].ast_idx = ast_info->ast_idx[i];
  1039. }
  1040. if (soc->cdp_soc.ol_ops->peer_ast_flowid_map) {
  1041. soc->cdp_soc.ol_ops->peer_ast_flowid_map(
  1042. soc->ctrl_psoc, peer->peer_id,
  1043. peer->vdev->vdev_id, peer_mac_addr);
  1044. }
  1045. end:
  1046. /* Release peer reference */
  1047. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1048. }
  1049. /**
  1050. * dp_peer_find_ast_index_by_flowq_id() - API to get ast idx for a given flowid
  1051. * @soc - soc handle
  1052. * @peer_mac_addr - mac address of the peer
  1053. * @flow_id - flow id to find ast index
  1054. *
  1055. * Return: ast index for a given flow id, -1 for fail cases
  1056. */
  1057. int dp_peer_find_ast_index_by_flowq_id(struct cdp_soc_t *soc,
  1058. uint16_t vdev_id, uint8_t *peer_mac_addr,
  1059. uint8_t flow_id, uint8_t tid)
  1060. {
  1061. struct dp_peer *peer = NULL;
  1062. uint8_t i;
  1063. uint16_t ast_index;
  1064. if (flow_id >= DP_PEER_AST_FLOWQ_MAX) {
  1065. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1066. "Invalid Flow ID %d\n", flow_id);
  1067. return -1;
  1068. }
  1069. peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  1070. peer_mac_addr, 0, vdev_id,
  1071. DP_MOD_ID_AST);
  1072. if (!peer) {
  1073. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1074. "%s: Invalid peer\n", __func__);
  1075. return -1;
  1076. }
  1077. /*
  1078. * Loop over the ast entry <----> flow-id mapping to find
  1079. * which ast index entry has this flow queue id enabled.
  1080. */
  1081. for (i = 0; i < DP_PEER_AST_FLOWQ_MAX; i++) {
  1082. if (peer->peer_ast_flowq_idx[i].flowQ == flow_id)
  1083. /*
  1084. * Found the matching index for this flow id
  1085. */
  1086. break;
  1087. }
  1088. /*
  1089. * No match found for this flow id
  1090. */
  1091. if (i == DP_PEER_AST_FLOWQ_MAX) {
  1092. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1093. "%s: ast index not found for flow %d\n", __func__, flow_id);
  1094. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1095. return -1;
  1096. }
  1097. /* Check whether this ast entry is valid */
  1098. if (!peer->peer_ast_flowq_idx[i].is_valid) {
  1099. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1100. "%s: ast index is invalid for flow %d\n", __func__, flow_id);
  1101. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1102. return -1;
  1103. }
  1104. if (flow_id == DP_PEER_AST_FLOWQ_HI_PRIO ||
  1105. flow_id == DP_PEER_AST_FLOWQ_LOW_PRIO) {
  1106. /*
  1107. * check if this tid is valid for Hi
  1108. * and Low priority flow id
  1109. */
  1110. if ((peer->peer_ast_flowq_idx[i].valid_tid_mask
  1111. & (1 << tid))) {
  1112. /* Release peer reference */
  1113. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  1114. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1115. return ast_index;
  1116. } else {
  1117. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1118. "%s: TID %d is not valid for flow %d\n",
  1119. __func__, tid, flow_id);
  1120. /*
  1121. * TID is not valid for this flow
  1122. * Return -1
  1123. */
  1124. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1125. return -1;
  1126. }
  1127. }
  1128. /*
  1129. * TID valid check not required for
  1130. * UDP/NON UDP flow id
  1131. */
  1132. ast_index = peer->peer_ast_flowq_idx[i].ast_idx;
  1133. dp_peer_unref_delete(peer, DP_MOD_ID_AST);
  1134. return ast_index;
  1135. }
  1136. #endif
  1137. void dp_hmwds_ast_add_notify(struct dp_peer *peer,
  1138. uint8_t *mac_addr,
  1139. enum cdp_txrx_ast_entry_type type,
  1140. QDF_STATUS err,
  1141. bool is_peer_map)
  1142. {
  1143. struct dp_vdev *dp_vdev = peer->vdev;
  1144. struct dp_pdev *dp_pdev = dp_vdev->pdev;
  1145. struct cdp_peer_hmwds_ast_add_status add_status;
  1146. /* Ignore ast types other than HM */
  1147. if ((type != CDP_TXRX_AST_TYPE_WDS_HM) &&
  1148. (type != CDP_TXRX_AST_TYPE_WDS_HM_SEC))
  1149. return;
  1150. /* existing ast delete in progress, will be attempted
  1151. * to add again after delete is complete. Send status then.
  1152. */
  1153. if (err == QDF_STATUS_E_AGAIN)
  1154. return;
  1155. /* peer map pending, notify actual status
  1156. * when peer map is received.
  1157. */
  1158. if (!is_peer_map && (err == QDF_STATUS_SUCCESS))
  1159. return;
  1160. qdf_mem_zero(&add_status, sizeof(add_status));
  1161. add_status.vdev_id = dp_vdev->vdev_id;
  1162. /* For type CDP_TXRX_AST_TYPE_WDS_HM_SEC dp_peer_add_ast()
  1163. * returns QDF_STATUS_E_FAILURE as it is host only entry.
  1164. * In such cases set err as success. Also err code set to
  1165. * QDF_STATUS_E_ALREADY indicates entry already exist in
  1166. * such cases set err as success too. Any other error code
  1167. * is actual error.
  1168. */
  1169. if (((type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) &&
  1170. (err == QDF_STATUS_E_FAILURE)) ||
  1171. (err == QDF_STATUS_E_ALREADY)) {
  1172. err = QDF_STATUS_SUCCESS;
  1173. }
  1174. add_status.status = err;
  1175. qdf_mem_copy(add_status.peer_mac, peer->mac_addr.raw,
  1176. QDF_MAC_ADDR_SIZE);
  1177. qdf_mem_copy(add_status.ast_mac, mac_addr,
  1178. QDF_MAC_ADDR_SIZE);
  1179. #ifdef WDI_EVENT_ENABLE
  1180. dp_wdi_event_handler(WDI_EVENT_HMWDS_AST_ADD_STATUS, dp_pdev->soc,
  1181. (void *)&add_status, 0,
  1182. WDI_NO_VAL, dp_pdev->pdev_id);
  1183. #endif
  1184. }
  1185. #if defined(QCA_SUPPORT_LATENCY_CAPTURE) || \
  1186. defined(QCA_TX_CAPTURE_SUPPORT) || \
  1187. defined(QCA_MCOPY_SUPPORT)
  1188. #ifdef FEATURE_PERPKT_INFO
  1189. /**
  1190. * dp_get_completion_indication_for_stack() - send completion to stack
  1191. * @soc : dp_soc handle
  1192. * @pdev: dp_pdev handle
  1193. * @peer: dp peer handle
  1194. * @ts: transmit completion status structure
  1195. * @netbuf: Buffer pointer for free
  1196. *
  1197. * This function is used for indication whether buffer needs to be
  1198. * sent to stack for freeing or not
  1199. */
  1200. QDF_STATUS
  1201. dp_get_completion_indication_for_stack(struct dp_soc *soc,
  1202. struct dp_pdev *pdev,
  1203. struct dp_txrx_peer *txrx_peer,
  1204. struct hal_tx_completion_status *ts,
  1205. qdf_nbuf_t netbuf,
  1206. uint64_t time_latency)
  1207. {
  1208. struct tx_capture_hdr *ppdu_hdr;
  1209. uint16_t peer_id = ts->peer_id;
  1210. uint32_t ppdu_id = ts->ppdu_id;
  1211. uint8_t first_msdu = ts->first_msdu;
  1212. uint8_t last_msdu = ts->last_msdu;
  1213. uint32_t txcap_hdr_size = sizeof(struct tx_capture_hdr);
  1214. struct dp_peer *peer;
  1215. if (qdf_unlikely(!dp_monitor_is_enable_tx_sniffer(pdev) &&
  1216. !dp_monitor_is_enable_mcopy_mode(pdev) &&
  1217. !pdev->latency_capture_enable))
  1218. return QDF_STATUS_E_NOSUPPORT;
  1219. if (!txrx_peer) {
  1220. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1221. FL("Peer Invalid"));
  1222. return QDF_STATUS_E_INVAL;
  1223. }
  1224. /* If mcopy is enabled and mcopy_mode is M_COPY deliver 1st MSDU
  1225. * per PPDU. If mcopy_mode is M_COPY_EXTENDED deliver 1st MSDU
  1226. * for each MPDU
  1227. */
  1228. if (dp_monitor_mcopy_check_deliver(pdev,
  1229. peer_id,
  1230. ppdu_id,
  1231. first_msdu) != QDF_STATUS_SUCCESS)
  1232. return QDF_STATUS_E_INVAL;
  1233. if (qdf_unlikely(qdf_nbuf_headroom(netbuf) < txcap_hdr_size)) {
  1234. netbuf = qdf_nbuf_realloc_headroom(netbuf, txcap_hdr_size);
  1235. if (!netbuf) {
  1236. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1237. FL("No headroom"));
  1238. return QDF_STATUS_E_NOMEM;
  1239. }
  1240. }
  1241. if (!qdf_nbuf_push_head(netbuf, txcap_hdr_size)) {
  1242. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1243. FL("No headroom"));
  1244. return QDF_STATUS_E_NOMEM;
  1245. }
  1246. ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
  1247. qdf_mem_copy(ppdu_hdr->ta, txrx_peer->vdev->mac_addr.raw,
  1248. QDF_MAC_ADDR_SIZE);
  1249. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_TX_COMP);
  1250. if (peer) {
  1251. qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
  1252. QDF_MAC_ADDR_SIZE);
  1253. dp_peer_unref_delete(peer, DP_MOD_ID_TX_COMP);
  1254. }
  1255. ppdu_hdr->ppdu_id = ppdu_id;
  1256. ppdu_hdr->peer_id = peer_id;
  1257. ppdu_hdr->first_msdu = first_msdu;
  1258. ppdu_hdr->last_msdu = last_msdu;
  1259. if (qdf_unlikely(pdev->latency_capture_enable)) {
  1260. ppdu_hdr->tsf = ts->tsf;
  1261. ppdu_hdr->time_latency = (uint32_t)time_latency;
  1262. }
  1263. return QDF_STATUS_SUCCESS;
  1264. }
  1265. /**
  1266. * dp_send_completion_to_stack() - send completion to stack
  1267. * @soc : dp_soc handle
  1268. * @pdev: dp_pdev handle
  1269. * @peer_id: peer_id of the peer for which completion came
  1270. * @ppdu_id: ppdu_id
  1271. * @netbuf: Buffer pointer for free
  1272. *
  1273. * This function is used to send completion to stack
  1274. * to free buffer
  1275. */
  1276. void dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev,
  1277. uint16_t peer_id, uint32_t ppdu_id,
  1278. qdf_nbuf_t netbuf)
  1279. {
  1280. dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
  1281. netbuf, peer_id,
  1282. WDI_NO_VAL, pdev->pdev_id);
  1283. }
  1284. #endif
  1285. #endif