qce50.c 190 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * QTI Crypto Engine driver.
  4. *
  5. * Copyright (c) 2012-2021, The Linux Foundation. All rights reserved.
  6. */
  7. #define pr_fmt(fmt) "QCE50: %s: " fmt, __func__
  8. #include <linux/types.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/mod_devicetable.h>
  12. #include <linux/device.h>
  13. #include <linux/clk.h>
  14. #include <linux/err.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/io.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/delay.h>
  20. #include <linux/crypto.h>
  21. #include <linux/bitops.h>
  22. #include "linux/qcrypto.h"
  23. #include <crypto/hash.h>
  24. #include <crypto/sha1.h>
  25. #include <soc/qcom/socinfo.h>
  26. #include <linux/dma-iommu.h>
  27. #include <linux/iommu.h>
  28. #include "qce.h"
  29. #include "qce50.h"
  30. #include "qcryptohw_50.h"
  31. #include "qce_ota.h"
  32. #define CRYPTO_SMMU_IOVA_START 0x10000000
  33. #define CRYPTO_SMMU_IOVA_SIZE 0x40000000
  34. #define CRYPTO_CONFIG_RESET 0xE01EF
  35. #define MAX_SPS_DESC_FIFO_SIZE 0xfff0
  36. #define QCE_MAX_NUM_DSCR 0x200
  37. #define QCE_SECTOR_SIZE 0x200
  38. #define CE_CLK_100MHZ 100000000
  39. #define CE_CLK_DIV 1000000
  40. #define CRYPTO_CORE_MAJOR_VER_NUM 0x05
  41. #define CRYPTO_CORE_MINOR_VER_NUM 0x03
  42. #define CRYPTO_CORE_STEP_VER_NUM 0x1
  43. #define CRYPTO_REQ_USER_PAT 0xdead0000
  44. static DEFINE_MUTEX(bam_register_lock);
  45. static DEFINE_MUTEX(qce_iomap_mutex);
  46. struct bam_registration_info {
  47. struct list_head qlist;
  48. unsigned long handle;
  49. uint32_t cnt;
  50. uint32_t bam_mem;
  51. void __iomem *bam_iobase;
  52. bool support_cmd_dscr;
  53. };
  54. static LIST_HEAD(qce50_bam_list);
  55. /* Used to determine the mode */
  56. #define MAX_BUNCH_MODE_REQ 2
  57. /* Max number of request supported */
  58. #define MAX_QCE_BAM_REQ 8
  59. /* Interrupt flag will be set for every SET_INTR_AT_REQ request */
  60. #define SET_INTR_AT_REQ (MAX_QCE_BAM_REQ / 2)
  61. /* To create extra request space to hold dummy request */
  62. #define MAX_QCE_BAM_REQ_WITH_DUMMY_REQ (MAX_QCE_BAM_REQ + 1)
  63. /* Allocate the memory for MAX_QCE_BAM_REQ + 1 (for dummy request) */
  64. #define MAX_QCE_ALLOC_BAM_REQ MAX_QCE_BAM_REQ_WITH_DUMMY_REQ
  65. /* QCE driver modes */
  66. #define IN_INTERRUPT_MODE 0
  67. #define IN_BUNCH_MODE 1
  68. /* Dummy request data length */
  69. #define DUMMY_REQ_DATA_LEN 64
  70. /* Delay timer to expire when in bunch mode */
  71. #define DELAY_IN_JIFFIES 5
  72. /* Index to point the dummy request */
  73. #define DUMMY_REQ_INDEX MAX_QCE_BAM_REQ
  74. #define TOTAL_IOVEC_SPACE_PER_PIPE (QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec))
  75. #define AES_CTR_IV_CTR_SIZE 64
  76. #define STATUS1_ERR_INTR_MASK 0x10
  77. enum qce_owner {
  78. QCE_OWNER_NONE = 0,
  79. QCE_OWNER_CLIENT = 1,
  80. QCE_OWNER_TIMEOUT = 2
  81. };
  82. struct dummy_request {
  83. struct qce_sha_req sreq;
  84. struct scatterlist sg;
  85. struct ahash_request areq;
  86. };
  87. /*
  88. * CE HW device structure.
  89. * Each engine has an instance of the structure.
  90. * Each engine can only handle one crypto operation at one time. It is up to
  91. * the sw above to ensure single threading of operation on an engine.
  92. */
  93. struct qce_device {
  94. struct device *pdev; /* Handle to platform_device structure */
  95. struct bam_registration_info *pbam;
  96. unsigned char *coh_vmem; /* Allocated coherent virtual memory */
  97. dma_addr_t coh_pmem; /* Allocated coherent physical memory */
  98. int memsize; /* Memory allocated */
  99. unsigned char *iovec_vmem; /* Allocate iovec virtual memory */
  100. int iovec_memsize; /* Memory allocated */
  101. uint32_t bam_mem; /* bam physical address, from DT */
  102. uint32_t bam_mem_size; /* bam io size, from DT */
  103. int is_shared; /* CE HW is shared */
  104. bool support_cmd_dscr;
  105. bool support_hw_key;
  106. bool support_clk_mgmt_sus_res;
  107. bool support_only_core_src_clk;
  108. bool request_bw_before_clk;
  109. void __iomem *iobase; /* Virtual io base of CE HW */
  110. unsigned int phy_iobase; /* Physical io base of CE HW */
  111. struct clk *ce_core_src_clk; /* Handle to CE src clk*/
  112. struct clk *ce_core_clk; /* Handle to CE clk */
  113. struct clk *ce_clk; /* Handle to CE clk */
  114. struct clk *ce_bus_clk; /* Handle to CE AXI clk*/
  115. bool no_get_around;
  116. bool no_ccm_mac_status_get_around;
  117. unsigned int ce_opp_freq_hz;
  118. bool use_sw_aes_cbc_ecb_ctr_algo;
  119. bool use_sw_aead_algo;
  120. bool use_sw_aes_xts_algo;
  121. bool use_sw_ahash_algo;
  122. bool use_sw_hmac_algo;
  123. bool use_sw_aes_ccm_algo;
  124. uint32_t engines_avail;
  125. struct qce_ce_cfg_reg_setting reg;
  126. struct ce_bam_info ce_bam_info;
  127. struct ce_request_info ce_request_info[MAX_QCE_ALLOC_BAM_REQ];
  128. unsigned int ce_request_index;
  129. enum qce_owner owner;
  130. atomic_t no_of_queued_req;
  131. struct timer_list timer;
  132. struct dummy_request dummyreq;
  133. unsigned int mode;
  134. unsigned int intr_cadence;
  135. unsigned int dev_no;
  136. struct qce_driver_stats qce_stats;
  137. atomic_t bunch_cmd_seq;
  138. atomic_t last_intr_seq;
  139. bool cadence_flag;
  140. uint8_t *dummyreq_in_buf;
  141. struct dma_iommu_mapping *smmu_mapping;
  142. bool enable_s1_smmu;
  143. bool no_clock_support;
  144. bool kernel_pipes_support;
  145. bool offload_pipes_support;
  146. };
  147. static void print_notify_debug(struct sps_event_notify *notify);
  148. static void _sps_producer_callback(struct sps_event_notify *notify);
  149. static int qce_dummy_req(struct qce_device *pce_dev);
  150. static int _qce50_disp_stats;
  151. /* Standard initialization vector for SHA-1, source: FIPS 180-2 */
  152. static uint32_t _std_init_vector_sha1[] = {
  153. 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
  154. };
  155. /* Standard initialization vector for SHA-256, source: FIPS 180-2 */
  156. static uint32_t _std_init_vector_sha256[] = {
  157. 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
  158. 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
  159. };
  160. /*
  161. * Requests for offload operations do not require explicit dma operations
  162. * as they already have SMMU mapped source/destination buffers.
  163. */
  164. static bool is_offload_op(int op)
  165. {
  166. return (op == QCE_OFFLOAD_HLOS_HLOS || op == QCE_OFFLOAD_HLOS_CPB ||
  167. op == QCE_OFFLOAD_CPB_HLOS);
  168. }
  169. static uint32_t qce_get_config_be(struct qce_device *pce_dev,
  170. uint32_t pipe_pair)
  171. {
  172. uint32_t beats = (pce_dev->ce_bam_info.ce_burst_size >> 3) - 1;
  173. return (beats << CRYPTO_REQ_SIZE |
  174. BIT(CRYPTO_MASK_DOUT_INTR) | BIT(CRYPTO_MASK_DIN_INTR) |
  175. BIT(CRYPTO_MASK_OP_DONE_INTR) | 0 << CRYPTO_HIGH_SPD_EN_N |
  176. pipe_pair << CRYPTO_PIPE_SET_SELECT);
  177. }
  178. static void dump_status_regs(unsigned int s1, unsigned int s2,unsigned int s3,
  179. unsigned int s4, unsigned int s5,unsigned int s6)
  180. {
  181. pr_info("%s: CRYPTO_STATUS_REG = 0x%x\n", __func__, s1);
  182. pr_info("%s: CRYPTO_STATUS2_REG = 0x%x\n", __func__, s2);
  183. pr_info("%s: CRYPTO_STATUS3_REG = 0x%x\n", __func__, s3);
  184. pr_info("%s: CRYPTO_STATUS4_REG = 0x%x\n", __func__, s4);
  185. pr_info("%s: CRYPTO_STATUS5_REG = 0x%x\n", __func__, s5);
  186. pr_info("%s: CRYPTO_STATUS6_REG = 0x%x\n", __func__, s6);
  187. }
  188. void qce_get_crypto_status(void *handle, unsigned int *s1, unsigned int *s2,
  189. unsigned int *s3, unsigned int *s4,
  190. unsigned int *s5, unsigned int *s6)
  191. {
  192. struct qce_device *pce_dev = (struct qce_device *) handle;
  193. *s1 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG);
  194. *s2 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS2_REG);
  195. *s3 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS3_REG);
  196. *s4 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS4_REG);
  197. *s5 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS5_REG);
  198. *s6 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS6_REG);
  199. #ifdef QCE_DEBUG
  200. dump_status_regs(*s1, *s2, *s3, *s4, *s5, *s6);
  201. #else
  202. if (*s1 & STATUS1_ERR_INTR_MASK)
  203. dump_status_regs(*s1, *s2, *s3, *s4, *s5, *s6);
  204. #endif
  205. return;
  206. }
  207. EXPORT_SYMBOL(qce_get_crypto_status);
  208. static void qce_set_offload_config(struct qce_device *pce_dev,
  209. struct qce_req *creq)
  210. {
  211. uint32_t config_be = pce_dev->reg.crypto_cfg_be;
  212. switch (creq->offload_op) {
  213. case QCE_OFFLOAD_HLOS_HLOS:
  214. config_be = qce_get_config_be(pce_dev,
  215. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_HLOS]);
  216. break;
  217. case QCE_OFFLOAD_HLOS_CPB:
  218. config_be = qce_get_config_be(pce_dev,
  219. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_CPB]);
  220. break;
  221. case QCE_OFFLOAD_CPB_HLOS:
  222. config_be = qce_get_config_be(pce_dev,
  223. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_CPB_HLOS]);
  224. break;
  225. default:
  226. break;
  227. }
  228. pce_dev->reg.crypto_cfg_be = config_be;
  229. pce_dev->reg.crypto_cfg_le = (config_be |
  230. CRYPTO_LITTLE_ENDIAN_MASK);
  231. return;
  232. }
  233. /*
  234. * IV counter mask is be set based on the values sent through the offload ioctl
  235. * calls. Currently for offload operations, it is 64 bytes of mask for AES CTR,
  236. * and 128 bytes of mask for AES CBC.
  237. */
  238. static void qce_set_iv_ctr_mask(struct qce_device *pce_dev,
  239. struct qce_req *creq)
  240. {
  241. if (creq->iv_ctr_size == AES_CTR_IV_CTR_SIZE) {
  242. pce_dev->reg.encr_cntr_mask_0 = 0x0;
  243. pce_dev->reg.encr_cntr_mask_1 = 0x0;
  244. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  245. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  246. } else {
  247. pce_dev->reg.encr_cntr_mask_0 = 0xFFFFFFFF;
  248. pce_dev->reg.encr_cntr_mask_1 = 0xFFFFFFFF;
  249. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  250. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  251. }
  252. return;
  253. }
  254. static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b,
  255. unsigned int len)
  256. {
  257. unsigned int n;
  258. n = len / sizeof(uint32_t);
  259. for (; n > 0; n--) {
  260. *iv = ((*b << 24) & 0xff000000) |
  261. (((*(b+1)) << 16) & 0xff0000) |
  262. (((*(b+2)) << 8) & 0xff00) |
  263. (*(b+3) & 0xff);
  264. b += sizeof(uint32_t);
  265. iv++;
  266. }
  267. n = len % sizeof(uint32_t);
  268. if (n == 3) {
  269. *iv = ((*b << 24) & 0xff000000) |
  270. (((*(b+1)) << 16) & 0xff0000) |
  271. (((*(b+2)) << 8) & 0xff00);
  272. } else if (n == 2) {
  273. *iv = ((*b << 24) & 0xff000000) |
  274. (((*(b+1)) << 16) & 0xff0000);
  275. } else if (n == 1) {
  276. *iv = ((*b << 24) & 0xff000000);
  277. }
  278. }
  279. static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b,
  280. unsigned int len)
  281. {
  282. unsigned int i, j;
  283. unsigned char swap_iv[AES_IV_LENGTH];
  284. memset(swap_iv, 0, AES_IV_LENGTH);
  285. for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--)
  286. swap_iv[i] = b[j];
  287. _byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH);
  288. }
  289. static int count_sg(struct scatterlist *sg, int nbytes)
  290. {
  291. int i;
  292. for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
  293. nbytes -= sg->length;
  294. return i;
  295. }
  296. static int qce_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  297. enum dma_data_direction direction)
  298. {
  299. int i;
  300. for (i = 0; i < nents; ++i) {
  301. dma_map_sg(dev, sg, 1, direction);
  302. sg = sg_next(sg);
  303. }
  304. return nents;
  305. }
  306. static int qce_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  307. int nents, enum dma_data_direction direction)
  308. {
  309. int i;
  310. for (i = 0; i < nents; ++i) {
  311. dma_unmap_sg(dev, sg, 1, direction);
  312. sg = sg_next(sg);
  313. }
  314. return nents;
  315. }
  316. static int _probe_ce_engine(struct qce_device *pce_dev)
  317. {
  318. unsigned int rev;
  319. unsigned int maj_rev, min_rev, step_rev;
  320. rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG);
  321. /*
  322. * Ensure previous instructions (setting the GO register)
  323. * was completed before checking the version.
  324. */
  325. mb();
  326. maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV;
  327. min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV;
  328. step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV;
  329. if (maj_rev != CRYPTO_CORE_MAJOR_VER_NUM) {
  330. pr_err("Unsupported QTI crypto device at 0x%x, rev %d.%d.%d\n",
  331. pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
  332. return -EIO;
  333. }
  334. /*
  335. * The majority of crypto HW bugs have been fixed in 5.3.0 and
  336. * above. That allows a single sps transfer of consumer
  337. * pipe, and a single sps transfer of producer pipe
  338. * for a crypto request. no_get_around flag indicates this.
  339. *
  340. * In 5.3.1, the CCM MAC_FAILED in result dump issue is
  341. * fixed. no_ccm_mac_status_get_around flag indicates this.
  342. */
  343. pce_dev->no_get_around = (min_rev >=
  344. CRYPTO_CORE_MINOR_VER_NUM) ? true : false;
  345. if (min_rev > CRYPTO_CORE_MINOR_VER_NUM)
  346. pce_dev->no_ccm_mac_status_get_around = true;
  347. else if ((min_rev == CRYPTO_CORE_MINOR_VER_NUM) &&
  348. (step_rev >= CRYPTO_CORE_STEP_VER_NUM))
  349. pce_dev->no_ccm_mac_status_get_around = true;
  350. else
  351. pce_dev->no_ccm_mac_status_get_around = false;
  352. pce_dev->ce_bam_info.minor_version = min_rev;
  353. pce_dev->engines_avail = readl_relaxed(pce_dev->iobase +
  354. CRYPTO_ENGINES_AVAIL);
  355. dev_info(pce_dev->pdev, "QTI Crypto %d.%d.%d device found @0x%x\n",
  356. maj_rev, min_rev, step_rev, pce_dev->phy_iobase);
  357. pce_dev->ce_bam_info.ce_burst_size = MAX_CE_BAM_BURST_SIZE;
  358. dev_dbg(pce_dev->pdev, "CE device = %#x IO base, CE = %pK Consumer (IN) PIPE %d,\nProducer (OUT) PIPE %d IO base BAM = %pK\nBAM IRQ %d Engines Availability = %#x\n",
  359. pce_dev->ce_bam_info.ce_device, pce_dev->iobase,
  360. pce_dev->ce_bam_info.dest_pipe_index,
  361. pce_dev->ce_bam_info.src_pipe_index,
  362. pce_dev->ce_bam_info.bam_iobase,
  363. pce_dev->ce_bam_info.bam_irq, pce_dev->engines_avail);
  364. return 0;
  365. };
  366. static struct qce_cmdlist_info *_ce_get_hash_cmdlistinfo(
  367. struct qce_device *pce_dev,
  368. int req_info, struct qce_sha_req *sreq)
  369. {
  370. struct ce_sps_data *pce_sps_data;
  371. struct qce_cmdlistptr_ops *cmdlistptr;
  372. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  373. cmdlistptr = &pce_sps_data->cmdlistptr;
  374. switch (sreq->alg) {
  375. case QCE_HASH_SHA1:
  376. return &cmdlistptr->auth_sha1;
  377. case QCE_HASH_SHA256:
  378. return &cmdlistptr->auth_sha256;
  379. case QCE_HASH_SHA1_HMAC:
  380. return &cmdlistptr->auth_sha1_hmac;
  381. case QCE_HASH_SHA256_HMAC:
  382. return &cmdlistptr->auth_sha256_hmac;
  383. case QCE_HASH_AES_CMAC:
  384. if (sreq->authklen == AES128_KEY_SIZE)
  385. return &cmdlistptr->auth_aes_128_cmac;
  386. return &cmdlistptr->auth_aes_256_cmac;
  387. default:
  388. return NULL;
  389. }
  390. return NULL;
  391. }
  392. static int _ce_setup_hash(struct qce_device *pce_dev,
  393. struct qce_sha_req *sreq,
  394. struct qce_cmdlist_info *cmdlistinfo)
  395. {
  396. uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
  397. uint32_t diglen;
  398. int i;
  399. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
  400. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  401. bool sha1 = false;
  402. struct sps_command_element *pce = NULL;
  403. bool use_hw_key = false;
  404. bool use_pipe_key = false;
  405. uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
  406. uint32_t auth_cfg;
  407. if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
  408. (sreq->alg == QCE_HASH_SHA256_HMAC) ||
  409. (sreq->alg == QCE_HASH_AES_CMAC)) {
  410. /* no more check for null key. use flag */
  411. if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY)
  412. == QCRYPTO_CTX_USE_HW_KEY)
  413. use_hw_key = true;
  414. else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  415. QCRYPTO_CTX_USE_PIPE_KEY)
  416. use_pipe_key = true;
  417. pce = cmdlistinfo->go_proc;
  418. if (use_hw_key) {
  419. pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
  420. pce_dev->phy_iobase);
  421. } else {
  422. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
  423. pce_dev->phy_iobase);
  424. pce = cmdlistinfo->auth_key;
  425. if (!use_pipe_key) {
  426. _byte_stream_to_net_words(mackey32,
  427. sreq->authkey,
  428. sreq->authklen);
  429. for (i = 0; i < authk_size_in_word; i++, pce++)
  430. pce->data = mackey32[i];
  431. }
  432. }
  433. }
  434. if (sreq->alg == QCE_HASH_AES_CMAC)
  435. goto go_proc;
  436. /* if not the last, the size has to be on the block boundary */
  437. if (!sreq->last_blk && (sreq->size % SHA256_BLOCK_SIZE))
  438. return -EIO;
  439. switch (sreq->alg) {
  440. case QCE_HASH_SHA1:
  441. case QCE_HASH_SHA1_HMAC:
  442. diglen = SHA1_DIGEST_SIZE;
  443. sha1 = true;
  444. break;
  445. case QCE_HASH_SHA256:
  446. case QCE_HASH_SHA256_HMAC:
  447. diglen = SHA256_DIGEST_SIZE;
  448. break;
  449. default:
  450. return -EINVAL;
  451. }
  452. /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
  453. if (sreq->first_blk) {
  454. if (sha1) {
  455. for (i = 0; i < 5; i++)
  456. auth32[i] = _std_init_vector_sha1[i];
  457. } else {
  458. for (i = 0; i < 8; i++)
  459. auth32[i] = _std_init_vector_sha256[i];
  460. }
  461. } else {
  462. _byte_stream_to_net_words(auth32, sreq->digest, diglen);
  463. }
  464. pce = cmdlistinfo->auth_iv;
  465. for (i = 0; i < 5; i++, pce++)
  466. pce->data = auth32[i];
  467. if ((sreq->alg == QCE_HASH_SHA256) ||
  468. (sreq->alg == QCE_HASH_SHA256_HMAC)) {
  469. for (i = 5; i < 8; i++, pce++)
  470. pce->data = auth32[i];
  471. }
  472. /* write auth_bytecnt 0/1, start with 0 */
  473. pce = cmdlistinfo->auth_bytecount;
  474. for (i = 0; i < 2; i++, pce++)
  475. pce->data = sreq->auth_data[i];
  476. /* Set/reset last bit in CFG register */
  477. pce = cmdlistinfo->auth_seg_cfg;
  478. auth_cfg = pce->data & ~(1 << CRYPTO_LAST |
  479. 1 << CRYPTO_FIRST |
  480. 1 << CRYPTO_USE_PIPE_KEY_AUTH |
  481. 1 << CRYPTO_USE_HW_KEY_AUTH);
  482. if (sreq->last_blk)
  483. auth_cfg |= 1 << CRYPTO_LAST;
  484. if (sreq->first_blk)
  485. auth_cfg |= 1 << CRYPTO_FIRST;
  486. if (use_hw_key)
  487. auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
  488. if (use_pipe_key)
  489. auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
  490. pce->data = auth_cfg;
  491. go_proc:
  492. /* write auth seg size */
  493. pce = cmdlistinfo->auth_seg_size;
  494. pce->data = sreq->size;
  495. pce = cmdlistinfo->encr_seg_cfg;
  496. pce->data = 0;
  497. /* write auth seg size start*/
  498. pce = cmdlistinfo->auth_seg_start;
  499. pce->data = 0;
  500. /* write seg size */
  501. pce = cmdlistinfo->seg_size;
  502. /* always ensure there is input data. ZLT does not work for bam-ndp */
  503. if (sreq->size)
  504. pce->data = sreq->size;
  505. else
  506. pce->data = pce_dev->ce_bam_info.ce_burst_size;
  507. return 0;
  508. }
  509. static struct qce_cmdlist_info *_ce_get_aead_cmdlistinfo(
  510. struct qce_device *pce_dev,
  511. int req_info, struct qce_req *creq)
  512. {
  513. struct ce_sps_data *pce_sps_data;
  514. struct qce_cmdlistptr_ops *cmdlistptr;
  515. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  516. cmdlistptr = &pce_sps_data->cmdlistptr;
  517. switch (creq->alg) {
  518. case CIPHER_ALG_DES:
  519. switch (creq->mode) {
  520. case QCE_MODE_CBC:
  521. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  522. return &cmdlistptr->aead_hmac_sha1_cbc_des;
  523. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  524. return &cmdlistptr->aead_hmac_sha256_cbc_des;
  525. else
  526. return NULL;
  527. break;
  528. default:
  529. return NULL;
  530. }
  531. break;
  532. case CIPHER_ALG_3DES:
  533. switch (creq->mode) {
  534. case QCE_MODE_CBC:
  535. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  536. return &cmdlistptr->aead_hmac_sha1_cbc_3des;
  537. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  538. return &cmdlistptr->aead_hmac_sha256_cbc_3des;
  539. else
  540. return NULL;
  541. break;
  542. default:
  543. return NULL;
  544. }
  545. break;
  546. case CIPHER_ALG_AES:
  547. switch (creq->mode) {
  548. case QCE_MODE_CBC:
  549. if (creq->encklen == AES128_KEY_SIZE) {
  550. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  551. return
  552. &cmdlistptr->aead_hmac_sha1_cbc_aes_128;
  553. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  554. return
  555. &cmdlistptr->aead_hmac_sha256_cbc_aes_128;
  556. else
  557. return NULL;
  558. } else if (creq->encklen == AES256_KEY_SIZE) {
  559. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  560. return &cmdlistptr->aead_hmac_sha1_cbc_aes_256;
  561. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  562. return
  563. &cmdlistptr->aead_hmac_sha256_cbc_aes_256;
  564. else
  565. return NULL;
  566. } else
  567. return NULL;
  568. break;
  569. default:
  570. return NULL;
  571. }
  572. break;
  573. default:
  574. return NULL;
  575. }
  576. return NULL;
  577. }
  578. static int _ce_setup_aead(struct qce_device *pce_dev, struct qce_req *q_req,
  579. uint32_t totallen_in, uint32_t coffset,
  580. struct qce_cmdlist_info *cmdlistinfo)
  581. {
  582. int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  583. int i;
  584. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
  585. struct sps_command_element *pce;
  586. uint32_t a_cfg;
  587. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
  588. uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
  589. uint32_t enck_size_in_word = 0;
  590. uint32_t enciv_in_word;
  591. uint32_t key_size;
  592. uint32_t encr_cfg = 0;
  593. uint32_t ivsize = q_req->ivsize;
  594. key_size = q_req->encklen;
  595. enck_size_in_word = key_size/sizeof(uint32_t);
  596. switch (q_req->alg) {
  597. case CIPHER_ALG_DES:
  598. enciv_in_word = 2;
  599. break;
  600. case CIPHER_ALG_3DES:
  601. enciv_in_word = 2;
  602. break;
  603. case CIPHER_ALG_AES:
  604. if ((key_size != AES128_KEY_SIZE) &&
  605. (key_size != AES256_KEY_SIZE))
  606. return -EINVAL;
  607. enciv_in_word = 4;
  608. break;
  609. default:
  610. return -EINVAL;
  611. }
  612. /* only support cbc mode */
  613. if (q_req->mode != QCE_MODE_CBC)
  614. return -EINVAL;
  615. _byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
  616. pce = cmdlistinfo->encr_cntr_iv;
  617. for (i = 0; i < enciv_in_word; i++, pce++)
  618. pce->data = enciv32[i];
  619. /*
  620. * write encr key
  621. * do not use hw key or pipe key
  622. */
  623. _byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
  624. pce = cmdlistinfo->encr_key;
  625. for (i = 0; i < enck_size_in_word; i++, pce++)
  626. pce->data = enckey32[i];
  627. /* write encr seg cfg */
  628. pce = cmdlistinfo->encr_seg_cfg;
  629. encr_cfg = pce->data;
  630. if (q_req->dir == QCE_ENCRYPT)
  631. encr_cfg |= (1 << CRYPTO_ENCODE);
  632. else
  633. encr_cfg &= ~(1 << CRYPTO_ENCODE);
  634. pce->data = encr_cfg;
  635. /* we only support sha1-hmac and sha256-hmac at this point */
  636. _byte_stream_to_net_words(mackey32, q_req->authkey,
  637. q_req->authklen);
  638. pce = cmdlistinfo->auth_key;
  639. for (i = 0; i < authk_size_in_word; i++, pce++)
  640. pce->data = mackey32[i];
  641. pce = cmdlistinfo->auth_iv;
  642. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
  643. for (i = 0; i < 5; i++, pce++)
  644. pce->data = _std_init_vector_sha1[i];
  645. else
  646. for (i = 0; i < 8; i++, pce++)
  647. pce->data = _std_init_vector_sha256[i];
  648. /* write auth_bytecnt 0/1, start with 0 */
  649. pce = cmdlistinfo->auth_bytecount;
  650. for (i = 0; i < 2; i++, pce++)
  651. pce->data = 0;
  652. pce = cmdlistinfo->auth_seg_cfg;
  653. a_cfg = pce->data;
  654. a_cfg &= ~(CRYPTO_AUTH_POS_MASK);
  655. if (q_req->dir == QCE_ENCRYPT)
  656. a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  657. else
  658. a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  659. pce->data = a_cfg;
  660. /* write auth seg size */
  661. pce = cmdlistinfo->auth_seg_size;
  662. pce->data = totallen_in;
  663. /* write auth seg size start*/
  664. pce = cmdlistinfo->auth_seg_start;
  665. pce->data = 0;
  666. /* write seg size */
  667. pce = cmdlistinfo->seg_size;
  668. pce->data = totallen_in;
  669. /* write encr seg size */
  670. pce = cmdlistinfo->encr_seg_size;
  671. pce->data = q_req->cryptlen;
  672. /* write encr seg start */
  673. pce = cmdlistinfo->encr_seg_start;
  674. pce->data = (coffset & 0xffff);
  675. return 0;
  676. }
  677. static struct qce_cmdlist_info *_ce_get_cipher_cmdlistinfo(
  678. struct qce_device *pce_dev,
  679. int req_info, struct qce_req *creq)
  680. {
  681. struct ce_request_info *preq_info;
  682. struct ce_sps_data *pce_sps_data;
  683. struct qce_cmdlistptr_ops *cmdlistptr;
  684. preq_info = &pce_dev->ce_request_info[req_info];
  685. pce_sps_data = &preq_info->ce_sps;
  686. cmdlistptr = &pce_sps_data->cmdlistptr;
  687. if (creq->alg != CIPHER_ALG_AES) {
  688. switch (creq->alg) {
  689. case CIPHER_ALG_DES:
  690. if (creq->mode == QCE_MODE_ECB)
  691. return &cmdlistptr->cipher_des_ecb;
  692. return &cmdlistptr->cipher_des_cbc;
  693. case CIPHER_ALG_3DES:
  694. if (creq->mode == QCE_MODE_ECB)
  695. return &cmdlistptr->cipher_3des_ecb;
  696. return &cmdlistptr->cipher_3des_cbc;
  697. default:
  698. return NULL;
  699. }
  700. } else {
  701. switch (creq->mode) {
  702. case QCE_MODE_ECB:
  703. if (creq->encklen == AES128_KEY_SIZE)
  704. return &cmdlistptr->cipher_aes_128_ecb;
  705. return &cmdlistptr->cipher_aes_256_ecb;
  706. case QCE_MODE_CBC:
  707. case QCE_MODE_CTR:
  708. if (creq->encklen == AES128_KEY_SIZE)
  709. return &cmdlistptr->cipher_aes_128_cbc_ctr;
  710. return &cmdlistptr->cipher_aes_256_cbc_ctr;
  711. case QCE_MODE_XTS:
  712. if (creq->encklen/2 == AES128_KEY_SIZE)
  713. return &cmdlistptr->cipher_aes_128_xts;
  714. return &cmdlistptr->cipher_aes_256_xts;
  715. case QCE_MODE_CCM:
  716. if (creq->encklen == AES128_KEY_SIZE)
  717. return &cmdlistptr->aead_aes_128_ccm;
  718. return &cmdlistptr->aead_aes_256_ccm;
  719. default:
  720. return NULL;
  721. }
  722. }
  723. return NULL;
  724. }
  725. static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq,
  726. uint32_t totallen_in, uint32_t coffset,
  727. struct qce_cmdlist_info *cmdlistinfo)
  728. {
  729. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
  730. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  731. uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
  732. 0, 0, 0, 0};
  733. uint32_t enck_size_in_word = 0;
  734. uint32_t key_size;
  735. bool use_hw_key = false;
  736. bool use_pipe_key = false;
  737. uint32_t encr_cfg = 0;
  738. uint32_t ivsize = creq->ivsize;
  739. int i;
  740. struct sps_command_element *pce = NULL;
  741. bool is_des_cipher = false;
  742. if (creq->mode == QCE_MODE_XTS)
  743. key_size = creq->encklen/2;
  744. else
  745. key_size = creq->encklen;
  746. qce_set_offload_config(pce_dev, creq);
  747. pce = cmdlistinfo->crypto_cfg;
  748. pce->data = pce_dev->reg.crypto_cfg_be;
  749. pce = cmdlistinfo->crypto_cfg_le;
  750. pce->data = pce_dev->reg.crypto_cfg_le;
  751. pce = cmdlistinfo->go_proc;
  752. if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
  753. use_hw_key = true;
  754. } else {
  755. if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  756. QCRYPTO_CTX_USE_PIPE_KEY)
  757. use_pipe_key = true;
  758. }
  759. if (use_hw_key)
  760. pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
  761. pce_dev->phy_iobase);
  762. else
  763. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
  764. pce_dev->phy_iobase);
  765. if (!use_pipe_key && !use_hw_key) {
  766. _byte_stream_to_net_words(enckey32, creq->enckey, key_size);
  767. enck_size_in_word = key_size/sizeof(uint32_t);
  768. }
  769. if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
  770. uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
  771. uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
  772. uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
  773. uint32_t auth_cfg = 0;
  774. /* write nonce */
  775. _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
  776. pce = cmdlistinfo->auth_nonce_info;
  777. for (i = 0; i < noncelen32; i++, pce++)
  778. pce->data = nonce32[i];
  779. if (creq->authklen == AES128_KEY_SIZE)
  780. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
  781. else {
  782. if (creq->authklen == AES256_KEY_SIZE)
  783. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
  784. }
  785. if (creq->dir == QCE_ENCRYPT)
  786. auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  787. else
  788. auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  789. auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
  790. if (use_hw_key) {
  791. auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
  792. } else {
  793. auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  794. /* write auth key */
  795. pce = cmdlistinfo->auth_key;
  796. for (i = 0; i < authklen32; i++, pce++)
  797. pce->data = enckey32[i];
  798. }
  799. pce = cmdlistinfo->auth_seg_cfg;
  800. pce->data = auth_cfg;
  801. pce = cmdlistinfo->auth_seg_size;
  802. if (creq->dir == QCE_ENCRYPT)
  803. pce->data = totallen_in;
  804. else
  805. pce->data = totallen_in - creq->authsize;
  806. pce = cmdlistinfo->auth_seg_start;
  807. pce->data = 0;
  808. } else {
  809. if (creq->op != QCE_REQ_AEAD) {
  810. pce = cmdlistinfo->auth_seg_cfg;
  811. pce->data = 0;
  812. }
  813. }
  814. switch (creq->mode) {
  815. case QCE_MODE_ECB:
  816. if (key_size == AES128_KEY_SIZE)
  817. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
  818. else
  819. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
  820. break;
  821. case QCE_MODE_CBC:
  822. if (key_size == AES128_KEY_SIZE)
  823. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  824. else
  825. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  826. break;
  827. case QCE_MODE_XTS:
  828. if (key_size == AES128_KEY_SIZE)
  829. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
  830. else
  831. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
  832. break;
  833. case QCE_MODE_CCM:
  834. if (key_size == AES128_KEY_SIZE)
  835. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
  836. else
  837. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
  838. encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
  839. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  840. break;
  841. case QCE_MODE_CTR:
  842. default:
  843. if (key_size == AES128_KEY_SIZE)
  844. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
  845. else
  846. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
  847. break;
  848. }
  849. switch (creq->alg) {
  850. case CIPHER_ALG_DES:
  851. if (creq->mode != QCE_MODE_ECB) {
  852. if (ivsize > MAX_IV_LENGTH) {
  853. pr_err("%s: error: Invalid length parameter\n",
  854. __func__);
  855. return -EINVAL;
  856. }
  857. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  858. pce = cmdlistinfo->encr_cntr_iv;
  859. pce->data = enciv32[0];
  860. pce++;
  861. pce->data = enciv32[1];
  862. }
  863. if (!use_hw_key) {
  864. pce = cmdlistinfo->encr_key;
  865. pce->data = enckey32[0];
  866. pce++;
  867. pce->data = enckey32[1];
  868. }
  869. is_des_cipher = true;
  870. break;
  871. case CIPHER_ALG_3DES:
  872. if (creq->mode != QCE_MODE_ECB) {
  873. if (ivsize > MAX_IV_LENGTH) {
  874. pr_err("%s: error: Invalid length parameter\n",
  875. __func__);
  876. return -EINVAL;
  877. }
  878. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  879. pce = cmdlistinfo->encr_cntr_iv;
  880. pce->data = enciv32[0];
  881. pce++;
  882. pce->data = enciv32[1];
  883. }
  884. if (!use_hw_key) {
  885. /* write encr key */
  886. pce = cmdlistinfo->encr_key;
  887. for (i = 0; i < 6; i++, pce++)
  888. pce->data = enckey32[i];
  889. }
  890. is_des_cipher = true;
  891. break;
  892. case CIPHER_ALG_AES:
  893. default:
  894. if (creq->mode == QCE_MODE_XTS) {
  895. uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
  896. = {0, 0, 0, 0, 0, 0, 0, 0};
  897. uint32_t xtsklen =
  898. creq->encklen/(2 * sizeof(uint32_t));
  899. if (!use_hw_key && !use_pipe_key) {
  900. _byte_stream_to_net_words(xtskey32,
  901. (creq->enckey + creq->encklen/2),
  902. creq->encklen/2);
  903. /* write xts encr key */
  904. pce = cmdlistinfo->encr_xts_key;
  905. for (i = 0; i < xtsklen; i++, pce++)
  906. pce->data = xtskey32[i];
  907. }
  908. /* write xts du size */
  909. pce = cmdlistinfo->encr_xts_du_size;
  910. switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
  911. case QCRYPTO_CTX_XTS_DU_SIZE_512B:
  912. pce->data = min((unsigned int)QCE_SECTOR_SIZE,
  913. creq->cryptlen);
  914. break;
  915. case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
  916. pce->data =
  917. min((unsigned int)QCE_SECTOR_SIZE * 2,
  918. creq->cryptlen);
  919. break;
  920. default:
  921. pce->data = creq->cryptlen;
  922. break;
  923. }
  924. }
  925. if (creq->mode != QCE_MODE_ECB) {
  926. if (ivsize > MAX_IV_LENGTH) {
  927. pr_err("%s: error: Invalid length parameter\n",
  928. __func__);
  929. return -EINVAL;
  930. }
  931. if (creq->mode == QCE_MODE_XTS)
  932. _byte_stream_swap_to_net_words(enciv32,
  933. creq->iv, ivsize);
  934. else
  935. _byte_stream_to_net_words(enciv32, creq->iv,
  936. ivsize);
  937. /* write encr cntr iv */
  938. pce = cmdlistinfo->encr_cntr_iv;
  939. for (i = 0; i < 4; i++, pce++)
  940. pce->data = enciv32[i];
  941. if (creq->mode == QCE_MODE_CCM) {
  942. /* write cntr iv for ccm */
  943. pce = cmdlistinfo->encr_ccm_cntr_iv;
  944. for (i = 0; i < 4; i++, pce++)
  945. pce->data = enciv32[i];
  946. /* update cntr_iv[3] by one */
  947. pce = cmdlistinfo->encr_cntr_iv;
  948. pce += 3;
  949. pce->data += 1;
  950. }
  951. }
  952. if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
  953. encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
  954. CRYPTO_ENCR_KEY_SZ);
  955. } else {
  956. if (!use_hw_key) {
  957. /* write encr key */
  958. pce = cmdlistinfo->encr_key;
  959. for (i = 0; i < enck_size_in_word; i++, pce++)
  960. pce->data = enckey32[i];
  961. }
  962. } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
  963. break;
  964. } /* end of switch (creq->mode) */
  965. if (use_pipe_key)
  966. encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
  967. << CRYPTO_USE_PIPE_KEY_ENCR);
  968. /* write encr seg cfg */
  969. pce = cmdlistinfo->encr_seg_cfg;
  970. if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) {
  971. if (creq->dir == QCE_ENCRYPT)
  972. pce->data |= (1 << CRYPTO_ENCODE);
  973. else
  974. pce->data &= ~(1 << CRYPTO_ENCODE);
  975. encr_cfg = pce->data;
  976. } else {
  977. encr_cfg |=
  978. ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
  979. }
  980. if (use_hw_key)
  981. encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  982. else
  983. encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  984. pce->data = encr_cfg;
  985. /* write encr seg size */
  986. pce = cmdlistinfo->encr_seg_size;
  987. if (creq->is_copy_op) {
  988. pce->data = 0;
  989. } else {
  990. if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT))
  991. pce->data = (creq->cryptlen + creq->authsize);
  992. else
  993. pce->data = creq->cryptlen;
  994. }
  995. /* write encr seg start */
  996. pce = cmdlistinfo->encr_seg_start;
  997. pce->data = (coffset & 0xffff);
  998. /* write seg size */
  999. pce = cmdlistinfo->seg_size;
  1000. pce->data = totallen_in;
  1001. if (is_offload_op(creq->offload_op)) {
  1002. /* pattern info */
  1003. pce = cmdlistinfo->pattern_info;
  1004. pce->data = creq->pattern_info;
  1005. /* block offset */
  1006. pce = cmdlistinfo->block_offset;
  1007. pce->data = (creq->block_offset << 4) |
  1008. (creq->block_offset ? 1: 0);
  1009. /* IV counter size */
  1010. qce_set_iv_ctr_mask(pce_dev, creq);
  1011. }
  1012. if (!is_des_cipher) {
  1013. pce = cmdlistinfo->encr_mask_3;
  1014. pce->data = pce_dev->reg.encr_cntr_mask_3;
  1015. pce = cmdlistinfo->encr_mask_2;
  1016. pce->data = pce_dev->reg.encr_cntr_mask_2;
  1017. pce = cmdlistinfo->encr_mask_1;
  1018. pce->data = pce_dev->reg.encr_cntr_mask_1;
  1019. pce = cmdlistinfo->encr_mask_0;
  1020. pce->data = pce_dev->reg.encr_cntr_mask_0;
  1021. }
  1022. pce = cmdlistinfo->go_proc;
  1023. pce->data = 0;
  1024. if (is_offload_op(creq->offload_op))
  1025. pce->data = ((1 << CRYPTO_GO) | (1 << CRYPTO_CLR_CNTXT));
  1026. else
  1027. pce->data = ((1 << CRYPTO_GO) | (1 << CRYPTO_CLR_CNTXT) |
  1028. (1 << CRYPTO_RESULTS_DUMP));
  1029. return 0;
  1030. }
  1031. static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req *req,
  1032. struct qce_cmdlist_info *cmdlistinfo)
  1033. {
  1034. uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1035. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1036. uint32_t cfg;
  1037. struct sps_command_element *pce;
  1038. int i;
  1039. switch (req->algorithm) {
  1040. case QCE_OTA_ALGO_KASUMI:
  1041. cfg = pce_dev->reg.auth_cfg_kasumi;
  1042. break;
  1043. case QCE_OTA_ALGO_SNOW3G:
  1044. default:
  1045. cfg = pce_dev->reg.auth_cfg_snow3g;
  1046. break;
  1047. }
  1048. /* write key in CRYPTO_AUTH_IV0-3_REG */
  1049. _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
  1050. pce = cmdlistinfo->auth_iv;
  1051. for (i = 0; i < key_size_in_word; i++, pce++)
  1052. pce->data = ikey32[i];
  1053. /* write last bits in CRYPTO_AUTH_IV4_REG */
  1054. pce->data = req->last_bits;
  1055. /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
  1056. pce = cmdlistinfo->auth_bytecount;
  1057. pce->data = req->fresh;
  1058. /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
  1059. pce++;
  1060. pce->data = req->count_i;
  1061. /* write auth seg cfg */
  1062. pce = cmdlistinfo->auth_seg_cfg;
  1063. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1064. cfg |= BIT(CRYPTO_F9_DIRECTION);
  1065. pce->data = cfg;
  1066. /* write auth seg size */
  1067. pce = cmdlistinfo->auth_seg_size;
  1068. pce->data = req->msize;
  1069. /* write auth seg start*/
  1070. pce = cmdlistinfo->auth_seg_start;
  1071. pce->data = 0;
  1072. /* write seg size */
  1073. pce = cmdlistinfo->seg_size;
  1074. pce->data = req->msize;
  1075. /* write go */
  1076. pce = cmdlistinfo->go_proc;
  1077. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
  1078. return 0;
  1079. }
  1080. static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req,
  1081. bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset,
  1082. uint16_t cipher_size,
  1083. struct qce_cmdlist_info *cmdlistinfo)
  1084. {
  1085. uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1086. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1087. uint32_t cfg;
  1088. struct sps_command_element *pce;
  1089. int i;
  1090. switch (req->algorithm) {
  1091. case QCE_OTA_ALGO_KASUMI:
  1092. cfg = pce_dev->reg.encr_cfg_kasumi;
  1093. break;
  1094. case QCE_OTA_ALGO_SNOW3G:
  1095. default:
  1096. cfg = pce_dev->reg.encr_cfg_snow3g;
  1097. break;
  1098. }
  1099. /* write key */
  1100. _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
  1101. pce = cmdlistinfo->encr_key;
  1102. for (i = 0; i < key_size_in_word; i++, pce++)
  1103. pce->data = ckey32[i];
  1104. /* write encr seg cfg */
  1105. pce = cmdlistinfo->encr_seg_cfg;
  1106. if (key_stream_mode)
  1107. cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
  1108. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1109. cfg |= BIT(CRYPTO_F8_DIRECTION);
  1110. pce->data = cfg;
  1111. /* write encr seg start */
  1112. pce = cmdlistinfo->encr_seg_start;
  1113. pce->data = (cipher_offset & 0xffff);
  1114. /* write encr seg size */
  1115. pce = cmdlistinfo->encr_seg_size;
  1116. pce->data = cipher_size;
  1117. /* write seg size */
  1118. pce = cmdlistinfo->seg_size;
  1119. pce->data = req->data_len;
  1120. /* write cntr0_iv0 for countC */
  1121. pce = cmdlistinfo->encr_cntr_iv;
  1122. pce->data = req->count_c;
  1123. /* write cntr1_iv1 for nPkts, and bearer */
  1124. pce++;
  1125. if (npkts == 1)
  1126. npkts = 0;
  1127. pce->data = req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
  1128. npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT;
  1129. /* write go */
  1130. pce = cmdlistinfo->go_proc;
  1131. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
  1132. return 0;
  1133. }
  1134. static void _qce_dump_descr_fifos(struct qce_device *pce_dev, int req_info)
  1135. {
  1136. int i, j, ents;
  1137. struct ce_sps_data *pce_sps_data;
  1138. struct sps_iovec *iovec;
  1139. uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD;
  1140. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  1141. iovec = pce_sps_data->in_transfer.iovec;
  1142. pr_info("==============================================\n");
  1143. pr_info("CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n");
  1144. pr_info("==============================================\n");
  1145. for (i = 0; i < pce_sps_data->in_transfer.iovec_count; i++) {
  1146. pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
  1147. iovec->addr, iovec->size, iovec->flags);
  1148. if (iovec->flags & cmd_flags) {
  1149. struct sps_command_element *pced;
  1150. pced = (struct sps_command_element *)
  1151. (GET_VIRT_ADDR(iovec->addr));
  1152. ents = iovec->size/(sizeof(struct sps_command_element));
  1153. for (j = 0; j < ents; j++) {
  1154. pr_info(" [%d] [0x%x] 0x%x\n", j,
  1155. pced->addr, pced->data);
  1156. pced++;
  1157. }
  1158. }
  1159. iovec++;
  1160. }
  1161. pr_info("==============================================\n");
  1162. pr_info("PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n");
  1163. pr_info("==============================================\n");
  1164. iovec = pce_sps_data->out_transfer.iovec;
  1165. for (i = 0; i < pce_sps_data->out_transfer.iovec_count; i++) {
  1166. pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
  1167. iovec->addr, iovec->size, iovec->flags);
  1168. iovec++;
  1169. }
  1170. }
  1171. #ifdef QCE_DEBUG
  1172. static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
  1173. {
  1174. _qce_dump_descr_fifos(pce_dev, req_info);
  1175. }
  1176. #define QCE_WRITE_REG(val, addr) \
  1177. { \
  1178. pr_info(" [0x%pK] 0x%x\n", addr, (uint32_t)val); \
  1179. writel_relaxed(val, addr); \
  1180. }
  1181. #else
  1182. static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
  1183. {
  1184. }
  1185. #define QCE_WRITE_REG(val, addr) \
  1186. writel_relaxed(val, addr)
  1187. #endif
  1188. static int _ce_setup_hash_direct(struct qce_device *pce_dev,
  1189. struct qce_sha_req *sreq)
  1190. {
  1191. uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
  1192. uint32_t diglen;
  1193. bool use_hw_key = false;
  1194. bool use_pipe_key = false;
  1195. int i;
  1196. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
  1197. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1198. uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
  1199. bool sha1 = false;
  1200. uint32_t auth_cfg = 0;
  1201. /* clear status */
  1202. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1203. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1204. CRYPTO_CONFIG_REG));
  1205. /*
  1206. * Ensure previous instructions (setting the CONFIG register)
  1207. * was completed before issuing starting to set other config register
  1208. * This is to ensure the configurations are done in correct endian-ness
  1209. * as set in the CONFIG registers
  1210. */
  1211. mb();
  1212. if (sreq->alg == QCE_HASH_AES_CMAC) {
  1213. /* write seg_cfg */
  1214. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1215. /* write seg_cfg */
  1216. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1217. /* write seg_cfg */
  1218. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1219. /* Clear auth_ivn, auth_keyn registers */
  1220. for (i = 0; i < 16; i++) {
  1221. QCE_WRITE_REG(0, (pce_dev->iobase +
  1222. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1223. QCE_WRITE_REG(0, (pce_dev->iobase +
  1224. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
  1225. }
  1226. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1227. for (i = 0; i < 4; i++)
  1228. QCE_WRITE_REG(0, pce_dev->iobase +
  1229. CRYPTO_AUTH_BYTECNT0_REG +
  1230. i * sizeof(uint32_t));
  1231. if (sreq->authklen == AES128_KEY_SIZE)
  1232. auth_cfg = pce_dev->reg.auth_cfg_cmac_128;
  1233. else
  1234. auth_cfg = pce_dev->reg.auth_cfg_cmac_256;
  1235. }
  1236. if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
  1237. (sreq->alg == QCE_HASH_SHA256_HMAC) ||
  1238. (sreq->alg == QCE_HASH_AES_CMAC)) {
  1239. _byte_stream_to_net_words(mackey32, sreq->authkey,
  1240. sreq->authklen);
  1241. /* no more check for null key. use flag to check*/
  1242. if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY) ==
  1243. QCRYPTO_CTX_USE_HW_KEY) {
  1244. use_hw_key = true;
  1245. } else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  1246. QCRYPTO_CTX_USE_PIPE_KEY) {
  1247. use_pipe_key = true;
  1248. } else {
  1249. /* setup key */
  1250. for (i = 0; i < authk_size_in_word; i++)
  1251. QCE_WRITE_REG(mackey32[i], (pce_dev->iobase +
  1252. (CRYPTO_AUTH_KEY0_REG +
  1253. i*sizeof(uint32_t))));
  1254. }
  1255. }
  1256. if (sreq->alg == QCE_HASH_AES_CMAC)
  1257. goto go_proc;
  1258. /* if not the last, the size has to be on the block boundary */
  1259. if (!sreq->last_blk && (sreq->size % SHA256_BLOCK_SIZE))
  1260. return -EIO;
  1261. switch (sreq->alg) {
  1262. case QCE_HASH_SHA1:
  1263. auth_cfg = pce_dev->reg.auth_cfg_sha1;
  1264. diglen = SHA1_DIGEST_SIZE;
  1265. sha1 = true;
  1266. break;
  1267. case QCE_HASH_SHA1_HMAC:
  1268. auth_cfg = pce_dev->reg.auth_cfg_hmac_sha1;
  1269. diglen = SHA1_DIGEST_SIZE;
  1270. sha1 = true;
  1271. break;
  1272. case QCE_HASH_SHA256:
  1273. auth_cfg = pce_dev->reg.auth_cfg_sha256;
  1274. diglen = SHA256_DIGEST_SIZE;
  1275. break;
  1276. case QCE_HASH_SHA256_HMAC:
  1277. auth_cfg = pce_dev->reg.auth_cfg_hmac_sha256;
  1278. diglen = SHA256_DIGEST_SIZE;
  1279. break;
  1280. default:
  1281. return -EINVAL;
  1282. }
  1283. /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
  1284. if (sreq->first_blk) {
  1285. if (sha1) {
  1286. for (i = 0; i < 5; i++)
  1287. auth32[i] = _std_init_vector_sha1[i];
  1288. } else {
  1289. for (i = 0; i < 8; i++)
  1290. auth32[i] = _std_init_vector_sha256[i];
  1291. }
  1292. } else {
  1293. _byte_stream_to_net_words(auth32, sreq->digest, diglen);
  1294. }
  1295. /* Set auth_ivn, auth_keyn registers */
  1296. for (i = 0; i < 5; i++)
  1297. QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
  1298. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1299. if ((sreq->alg == QCE_HASH_SHA256) ||
  1300. (sreq->alg == QCE_HASH_SHA256_HMAC)) {
  1301. for (i = 5; i < 8; i++)
  1302. QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
  1303. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1304. }
  1305. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1306. for (i = 0; i < 2; i++)
  1307. QCE_WRITE_REG(sreq->auth_data[i], pce_dev->iobase +
  1308. CRYPTO_AUTH_BYTECNT0_REG +
  1309. i * sizeof(uint32_t));
  1310. /* Set/reset last bit in CFG register */
  1311. if (sreq->last_blk)
  1312. auth_cfg |= 1 << CRYPTO_LAST;
  1313. else
  1314. auth_cfg &= ~(1 << CRYPTO_LAST);
  1315. if (sreq->first_blk)
  1316. auth_cfg |= 1 << CRYPTO_FIRST;
  1317. else
  1318. auth_cfg &= ~(1 << CRYPTO_FIRST);
  1319. if (use_hw_key)
  1320. auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
  1321. if (use_pipe_key)
  1322. auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
  1323. go_proc:
  1324. /* write seg_cfg */
  1325. QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1326. /* write auth seg_size */
  1327. QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1328. /* write auth_seg_start */
  1329. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1330. /* reset encr seg_cfg */
  1331. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1332. /* write seg_size */
  1333. QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1334. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1335. CRYPTO_CONFIG_REG));
  1336. /* issue go to crypto */
  1337. if (!use_hw_key) {
  1338. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1339. (1 << CRYPTO_CLR_CNTXT)),
  1340. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1341. } else {
  1342. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
  1343. pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
  1344. }
  1345. /*
  1346. * Ensure previous instructions (setting the GO register)
  1347. * was completed before issuing a DMA transfer request
  1348. */
  1349. mb();
  1350. return 0;
  1351. }
  1352. static int _ce_setup_aead_direct(struct qce_device *pce_dev,
  1353. struct qce_req *q_req, uint32_t totallen_in, uint32_t coffset)
  1354. {
  1355. int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  1356. int i;
  1357. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
  1358. uint32_t a_cfg;
  1359. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
  1360. uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
  1361. uint32_t enck_size_in_word = 0;
  1362. uint32_t enciv_in_word;
  1363. uint32_t key_size;
  1364. uint32_t ivsize = q_req->ivsize;
  1365. uint32_t encr_cfg;
  1366. /* clear status */
  1367. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1368. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1369. CRYPTO_CONFIG_REG));
  1370. /*
  1371. * Ensure previous instructions (setting the CONFIG register)
  1372. * was completed before issuing starting to set other config register
  1373. * This is to ensure the configurations are done in correct endian-ness
  1374. * as set in the CONFIG registers
  1375. */
  1376. mb();
  1377. key_size = q_req->encklen;
  1378. enck_size_in_word = key_size/sizeof(uint32_t);
  1379. switch (q_req->alg) {
  1380. case CIPHER_ALG_DES:
  1381. switch (q_req->mode) {
  1382. case QCE_MODE_CBC:
  1383. encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
  1384. break;
  1385. default:
  1386. return -EINVAL;
  1387. }
  1388. enciv_in_word = 2;
  1389. break;
  1390. case CIPHER_ALG_3DES:
  1391. switch (q_req->mode) {
  1392. case QCE_MODE_CBC:
  1393. encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
  1394. break;
  1395. default:
  1396. return -EINVAL;
  1397. }
  1398. enciv_in_word = 2;
  1399. break;
  1400. case CIPHER_ALG_AES:
  1401. switch (q_req->mode) {
  1402. case QCE_MODE_CBC:
  1403. if (key_size == AES128_KEY_SIZE)
  1404. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  1405. else if (key_size == AES256_KEY_SIZE)
  1406. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  1407. else
  1408. return -EINVAL;
  1409. break;
  1410. default:
  1411. return -EINVAL;
  1412. }
  1413. enciv_in_word = 4;
  1414. break;
  1415. default:
  1416. return -EINVAL;
  1417. }
  1418. /* write CNTR0_IV0_REG */
  1419. if (q_req->mode != QCE_MODE_ECB) {
  1420. _byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
  1421. for (i = 0; i < enciv_in_word; i++)
  1422. QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
  1423. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)));
  1424. }
  1425. /*
  1426. * write encr key
  1427. * do not use hw key or pipe key
  1428. */
  1429. _byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
  1430. for (i = 0; i < enck_size_in_word; i++)
  1431. QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
  1432. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)));
  1433. /* write encr seg cfg */
  1434. if (q_req->dir == QCE_ENCRYPT)
  1435. encr_cfg |= (1 << CRYPTO_ENCODE);
  1436. QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1437. /* we only support sha1-hmac and sha256-hmac at this point */
  1438. _byte_stream_to_net_words(mackey32, q_req->authkey,
  1439. q_req->authklen);
  1440. for (i = 0; i < authk_size_in_word; i++)
  1441. QCE_WRITE_REG(mackey32[i], pce_dev->iobase +
  1442. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)));
  1443. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) {
  1444. for (i = 0; i < 5; i++)
  1445. QCE_WRITE_REG(_std_init_vector_sha1[i],
  1446. pce_dev->iobase +
  1447. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
  1448. } else {
  1449. for (i = 0; i < 8; i++)
  1450. QCE_WRITE_REG(_std_init_vector_sha256[i],
  1451. pce_dev->iobase +
  1452. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
  1453. }
  1454. /* write auth_bytecnt 0/1, start with 0 */
  1455. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG);
  1456. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG);
  1457. /* write encr seg size */
  1458. QCE_WRITE_REG(q_req->cryptlen, pce_dev->iobase +
  1459. CRYPTO_ENCR_SEG_SIZE_REG);
  1460. /* write encr start */
  1461. QCE_WRITE_REG(coffset & 0xffff, pce_dev->iobase +
  1462. CRYPTO_ENCR_SEG_START_REG);
  1463. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
  1464. a_cfg = pce_dev->reg.auth_cfg_aead_sha1_hmac;
  1465. else
  1466. a_cfg = pce_dev->reg.auth_cfg_aead_sha256_hmac;
  1467. if (q_req->dir == QCE_ENCRYPT)
  1468. a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  1469. else
  1470. a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  1471. /* write auth seg_cfg */
  1472. QCE_WRITE_REG(a_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1473. /* write auth seg_size */
  1474. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1475. /* write auth_seg_start */
  1476. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1477. /* write seg_size */
  1478. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1479. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1480. CRYPTO_CONFIG_REG));
  1481. /* issue go to crypto */
  1482. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1483. (1 << CRYPTO_CLR_CNTXT)),
  1484. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1485. /*
  1486. * Ensure previous instructions (setting the GO register)
  1487. * was completed before issuing a DMA transfer request
  1488. */
  1489. mb();
  1490. return 0;
  1491. }
  1492. static int _ce_setup_cipher_direct(struct qce_device *pce_dev,
  1493. struct qce_req *creq, uint32_t totallen_in, uint32_t coffset)
  1494. {
  1495. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
  1496. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1497. uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
  1498. 0, 0, 0, 0};
  1499. uint32_t enck_size_in_word = 0;
  1500. uint32_t key_size;
  1501. bool use_hw_key = false;
  1502. bool use_pipe_key = false;
  1503. uint32_t encr_cfg = 0;
  1504. uint32_t ivsize = creq->ivsize;
  1505. int i;
  1506. /* clear status */
  1507. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1508. qce_set_offload_config(pce_dev, creq);
  1509. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be,
  1510. (pce_dev->iobase + CRYPTO_CONFIG_REG));
  1511. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le,
  1512. (pce_dev->iobase + CRYPTO_CONFIG_REG));
  1513. /*
  1514. * Ensure previous instructions (setting the CONFIG register)
  1515. * was completed before issuing starting to set other config register
  1516. * This is to ensure the configurations are done in correct endian-ness
  1517. * as set in the CONFIG registers
  1518. */
  1519. mb();
  1520. if (creq->mode == QCE_MODE_XTS)
  1521. key_size = creq->encklen/2;
  1522. else
  1523. key_size = creq->encklen;
  1524. if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
  1525. use_hw_key = true;
  1526. } else {
  1527. if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  1528. QCRYPTO_CTX_USE_PIPE_KEY)
  1529. use_pipe_key = true;
  1530. }
  1531. if (!use_pipe_key && !use_hw_key) {
  1532. _byte_stream_to_net_words(enckey32, creq->enckey, key_size);
  1533. enck_size_in_word = key_size/sizeof(uint32_t);
  1534. }
  1535. if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
  1536. uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
  1537. uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
  1538. uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
  1539. uint32_t auth_cfg = 0;
  1540. /* Clear auth_ivn, auth_keyn registers */
  1541. for (i = 0; i < 16; i++) {
  1542. QCE_WRITE_REG(0, (pce_dev->iobase +
  1543. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1544. QCE_WRITE_REG(0, (pce_dev->iobase +
  1545. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
  1546. }
  1547. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1548. for (i = 0; i < 4; i++)
  1549. QCE_WRITE_REG(0, pce_dev->iobase +
  1550. CRYPTO_AUTH_BYTECNT0_REG +
  1551. i * sizeof(uint32_t));
  1552. /* write nonce */
  1553. _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
  1554. for (i = 0; i < noncelen32; i++)
  1555. QCE_WRITE_REG(nonce32[i], pce_dev->iobase +
  1556. CRYPTO_AUTH_INFO_NONCE0_REG +
  1557. (i*sizeof(uint32_t)));
  1558. if (creq->authklen == AES128_KEY_SIZE)
  1559. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
  1560. else {
  1561. if (creq->authklen == AES256_KEY_SIZE)
  1562. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
  1563. }
  1564. if (creq->dir == QCE_ENCRYPT)
  1565. auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  1566. else
  1567. auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  1568. auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
  1569. if (use_hw_key) {
  1570. auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
  1571. } else {
  1572. auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  1573. /* write auth key */
  1574. for (i = 0; i < authklen32; i++)
  1575. QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
  1576. CRYPTO_AUTH_KEY0_REG + (i*sizeof(uint32_t)));
  1577. }
  1578. QCE_WRITE_REG(auth_cfg, pce_dev->iobase +
  1579. CRYPTO_AUTH_SEG_CFG_REG);
  1580. if (creq->dir == QCE_ENCRYPT) {
  1581. QCE_WRITE_REG(totallen_in, pce_dev->iobase +
  1582. CRYPTO_AUTH_SEG_SIZE_REG);
  1583. } else {
  1584. QCE_WRITE_REG((totallen_in - creq->authsize),
  1585. pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1586. }
  1587. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1588. } else {
  1589. if (creq->op != QCE_REQ_AEAD)
  1590. QCE_WRITE_REG(0, pce_dev->iobase +
  1591. CRYPTO_AUTH_SEG_CFG_REG);
  1592. }
  1593. /*
  1594. * Ensure previous instructions (write to all AUTH registers)
  1595. * was completed before accessing a register that is not in
  1596. * in the same 1K range.
  1597. */
  1598. mb();
  1599. switch (creq->mode) {
  1600. case QCE_MODE_ECB:
  1601. if (key_size == AES128_KEY_SIZE)
  1602. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
  1603. else
  1604. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
  1605. break;
  1606. case QCE_MODE_CBC:
  1607. if (key_size == AES128_KEY_SIZE)
  1608. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  1609. else
  1610. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  1611. break;
  1612. case QCE_MODE_XTS:
  1613. if (key_size == AES128_KEY_SIZE)
  1614. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
  1615. else
  1616. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
  1617. break;
  1618. case QCE_MODE_CCM:
  1619. if (key_size == AES128_KEY_SIZE)
  1620. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
  1621. else
  1622. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
  1623. break;
  1624. case QCE_MODE_CTR:
  1625. default:
  1626. if (key_size == AES128_KEY_SIZE)
  1627. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
  1628. else
  1629. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
  1630. break;
  1631. }
  1632. switch (creq->alg) {
  1633. case CIPHER_ALG_DES:
  1634. if (creq->mode != QCE_MODE_ECB) {
  1635. encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
  1636. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  1637. QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
  1638. CRYPTO_CNTR0_IV0_REG);
  1639. QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
  1640. CRYPTO_CNTR1_IV1_REG);
  1641. } else {
  1642. encr_cfg = pce_dev->reg.encr_cfg_des_ecb;
  1643. }
  1644. if (!use_hw_key) {
  1645. QCE_WRITE_REG(enckey32[0], pce_dev->iobase +
  1646. CRYPTO_ENCR_KEY0_REG);
  1647. QCE_WRITE_REG(enckey32[1], pce_dev->iobase +
  1648. CRYPTO_ENCR_KEY1_REG);
  1649. }
  1650. break;
  1651. case CIPHER_ALG_3DES:
  1652. if (creq->mode != QCE_MODE_ECB) {
  1653. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  1654. QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
  1655. CRYPTO_CNTR0_IV0_REG);
  1656. QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
  1657. CRYPTO_CNTR1_IV1_REG);
  1658. encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
  1659. } else {
  1660. encr_cfg = pce_dev->reg.encr_cfg_3des_ecb;
  1661. }
  1662. if (!use_hw_key) {
  1663. /* write encr key */
  1664. for (i = 0; i < 6; i++)
  1665. QCE_WRITE_REG(enckey32[0], (pce_dev->iobase +
  1666. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t))));
  1667. }
  1668. break;
  1669. case CIPHER_ALG_AES:
  1670. default:
  1671. if (creq->mode == QCE_MODE_XTS) {
  1672. uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
  1673. = {0, 0, 0, 0, 0, 0, 0, 0};
  1674. uint32_t xtsklen =
  1675. creq->encklen/(2 * sizeof(uint32_t));
  1676. if (!use_hw_key && !use_pipe_key) {
  1677. _byte_stream_to_net_words(xtskey32,
  1678. (creq->enckey + creq->encklen/2),
  1679. creq->encklen/2);
  1680. /* write xts encr key */
  1681. for (i = 0; i < xtsklen; i++)
  1682. QCE_WRITE_REG(xtskey32[i],
  1683. pce_dev->iobase +
  1684. CRYPTO_ENCR_XTS_KEY0_REG +
  1685. (i * sizeof(uint32_t)));
  1686. }
  1687. /* write xts du size */
  1688. switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
  1689. case QCRYPTO_CTX_XTS_DU_SIZE_512B:
  1690. QCE_WRITE_REG(
  1691. min((uint32_t)QCE_SECTOR_SIZE,
  1692. creq->cryptlen), pce_dev->iobase +
  1693. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1694. break;
  1695. case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
  1696. QCE_WRITE_REG(
  1697. min((uint32_t)(QCE_SECTOR_SIZE * 2),
  1698. creq->cryptlen), pce_dev->iobase +
  1699. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1700. break;
  1701. default:
  1702. QCE_WRITE_REG(creq->cryptlen,
  1703. pce_dev->iobase +
  1704. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1705. break;
  1706. }
  1707. }
  1708. if (creq->mode != QCE_MODE_ECB) {
  1709. if (creq->mode == QCE_MODE_XTS)
  1710. _byte_stream_swap_to_net_words(enciv32,
  1711. creq->iv, ivsize);
  1712. else
  1713. _byte_stream_to_net_words(enciv32, creq->iv,
  1714. ivsize);
  1715. /* write encr cntr iv */
  1716. for (i = 0; i <= 3; i++)
  1717. QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
  1718. CRYPTO_CNTR0_IV0_REG +
  1719. (i * sizeof(uint32_t)));
  1720. if (creq->mode == QCE_MODE_CCM) {
  1721. /* write cntr iv for ccm */
  1722. for (i = 0; i <= 3; i++)
  1723. QCE_WRITE_REG(enciv32[i],
  1724. pce_dev->iobase +
  1725. CRYPTO_ENCR_CCM_INT_CNTR0_REG +
  1726. (i * sizeof(uint32_t)));
  1727. /* update cntr_iv[3] by one */
  1728. QCE_WRITE_REG((enciv32[3] + 1),
  1729. pce_dev->iobase +
  1730. CRYPTO_CNTR0_IV0_REG +
  1731. (3 * sizeof(uint32_t)));
  1732. }
  1733. }
  1734. if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
  1735. encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
  1736. CRYPTO_ENCR_KEY_SZ);
  1737. } else {
  1738. if (!use_hw_key && !use_pipe_key) {
  1739. for (i = 0; i < enck_size_in_word; i++)
  1740. QCE_WRITE_REG(enckey32[i],
  1741. pce_dev->iobase +
  1742. CRYPTO_ENCR_KEY0_REG +
  1743. (i * sizeof(uint32_t)));
  1744. }
  1745. } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
  1746. break;
  1747. } /* end of switch (creq->mode) */
  1748. if (use_pipe_key)
  1749. encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
  1750. << CRYPTO_USE_PIPE_KEY_ENCR);
  1751. /* write encr seg cfg */
  1752. encr_cfg |= ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
  1753. if (use_hw_key)
  1754. encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1755. else
  1756. encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1757. /* write encr seg cfg */
  1758. QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1759. /* write encr seg size */
  1760. if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) {
  1761. QCE_WRITE_REG((creq->cryptlen + creq->authsize),
  1762. pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1763. } else {
  1764. QCE_WRITE_REG(creq->cryptlen,
  1765. pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1766. }
  1767. /* write pattern */
  1768. if (creq->is_pattern_valid)
  1769. QCE_WRITE_REG(creq->pattern_info, pce_dev->iobase +
  1770. CRYPTO_DATA_PATT_PROC_CFG_REG);
  1771. /* write block offset to CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG? */
  1772. QCE_WRITE_REG(((creq->block_offset << 4) |
  1773. (creq->block_offset ? 1 : 0)),
  1774. pce_dev->iobase + CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG_REG);
  1775. /* write encr seg start */
  1776. QCE_WRITE_REG((coffset & 0xffff),
  1777. pce_dev->iobase + CRYPTO_ENCR_SEG_START_REG);
  1778. /* write encr counter mask */
  1779. qce_set_iv_ctr_mask(pce_dev, creq);
  1780. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_3,
  1781. pce_dev->iobase + CRYPTO_CNTR_MASK_REG);
  1782. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_2,
  1783. pce_dev->iobase + CRYPTO_CNTR_MASK_REG2);
  1784. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_1,
  1785. pce_dev->iobase + CRYPTO_CNTR_MASK_REG1);
  1786. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_0,
  1787. pce_dev->iobase + CRYPTO_CNTR_MASK_REG0);
  1788. /* write seg size */
  1789. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1790. /* issue go to crypto */
  1791. if (!use_hw_key) {
  1792. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1793. (1 << CRYPTO_CLR_CNTXT)),
  1794. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1795. } else {
  1796. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
  1797. pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
  1798. }
  1799. /*
  1800. * Ensure previous instructions (setting the GO register)
  1801. * was completed before issuing a DMA transfer request
  1802. */
  1803. mb();
  1804. return 0;
  1805. }
  1806. static int _ce_f9_setup_direct(struct qce_device *pce_dev,
  1807. struct qce_f9_req *req)
  1808. {
  1809. uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1810. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1811. uint32_t auth_cfg;
  1812. int i;
  1813. switch (req->algorithm) {
  1814. case QCE_OTA_ALGO_KASUMI:
  1815. auth_cfg = pce_dev->reg.auth_cfg_kasumi;
  1816. break;
  1817. case QCE_OTA_ALGO_SNOW3G:
  1818. default:
  1819. auth_cfg = pce_dev->reg.auth_cfg_snow3g;
  1820. break;
  1821. }
  1822. /* clear status */
  1823. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1824. /* set big endian configuration */
  1825. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1826. CRYPTO_CONFIG_REG));
  1827. /*
  1828. * Ensure previous instructions (setting the CONFIG register)
  1829. * was completed before issuing starting to set other config register
  1830. * This is to ensure the configurations are done in correct endian-ness
  1831. * as set in the CONFIG registers
  1832. */
  1833. mb();
  1834. /* write enc_seg_cfg */
  1835. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1836. /* write ecn_seg_size */
  1837. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1838. /* write key in CRYPTO_AUTH_IV0-3_REG */
  1839. _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
  1840. for (i = 0; i < key_size_in_word; i++)
  1841. QCE_WRITE_REG(ikey32[i], (pce_dev->iobase +
  1842. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1843. /* write last bits in CRYPTO_AUTH_IV4_REG */
  1844. QCE_WRITE_REG(req->last_bits, (pce_dev->iobase +
  1845. CRYPTO_AUTH_IV4_REG));
  1846. /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
  1847. QCE_WRITE_REG(req->fresh, (pce_dev->iobase +
  1848. CRYPTO_AUTH_BYTECNT0_REG));
  1849. /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
  1850. QCE_WRITE_REG(req->count_i, (pce_dev->iobase +
  1851. CRYPTO_AUTH_BYTECNT1_REG));
  1852. /* write auth seg cfg */
  1853. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1854. auth_cfg |= BIT(CRYPTO_F9_DIRECTION);
  1855. QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1856. /* write auth seg size */
  1857. QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1858. /* write auth seg start*/
  1859. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1860. /* write seg size */
  1861. QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1862. /* set little endian configuration before go*/
  1863. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1864. CRYPTO_CONFIG_REG));
  1865. /* write go */
  1866. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1867. (1 << CRYPTO_CLR_CNTXT)),
  1868. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1869. /*
  1870. * Ensure previous instructions (setting the GO register)
  1871. * was completed before issuing a DMA transfer request
  1872. */
  1873. mb();
  1874. return 0;
  1875. }
  1876. static int _ce_f8_setup_direct(struct qce_device *pce_dev,
  1877. struct qce_f8_req *req, bool key_stream_mode,
  1878. uint16_t npkts, uint16_t cipher_offset, uint16_t cipher_size)
  1879. {
  1880. int i = 0;
  1881. uint32_t encr_cfg = 0;
  1882. uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1883. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1884. switch (req->algorithm) {
  1885. case QCE_OTA_ALGO_KASUMI:
  1886. encr_cfg = pce_dev->reg.encr_cfg_kasumi;
  1887. break;
  1888. case QCE_OTA_ALGO_SNOW3G:
  1889. default:
  1890. encr_cfg = pce_dev->reg.encr_cfg_snow3g;
  1891. break;
  1892. }
  1893. /* clear status */
  1894. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1895. /* set big endian configuration */
  1896. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1897. CRYPTO_CONFIG_REG));
  1898. /* write auth seg configuration */
  1899. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1900. /* write auth seg size */
  1901. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1902. /* write key */
  1903. _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
  1904. for (i = 0; i < key_size_in_word; i++)
  1905. QCE_WRITE_REG(ckey32[i], (pce_dev->iobase +
  1906. (CRYPTO_ENCR_KEY0_REG + i*sizeof(uint32_t))));
  1907. /* write encr seg cfg */
  1908. if (key_stream_mode)
  1909. encr_cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
  1910. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1911. encr_cfg |= BIT(CRYPTO_F8_DIRECTION);
  1912. QCE_WRITE_REG(encr_cfg, pce_dev->iobase +
  1913. CRYPTO_ENCR_SEG_CFG_REG);
  1914. /* write encr seg start */
  1915. QCE_WRITE_REG((cipher_offset & 0xffff), pce_dev->iobase +
  1916. CRYPTO_ENCR_SEG_START_REG);
  1917. /* write encr seg size */
  1918. QCE_WRITE_REG(cipher_size, pce_dev->iobase +
  1919. CRYPTO_ENCR_SEG_SIZE_REG);
  1920. /* write seg size */
  1921. QCE_WRITE_REG(req->data_len, pce_dev->iobase +
  1922. CRYPTO_SEG_SIZE_REG);
  1923. /* write cntr0_iv0 for countC */
  1924. QCE_WRITE_REG(req->count_c, pce_dev->iobase +
  1925. CRYPTO_CNTR0_IV0_REG);
  1926. /* write cntr1_iv1 for nPkts, and bearer */
  1927. if (npkts == 1)
  1928. npkts = 0;
  1929. QCE_WRITE_REG(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
  1930. npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT,
  1931. pce_dev->iobase + CRYPTO_CNTR1_IV1_REG);
  1932. /* set little endian configuration before go*/
  1933. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1934. CRYPTO_CONFIG_REG));
  1935. /* write go */
  1936. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1937. (1 << CRYPTO_CLR_CNTXT)),
  1938. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1939. /*
  1940. * Ensure previous instructions (setting the GO register)
  1941. * was completed before issuing a DMA transfer request
  1942. */
  1943. mb();
  1944. return 0;
  1945. }
  1946. static int _qce_unlock_other_pipes(struct qce_device *pce_dev, int req_info)
  1947. {
  1948. int rc = 0;
  1949. struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info
  1950. [req_info].ce_sps;
  1951. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  1952. if (pce_dev->no_get_around || !pce_dev->support_cmd_dscr)
  1953. return rc;
  1954. rc = sps_transfer_one(pce_dev->ce_bam_info.consumer[op].pipe,
  1955. GET_PHYS_ADDR(
  1956. pce_sps_data->cmdlistptr.unlock_all_pipes.cmdlist),
  1957. 0, NULL, (SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_UNLOCK));
  1958. if (rc) {
  1959. pr_err("sps_xfr_one() fail rc=%d\n", rc);
  1960. rc = -EINVAL;
  1961. }
  1962. return rc;
  1963. }
  1964. static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
  1965. bool is_complete);
  1966. static int qce_sps_pipe_reset(struct qce_device *pce_dev, int op)
  1967. {
  1968. int rc = -1;
  1969. struct sps_pipe *sps_pipe_info = NULL;
  1970. struct sps_connect *sps_connect_info = NULL;
  1971. /* Reset both the pipe sets in the pipe group */
  1972. sps_pipe_reset(pce_dev->ce_bam_info.bam_handle,
  1973. pce_dev->ce_bam_info.dest_pipe_index[op]);
  1974. sps_pipe_reset(pce_dev->ce_bam_info.bam_handle,
  1975. pce_dev->ce_bam_info.src_pipe_index[op]);
  1976. /* Reconnect to consumer pipe */
  1977. sps_pipe_info = pce_dev->ce_bam_info.consumer[op].pipe;
  1978. sps_connect_info = &pce_dev->ce_bam_info.consumer[op].connect;
  1979. rc = sps_disconnect(sps_pipe_info);
  1980. if (rc) {
  1981. pr_err("sps_disconnect() fail pipe=0x%lx, rc = %d\n",
  1982. (uintptr_t)sps_pipe_info, rc);
  1983. goto exit;
  1984. }
  1985. memset(sps_connect_info->desc.base, 0x00,
  1986. sps_connect_info->desc.size);
  1987. rc = sps_connect(sps_pipe_info, sps_connect_info);
  1988. if (rc) {
  1989. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  1990. (uintptr_t)sps_pipe_info, rc);
  1991. goto exit;
  1992. }
  1993. /* Reconnect to producer pipe */
  1994. sps_pipe_info = pce_dev->ce_bam_info.producer[op].pipe;
  1995. sps_connect_info = &pce_dev->ce_bam_info.producer[op].connect;
  1996. rc = sps_disconnect(sps_pipe_info);
  1997. if (rc) {
  1998. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  1999. (uintptr_t)sps_pipe_info, rc);
  2000. goto exit;
  2001. }
  2002. memset(sps_connect_info->desc.base, 0x00,
  2003. sps_connect_info->desc.size);
  2004. rc = sps_connect(sps_pipe_info, sps_connect_info);
  2005. if (rc) {
  2006. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  2007. (uintptr_t)sps_pipe_info, rc);
  2008. goto exit;
  2009. }
  2010. /* Register producer callback */
  2011. rc = sps_register_event(sps_pipe_info,
  2012. &pce_dev->ce_bam_info.producer[op].event);
  2013. if (rc)
  2014. pr_err("Producer cb registration failed rc = %d\n",
  2015. rc);
  2016. exit:
  2017. return rc;
  2018. }
  2019. int qce_manage_timeout(void *handle, int req_info)
  2020. {
  2021. struct qce_device *pce_dev = (struct qce_device *) handle;
  2022. struct skcipher_request *areq;
  2023. struct ce_request_info *preq_info;
  2024. qce_comp_func_ptr_t qce_callback;
  2025. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  2026. preq_info = &pce_dev->ce_request_info[req_info];
  2027. qce_callback = preq_info->qce_cb;
  2028. areq = (struct skcipher_request *) preq_info->areq;
  2029. pr_info("%s: req info = %d, offload op = %d\n", __func__, req_info, op);
  2030. if (qce_sps_pipe_reset(pce_dev, op))
  2031. pr_err("%s: pipe reset failed\n", __func__);
  2032. if (_qce_unlock_other_pipes(pce_dev, req_info))
  2033. pr_err("%s: fail unlock other pipes\n", __func__);
  2034. qce_free_req_info(pce_dev, req_info, true);
  2035. qce_callback(areq, NULL, NULL, 0);
  2036. return 0;
  2037. }
  2038. EXPORT_SYMBOL(qce_manage_timeout);
  2039. static int _aead_complete(struct qce_device *pce_dev, int req_info)
  2040. {
  2041. struct aead_request *areq;
  2042. unsigned char mac[SHA256_DIGEST_SIZE];
  2043. uint32_t ccm_fail_status = 0;
  2044. uint32_t result_dump_status = 0;
  2045. int32_t result_status = 0;
  2046. struct ce_request_info *preq_info;
  2047. struct ce_sps_data *pce_sps_data;
  2048. qce_comp_func_ptr_t qce_callback;
  2049. preq_info = &pce_dev->ce_request_info[req_info];
  2050. pce_sps_data = &preq_info->ce_sps;
  2051. qce_callback = preq_info->qce_cb;
  2052. areq = (struct aead_request *) preq_info->areq;
  2053. if (areq->src != areq->dst) {
  2054. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  2055. DMA_FROM_DEVICE);
  2056. }
  2057. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  2058. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  2059. DMA_TO_DEVICE);
  2060. if (preq_info->asg)
  2061. qce_dma_unmap_sg(pce_dev->pdev, preq_info->asg,
  2062. preq_info->assoc_nents, DMA_TO_DEVICE);
  2063. /* check MAC */
  2064. memcpy(mac, (char *)(&pce_sps_data->result->auth_iv[0]),
  2065. SHA256_DIGEST_SIZE);
  2066. /* read status before unlock */
  2067. if (preq_info->dir == QCE_DECRYPT) {
  2068. if (pce_dev->no_get_around)
  2069. if (pce_dev->no_ccm_mac_status_get_around)
  2070. ccm_fail_status =
  2071. be32_to_cpu(pce_sps_data->result->status);
  2072. else
  2073. ccm_fail_status =
  2074. be32_to_cpu(pce_sps_data->result_null->status);
  2075. else
  2076. ccm_fail_status = readl_relaxed(pce_dev->iobase +
  2077. CRYPTO_STATUS_REG);
  2078. }
  2079. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2080. qce_free_req_info(pce_dev, req_info, true);
  2081. qce_callback(areq, mac, NULL, -ENXIO);
  2082. return -ENXIO;
  2083. }
  2084. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2085. pce_sps_data->result->status = 0;
  2086. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2087. | (1 << CRYPTO_HSD_ERR))) {
  2088. pr_err("aead operation error. Status %x\n", result_dump_status);
  2089. result_status = -ENXIO;
  2090. } else if (pce_sps_data->consumer_status |
  2091. pce_sps_data->producer_status) {
  2092. pr_err("aead sps operation error. sps status %x %x\n",
  2093. pce_sps_data->consumer_status,
  2094. pce_sps_data->producer_status);
  2095. result_status = -ENXIO;
  2096. }
  2097. if (preq_info->mode == QCE_MODE_CCM) {
  2098. /*
  2099. * Not from result dump, instead, use the status we just
  2100. * read of device for MAC_FAILED.
  2101. */
  2102. if (result_status == 0 && (preq_info->dir == QCE_DECRYPT) &&
  2103. (ccm_fail_status & (1 << CRYPTO_MAC_FAILED)))
  2104. result_status = -EBADMSG;
  2105. qce_free_req_info(pce_dev, req_info, true);
  2106. qce_callback(areq, mac, NULL, result_status);
  2107. } else {
  2108. uint32_t ivsize = 0;
  2109. struct crypto_aead *aead;
  2110. unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
  2111. aead = crypto_aead_reqtfm(areq);
  2112. ivsize = crypto_aead_ivsize(aead);
  2113. memcpy(iv, (char *)(pce_sps_data->result->encr_cntr_iv),
  2114. sizeof(iv));
  2115. qce_free_req_info(pce_dev, req_info, true);
  2116. qce_callback(areq, mac, iv, result_status);
  2117. }
  2118. return 0;
  2119. }
  2120. static int _sha_complete(struct qce_device *pce_dev, int req_info)
  2121. {
  2122. struct ahash_request *areq;
  2123. unsigned char digest[SHA256_DIGEST_SIZE];
  2124. uint32_t bytecount32[2];
  2125. int32_t result_status = 0;
  2126. uint32_t result_dump_status;
  2127. struct ce_request_info *preq_info;
  2128. struct ce_sps_data *pce_sps_data;
  2129. qce_comp_func_ptr_t qce_callback;
  2130. preq_info = &pce_dev->ce_request_info[req_info];
  2131. pce_sps_data = &preq_info->ce_sps;
  2132. qce_callback = preq_info->qce_cb;
  2133. areq = (struct ahash_request *) preq_info->areq;
  2134. if (!areq) {
  2135. pr_err("sha operation error. areq is NULL\n");
  2136. return -ENXIO;
  2137. }
  2138. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  2139. DMA_TO_DEVICE);
  2140. memcpy(digest, (char *)(&pce_sps_data->result->auth_iv[0]),
  2141. SHA256_DIGEST_SIZE);
  2142. _byte_stream_to_net_words(bytecount32,
  2143. (unsigned char *)pce_sps_data->result->auth_byte_count,
  2144. 2 * CRYPTO_REG_SIZE);
  2145. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2146. qce_free_req_info(pce_dev, req_info, true);
  2147. qce_callback(areq, digest, (char *)bytecount32,
  2148. -ENXIO);
  2149. return -ENXIO;
  2150. }
  2151. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2152. pce_sps_data->result->status = 0;
  2153. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2154. | (1 << CRYPTO_HSD_ERR))) {
  2155. pr_err("sha operation error. Status %x\n", result_dump_status);
  2156. result_status = -ENXIO;
  2157. } else if (pce_sps_data->consumer_status) {
  2158. pr_err("sha sps operation error. sps status %x\n",
  2159. pce_sps_data->consumer_status);
  2160. result_status = -ENXIO;
  2161. }
  2162. qce_free_req_info(pce_dev, req_info, true);
  2163. qce_callback(areq, digest, (char *)bytecount32, result_status);
  2164. return 0;
  2165. }
  2166. static int _f9_complete(struct qce_device *pce_dev, int req_info)
  2167. {
  2168. uint32_t mac_i;
  2169. int32_t result_status = 0;
  2170. uint32_t result_dump_status;
  2171. struct ce_request_info *preq_info;
  2172. struct ce_sps_data *pce_sps_data;
  2173. qce_comp_func_ptr_t qce_callback;
  2174. void *areq;
  2175. preq_info = &pce_dev->ce_request_info[req_info];
  2176. pce_sps_data = &preq_info->ce_sps;
  2177. qce_callback = preq_info->qce_cb;
  2178. areq = preq_info->areq;
  2179. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  2180. preq_info->ota_size, DMA_TO_DEVICE);
  2181. _byte_stream_to_net_words(&mac_i,
  2182. (char *)(&pce_sps_data->result->auth_iv[0]),
  2183. CRYPTO_REG_SIZE);
  2184. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2185. qce_free_req_info(pce_dev, req_info, true);
  2186. qce_callback(areq, NULL, NULL, -ENXIO);
  2187. return -ENXIO;
  2188. }
  2189. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2190. pce_sps_data->result->status = 0;
  2191. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2192. | (1 << CRYPTO_HSD_ERR))) {
  2193. pr_err("f9 operation error. Status %x\n", result_dump_status);
  2194. result_status = -ENXIO;
  2195. } else if (pce_sps_data->consumer_status |
  2196. pce_sps_data->producer_status) {
  2197. pr_err("f9 sps operation error. sps status %x %x\n",
  2198. pce_sps_data->consumer_status,
  2199. pce_sps_data->producer_status);
  2200. result_status = -ENXIO;
  2201. }
  2202. qce_free_req_info(pce_dev, req_info, true);
  2203. qce_callback(areq, (char *)&mac_i, NULL, result_status);
  2204. return 0;
  2205. }
  2206. static int _ablk_cipher_complete(struct qce_device *pce_dev, int req_info)
  2207. {
  2208. struct skcipher_request *areq;
  2209. unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
  2210. int32_t result_status = 0;
  2211. uint32_t result_dump_status;
  2212. struct ce_request_info *preq_info;
  2213. struct ce_sps_data *pce_sps_data;
  2214. qce_comp_func_ptr_t qce_callback;
  2215. preq_info = &pce_dev->ce_request_info[req_info];
  2216. pce_sps_data = &preq_info->ce_sps;
  2217. qce_callback = preq_info->qce_cb;
  2218. areq = (struct skcipher_request *) preq_info->areq;
  2219. if (!is_offload_op(preq_info->offload_op)) {
  2220. if (areq->src != areq->dst)
  2221. qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
  2222. preq_info->dst_nents, DMA_FROM_DEVICE);
  2223. qce_dma_unmap_sg(pce_dev->pdev, areq->src,
  2224. preq_info->src_nents,
  2225. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  2226. DMA_TO_DEVICE);
  2227. }
  2228. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2229. qce_free_req_info(pce_dev, req_info, true);
  2230. qce_callback(areq, NULL, NULL, -ENXIO);
  2231. return -ENXIO;
  2232. }
  2233. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2234. pce_sps_data->result->status = 0;
  2235. if (!is_offload_op(preq_info->offload_op)) {
  2236. if (result_dump_status & ((1 << CRYPTO_SW_ERR) |
  2237. (1 << CRYPTO_AXI_ERR) | (1 << CRYPTO_HSD_ERR))) {
  2238. pr_err("ablk_cipher operation error. Status %x\n",
  2239. result_dump_status);
  2240. result_status = -ENXIO;
  2241. }
  2242. }
  2243. if (pce_sps_data->consumer_status |
  2244. pce_sps_data->producer_status) {
  2245. pr_err("ablk_cipher sps operation error. sps status %x %x\n",
  2246. pce_sps_data->consumer_status,
  2247. pce_sps_data->producer_status);
  2248. result_status = -ENXIO;
  2249. }
  2250. if (preq_info->mode == QCE_MODE_ECB) {
  2251. qce_free_req_info(pce_dev, req_info, true);
  2252. qce_callback(areq, NULL, NULL, pce_sps_data->consumer_status |
  2253. result_status);
  2254. } else {
  2255. if (pce_dev->ce_bam_info.minor_version == 0) {
  2256. if (preq_info->mode == QCE_MODE_CBC) {
  2257. if (preq_info->dir == QCE_DECRYPT)
  2258. memcpy(iv, (char *)preq_info->dec_iv,
  2259. sizeof(iv));
  2260. else
  2261. memcpy(iv, (unsigned char *)
  2262. (sg_virt(areq->src) +
  2263. areq->src->length - 16),
  2264. sizeof(iv));
  2265. }
  2266. if ((preq_info->mode == QCE_MODE_CTR) ||
  2267. (preq_info->mode == QCE_MODE_XTS)) {
  2268. uint32_t num_blk = 0;
  2269. uint32_t cntr_iv3 = 0;
  2270. unsigned long long cntr_iv64 = 0;
  2271. unsigned char *b = (unsigned char *)(&cntr_iv3);
  2272. memcpy(iv, areq->iv, sizeof(iv));
  2273. if (preq_info->mode != QCE_MODE_XTS)
  2274. num_blk = areq->cryptlen/16;
  2275. else
  2276. num_blk = 1;
  2277. cntr_iv3 = ((*(iv + 12) << 24) & 0xff000000) |
  2278. (((*(iv + 13)) << 16) & 0xff0000) |
  2279. (((*(iv + 14)) << 8) & 0xff00) |
  2280. (*(iv + 15) & 0xff);
  2281. cntr_iv64 =
  2282. (((unsigned long long)cntr_iv3 &
  2283. 0xFFFFFFFFULL) +
  2284. (unsigned long long)num_blk) %
  2285. (unsigned long long)(0x100000000ULL);
  2286. cntr_iv3 = (u32)(cntr_iv64 & 0xFFFFFFFF);
  2287. *(iv + 15) = (char)(*b);
  2288. *(iv + 14) = (char)(*(b + 1));
  2289. *(iv + 13) = (char)(*(b + 2));
  2290. *(iv + 12) = (char)(*(b + 3));
  2291. }
  2292. } else {
  2293. memcpy(iv,
  2294. (char *)(pce_sps_data->result->encr_cntr_iv),
  2295. sizeof(iv));
  2296. }
  2297. qce_free_req_info(pce_dev, req_info, true);
  2298. qce_callback(areq, NULL, iv, result_status);
  2299. }
  2300. return 0;
  2301. }
  2302. static int _f8_complete(struct qce_device *pce_dev, int req_info)
  2303. {
  2304. int32_t result_status = 0;
  2305. uint32_t result_dump_status;
  2306. uint32_t result_dump_status2;
  2307. struct ce_request_info *preq_info;
  2308. struct ce_sps_data *pce_sps_data;
  2309. qce_comp_func_ptr_t qce_callback;
  2310. void *areq;
  2311. preq_info = &pce_dev->ce_request_info[req_info];
  2312. pce_sps_data = &preq_info->ce_sps;
  2313. qce_callback = preq_info->qce_cb;
  2314. areq = preq_info->areq;
  2315. if (preq_info->phy_ota_dst)
  2316. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
  2317. preq_info->ota_size, DMA_FROM_DEVICE);
  2318. if (preq_info->phy_ota_src)
  2319. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  2320. preq_info->ota_size, (preq_info->phy_ota_dst) ?
  2321. DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
  2322. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2323. qce_free_req_info(pce_dev, req_info, true);
  2324. qce_callback(areq, NULL, NULL, -ENXIO);
  2325. return -ENXIO;
  2326. }
  2327. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2328. result_dump_status2 = be32_to_cpu(pce_sps_data->result->status2);
  2329. if ((result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2330. | (1 << CRYPTO_HSD_ERR)))) {
  2331. pr_err(
  2332. "f8 oper error. Dump Sta %x Sta2 %x req %d\n",
  2333. result_dump_status, result_dump_status2, req_info);
  2334. result_status = -ENXIO;
  2335. } else if (pce_sps_data->consumer_status |
  2336. pce_sps_data->producer_status) {
  2337. pr_err("f8 sps operation error. sps status %x %x\n",
  2338. pce_sps_data->consumer_status,
  2339. pce_sps_data->producer_status);
  2340. result_status = -ENXIO;
  2341. }
  2342. pce_sps_data->result->status = 0;
  2343. pce_sps_data->result->status2 = 0;
  2344. qce_free_req_info(pce_dev, req_info, true);
  2345. qce_callback(areq, NULL, NULL, result_status);
  2346. return 0;
  2347. }
  2348. static void _qce_sps_iovec_count_init(struct qce_device *pce_dev, int req_info)
  2349. {
  2350. struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info[req_info]
  2351. .ce_sps;
  2352. pce_sps_data->in_transfer.iovec_count = 0;
  2353. pce_sps_data->out_transfer.iovec_count = 0;
  2354. }
  2355. static void _qce_set_flag(struct sps_transfer *sps_bam_pipe, uint32_t flag)
  2356. {
  2357. struct sps_iovec *iovec;
  2358. if (sps_bam_pipe->iovec_count == 0)
  2359. return;
  2360. iovec = sps_bam_pipe->iovec + (sps_bam_pipe->iovec_count - 1);
  2361. iovec->flags |= flag;
  2362. }
  2363. static int _qce_sps_add_data(dma_addr_t paddr, uint32_t len,
  2364. struct sps_transfer *sps_bam_pipe)
  2365. {
  2366. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2367. sps_bam_pipe->iovec_count;
  2368. uint32_t data_cnt;
  2369. while (len > 0) {
  2370. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2371. pr_err("Num of descrptor %d exceed max (%d)\n",
  2372. sps_bam_pipe->iovec_count,
  2373. (uint32_t)QCE_MAX_NUM_DSCR);
  2374. return -ENOMEM;
  2375. }
  2376. if (len > SPS_MAX_PKT_SIZE)
  2377. data_cnt = SPS_MAX_PKT_SIZE;
  2378. else
  2379. data_cnt = len;
  2380. iovec->size = data_cnt;
  2381. iovec->addr = SPS_GET_LOWER_ADDR(paddr);
  2382. iovec->flags = SPS_GET_UPPER_ADDR(paddr);
  2383. sps_bam_pipe->iovec_count++;
  2384. iovec++;
  2385. paddr += data_cnt;
  2386. len -= data_cnt;
  2387. }
  2388. return 0;
  2389. }
  2390. static int _qce_sps_add_sg_data(struct qce_device *pce_dev,
  2391. struct scatterlist *sg_src, uint32_t nbytes,
  2392. struct sps_transfer *sps_bam_pipe)
  2393. {
  2394. uint32_t data_cnt, len;
  2395. dma_addr_t addr;
  2396. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2397. sps_bam_pipe->iovec_count;
  2398. while (nbytes > 0 && sg_src) {
  2399. len = min(nbytes, sg_dma_len(sg_src));
  2400. nbytes -= len;
  2401. addr = sg_dma_address(sg_src);
  2402. if (pce_dev->ce_bam_info.minor_version == 0)
  2403. len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size);
  2404. while (len > 0) {
  2405. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2406. pr_err("Num of descrptor %d exceed max (%d)\n",
  2407. sps_bam_pipe->iovec_count,
  2408. (uint32_t)QCE_MAX_NUM_DSCR);
  2409. return -ENOMEM;
  2410. }
  2411. if (len > SPS_MAX_PKT_SIZE) {
  2412. data_cnt = SPS_MAX_PKT_SIZE;
  2413. iovec->size = data_cnt;
  2414. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2415. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2416. } else {
  2417. data_cnt = len;
  2418. iovec->size = data_cnt;
  2419. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2420. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2421. }
  2422. iovec++;
  2423. sps_bam_pipe->iovec_count++;
  2424. addr += data_cnt;
  2425. len -= data_cnt;
  2426. }
  2427. sg_src = sg_next(sg_src);
  2428. }
  2429. return 0;
  2430. }
  2431. static int _qce_sps_add_sg_data_off(struct qce_device *pce_dev,
  2432. struct scatterlist *sg_src, uint32_t nbytes, uint32_t off,
  2433. struct sps_transfer *sps_bam_pipe)
  2434. {
  2435. uint32_t data_cnt, len;
  2436. dma_addr_t addr;
  2437. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2438. sps_bam_pipe->iovec_count;
  2439. unsigned int res_within_sg;
  2440. if (!sg_src)
  2441. return -ENOENT;
  2442. res_within_sg = sg_dma_len(sg_src);
  2443. while (off > 0) {
  2444. if (!sg_src) {
  2445. pr_err("broken sg list off %d nbytes %d\n",
  2446. off, nbytes);
  2447. return -ENOENT;
  2448. }
  2449. len = sg_dma_len(sg_src);
  2450. if (off < len) {
  2451. res_within_sg = len - off;
  2452. break;
  2453. }
  2454. off -= len;
  2455. sg_src = sg_next(sg_src);
  2456. if (sg_src)
  2457. res_within_sg = sg_dma_len(sg_src);
  2458. }
  2459. while (nbytes > 0 && sg_src) {
  2460. len = min(nbytes, res_within_sg);
  2461. nbytes -= len;
  2462. addr = sg_dma_address(sg_src) + off;
  2463. if (pce_dev->ce_bam_info.minor_version == 0)
  2464. len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size);
  2465. while (len > 0) {
  2466. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2467. pr_err("Num of descrptor %d exceed max (%d)\n",
  2468. sps_bam_pipe->iovec_count,
  2469. (uint32_t)QCE_MAX_NUM_DSCR);
  2470. return -ENOMEM;
  2471. }
  2472. if (len > SPS_MAX_PKT_SIZE) {
  2473. data_cnt = SPS_MAX_PKT_SIZE;
  2474. iovec->size = data_cnt;
  2475. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2476. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2477. } else {
  2478. data_cnt = len;
  2479. iovec->size = data_cnt;
  2480. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2481. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2482. }
  2483. iovec++;
  2484. sps_bam_pipe->iovec_count++;
  2485. addr += data_cnt;
  2486. len -= data_cnt;
  2487. }
  2488. if (nbytes) {
  2489. sg_src = sg_next(sg_src);
  2490. if (!sg_src) {
  2491. pr_err("more data bytes %d\n", nbytes);
  2492. return -ENOMEM;
  2493. }
  2494. res_within_sg = sg_dma_len(sg_src);
  2495. off = 0;
  2496. }
  2497. }
  2498. return 0;
  2499. }
  2500. static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag,
  2501. struct qce_cmdlist_info *cmdptr,
  2502. struct sps_transfer *sps_bam_pipe)
  2503. {
  2504. dma_addr_t paddr = GET_PHYS_ADDR(cmdptr->cmdlist);
  2505. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2506. sps_bam_pipe->iovec_count;
  2507. iovec->size = cmdptr->size;
  2508. iovec->addr = SPS_GET_LOWER_ADDR(paddr);
  2509. iovec->flags = SPS_GET_UPPER_ADDR(paddr) | SPS_IOVEC_FLAG_CMD | flag;
  2510. sps_bam_pipe->iovec_count++;
  2511. if (sps_bam_pipe->iovec_count >= QCE_MAX_NUM_DSCR) {
  2512. pr_err("Num of descrptor %d exceed max (%d)\n",
  2513. sps_bam_pipe->iovec_count, (uint32_t)QCE_MAX_NUM_DSCR);
  2514. return -ENOMEM;
  2515. }
  2516. return 0;
  2517. }
  2518. static int _qce_sps_transfer(struct qce_device *pce_dev, int req_info)
  2519. {
  2520. int rc = 0;
  2521. struct ce_sps_data *pce_sps_data;
  2522. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  2523. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  2524. pce_sps_data->out_transfer.user =
  2525. (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
  2526. (unsigned int) req_info));
  2527. pce_sps_data->in_transfer.user =
  2528. (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
  2529. (unsigned int) req_info));
  2530. _qce_dump_descr_fifos_dbg(pce_dev, req_info);
  2531. if (pce_sps_data->in_transfer.iovec_count) {
  2532. rc = sps_transfer(pce_dev->ce_bam_info.consumer[op].pipe,
  2533. &pce_sps_data->in_transfer);
  2534. if (rc) {
  2535. pr_err("sps_xfr() fail (cons pipe=0x%lx) rc = %d\n",
  2536. (uintptr_t)pce_dev->ce_bam_info.consumer[op].pipe,
  2537. rc);
  2538. goto ret;
  2539. }
  2540. }
  2541. rc = sps_transfer(pce_dev->ce_bam_info.producer[op].pipe,
  2542. &pce_sps_data->out_transfer);
  2543. if (rc)
  2544. pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
  2545. (uintptr_t)pce_dev->ce_bam_info.producer[op].pipe, rc);
  2546. ret:
  2547. if (rc)
  2548. _qce_dump_descr_fifos(pce_dev, req_info);
  2549. return rc;
  2550. }
  2551. /**
  2552. * Allocate and Connect a CE peripheral's SPS endpoint
  2553. *
  2554. * This function allocates endpoint context and
  2555. * connect it with memory endpoint by calling
  2556. * appropriate SPS driver APIs.
  2557. *
  2558. * Also registers a SPS callback function with
  2559. * SPS driver
  2560. *
  2561. * This function should only be called once typically
  2562. * during driver probe.
  2563. *
  2564. * @pce_dev - Pointer to qce_device structure
  2565. * @ep - Pointer to sps endpoint data structure
  2566. * @index - Points to crypto use case
  2567. * @is_produce - 1 means Producer endpoint
  2568. * 0 means Consumer endpoint
  2569. *
  2570. * @return - 0 if successful else negative value.
  2571. *
  2572. */
  2573. static int qce_sps_init_ep_conn(struct qce_device *pce_dev,
  2574. struct qce_sps_ep_conn_data *ep,
  2575. int index,
  2576. bool is_producer)
  2577. {
  2578. int rc = 0;
  2579. struct sps_pipe *sps_pipe_info;
  2580. struct sps_connect *sps_connect_info = &ep->connect;
  2581. struct sps_register_event *sps_event = &ep->event;
  2582. /* Allocate endpoint context */
  2583. sps_pipe_info = sps_alloc_endpoint();
  2584. if (!sps_pipe_info) {
  2585. pr_err("sps_alloc_endpoint() failed!!! is_producer=%d\n",
  2586. is_producer);
  2587. rc = -ENOMEM;
  2588. goto out;
  2589. }
  2590. /* Now save the sps pipe handle */
  2591. ep->pipe = sps_pipe_info;
  2592. /* Get default connection configuration for an endpoint */
  2593. rc = sps_get_config(sps_pipe_info, sps_connect_info);
  2594. if (rc) {
  2595. pr_err("sps_get_config() fail pipe_handle=0x%lx, rc = %d\n",
  2596. (uintptr_t)sps_pipe_info, rc);
  2597. goto get_config_err;
  2598. }
  2599. /* Modify the default connection configuration */
  2600. if (is_producer) {
  2601. /*
  2602. * For CE producer transfer, source should be
  2603. * CE peripheral where as destination should
  2604. * be system memory.
  2605. */
  2606. sps_connect_info->source = pce_dev->ce_bam_info.bam_handle;
  2607. sps_connect_info->destination = SPS_DEV_HANDLE_MEM;
  2608. /* Producer pipe will handle this connection */
  2609. sps_connect_info->mode = SPS_MODE_SRC;
  2610. sps_connect_info->options =
  2611. SPS_O_AUTO_ENABLE | SPS_O_DESC_DONE;
  2612. } else {
  2613. /* For CE consumer transfer, source should be
  2614. * system memory where as destination should
  2615. * CE peripheral
  2616. */
  2617. sps_connect_info->source = SPS_DEV_HANDLE_MEM;
  2618. sps_connect_info->destination = pce_dev->ce_bam_info.bam_handle;
  2619. sps_connect_info->mode = SPS_MODE_DEST;
  2620. sps_connect_info->options =
  2621. SPS_O_AUTO_ENABLE;
  2622. }
  2623. /* Producer pipe index */
  2624. sps_connect_info->src_pipe_index =
  2625. pce_dev->ce_bam_info.src_pipe_index[index];
  2626. /* Consumer pipe index */
  2627. sps_connect_info->dest_pipe_index =
  2628. pce_dev->ce_bam_info.dest_pipe_index[index];
  2629. /* Set pipe group */
  2630. sps_connect_info->lock_group =
  2631. pce_dev->ce_bam_info.pipe_pair_index[index];
  2632. sps_connect_info->event_thresh = 0x10;
  2633. /*
  2634. * Max. no of scatter/gather buffers that can
  2635. * be passed by block layer = 32 (NR_SG).
  2636. * Each BAM descritor needs 64 bits (8 bytes).
  2637. * One BAM descriptor is required per buffer transfer.
  2638. * So we would require total 256 (32 * 8) bytes of descriptor FIFO.
  2639. * But due to HW limitation we need to allocate atleast one extra
  2640. * descriptor memory (256 bytes + 8 bytes). But in order to be
  2641. * in power of 2, we are allocating 512 bytes of memory.
  2642. */
  2643. sps_connect_info->desc.size = QCE_MAX_NUM_DSCR * MAX_QCE_ALLOC_BAM_REQ *
  2644. sizeof(struct sps_iovec);
  2645. if (sps_connect_info->desc.size > MAX_SPS_DESC_FIFO_SIZE)
  2646. sps_connect_info->desc.size = MAX_SPS_DESC_FIFO_SIZE;
  2647. sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev,
  2648. sps_connect_info->desc.size,
  2649. &sps_connect_info->desc.phys_base,
  2650. GFP_KERNEL | __GFP_ZERO);
  2651. if (sps_connect_info->desc.base == NULL) {
  2652. rc = -ENOMEM;
  2653. pr_err("Can not allocate coherent memory for sps data\n");
  2654. goto get_config_err;
  2655. }
  2656. /* Establish connection between peripheral and memory endpoint */
  2657. rc = sps_connect(sps_pipe_info, sps_connect_info);
  2658. if (rc) {
  2659. pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
  2660. (uintptr_t)sps_pipe_info, rc);
  2661. goto sps_connect_err;
  2662. }
  2663. sps_event->mode = SPS_TRIGGER_CALLBACK;
  2664. sps_event->xfer_done = NULL;
  2665. sps_event->user = (void *)pce_dev;
  2666. if (is_producer) {
  2667. sps_event->options = SPS_O_EOT | SPS_O_DESC_DONE;
  2668. sps_event->callback = _sps_producer_callback;
  2669. rc = sps_register_event(ep->pipe, sps_event);
  2670. if (rc) {
  2671. pr_err("Producer callback registration failed rc=%d\n",
  2672. rc);
  2673. goto sps_connect_err;
  2674. }
  2675. } else {
  2676. sps_event->options = SPS_O_EOT;
  2677. sps_event->callback = NULL;
  2678. }
  2679. pr_debug("success, %s : pipe_handle=0x%lx, desc fifo base (phy) = 0x%pK\n",
  2680. is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)",
  2681. (uintptr_t)sps_pipe_info, &sps_connect_info->desc.phys_base);
  2682. goto out;
  2683. sps_connect_err:
  2684. dma_free_coherent(pce_dev->pdev,
  2685. sps_connect_info->desc.size,
  2686. sps_connect_info->desc.base,
  2687. sps_connect_info->desc.phys_base);
  2688. get_config_err:
  2689. sps_free_endpoint(sps_pipe_info);
  2690. out:
  2691. return rc;
  2692. }
  2693. /**
  2694. * Disconnect and Deallocate a CE peripheral's SPS endpoint
  2695. *
  2696. * This function disconnect endpoint and deallocates
  2697. * endpoint context.
  2698. *
  2699. * This function should only be called once typically
  2700. * during driver remove.
  2701. *
  2702. * @pce_dev - Pointer to qce_device structure
  2703. * @ep - Pointer to sps endpoint data structure
  2704. *
  2705. */
  2706. static void qce_sps_exit_ep_conn(struct qce_device *pce_dev,
  2707. struct qce_sps_ep_conn_data *ep)
  2708. {
  2709. struct sps_pipe *sps_pipe_info = ep->pipe;
  2710. struct sps_connect *sps_connect_info = &ep->connect;
  2711. sps_disconnect(sps_pipe_info);
  2712. dma_free_coherent(pce_dev->pdev,
  2713. sps_connect_info->desc.size,
  2714. sps_connect_info->desc.base,
  2715. sps_connect_info->desc.phys_base);
  2716. sps_free_endpoint(sps_pipe_info);
  2717. }
  2718. static void qce_sps_release_bam(struct qce_device *pce_dev)
  2719. {
  2720. struct bam_registration_info *pbam;
  2721. mutex_lock(&bam_register_lock);
  2722. pbam = pce_dev->pbam;
  2723. if (pbam == NULL)
  2724. goto ret;
  2725. pbam->cnt--;
  2726. if (pbam->cnt > 0)
  2727. goto ret;
  2728. if (pce_dev->ce_bam_info.bam_handle) {
  2729. sps_deregister_bam_device(pce_dev->ce_bam_info.bam_handle);
  2730. pr_debug("deregister bam handle 0x%lx\n",
  2731. pce_dev->ce_bam_info.bam_handle);
  2732. pce_dev->ce_bam_info.bam_handle = 0;
  2733. }
  2734. iounmap(pbam->bam_iobase);
  2735. pr_debug("delete bam 0x%x\n", pbam->bam_mem);
  2736. list_del(&pbam->qlist);
  2737. kfree(pbam);
  2738. ret:
  2739. pce_dev->pbam = NULL;
  2740. mutex_unlock(&bam_register_lock);
  2741. }
  2742. static int qce_sps_get_bam(struct qce_device *pce_dev)
  2743. {
  2744. int rc = 0;
  2745. struct sps_bam_props bam = {0};
  2746. struct bam_registration_info *pbam = NULL;
  2747. struct bam_registration_info *p;
  2748. uint32_t bam_cfg = 0;
  2749. mutex_lock(&bam_register_lock);
  2750. list_for_each_entry(p, &qce50_bam_list, qlist) {
  2751. if (p->bam_mem == pce_dev->bam_mem) {
  2752. pbam = p; /* found */
  2753. break;
  2754. }
  2755. }
  2756. if (pbam) {
  2757. pr_debug("found bam 0x%x\n", pbam->bam_mem);
  2758. pbam->cnt++;
  2759. pce_dev->ce_bam_info.bam_handle = pbam->handle;
  2760. pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
  2761. pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
  2762. pce_dev->pbam = pbam;
  2763. pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
  2764. goto ret;
  2765. }
  2766. pbam = kzalloc(sizeof(struct bam_registration_info), GFP_KERNEL);
  2767. if (!pbam) {
  2768. rc = -ENOMEM;
  2769. goto ret;
  2770. }
  2771. pbam->cnt = 1;
  2772. pbam->bam_mem = pce_dev->bam_mem;
  2773. pbam->bam_iobase = ioremap(pce_dev->bam_mem,
  2774. pce_dev->bam_mem_size);
  2775. if (!pbam->bam_iobase) {
  2776. kfree(pbam);
  2777. rc = -ENOMEM;
  2778. pr_err("Can not map BAM io memory\n");
  2779. goto ret;
  2780. }
  2781. pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
  2782. pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
  2783. pbam->handle = 0;
  2784. pr_debug("allocate bam 0x%x\n", pbam->bam_mem);
  2785. bam_cfg = readl_relaxed(pce_dev->ce_bam_info.bam_iobase +
  2786. CRYPTO_BAM_CNFG_BITS_REG);
  2787. pbam->support_cmd_dscr = (bam_cfg & CRYPTO_BAM_CD_ENABLE_MASK) ?
  2788. true : false;
  2789. if (!pbam->support_cmd_dscr) {
  2790. pr_info("qce50 don't support command descriptor. bam_cfg%x\n",
  2791. bam_cfg);
  2792. pce_dev->no_get_around = false;
  2793. }
  2794. pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
  2795. bam.phys_addr = pce_dev->ce_bam_info.bam_mem;
  2796. bam.virt_addr = pce_dev->ce_bam_info.bam_iobase;
  2797. /*
  2798. * This event threshold value is only significant for BAM-to-BAM
  2799. * transfer. It's ignored for BAM-to-System mode transfer.
  2800. */
  2801. bam.event_threshold = 0x10; /* Pipe event threshold */
  2802. /*
  2803. * This threshold controls when the BAM publish
  2804. * the descriptor size on the sideband interface.
  2805. * SPS HW will only be used when
  2806. * data transfer size > 64 bytes.
  2807. */
  2808. bam.summing_threshold = 64;
  2809. /* SPS driver wll handle the crypto BAM IRQ */
  2810. bam.irq = (u32)pce_dev->ce_bam_info.bam_irq;
  2811. /*
  2812. * Set flag to indicate BAM global device control is managed
  2813. * remotely.
  2814. */
  2815. if (!pce_dev->support_cmd_dscr || pce_dev->is_shared)
  2816. bam.manage = SPS_BAM_MGR_DEVICE_REMOTE;
  2817. else
  2818. bam.manage = SPS_BAM_MGR_LOCAL;
  2819. bam.ee = pce_dev->ce_bam_info.bam_ee;
  2820. bam.ipc_loglevel = QCE_BAM_DEFAULT_IPC_LOGLVL;
  2821. bam.options |= SPS_BAM_CACHED_WP;
  2822. pr_debug("bam physical base=0x%lx\n", (uintptr_t)bam.phys_addr);
  2823. pr_debug("bam virtual base=0x%pK\n", bam.virt_addr);
  2824. /* Register CE Peripheral BAM device to SPS driver */
  2825. rc = sps_register_bam_device(&bam, &pbam->handle);
  2826. if (rc) {
  2827. pr_err("sps_register_bam_device() failed! err=%d\n", rc);
  2828. rc = -EIO;
  2829. iounmap(pbam->bam_iobase);
  2830. kfree(pbam);
  2831. goto ret;
  2832. }
  2833. pce_dev->pbam = pbam;
  2834. list_add_tail(&pbam->qlist, &qce50_bam_list);
  2835. pce_dev->ce_bam_info.bam_handle = pbam->handle;
  2836. ret:
  2837. mutex_unlock(&bam_register_lock);
  2838. return rc;
  2839. }
  2840. /**
  2841. * Initialize SPS HW connected with CE core
  2842. *
  2843. * This function register BAM HW resources with
  2844. * SPS driver and then initialize 2 SPS endpoints
  2845. *
  2846. * This function should only be called once typically
  2847. * during driver probe.
  2848. *
  2849. * @pce_dev - Pointer to qce_device structure
  2850. *
  2851. * @return - 0 if successful else negative value.
  2852. *
  2853. */
  2854. static int qce_sps_init(struct qce_device *pce_dev)
  2855. {
  2856. int rc = 0, i = 0;
  2857. rc = qce_sps_get_bam(pce_dev);
  2858. if (rc)
  2859. return rc;
  2860. pr_debug("BAM device registered. bam_handle=0x%lx\n",
  2861. pce_dev->ce_bam_info.bam_handle);
  2862. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  2863. if (i == 0 && !(pce_dev->kernel_pipes_support))
  2864. continue;
  2865. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  2866. break;
  2867. rc = qce_sps_init_ep_conn(pce_dev,
  2868. &pce_dev->ce_bam_info.producer[i], i, true);
  2869. if (rc)
  2870. goto sps_connect_producer_err;
  2871. rc = qce_sps_init_ep_conn(pce_dev,
  2872. &pce_dev->ce_bam_info.consumer[i], i, false);
  2873. if (rc)
  2874. goto sps_connect_consumer_err;
  2875. }
  2876. pr_info(" QTI MSM CE-BAM at 0x%016llx irq %d\n",
  2877. (unsigned long long)pce_dev->ce_bam_info.bam_mem,
  2878. (unsigned int)pce_dev->ce_bam_info.bam_irq);
  2879. return rc;
  2880. sps_connect_consumer_err:
  2881. qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.producer[i]);
  2882. sps_connect_producer_err:
  2883. qce_sps_release_bam(pce_dev);
  2884. return rc;
  2885. }
  2886. static inline int qce_alloc_req_info(struct qce_device *pce_dev)
  2887. {
  2888. int i;
  2889. int request_index = pce_dev->ce_request_index;
  2890. for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
  2891. request_index++;
  2892. if (request_index >= MAX_QCE_BAM_REQ)
  2893. request_index = 0;
  2894. if (!atomic_xchg(
  2895. &pce_dev->ce_request_info[request_index].in_use,
  2896. true)) {
  2897. pce_dev->ce_request_index = request_index;
  2898. return request_index;
  2899. }
  2900. }
  2901. pr_warn("pcedev %d no reqs available no_of_queued_req %d\n",
  2902. pce_dev->dev_no, atomic_read(
  2903. &pce_dev->no_of_queued_req));
  2904. return -EBUSY;
  2905. }
  2906. static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
  2907. bool is_complete)
  2908. {
  2909. pce_dev->ce_request_info[req_info].xfer_type = QCE_XFER_TYPE_LAST;
  2910. if (atomic_xchg(&pce_dev->ce_request_info[req_info].in_use,
  2911. false)) {
  2912. if (req_info < MAX_QCE_BAM_REQ && is_complete)
  2913. atomic_dec(&pce_dev->no_of_queued_req);
  2914. } else
  2915. pr_warn("request info %d free already\n", req_info);
  2916. }
  2917. static void print_notify_debug(struct sps_event_notify *notify)
  2918. {
  2919. phys_addr_t addr =
  2920. DESC_FULL_ADDR((phys_addr_t) notify->data.transfer.iovec.flags,
  2921. notify->data.transfer.iovec.addr);
  2922. pr_debug("sps ev_id=%d, addr=0x%pa, size=0x%x, flags=0x%x user=0x%pK\n",
  2923. notify->event_id, &addr,
  2924. notify->data.transfer.iovec.size,
  2925. notify->data.transfer.iovec.flags,
  2926. notify->data.transfer.user);
  2927. }
  2928. static void _qce_req_complete(struct qce_device *pce_dev, unsigned int req_info)
  2929. {
  2930. struct ce_request_info *preq_info;
  2931. preq_info = &pce_dev->ce_request_info[req_info];
  2932. switch (preq_info->xfer_type) {
  2933. case QCE_XFER_CIPHERING:
  2934. _ablk_cipher_complete(pce_dev, req_info);
  2935. break;
  2936. case QCE_XFER_HASHING:
  2937. _sha_complete(pce_dev, req_info);
  2938. break;
  2939. case QCE_XFER_AEAD:
  2940. _aead_complete(pce_dev, req_info);
  2941. break;
  2942. case QCE_XFER_F8:
  2943. _f8_complete(pce_dev, req_info);
  2944. break;
  2945. case QCE_XFER_F9:
  2946. _f9_complete(pce_dev, req_info);
  2947. break;
  2948. default:
  2949. qce_free_req_info(pce_dev, req_info, true);
  2950. break;
  2951. }
  2952. }
  2953. static void qce_multireq_timeout(struct timer_list *data)
  2954. {
  2955. struct qce_device *pce_dev = from_timer(pce_dev, data, timer);
  2956. int ret = 0;
  2957. int last_seq;
  2958. unsigned long flags;
  2959. last_seq = atomic_read(&pce_dev->bunch_cmd_seq);
  2960. if (last_seq == 0 ||
  2961. last_seq != atomic_read(&pce_dev->last_intr_seq)) {
  2962. atomic_set(&pce_dev->last_intr_seq, last_seq);
  2963. mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES));
  2964. return;
  2965. }
  2966. /* last bunch mode command time out */
  2967. /*
  2968. * From here to dummy request finish sps request and set owner back
  2969. * to none, we disable interrupt.
  2970. * So it won't get preempted or interrupted. If bam inerrupts happen
  2971. * between, and completion callback gets called from BAM, a new
  2972. * request may be issued by the client driver. Deadlock may happen.
  2973. */
  2974. local_irq_save(flags);
  2975. if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_TIMEOUT)
  2976. != QCE_OWNER_NONE) {
  2977. local_irq_restore(flags);
  2978. mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES));
  2979. return;
  2980. }
  2981. ret = qce_dummy_req(pce_dev);
  2982. if (ret)
  2983. pr_warn("pcedev %d: Failed to insert dummy req\n",
  2984. pce_dev->dev_no);
  2985. cmpxchg(&pce_dev->owner, QCE_OWNER_TIMEOUT, QCE_OWNER_NONE);
  2986. pce_dev->mode = IN_INTERRUPT_MODE;
  2987. local_irq_restore(flags);
  2988. del_timer(&(pce_dev->timer));
  2989. pce_dev->qce_stats.no_of_timeouts++;
  2990. pr_debug("pcedev %d mode switch to INTR\n", pce_dev->dev_no);
  2991. }
  2992. void qce_get_driver_stats(void *handle)
  2993. {
  2994. struct qce_device *pce_dev = (struct qce_device *) handle;
  2995. if (!_qce50_disp_stats)
  2996. return;
  2997. pr_info("Engine %d timeout occuured %d\n", pce_dev->dev_no,
  2998. pce_dev->qce_stats.no_of_timeouts);
  2999. pr_info("Engine %d dummy request inserted %d\n", pce_dev->dev_no,
  3000. pce_dev->qce_stats.no_of_dummy_reqs);
  3001. if (pce_dev->mode)
  3002. pr_info("Engine %d is in BUNCH MODE\n", pce_dev->dev_no);
  3003. else
  3004. pr_info("Engine %d is in INTERRUPT MODE\n", pce_dev->dev_no);
  3005. pr_info("Engine %d outstanding request %d\n", pce_dev->dev_no,
  3006. atomic_read(&pce_dev->no_of_queued_req));
  3007. }
  3008. EXPORT_SYMBOL(qce_get_driver_stats);
  3009. void qce_clear_driver_stats(void *handle)
  3010. {
  3011. struct qce_device *pce_dev = (struct qce_device *) handle;
  3012. pce_dev->qce_stats.no_of_timeouts = 0;
  3013. pce_dev->qce_stats.no_of_dummy_reqs = 0;
  3014. }
  3015. EXPORT_SYMBOL(qce_clear_driver_stats);
  3016. static void _sps_producer_callback(struct sps_event_notify *notify)
  3017. {
  3018. struct qce_device *pce_dev = (struct qce_device *)
  3019. ((struct sps_event_notify *)notify)->user;
  3020. int rc = 0;
  3021. unsigned int req_info;
  3022. struct ce_sps_data *pce_sps_data;
  3023. struct ce_request_info *preq_info;
  3024. uint16_t op;
  3025. print_notify_debug(notify);
  3026. req_info = (unsigned int)((uintptr_t)notify->data.transfer.user);
  3027. if ((req_info & 0xffff0000) != CRYPTO_REQ_USER_PAT) {
  3028. pr_warn("request information %d out of range\n", req_info);
  3029. return;
  3030. }
  3031. req_info = req_info & 0x00ff;
  3032. if (req_info < 0 || req_info >= MAX_QCE_ALLOC_BAM_REQ) {
  3033. pr_warn("request information %d out of range\n", req_info);
  3034. return;
  3035. }
  3036. preq_info = &pce_dev->ce_request_info[req_info];
  3037. op = pce_dev->ce_request_info[req_info].offload_op;
  3038. pce_sps_data = &preq_info->ce_sps;
  3039. if ((preq_info->xfer_type == QCE_XFER_CIPHERING ||
  3040. preq_info->xfer_type == QCE_XFER_AEAD) &&
  3041. pce_sps_data->producer_state == QCE_PIPE_STATE_IDLE) {
  3042. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  3043. if (!is_offload_op(op)) {
  3044. pce_sps_data->out_transfer.iovec_count = 0;
  3045. _qce_sps_add_data(GET_PHYS_ADDR(
  3046. pce_sps_data->result_dump),
  3047. CRYPTO_RESULT_DUMP_SIZE,
  3048. &pce_sps_data->out_transfer);
  3049. _qce_set_flag(&pce_sps_data->out_transfer,
  3050. SPS_IOVEC_FLAG_INT);
  3051. rc = sps_transfer(
  3052. pce_dev->ce_bam_info.producer[op].pipe,
  3053. &pce_sps_data->out_transfer);
  3054. if (rc) {
  3055. pr_err("sps_xfr fail (prod pipe=0x%lx) rc = %d\n",
  3056. (uintptr_t)pce_dev->ce_bam_info.producer[op].pipe,
  3057. rc);
  3058. }
  3059. }
  3060. return;
  3061. }
  3062. _qce_req_complete(pce_dev, req_info);
  3063. }
  3064. /**
  3065. * De-initialize SPS HW connected with CE core
  3066. *
  3067. * This function deinitialize SPS endpoints and then
  3068. * deregisters BAM resources from SPS driver.
  3069. *
  3070. * This function should only be called once typically
  3071. * during driver remove.
  3072. *
  3073. * @pce_dev - Pointer to qce_device structure
  3074. *
  3075. */
  3076. static void qce_sps_exit(struct qce_device *pce_dev)
  3077. {
  3078. int i = 0;
  3079. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  3080. if (i == 0 && !(pce_dev->kernel_pipes_support))
  3081. continue;
  3082. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  3083. break;
  3084. qce_sps_exit_ep_conn(pce_dev,
  3085. &pce_dev->ce_bam_info.consumer[i]);
  3086. qce_sps_exit_ep_conn(pce_dev,
  3087. &pce_dev->ce_bam_info.producer[i]);
  3088. }
  3089. qce_sps_release_bam(pce_dev);
  3090. }
  3091. static void qce_add_cmd_element(struct qce_device *pdev,
  3092. struct sps_command_element **cmd_ptr, u32 addr,
  3093. u32 data, struct sps_command_element **populate)
  3094. {
  3095. (*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase);
  3096. (*cmd_ptr)->command = 0;
  3097. (*cmd_ptr)->data = data;
  3098. (*cmd_ptr)->mask = 0xFFFFFFFF;
  3099. (*cmd_ptr)->reserved = 0;
  3100. if (populate != NULL)
  3101. *populate = *cmd_ptr;
  3102. (*cmd_ptr)++;
  3103. }
  3104. static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3105. unsigned char **pvaddr, enum qce_cipher_mode_enum mode,
  3106. bool key_128)
  3107. {
  3108. struct sps_command_element *ce_vaddr;
  3109. uintptr_t ce_vaddr_start;
  3110. struct qce_cmdlistptr_ops *cmdlistptr;
  3111. struct qce_cmdlist_info *pcl_info = NULL;
  3112. int i = 0;
  3113. uint32_t encr_cfg = 0;
  3114. uint32_t key_reg = 0;
  3115. uint32_t xts_key_reg = 0;
  3116. uint32_t iv_reg = 0;
  3117. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3118. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3119. pdev->ce_bam_info.ce_burst_size);
  3120. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3121. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3122. /*
  3123. * Designate chunks of the allocated memory to various
  3124. * command list pointers related to AES cipher operations defined
  3125. * in ce_cmdlistptrs_ops structure.
  3126. */
  3127. switch (mode) {
  3128. case QCE_MODE_CBC:
  3129. case QCE_MODE_CTR:
  3130. if (key_128) {
  3131. cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist =
  3132. (uintptr_t)ce_vaddr;
  3133. pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr);
  3134. if (mode == QCE_MODE_CBC)
  3135. encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
  3136. else
  3137. encr_cfg = pdev->reg.encr_cfg_aes_ctr_128;
  3138. iv_reg = 4;
  3139. key_reg = 4;
  3140. xts_key_reg = 0;
  3141. } else {
  3142. cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist =
  3143. (uintptr_t)ce_vaddr;
  3144. pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr);
  3145. if (mode == QCE_MODE_CBC)
  3146. encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
  3147. else
  3148. encr_cfg = pdev->reg.encr_cfg_aes_ctr_256;
  3149. iv_reg = 4;
  3150. key_reg = 8;
  3151. xts_key_reg = 0;
  3152. }
  3153. break;
  3154. case QCE_MODE_ECB:
  3155. if (key_128) {
  3156. cmdlistptr->cipher_aes_128_ecb.cmdlist =
  3157. (uintptr_t)ce_vaddr;
  3158. pcl_info = &(cmdlistptr->cipher_aes_128_ecb);
  3159. encr_cfg = pdev->reg.encr_cfg_aes_ecb_128;
  3160. iv_reg = 0;
  3161. key_reg = 4;
  3162. xts_key_reg = 0;
  3163. } else {
  3164. cmdlistptr->cipher_aes_256_ecb.cmdlist =
  3165. (uintptr_t)ce_vaddr;
  3166. pcl_info = &(cmdlistptr->cipher_aes_256_ecb);
  3167. encr_cfg = pdev->reg.encr_cfg_aes_ecb_256;
  3168. iv_reg = 0;
  3169. key_reg = 8;
  3170. xts_key_reg = 0;
  3171. }
  3172. break;
  3173. case QCE_MODE_XTS:
  3174. if (key_128) {
  3175. cmdlistptr->cipher_aes_128_xts.cmdlist =
  3176. (uintptr_t)ce_vaddr;
  3177. pcl_info = &(cmdlistptr->cipher_aes_128_xts);
  3178. encr_cfg = pdev->reg.encr_cfg_aes_xts_128;
  3179. iv_reg = 4;
  3180. key_reg = 4;
  3181. xts_key_reg = 4;
  3182. } else {
  3183. cmdlistptr->cipher_aes_256_xts.cmdlist =
  3184. (uintptr_t)ce_vaddr;
  3185. pcl_info = &(cmdlistptr->cipher_aes_256_xts);
  3186. encr_cfg = pdev->reg.encr_cfg_aes_xts_256;
  3187. iv_reg = 4;
  3188. key_reg = 8;
  3189. xts_key_reg = 8;
  3190. }
  3191. break;
  3192. default:
  3193. pr_err("Unknown mode of operation %d received, exiting now\n",
  3194. mode);
  3195. return -EINVAL;
  3196. break;
  3197. }
  3198. /* clear status register */
  3199. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3200. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS2_REG, 0, NULL);
  3201. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS3_REG, 0, NULL);
  3202. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS4_REG, 0, NULL);
  3203. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS5_REG, 0, NULL);
  3204. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS6_REG, 0, NULL);
  3205. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3206. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3207. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3208. &pcl_info->seg_size);
  3209. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3210. &pcl_info->encr_seg_cfg);
  3211. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3212. &pcl_info->encr_seg_size);
  3213. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3214. &pcl_info->encr_seg_start);
  3215. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
  3216. pdev->reg.encr_cntr_mask_3, &pcl_info->encr_mask_3);
  3217. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
  3218. pdev->reg.encr_cntr_mask_2, &pcl_info->encr_mask_2);
  3219. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
  3220. pdev->reg.encr_cntr_mask_1, &pcl_info->encr_mask_1);
  3221. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
  3222. pdev->reg.encr_cntr_mask_0, &pcl_info->encr_mask_0);
  3223. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3224. &pcl_info->auth_seg_cfg);
  3225. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_DATA_PATT_PROC_CFG_REG, 0,
  3226. &pcl_info->pattern_info);
  3227. qce_add_cmd_element(pdev, &ce_vaddr,
  3228. CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG_REG, 0,
  3229. &pcl_info->block_offset);
  3230. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3231. &pcl_info->encr_key);
  3232. for (i = 1; i < key_reg; i++)
  3233. qce_add_cmd_element(pdev, &ce_vaddr,
  3234. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3235. 0, NULL);
  3236. if (xts_key_reg) {
  3237. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG,
  3238. 0, &pcl_info->encr_xts_key);
  3239. for (i = 1; i < xts_key_reg; i++)
  3240. qce_add_cmd_element(pdev, &ce_vaddr,
  3241. (CRYPTO_ENCR_XTS_KEY0_REG +
  3242. i * sizeof(uint32_t)), 0, NULL);
  3243. qce_add_cmd_element(pdev, &ce_vaddr,
  3244. CRYPTO_ENCR_XTS_DU_SIZE_REG, 0,
  3245. &pcl_info->encr_xts_du_size);
  3246. }
  3247. if (iv_reg) {
  3248. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3249. &pcl_info->encr_cntr_iv);
  3250. for (i = 1; i < iv_reg; i++)
  3251. qce_add_cmd_element(pdev, &ce_vaddr,
  3252. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3253. 0, NULL);
  3254. }
  3255. /* Add dummy to align size to burst-size multiple */
  3256. if (mode == QCE_MODE_XTS) {
  3257. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3258. 0, &pcl_info->auth_seg_size);
  3259. } else {
  3260. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3261. 0, &pcl_info->auth_seg_size);
  3262. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
  3263. 0, &pcl_info->auth_seg_size);
  3264. }
  3265. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3266. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3267. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3268. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3269. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3270. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3271. *pvaddr = (unsigned char *) ce_vaddr;
  3272. return 0;
  3273. }
  3274. static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3275. unsigned char **pvaddr, enum qce_cipher_alg_enum alg,
  3276. bool mode_cbc)
  3277. {
  3278. struct sps_command_element *ce_vaddr;
  3279. uintptr_t ce_vaddr_start;
  3280. struct qce_cmdlistptr_ops *cmdlistptr;
  3281. struct qce_cmdlist_info *pcl_info = NULL;
  3282. int i = 0;
  3283. uint32_t encr_cfg = 0;
  3284. uint32_t key_reg = 0;
  3285. uint32_t iv_reg = 0;
  3286. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3287. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3288. pdev->ce_bam_info.ce_burst_size);
  3289. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3290. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3291. /*
  3292. * Designate chunks of the allocated memory to various
  3293. * command list pointers related to cipher operations defined
  3294. * in ce_cmdlistptrs_ops structure.
  3295. */
  3296. switch (alg) {
  3297. case CIPHER_ALG_DES:
  3298. if (mode_cbc) {
  3299. cmdlistptr->cipher_des_cbc.cmdlist =
  3300. (uintptr_t)ce_vaddr;
  3301. pcl_info = &(cmdlistptr->cipher_des_cbc);
  3302. encr_cfg = pdev->reg.encr_cfg_des_cbc;
  3303. iv_reg = 2;
  3304. key_reg = 2;
  3305. } else {
  3306. cmdlistptr->cipher_des_ecb.cmdlist =
  3307. (uintptr_t)ce_vaddr;
  3308. pcl_info = &(cmdlistptr->cipher_des_ecb);
  3309. encr_cfg = pdev->reg.encr_cfg_des_ecb;
  3310. iv_reg = 0;
  3311. key_reg = 2;
  3312. }
  3313. break;
  3314. case CIPHER_ALG_3DES:
  3315. if (mode_cbc) {
  3316. cmdlistptr->cipher_3des_cbc.cmdlist =
  3317. (uintptr_t)ce_vaddr;
  3318. pcl_info = &(cmdlistptr->cipher_3des_cbc);
  3319. encr_cfg = pdev->reg.encr_cfg_3des_cbc;
  3320. iv_reg = 2;
  3321. key_reg = 6;
  3322. } else {
  3323. cmdlistptr->cipher_3des_ecb.cmdlist =
  3324. (uintptr_t)ce_vaddr;
  3325. pcl_info = &(cmdlistptr->cipher_3des_ecb);
  3326. encr_cfg = pdev->reg.encr_cfg_3des_ecb;
  3327. iv_reg = 0;
  3328. key_reg = 6;
  3329. }
  3330. break;
  3331. default:
  3332. pr_err("Unknown algorithms %d received, exiting now\n", alg);
  3333. return -EINVAL;
  3334. break;
  3335. }
  3336. /* clear status register */
  3337. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3338. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3339. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3340. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3341. &pcl_info->seg_size);
  3342. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3343. &pcl_info->encr_seg_cfg);
  3344. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3345. &pcl_info->encr_seg_size);
  3346. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3347. &pcl_info->encr_seg_start);
  3348. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3349. &pcl_info->auth_seg_cfg);
  3350. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3351. &pcl_info->encr_key);
  3352. for (i = 1; i < key_reg; i++)
  3353. qce_add_cmd_element(pdev, &ce_vaddr,
  3354. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3355. 0, NULL);
  3356. if (iv_reg) {
  3357. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3358. &pcl_info->encr_cntr_iv);
  3359. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
  3360. NULL);
  3361. }
  3362. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3363. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3364. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3365. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3366. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3367. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3368. *pvaddr = (unsigned char *) ce_vaddr;
  3369. return 0;
  3370. }
  3371. static int _setup_cipher_null_cmdlistptrs(struct qce_device *pdev,
  3372. int cri_index, unsigned char **pvaddr)
  3373. {
  3374. struct sps_command_element *ce_vaddr;
  3375. uintptr_t ce_vaddr_start;
  3376. struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
  3377. [cri_index].ce_sps.cmdlistptr;
  3378. struct qce_cmdlist_info *pcl_info = NULL;
  3379. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3380. pdev->ce_bam_info.ce_burst_size);
  3381. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3382. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3383. cmdlistptr->cipher_null.cmdlist = (uintptr_t)ce_vaddr;
  3384. pcl_info = &(cmdlistptr->cipher_null);
  3385. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG,
  3386. pdev->ce_bam_info.ce_burst_size, NULL);
  3387. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
  3388. pdev->reg.encr_cfg_aes_ecb_128, NULL);
  3389. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3390. NULL);
  3391. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3392. NULL);
  3393. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3394. 0, NULL);
  3395. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3396. 0, NULL);
  3397. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3398. NULL);
  3399. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3400. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3401. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3402. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3403. *pvaddr = (unsigned char *) ce_vaddr;
  3404. return 0;
  3405. }
  3406. static int _setup_auth_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3407. unsigned char **pvaddr, enum qce_hash_alg_enum alg,
  3408. bool key_128)
  3409. {
  3410. struct sps_command_element *ce_vaddr;
  3411. uintptr_t ce_vaddr_start;
  3412. struct qce_cmdlistptr_ops *cmdlistptr;
  3413. struct qce_cmdlist_info *pcl_info = NULL;
  3414. int i = 0;
  3415. uint32_t key_reg = 0;
  3416. uint32_t auth_cfg = 0;
  3417. uint32_t iv_reg = 0;
  3418. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3419. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3420. pdev->ce_bam_info.ce_burst_size);
  3421. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3422. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3423. /*
  3424. * Designate chunks of the allocated memory to various
  3425. * command list pointers related to authentication operations
  3426. * defined in ce_cmdlistptrs_ops structure.
  3427. */
  3428. switch (alg) {
  3429. case QCE_HASH_SHA1:
  3430. cmdlistptr->auth_sha1.cmdlist = (uintptr_t)ce_vaddr;
  3431. pcl_info = &(cmdlistptr->auth_sha1);
  3432. auth_cfg = pdev->reg.auth_cfg_sha1;
  3433. iv_reg = 5;
  3434. /* clear status register */
  3435. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3436. 0, NULL);
  3437. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3438. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3439. break;
  3440. case QCE_HASH_SHA256:
  3441. cmdlistptr->auth_sha256.cmdlist = (uintptr_t)ce_vaddr;
  3442. pcl_info = &(cmdlistptr->auth_sha256);
  3443. auth_cfg = pdev->reg.auth_cfg_sha256;
  3444. iv_reg = 8;
  3445. /* clear status register */
  3446. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3447. 0, NULL);
  3448. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3449. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3450. /* 1 dummy write */
  3451. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3452. 0, NULL);
  3453. break;
  3454. case QCE_HASH_SHA1_HMAC:
  3455. cmdlistptr->auth_sha1_hmac.cmdlist = (uintptr_t)ce_vaddr;
  3456. pcl_info = &(cmdlistptr->auth_sha1_hmac);
  3457. auth_cfg = pdev->reg.auth_cfg_hmac_sha1;
  3458. key_reg = 16;
  3459. iv_reg = 5;
  3460. /* clear status register */
  3461. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3462. 0, NULL);
  3463. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3464. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3465. break;
  3466. case QCE_HASH_SHA256_HMAC:
  3467. cmdlistptr->auth_sha256_hmac.cmdlist = (uintptr_t)ce_vaddr;
  3468. pcl_info = &(cmdlistptr->auth_sha256_hmac);
  3469. auth_cfg = pdev->reg.auth_cfg_hmac_sha256;
  3470. key_reg = 16;
  3471. iv_reg = 8;
  3472. /* clear status register */
  3473. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
  3474. NULL);
  3475. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3476. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3477. /* 1 dummy write */
  3478. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3479. 0, NULL);
  3480. break;
  3481. case QCE_HASH_AES_CMAC:
  3482. if (key_128) {
  3483. cmdlistptr->auth_aes_128_cmac.cmdlist =
  3484. (uintptr_t)ce_vaddr;
  3485. pcl_info = &(cmdlistptr->auth_aes_128_cmac);
  3486. auth_cfg = pdev->reg.auth_cfg_cmac_128;
  3487. key_reg = 4;
  3488. } else {
  3489. cmdlistptr->auth_aes_256_cmac.cmdlist =
  3490. (uintptr_t)ce_vaddr;
  3491. pcl_info = &(cmdlistptr->auth_aes_256_cmac);
  3492. auth_cfg = pdev->reg.auth_cfg_cmac_256;
  3493. key_reg = 8;
  3494. }
  3495. /* clear status register */
  3496. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
  3497. NULL);
  3498. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3499. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3500. /* 1 dummy write */
  3501. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3502. 0, NULL);
  3503. break;
  3504. default:
  3505. pr_err("Unknown algorithms %d received, exiting now\n", alg);
  3506. return -EINVAL;
  3507. break;
  3508. }
  3509. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3510. &pcl_info->seg_size);
  3511. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
  3512. &pcl_info->encr_seg_cfg);
  3513. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3514. auth_cfg, &pcl_info->auth_seg_cfg);
  3515. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3516. &pcl_info->auth_seg_size);
  3517. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3518. &pcl_info->auth_seg_start);
  3519. if (alg == QCE_HASH_AES_CMAC) {
  3520. /* reset auth iv, bytecount and key registers */
  3521. for (i = 0; i < 16; i++)
  3522. qce_add_cmd_element(pdev, &ce_vaddr,
  3523. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
  3524. 0, NULL);
  3525. for (i = 0; i < 16; i++)
  3526. qce_add_cmd_element(pdev, &ce_vaddr,
  3527. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
  3528. 0, NULL);
  3529. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3530. 0, NULL);
  3531. } else {
  3532. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3533. &pcl_info->auth_iv);
  3534. for (i = 1; i < iv_reg; i++)
  3535. qce_add_cmd_element(pdev, &ce_vaddr,
  3536. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3537. 0, NULL);
  3538. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3539. 0, &pcl_info->auth_bytecount);
  3540. }
  3541. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3542. if (key_reg) {
  3543. qce_add_cmd_element(pdev, &ce_vaddr,
  3544. CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key);
  3545. for (i = 1; i < key_reg; i++)
  3546. qce_add_cmd_element(pdev, &ce_vaddr,
  3547. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
  3548. 0, NULL);
  3549. }
  3550. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3551. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3552. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3553. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3554. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3555. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3556. *pvaddr = (unsigned char *) ce_vaddr;
  3557. return 0;
  3558. }
  3559. static int _setup_aead_cmdlistptrs(struct qce_device *pdev,
  3560. int cri_index,
  3561. unsigned char **pvaddr,
  3562. uint32_t alg,
  3563. uint32_t mode,
  3564. uint32_t key_size,
  3565. bool sha1)
  3566. {
  3567. struct sps_command_element *ce_vaddr;
  3568. uintptr_t ce_vaddr_start;
  3569. struct qce_cmdlistptr_ops *cmd;
  3570. struct qce_cmdlist_info *pcl_info = NULL;
  3571. uint32_t key_reg;
  3572. uint32_t iv_reg;
  3573. uint32_t i;
  3574. uint32_t enciv_in_word;
  3575. uint32_t encr_cfg;
  3576. cmd = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3577. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3578. pdev->ce_bam_info.ce_burst_size);
  3579. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3580. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3581. switch (alg) {
  3582. case CIPHER_ALG_DES:
  3583. switch (mode) {
  3584. case QCE_MODE_CBC:
  3585. if (sha1) {
  3586. cmd->aead_hmac_sha1_cbc_des.cmdlist =
  3587. (uintptr_t)ce_vaddr;
  3588. pcl_info =
  3589. &(cmd->aead_hmac_sha1_cbc_des);
  3590. } else {
  3591. cmd->aead_hmac_sha256_cbc_des.cmdlist =
  3592. (uintptr_t)ce_vaddr;
  3593. pcl_info =
  3594. &(cmd->aead_hmac_sha256_cbc_des);
  3595. }
  3596. encr_cfg = pdev->reg.encr_cfg_des_cbc;
  3597. break;
  3598. default:
  3599. return -EINVAL;
  3600. }
  3601. enciv_in_word = 2;
  3602. break;
  3603. case CIPHER_ALG_3DES:
  3604. switch (mode) {
  3605. case QCE_MODE_CBC:
  3606. if (sha1) {
  3607. cmd->aead_hmac_sha1_cbc_3des.cmdlist =
  3608. (uintptr_t)ce_vaddr;
  3609. pcl_info =
  3610. &(cmd->aead_hmac_sha1_cbc_3des);
  3611. } else {
  3612. cmd->aead_hmac_sha256_cbc_3des.cmdlist =
  3613. (uintptr_t)ce_vaddr;
  3614. pcl_info =
  3615. &(cmd->aead_hmac_sha256_cbc_3des);
  3616. }
  3617. encr_cfg = pdev->reg.encr_cfg_3des_cbc;
  3618. break;
  3619. default:
  3620. return -EINVAL;
  3621. }
  3622. enciv_in_word = 2;
  3623. break;
  3624. case CIPHER_ALG_AES:
  3625. switch (mode) {
  3626. case QCE_MODE_CBC:
  3627. if (key_size == AES128_KEY_SIZE) {
  3628. if (sha1) {
  3629. cmd->aead_hmac_sha1_cbc_aes_128.cmdlist =
  3630. (uintptr_t)ce_vaddr;
  3631. pcl_info =
  3632. &(cmd->aead_hmac_sha1_cbc_aes_128);
  3633. } else {
  3634. cmd->aead_hmac_sha256_cbc_aes_128.cmdlist
  3635. = (uintptr_t)ce_vaddr;
  3636. pcl_info =
  3637. &(cmd->aead_hmac_sha256_cbc_aes_128);
  3638. }
  3639. encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
  3640. } else if (key_size == AES256_KEY_SIZE) {
  3641. if (sha1) {
  3642. cmd->aead_hmac_sha1_cbc_aes_256.cmdlist =
  3643. (uintptr_t)ce_vaddr;
  3644. pcl_info =
  3645. &(cmd->aead_hmac_sha1_cbc_aes_256);
  3646. } else {
  3647. cmd->aead_hmac_sha256_cbc_aes_256.cmdlist =
  3648. (uintptr_t)ce_vaddr;
  3649. pcl_info =
  3650. &(cmd->aead_hmac_sha256_cbc_aes_256);
  3651. }
  3652. encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
  3653. } else {
  3654. return -EINVAL;
  3655. }
  3656. break;
  3657. default:
  3658. return -EINVAL;
  3659. }
  3660. enciv_in_word = 4;
  3661. break;
  3662. default:
  3663. return -EINVAL;
  3664. }
  3665. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3666. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3667. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3668. key_reg = key_size/sizeof(uint32_t);
  3669. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3670. &pcl_info->encr_key);
  3671. for (i = 1; i < key_reg; i++)
  3672. qce_add_cmd_element(pdev, &ce_vaddr,
  3673. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3674. 0, NULL);
  3675. if (mode != QCE_MODE_ECB) {
  3676. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3677. &pcl_info->encr_cntr_iv);
  3678. for (i = 1; i < enciv_in_word; i++)
  3679. qce_add_cmd_element(pdev, &ce_vaddr,
  3680. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3681. 0, NULL);
  3682. }
  3683. if (sha1)
  3684. iv_reg = 5;
  3685. else
  3686. iv_reg = 8;
  3687. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3688. &pcl_info->auth_iv);
  3689. for (i = 1; i < iv_reg; i++)
  3690. qce_add_cmd_element(pdev, &ce_vaddr,
  3691. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3692. 0, NULL);
  3693. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3694. 0, &pcl_info->auth_bytecount);
  3695. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3696. key_reg = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  3697. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
  3698. &pcl_info->auth_key);
  3699. for (i = 1; i < key_reg; i++)
  3700. qce_add_cmd_element(pdev, &ce_vaddr,
  3701. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), 0, NULL);
  3702. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3703. &pcl_info->seg_size);
  3704. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3705. &pcl_info->encr_seg_cfg);
  3706. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3707. &pcl_info->encr_seg_size);
  3708. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3709. &pcl_info->encr_seg_start);
  3710. if (sha1)
  3711. qce_add_cmd_element(
  3712. pdev,
  3713. &ce_vaddr,
  3714. CRYPTO_AUTH_SEG_CFG_REG,
  3715. pdev->reg.auth_cfg_aead_sha1_hmac,
  3716. &pcl_info->auth_seg_cfg);
  3717. else
  3718. qce_add_cmd_element(
  3719. pdev,
  3720. &ce_vaddr,
  3721. CRYPTO_AUTH_SEG_CFG_REG,
  3722. pdev->reg.auth_cfg_aead_sha256_hmac,
  3723. &pcl_info->auth_seg_cfg);
  3724. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3725. &pcl_info->auth_seg_size);
  3726. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3727. &pcl_info->auth_seg_start);
  3728. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3729. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3730. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3731. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3732. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3733. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3734. *pvaddr = (unsigned char *) ce_vaddr;
  3735. return 0;
  3736. }
  3737. static int _setup_aead_ccm_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3738. unsigned char **pvaddr, bool key_128)
  3739. {
  3740. struct sps_command_element *ce_vaddr;
  3741. uintptr_t ce_vaddr_start;
  3742. struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
  3743. [cri_index].ce_sps.cmdlistptr;
  3744. struct qce_cmdlist_info *pcl_info = NULL;
  3745. int i = 0;
  3746. uint32_t encr_cfg = 0;
  3747. uint32_t auth_cfg = 0;
  3748. uint32_t key_reg = 0;
  3749. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3750. pdev->ce_bam_info.ce_burst_size);
  3751. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3752. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3753. /*
  3754. * Designate chunks of the allocated memory to various
  3755. * command list pointers related to aead operations
  3756. * defined in ce_cmdlistptrs_ops structure.
  3757. */
  3758. if (key_128) {
  3759. cmdlistptr->aead_aes_128_ccm.cmdlist =
  3760. (uintptr_t)ce_vaddr;
  3761. pcl_info = &(cmdlistptr->aead_aes_128_ccm);
  3762. auth_cfg = pdev->reg.auth_cfg_aes_ccm_128;
  3763. encr_cfg = pdev->reg.encr_cfg_aes_ccm_128;
  3764. key_reg = 4;
  3765. } else {
  3766. cmdlistptr->aead_aes_256_ccm.cmdlist =
  3767. (uintptr_t)ce_vaddr;
  3768. pcl_info = &(cmdlistptr->aead_aes_256_ccm);
  3769. auth_cfg = pdev->reg.auth_cfg_aes_ccm_256;
  3770. encr_cfg = pdev->reg.encr_cfg_aes_ccm_256;
  3771. key_reg = 8;
  3772. }
  3773. /* clear status register */
  3774. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3775. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3776. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3777. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL);
  3778. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3779. NULL);
  3780. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3781. &pcl_info->seg_size);
  3782. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
  3783. encr_cfg, &pcl_info->encr_seg_cfg);
  3784. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3785. &pcl_info->encr_seg_size);
  3786. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3787. &pcl_info->encr_seg_start);
  3788. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
  3789. pdev->reg.encr_cntr_mask_3, &pcl_info->encr_mask_3);
  3790. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
  3791. pdev->reg.encr_cntr_mask_2, &pcl_info->encr_mask_2);
  3792. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
  3793. pdev->reg.encr_cntr_mask_1, &pcl_info->encr_mask_1);
  3794. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
  3795. pdev->reg.encr_cntr_mask_0, &pcl_info->encr_mask_0);
  3796. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3797. auth_cfg, &pcl_info->auth_seg_cfg);
  3798. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3799. &pcl_info->auth_seg_size);
  3800. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3801. &pcl_info->auth_seg_start);
  3802. /* reset auth iv, bytecount and key registers */
  3803. for (i = 0; i < 8; i++)
  3804. qce_add_cmd_element(pdev, &ce_vaddr,
  3805. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
  3806. 0, NULL);
  3807. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3808. 0, NULL);
  3809. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG,
  3810. 0, NULL);
  3811. for (i = 0; i < 16; i++)
  3812. qce_add_cmd_element(pdev, &ce_vaddr,
  3813. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
  3814. 0, NULL);
  3815. /* set auth key */
  3816. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
  3817. &pcl_info->auth_key);
  3818. for (i = 1; i < key_reg; i++)
  3819. qce_add_cmd_element(pdev, &ce_vaddr,
  3820. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
  3821. 0, NULL);
  3822. /* set NONCE info */
  3823. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0,
  3824. &pcl_info->auth_nonce_info);
  3825. for (i = 1; i < 4; i++)
  3826. qce_add_cmd_element(pdev, &ce_vaddr,
  3827. (CRYPTO_AUTH_INFO_NONCE0_REG +
  3828. i * sizeof(uint32_t)), 0, NULL);
  3829. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3830. &pcl_info->encr_key);
  3831. for (i = 1; i < key_reg; i++)
  3832. qce_add_cmd_element(pdev, &ce_vaddr,
  3833. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3834. 0, NULL);
  3835. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3836. &pcl_info->encr_cntr_iv);
  3837. for (i = 1; i < 4; i++)
  3838. qce_add_cmd_element(pdev, &ce_vaddr,
  3839. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3840. 0, NULL);
  3841. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0,
  3842. &pcl_info->encr_ccm_cntr_iv);
  3843. for (i = 1; i < 4; i++)
  3844. qce_add_cmd_element(pdev, &ce_vaddr,
  3845. (CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)),
  3846. 0, NULL);
  3847. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3848. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3849. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3850. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3851. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3852. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3853. *pvaddr = (unsigned char *) ce_vaddr;
  3854. return 0;
  3855. }
  3856. static int _setup_f8_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3857. unsigned char **pvaddr, enum qce_ota_algo_enum alg)
  3858. {
  3859. struct sps_command_element *ce_vaddr;
  3860. uintptr_t ce_vaddr_start;
  3861. struct qce_cmdlistptr_ops *cmdlistptr;
  3862. struct qce_cmdlist_info *pcl_info = NULL;
  3863. int i = 0;
  3864. uint32_t encr_cfg = 0;
  3865. uint32_t key_reg = 4;
  3866. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3867. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3868. pdev->ce_bam_info.ce_burst_size);
  3869. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3870. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3871. /*
  3872. * Designate chunks of the allocated memory to various
  3873. * command list pointers related to f8 cipher algorithm defined
  3874. * in ce_cmdlistptrs_ops structure.
  3875. */
  3876. switch (alg) {
  3877. case QCE_OTA_ALGO_KASUMI:
  3878. cmdlistptr->f8_kasumi.cmdlist = (uintptr_t)ce_vaddr;
  3879. pcl_info = &(cmdlistptr->f8_kasumi);
  3880. encr_cfg = pdev->reg.encr_cfg_kasumi;
  3881. break;
  3882. case QCE_OTA_ALGO_SNOW3G:
  3883. default:
  3884. cmdlistptr->f8_snow3g.cmdlist = (uintptr_t)ce_vaddr;
  3885. pcl_info = &(cmdlistptr->f8_snow3g);
  3886. encr_cfg = pdev->reg.encr_cfg_snow3g;
  3887. break;
  3888. }
  3889. /* clear status register */
  3890. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3891. 0, NULL);
  3892. /* set config to big endian */
  3893. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3894. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3895. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3896. &pcl_info->seg_size);
  3897. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3898. &pcl_info->encr_seg_cfg);
  3899. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3900. &pcl_info->encr_seg_size);
  3901. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3902. &pcl_info->encr_seg_start);
  3903. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3904. &pcl_info->auth_seg_cfg);
  3905. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3906. 0, &pcl_info->auth_seg_size);
  3907. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
  3908. 0, &pcl_info->auth_seg_start);
  3909. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3910. &pcl_info->encr_key);
  3911. for (i = 1; i < key_reg; i++)
  3912. qce_add_cmd_element(pdev, &ce_vaddr,
  3913. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3914. 0, NULL);
  3915. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3916. &pcl_info->encr_cntr_iv);
  3917. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
  3918. NULL);
  3919. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3920. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3921. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3922. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3923. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3924. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3925. *pvaddr = (unsigned char *) ce_vaddr;
  3926. return 0;
  3927. }
  3928. static int _setup_f9_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3929. unsigned char **pvaddr, enum qce_ota_algo_enum alg)
  3930. {
  3931. struct sps_command_element *ce_vaddr;
  3932. uintptr_t ce_vaddr_start;
  3933. struct qce_cmdlistptr_ops *cmdlistptr;
  3934. struct qce_cmdlist_info *pcl_info = NULL;
  3935. int i = 0;
  3936. uint32_t auth_cfg = 0;
  3937. uint32_t iv_reg = 0;
  3938. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3939. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3940. pdev->ce_bam_info.ce_burst_size);
  3941. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3942. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3943. /*
  3944. * Designate chunks of the allocated memory to various
  3945. * command list pointers related to authentication operations
  3946. * defined in ce_cmdlistptrs_ops structure.
  3947. */
  3948. switch (alg) {
  3949. case QCE_OTA_ALGO_KASUMI:
  3950. cmdlistptr->f9_kasumi.cmdlist = (uintptr_t)ce_vaddr;
  3951. pcl_info = &(cmdlistptr->f9_kasumi);
  3952. auth_cfg = pdev->reg.auth_cfg_kasumi;
  3953. break;
  3954. case QCE_OTA_ALGO_SNOW3G:
  3955. default:
  3956. cmdlistptr->f9_snow3g.cmdlist = (uintptr_t)ce_vaddr;
  3957. pcl_info = &(cmdlistptr->f9_snow3g);
  3958. auth_cfg = pdev->reg.auth_cfg_snow3g;
  3959. }
  3960. /* clear status register */
  3961. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3962. 0, NULL);
  3963. /* set config to big endian */
  3964. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3965. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3966. iv_reg = 5;
  3967. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3968. &pcl_info->seg_size);
  3969. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
  3970. &pcl_info->encr_seg_cfg);
  3971. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3972. auth_cfg, &pcl_info->auth_seg_cfg);
  3973. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3974. &pcl_info->auth_seg_size);
  3975. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3976. &pcl_info->auth_seg_start);
  3977. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3978. &pcl_info->auth_iv);
  3979. for (i = 1; i < iv_reg; i++) {
  3980. qce_add_cmd_element(pdev, &ce_vaddr,
  3981. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3982. 0, NULL);
  3983. }
  3984. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3985. 0, &pcl_info->auth_bytecount);
  3986. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3987. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3988. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3989. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3990. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3991. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3992. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3993. *pvaddr = (unsigned char *) ce_vaddr;
  3994. return 0;
  3995. }
  3996. static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev,
  3997. int cri_index, unsigned char **pvaddr)
  3998. {
  3999. struct sps_command_element *ce_vaddr;
  4000. uintptr_t ce_vaddr_start = (uintptr_t)(*pvaddr);
  4001. struct qce_cmdlistptr_ops *cmdlistptr;
  4002. struct qce_cmdlist_info *pcl_info = NULL;
  4003. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  4004. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  4005. pdev->ce_bam_info.ce_burst_size);
  4006. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  4007. cmdlistptr->unlock_all_pipes.cmdlist = (uintptr_t)ce_vaddr;
  4008. pcl_info = &(cmdlistptr->unlock_all_pipes);
  4009. /*
  4010. * Designate chunks of the allocated memory to command list
  4011. * to unlock pipes.
  4012. */
  4013. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  4014. CRYPTO_CONFIG_RESET, NULL);
  4015. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  4016. *pvaddr = (unsigned char *) ce_vaddr;
  4017. return 0;
  4018. }
  4019. static int qce_setup_cmdlistptrs(struct qce_device *pdev, int cri_index,
  4020. unsigned char **pvaddr)
  4021. {
  4022. struct sps_command_element *ce_vaddr =
  4023. (struct sps_command_element *)(*pvaddr);
  4024. /*
  4025. * Designate chunks of the allocated memory to various
  4026. * command list pointers related to operations defined
  4027. * in ce_cmdlistptrs_ops structure.
  4028. */
  4029. ce_vaddr =
  4030. (struct sps_command_element *)ALIGN(((uintptr_t) ce_vaddr),
  4031. pdev->ce_bam_info.ce_burst_size);
  4032. *pvaddr = (unsigned char *) ce_vaddr;
  4033. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
  4034. true);
  4035. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
  4036. true);
  4037. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
  4038. true);
  4039. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
  4040. true);
  4041. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
  4042. false);
  4043. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
  4044. false);
  4045. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
  4046. false);
  4047. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
  4048. false);
  4049. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4050. true);
  4051. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4052. false);
  4053. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4054. true);
  4055. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4056. false);
  4057. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1,
  4058. false);
  4059. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256,
  4060. false);
  4061. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1_HMAC,
  4062. false);
  4063. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256_HMAC,
  4064. false);
  4065. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
  4066. true);
  4067. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
  4068. false);
  4069. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4070. QCE_MODE_CBC, DES_KEY_SIZE, true);
  4071. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4072. QCE_MODE_CBC, DES3_EDE_KEY_SIZE, true);
  4073. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4074. QCE_MODE_CBC, AES128_KEY_SIZE, true);
  4075. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4076. QCE_MODE_CBC, AES256_KEY_SIZE, true);
  4077. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4078. QCE_MODE_CBC, DES_KEY_SIZE, false);
  4079. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4080. QCE_MODE_CBC, DES3_EDE_KEY_SIZE, false);
  4081. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4082. QCE_MODE_CBC, AES128_KEY_SIZE, false);
  4083. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4084. QCE_MODE_CBC, AES256_KEY_SIZE, false);
  4085. _setup_cipher_null_cmdlistptrs(pdev, cri_index, pvaddr);
  4086. _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, true);
  4087. _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, false);
  4088. _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
  4089. _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
  4090. _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
  4091. _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
  4092. _setup_unlock_pipe_cmdlistptrs(pdev, cri_index, pvaddr);
  4093. return 0;
  4094. }
  4095. static int qce_setup_ce_sps_data(struct qce_device *pce_dev)
  4096. {
  4097. unsigned char *vaddr;
  4098. int i;
  4099. unsigned char *iovec_vaddr;
  4100. int iovec_memsize;
  4101. vaddr = pce_dev->coh_vmem;
  4102. vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
  4103. pce_dev->ce_bam_info.ce_burst_size);
  4104. iovec_vaddr = pce_dev->iovec_vmem;
  4105. iovec_memsize = pce_dev->iovec_memsize;
  4106. for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++) {
  4107. /* Allow for 256 descriptor (cmd and data) entries per pipe */
  4108. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec =
  4109. (struct sps_iovec *)iovec_vaddr;
  4110. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec_phys =
  4111. virt_to_phys(
  4112. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec);
  4113. iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE;
  4114. iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE;
  4115. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec =
  4116. (struct sps_iovec *)iovec_vaddr;
  4117. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec_phys =
  4118. virt_to_phys(
  4119. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec);
  4120. iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE;
  4121. iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE;
  4122. if (pce_dev->support_cmd_dscr)
  4123. qce_setup_cmdlistptrs(pce_dev, i, &vaddr);
  4124. vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
  4125. pce_dev->ce_bam_info.ce_burst_size);
  4126. pce_dev->ce_request_info[i].ce_sps.result_dump =
  4127. (uintptr_t)vaddr;
  4128. pce_dev->ce_request_info[i].ce_sps.result_dump_phy =
  4129. GET_PHYS_ADDR((uintptr_t)vaddr);
  4130. pce_dev->ce_request_info[i].ce_sps.result =
  4131. (struct ce_result_dump_format *)vaddr;
  4132. vaddr += CRYPTO_RESULT_DUMP_SIZE;
  4133. pce_dev->ce_request_info[i].ce_sps.result_dump_null =
  4134. (uintptr_t)vaddr;
  4135. pce_dev->ce_request_info[i].ce_sps.result_dump_null_phy =
  4136. GET_PHYS_ADDR((uintptr_t)vaddr);
  4137. pce_dev->ce_request_info[i].ce_sps.result_null =
  4138. (struct ce_result_dump_format *)vaddr;
  4139. vaddr += CRYPTO_RESULT_DUMP_SIZE;
  4140. pce_dev->ce_request_info[i].ce_sps.ignore_buffer =
  4141. (uintptr_t)vaddr;
  4142. vaddr += pce_dev->ce_bam_info.ce_burst_size * 2;
  4143. }
  4144. if ((vaddr - pce_dev->coh_vmem) > pce_dev->memsize ||
  4145. iovec_memsize < 0)
  4146. panic("qce50: Not enough coherent memory. Allocate %x , need %lx\n",
  4147. pce_dev->memsize, (uintptr_t)vaddr -
  4148. (uintptr_t)pce_dev->coh_vmem);
  4149. return 0;
  4150. }
  4151. static int qce_init_ce_cfg_val(struct qce_device *pce_dev)
  4152. {
  4153. uint32_t pipe_pair = pce_dev->ce_bam_info.pipe_pair_index[0];
  4154. pce_dev->reg.crypto_cfg_be = qce_get_config_be(pce_dev, pipe_pair);
  4155. pce_dev->reg.crypto_cfg_le =
  4156. (pce_dev->reg.crypto_cfg_be | CRYPTO_LITTLE_ENDIAN_MASK);
  4157. /* Initialize encr_cfg register for AES alg */
  4158. pce_dev->reg.encr_cfg_aes_cbc_128 =
  4159. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4160. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4161. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4162. pce_dev->reg.encr_cfg_aes_cbc_256 =
  4163. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4164. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4165. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4166. pce_dev->reg.encr_cfg_aes_ctr_128 =
  4167. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4168. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4169. (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
  4170. pce_dev->reg.encr_cfg_aes_ctr_256 =
  4171. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4172. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4173. (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
  4174. pce_dev->reg.encr_cfg_aes_xts_128 =
  4175. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4176. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4177. (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
  4178. pce_dev->reg.encr_cfg_aes_xts_256 =
  4179. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4180. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4181. (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
  4182. pce_dev->reg.encr_cfg_aes_ecb_128 =
  4183. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4184. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4185. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4186. pce_dev->reg.encr_cfg_aes_ecb_256 =
  4187. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4188. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4189. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4190. pce_dev->reg.encr_cfg_aes_ccm_128 =
  4191. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4192. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4193. (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE)|
  4194. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  4195. pce_dev->reg.encr_cfg_aes_ccm_256 =
  4196. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4197. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4198. (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
  4199. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  4200. /* Initialize encr_cfg register for DES alg */
  4201. pce_dev->reg.encr_cfg_des_ecb =
  4202. (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
  4203. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4204. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4205. pce_dev->reg.encr_cfg_des_cbc =
  4206. (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
  4207. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4208. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4209. pce_dev->reg.encr_cfg_3des_ecb =
  4210. (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
  4211. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4212. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4213. pce_dev->reg.encr_cfg_3des_cbc =
  4214. (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
  4215. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4216. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4217. /* Initialize encr_cfg register for kasumi/snow3g alg */
  4218. pce_dev->reg.encr_cfg_kasumi =
  4219. (CRYPTO_ENCR_ALG_KASUMI << CRYPTO_ENCR_ALG);
  4220. pce_dev->reg.encr_cfg_snow3g =
  4221. (CRYPTO_ENCR_ALG_SNOW_3G << CRYPTO_ENCR_ALG);
  4222. /* Initialize auth_cfg register for CMAC alg */
  4223. pce_dev->reg.auth_cfg_cmac_128 =
  4224. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4225. (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
  4226. (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
  4227. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4228. (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE);
  4229. pce_dev->reg.auth_cfg_cmac_256 =
  4230. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4231. (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
  4232. (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
  4233. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4234. (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE);
  4235. /* Initialize auth_cfg register for HMAC alg */
  4236. pce_dev->reg.auth_cfg_hmac_sha1 =
  4237. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4238. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4239. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4240. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4241. pce_dev->reg.auth_cfg_hmac_sha256 =
  4242. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4243. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4244. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4245. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4246. /* Initialize auth_cfg register for SHA1/256 alg */
  4247. pce_dev->reg.auth_cfg_sha1 =
  4248. (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
  4249. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4250. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4251. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4252. pce_dev->reg.auth_cfg_sha256 =
  4253. (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
  4254. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4255. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4256. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4257. /* Initialize auth_cfg register for AEAD alg */
  4258. pce_dev->reg.auth_cfg_aead_sha1_hmac =
  4259. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4260. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4261. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4262. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
  4263. pce_dev->reg.auth_cfg_aead_sha256_hmac =
  4264. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4265. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4266. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4267. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
  4268. pce_dev->reg.auth_cfg_aes_ccm_128 =
  4269. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4270. (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
  4271. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4272. (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE) |
  4273. ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
  4274. pce_dev->reg.auth_cfg_aes_ccm_128 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  4275. pce_dev->reg.auth_cfg_aes_ccm_256 =
  4276. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4277. (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
  4278. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4279. (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) |
  4280. ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
  4281. pce_dev->reg.auth_cfg_aes_ccm_256 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  4282. /* Initialize auth_cfg register for kasumi/snow3g */
  4283. pce_dev->reg.auth_cfg_kasumi =
  4284. (CRYPTO_AUTH_ALG_KASUMI << CRYPTO_AUTH_ALG) |
  4285. BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
  4286. pce_dev->reg.auth_cfg_snow3g =
  4287. (CRYPTO_AUTH_ALG_SNOW3G << CRYPTO_AUTH_ALG) |
  4288. BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
  4289. /* Initialize IV counter mask values */
  4290. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  4291. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  4292. pce_dev->reg.encr_cntr_mask_1 = 0xFFFFFFFF;
  4293. pce_dev->reg.encr_cntr_mask_0 = 0xFFFFFFFF;
  4294. return 0;
  4295. }
  4296. static void _qce_ccm_get_around_input(struct qce_device *pce_dev,
  4297. struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
  4298. {
  4299. struct qce_cmdlist_info *cmdlistinfo;
  4300. struct ce_sps_data *pce_sps_data;
  4301. pce_sps_data = &preq_info->ce_sps;
  4302. if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
  4303. !(pce_dev->no_ccm_mac_status_get_around)) {
  4304. cmdlistinfo = &pce_sps_data->cmdlistptr.cipher_null;
  4305. _qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
  4306. &pce_sps_data->in_transfer);
  4307. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4308. pce_dev->ce_bam_info.ce_burst_size,
  4309. &pce_sps_data->in_transfer);
  4310. _qce_set_flag(&pce_sps_data->in_transfer,
  4311. SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD);
  4312. }
  4313. }
  4314. static void _qce_ccm_get_around_output(struct qce_device *pce_dev,
  4315. struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
  4316. {
  4317. struct ce_sps_data *pce_sps_data;
  4318. pce_sps_data = &preq_info->ce_sps;
  4319. if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
  4320. !(pce_dev->no_ccm_mac_status_get_around)) {
  4321. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4322. pce_dev->ce_bam_info.ce_burst_size,
  4323. &pce_sps_data->out_transfer);
  4324. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump_null),
  4325. CRYPTO_RESULT_DUMP_SIZE, &pce_sps_data->out_transfer);
  4326. }
  4327. }
  4328. /* QCE_DUMMY_REQ */
  4329. static void qce_dummy_complete(void *cookie, unsigned char *digest,
  4330. unsigned char *authdata, int ret)
  4331. {
  4332. if (!cookie)
  4333. pr_err("invalid cookie\n");
  4334. }
  4335. static int qce_dummy_req(struct qce_device *pce_dev)
  4336. {
  4337. int ret = 0;
  4338. if (atomic_xchg(
  4339. &pce_dev->ce_request_info[DUMMY_REQ_INDEX].in_use, true))
  4340. return -EBUSY;
  4341. ret = qce_process_sha_req(pce_dev, NULL);
  4342. pce_dev->qce_stats.no_of_dummy_reqs++;
  4343. return ret;
  4344. }
  4345. static int select_mode(struct qce_device *pce_dev,
  4346. struct ce_request_info *preq_info)
  4347. {
  4348. struct ce_sps_data *pce_sps_data = &preq_info->ce_sps;
  4349. unsigned int no_of_queued_req;
  4350. unsigned int cadence;
  4351. if (!pce_dev->no_get_around) {
  4352. _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
  4353. return 0;
  4354. }
  4355. /*
  4356. * claim ownership of device
  4357. */
  4358. again:
  4359. if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_CLIENT)
  4360. != QCE_OWNER_NONE) {
  4361. ndelay(40);
  4362. goto again;
  4363. }
  4364. no_of_queued_req = atomic_inc_return(&pce_dev->no_of_queued_req);
  4365. if (pce_dev->mode == IN_INTERRUPT_MODE) {
  4366. if (no_of_queued_req >= MAX_BUNCH_MODE_REQ) {
  4367. pce_dev->mode = IN_BUNCH_MODE;
  4368. pr_debug("pcedev %d mode switch to BUNCH\n",
  4369. pce_dev->dev_no);
  4370. _qce_set_flag(&pce_sps_data->out_transfer,
  4371. SPS_IOVEC_FLAG_INT);
  4372. pce_dev->intr_cadence = 0;
  4373. atomic_set(&pce_dev->bunch_cmd_seq, 1);
  4374. atomic_set(&pce_dev->last_intr_seq, 1);
  4375. mod_timer(&(pce_dev->timer),
  4376. (jiffies + DELAY_IN_JIFFIES));
  4377. } else {
  4378. _qce_set_flag(&pce_sps_data->out_transfer,
  4379. SPS_IOVEC_FLAG_INT);
  4380. }
  4381. } else {
  4382. pce_dev->intr_cadence++;
  4383. cadence = (preq_info->req_len >> 7) + 1;
  4384. if (cadence > SET_INTR_AT_REQ)
  4385. cadence = SET_INTR_AT_REQ;
  4386. if (pce_dev->intr_cadence < cadence || ((pce_dev->intr_cadence
  4387. == cadence) && pce_dev->cadence_flag))
  4388. atomic_inc(&pce_dev->bunch_cmd_seq);
  4389. else {
  4390. _qce_set_flag(&pce_sps_data->out_transfer,
  4391. SPS_IOVEC_FLAG_INT);
  4392. pce_dev->intr_cadence = 0;
  4393. atomic_set(&pce_dev->bunch_cmd_seq, 0);
  4394. atomic_set(&pce_dev->last_intr_seq, 0);
  4395. pce_dev->cadence_flag = !pce_dev->cadence_flag;
  4396. }
  4397. }
  4398. return 0;
  4399. }
  4400. static int _qce_aead_ccm_req(void *handle, struct qce_req *q_req)
  4401. {
  4402. int rc = 0;
  4403. struct qce_device *pce_dev = (struct qce_device *) handle;
  4404. struct aead_request *areq = (struct aead_request *) q_req->areq;
  4405. uint32_t authsize = q_req->authsize;
  4406. uint32_t totallen_in, out_len;
  4407. uint32_t hw_pad_out = 0;
  4408. int ce_burst_size;
  4409. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4410. int req_info = -1;
  4411. struct ce_request_info *preq_info;
  4412. struct ce_sps_data *pce_sps_data;
  4413. req_info = qce_alloc_req_info(pce_dev);
  4414. if (req_info < 0)
  4415. return -EBUSY;
  4416. q_req->current_req_info = req_info;
  4417. preq_info = &pce_dev->ce_request_info[req_info];
  4418. pce_sps_data = &preq_info->ce_sps;
  4419. ce_burst_size = pce_dev->ce_bam_info.ce_burst_size;
  4420. totallen_in = areq->cryptlen + q_req->assoclen;
  4421. if (q_req->dir == QCE_ENCRYPT) {
  4422. q_req->cryptlen = areq->cryptlen;
  4423. out_len = areq->cryptlen + authsize;
  4424. hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize;
  4425. } else {
  4426. q_req->cryptlen = areq->cryptlen - authsize;
  4427. out_len = q_req->cryptlen;
  4428. hw_pad_out = authsize;
  4429. }
  4430. /*
  4431. * For crypto 5.0 that has burst size alignment requirement
  4432. * for data descritpor,
  4433. * the agent above(qcrypto) prepares the src scatter list with
  4434. * memory starting with associated data, followed by
  4435. * data stream to be ciphered.
  4436. * The destination scatter list is pointing to the same
  4437. * data area as source.
  4438. */
  4439. if (pce_dev->ce_bam_info.minor_version == 0)
  4440. preq_info->src_nents = count_sg(areq->src, totallen_in);
  4441. else
  4442. preq_info->src_nents = count_sg(areq->src, areq->cryptlen +
  4443. areq->assoclen);
  4444. if (q_req->assoclen) {
  4445. preq_info->assoc_nents = count_sg(q_req->asg, q_req->assoclen);
  4446. /* formatted associated data input */
  4447. qce_dma_map_sg(pce_dev->pdev, q_req->asg,
  4448. preq_info->assoc_nents, DMA_TO_DEVICE);
  4449. preq_info->asg = q_req->asg;
  4450. } else {
  4451. preq_info->assoc_nents = 0;
  4452. preq_info->asg = NULL;
  4453. }
  4454. /* cipher input */
  4455. qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4456. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4457. DMA_TO_DEVICE);
  4458. /* cipher + mac output for encryption */
  4459. if (areq->src != areq->dst) {
  4460. /*
  4461. * The destination scatter list is pointing to the same
  4462. * data area as src.
  4463. * Note, the associated data will be pass-through
  4464. * at the beginning of destination area.
  4465. */
  4466. preq_info->dst_nents = count_sg(areq->dst,
  4467. out_len + areq->assoclen);
  4468. qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4469. DMA_FROM_DEVICE);
  4470. } else {
  4471. preq_info->dst_nents = preq_info->src_nents;
  4472. }
  4473. if (pce_dev->support_cmd_dscr) {
  4474. cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, req_info,
  4475. q_req);
  4476. if (cmdlistinfo == NULL) {
  4477. pr_err("Unsupported cipher algorithm %d, mode %d\n",
  4478. q_req->alg, q_req->mode);
  4479. qce_free_req_info(pce_dev, req_info, false);
  4480. return -EINVAL;
  4481. }
  4482. /* set up crypto device */
  4483. rc = _ce_setup_cipher(pce_dev, q_req, totallen_in,
  4484. q_req->assoclen, cmdlistinfo);
  4485. } else {
  4486. /* set up crypto device */
  4487. rc = _ce_setup_cipher_direct(pce_dev, q_req, totallen_in,
  4488. q_req->assoclen);
  4489. }
  4490. if (rc < 0)
  4491. goto bad;
  4492. preq_info->mode = q_req->mode;
  4493. /* setup for callback, and issue command to bam */
  4494. preq_info->areq = q_req->areq;
  4495. preq_info->qce_cb = q_req->qce_cb;
  4496. preq_info->dir = q_req->dir;
  4497. /* setup xfer type for producer callback handling */
  4498. preq_info->xfer_type = QCE_XFER_AEAD;
  4499. preq_info->req_len = totallen_in;
  4500. _qce_sps_iovec_count_init(pce_dev, req_info);
  4501. if (pce_dev->support_cmd_dscr && cmdlistinfo) {
  4502. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  4503. cmdlistinfo, &pce_sps_data->in_transfer);
  4504. if (rc)
  4505. goto bad;
  4506. }
  4507. if (pce_dev->ce_bam_info.minor_version == 0) {
  4508. goto bad;
  4509. } else {
  4510. if (q_req->assoclen) {
  4511. rc = _qce_sps_add_sg_data(pce_dev, q_req->asg,
  4512. q_req->assoclen, &pce_sps_data->in_transfer);
  4513. if (rc)
  4514. goto bad;
  4515. }
  4516. rc = _qce_sps_add_sg_data_off(pce_dev, areq->src, areq->cryptlen,
  4517. areq->assoclen,
  4518. &pce_sps_data->in_transfer);
  4519. if (rc)
  4520. goto bad;
  4521. _qce_set_flag(&pce_sps_data->in_transfer,
  4522. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4523. _qce_ccm_get_around_input(pce_dev, preq_info, q_req->dir);
  4524. if (pce_dev->no_get_around) {
  4525. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4526. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4527. &pce_sps_data->in_transfer);
  4528. if (rc)
  4529. goto bad;
  4530. }
  4531. /* Pass through to ignore associated data*/
  4532. rc = _qce_sps_add_data(
  4533. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4534. q_req->assoclen,
  4535. &pce_sps_data->out_transfer);
  4536. if (rc)
  4537. goto bad;
  4538. rc = _qce_sps_add_sg_data_off(pce_dev, areq->dst, out_len,
  4539. areq->assoclen,
  4540. &pce_sps_data->out_transfer);
  4541. if (rc)
  4542. goto bad;
  4543. /* Pass through to ignore hw_pad (padding of the MAC data) */
  4544. rc = _qce_sps_add_data(
  4545. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4546. hw_pad_out, &pce_sps_data->out_transfer);
  4547. if (rc)
  4548. goto bad;
  4549. if (pce_dev->no_get_around ||
  4550. totallen_in <= SPS_MAX_PKT_SIZE) {
  4551. rc = _qce_sps_add_data(
  4552. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4553. CRYPTO_RESULT_DUMP_SIZE,
  4554. &pce_sps_data->out_transfer);
  4555. if (rc)
  4556. goto bad;
  4557. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4558. } else {
  4559. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4560. }
  4561. _qce_ccm_get_around_output(pce_dev, preq_info, q_req->dir);
  4562. select_mode(pce_dev, preq_info);
  4563. rc = _qce_sps_transfer(pce_dev, req_info);
  4564. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4565. }
  4566. if (rc)
  4567. goto bad;
  4568. return 0;
  4569. bad:
  4570. if (preq_info->assoc_nents) {
  4571. qce_dma_unmap_sg(pce_dev->pdev, q_req->asg,
  4572. preq_info->assoc_nents, DMA_TO_DEVICE);
  4573. }
  4574. if (preq_info->src_nents) {
  4575. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4576. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4577. DMA_TO_DEVICE);
  4578. }
  4579. if (areq->src != areq->dst) {
  4580. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4581. DMA_FROM_DEVICE);
  4582. }
  4583. qce_free_req_info(pce_dev, req_info, false);
  4584. return rc;
  4585. }
  4586. static int _qce_suspend(void *handle)
  4587. {
  4588. struct qce_device *pce_dev = (struct qce_device *)handle;
  4589. struct sps_pipe *sps_pipe_info;
  4590. int i = 0;
  4591. if (handle == NULL)
  4592. return -ENODEV;
  4593. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  4594. if (i == 0 && !(pce_dev->kernel_pipes_support))
  4595. continue;
  4596. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  4597. break;
  4598. sps_pipe_info = pce_dev->ce_bam_info.consumer[i].pipe;
  4599. sps_disconnect(sps_pipe_info);
  4600. sps_pipe_info = pce_dev->ce_bam_info.producer[i].pipe;
  4601. sps_disconnect(sps_pipe_info);
  4602. }
  4603. return 0;
  4604. }
  4605. static int _qce_resume(void *handle)
  4606. {
  4607. struct qce_device *pce_dev = (struct qce_device *)handle;
  4608. struct sps_pipe *sps_pipe_info;
  4609. struct sps_connect *sps_connect_info;
  4610. int rc, i;
  4611. if (handle == NULL)
  4612. return -ENODEV;
  4613. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  4614. if (i == 0 && !(pce_dev->kernel_pipes_support))
  4615. continue;
  4616. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  4617. break;
  4618. sps_pipe_info = pce_dev->ce_bam_info.consumer[i].pipe;
  4619. sps_connect_info = &pce_dev->ce_bam_info.consumer[i].connect;
  4620. memset(sps_connect_info->desc.base, 0x00,
  4621. sps_connect_info->desc.size);
  4622. rc = sps_connect(sps_pipe_info, sps_connect_info);
  4623. if (rc) {
  4624. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  4625. (uintptr_t)sps_pipe_info, rc);
  4626. return rc;
  4627. }
  4628. sps_pipe_info = pce_dev->ce_bam_info.producer[i].pipe;
  4629. sps_connect_info = &pce_dev->ce_bam_info.producer[i].connect;
  4630. memset(sps_connect_info->desc.base, 0x00,
  4631. sps_connect_info->desc.size);
  4632. rc = sps_connect(sps_pipe_info, sps_connect_info);
  4633. if (rc)
  4634. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  4635. (uintptr_t)sps_pipe_info, rc);
  4636. rc = sps_register_event(sps_pipe_info,
  4637. &pce_dev->ce_bam_info.producer[i].event);
  4638. if (rc)
  4639. pr_err("Producer cb registration failed rc = %d\n",
  4640. rc);
  4641. }
  4642. return rc;
  4643. }
  4644. struct qce_pm_table qce_pm_table = {_qce_suspend, _qce_resume};
  4645. EXPORT_SYMBOL(qce_pm_table);
  4646. int qce_aead_req(void *handle, struct qce_req *q_req)
  4647. {
  4648. struct qce_device *pce_dev = (struct qce_device *)handle;
  4649. struct aead_request *areq;
  4650. uint32_t authsize;
  4651. struct crypto_aead *aead;
  4652. uint32_t ivsize;
  4653. uint32_t totallen;
  4654. int rc = 0;
  4655. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4656. int req_info = -1;
  4657. struct ce_sps_data *pce_sps_data;
  4658. struct ce_request_info *preq_info;
  4659. if (q_req->mode == QCE_MODE_CCM)
  4660. return _qce_aead_ccm_req(handle, q_req);
  4661. req_info = qce_alloc_req_info(pce_dev);
  4662. if (req_info < 0)
  4663. return -EBUSY;
  4664. q_req->current_req_info = req_info;
  4665. preq_info = &pce_dev->ce_request_info[req_info];
  4666. pce_sps_data = &preq_info->ce_sps;
  4667. areq = (struct aead_request *) q_req->areq;
  4668. aead = crypto_aead_reqtfm(areq);
  4669. ivsize = crypto_aead_ivsize(aead);
  4670. q_req->ivsize = ivsize;
  4671. authsize = q_req->authsize;
  4672. if (q_req->dir == QCE_ENCRYPT)
  4673. q_req->cryptlen = areq->cryptlen;
  4674. else
  4675. q_req->cryptlen = areq->cryptlen - authsize;
  4676. if (q_req->cryptlen > UINT_MAX - areq->assoclen) {
  4677. pr_err("Integer overflow on total aead req length.\n");
  4678. return -EINVAL;
  4679. }
  4680. totallen = q_req->cryptlen + areq->assoclen;
  4681. if (pce_dev->support_cmd_dscr) {
  4682. cmdlistinfo = _ce_get_aead_cmdlistinfo(pce_dev,
  4683. req_info, q_req);
  4684. if (cmdlistinfo == NULL) {
  4685. pr_err("Unsupported aead ciphering algorithm %d, mode %d, ciphering key length %d, auth digest size %d\n",
  4686. q_req->alg, q_req->mode, q_req->encklen,
  4687. q_req->authsize);
  4688. qce_free_req_info(pce_dev, req_info, false);
  4689. return -EINVAL;
  4690. }
  4691. /* set up crypto device */
  4692. rc = _ce_setup_aead(pce_dev, q_req, totallen,
  4693. areq->assoclen, cmdlistinfo);
  4694. if (rc < 0) {
  4695. qce_free_req_info(pce_dev, req_info, false);
  4696. return -EINVAL;
  4697. }
  4698. }
  4699. /*
  4700. * For crypto 5.0 that has burst size alignment requirement
  4701. * for data descritpor,
  4702. * the agent above(qcrypto) prepares the src scatter list with
  4703. * memory starting with associated data, followed by
  4704. * iv, and data stream to be ciphered.
  4705. */
  4706. preq_info->src_nents = count_sg(areq->src, totallen);
  4707. /* cipher input */
  4708. qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4709. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4710. DMA_TO_DEVICE);
  4711. /* cipher output for encryption */
  4712. if (areq->src != areq->dst) {
  4713. preq_info->dst_nents = count_sg(areq->dst, totallen);
  4714. qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4715. DMA_FROM_DEVICE);
  4716. }
  4717. /* setup for callback, and issue command to bam */
  4718. preq_info->areq = q_req->areq;
  4719. preq_info->qce_cb = q_req->qce_cb;
  4720. preq_info->dir = q_req->dir;
  4721. preq_info->asg = NULL;
  4722. /* setup xfer type for producer callback handling */
  4723. preq_info->xfer_type = QCE_XFER_AEAD;
  4724. preq_info->req_len = totallen;
  4725. _qce_sps_iovec_count_init(pce_dev, req_info);
  4726. if (pce_dev->support_cmd_dscr) {
  4727. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  4728. cmdlistinfo, &pce_sps_data->in_transfer);
  4729. if (rc)
  4730. goto bad;
  4731. } else {
  4732. rc = _ce_setup_aead_direct(pce_dev, q_req, totallen,
  4733. areq->assoclen);
  4734. if (rc)
  4735. goto bad;
  4736. }
  4737. preq_info->mode = q_req->mode;
  4738. if (pce_dev->ce_bam_info.minor_version == 0) {
  4739. rc = _qce_sps_add_sg_data(pce_dev, areq->src, totallen,
  4740. &pce_sps_data->in_transfer);
  4741. if (rc)
  4742. goto bad;
  4743. _qce_set_flag(&pce_sps_data->in_transfer,
  4744. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4745. rc = _qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
  4746. &pce_sps_data->out_transfer);
  4747. if (rc)
  4748. goto bad;
  4749. if (totallen > SPS_MAX_PKT_SIZE) {
  4750. _qce_set_flag(&pce_sps_data->out_transfer,
  4751. SPS_IOVEC_FLAG_INT);
  4752. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4753. } else {
  4754. rc = _qce_sps_add_data(GET_PHYS_ADDR(
  4755. pce_sps_data->result_dump),
  4756. CRYPTO_RESULT_DUMP_SIZE,
  4757. &pce_sps_data->out_transfer);
  4758. if (rc)
  4759. goto bad;
  4760. _qce_set_flag(&pce_sps_data->out_transfer,
  4761. SPS_IOVEC_FLAG_INT);
  4762. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4763. }
  4764. rc = _qce_sps_transfer(pce_dev, req_info);
  4765. } else {
  4766. rc = _qce_sps_add_sg_data(pce_dev, areq->src, totallen,
  4767. &pce_sps_data->in_transfer);
  4768. if (rc)
  4769. goto bad;
  4770. _qce_set_flag(&pce_sps_data->in_transfer,
  4771. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4772. if (pce_dev->no_get_around) {
  4773. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4774. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4775. &pce_sps_data->in_transfer);
  4776. if (rc)
  4777. goto bad;
  4778. }
  4779. rc = _qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
  4780. &pce_sps_data->out_transfer);
  4781. if (rc)
  4782. goto bad;
  4783. if (pce_dev->no_get_around || totallen <= SPS_MAX_PKT_SIZE) {
  4784. rc = _qce_sps_add_data(
  4785. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4786. CRYPTO_RESULT_DUMP_SIZE,
  4787. &pce_sps_data->out_transfer);
  4788. if (rc)
  4789. goto bad;
  4790. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4791. } else {
  4792. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4793. }
  4794. select_mode(pce_dev, preq_info);
  4795. rc = _qce_sps_transfer(pce_dev, req_info);
  4796. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4797. }
  4798. if (rc)
  4799. goto bad;
  4800. return 0;
  4801. bad:
  4802. if (preq_info->src_nents)
  4803. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4804. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4805. DMA_TO_DEVICE);
  4806. if (areq->src != areq->dst)
  4807. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4808. DMA_FROM_DEVICE);
  4809. qce_free_req_info(pce_dev, req_info, false);
  4810. return rc;
  4811. }
  4812. EXPORT_SYMBOL(qce_aead_req);
  4813. int qce_ablk_cipher_req(void *handle, struct qce_req *c_req)
  4814. {
  4815. int rc = 0;
  4816. struct qce_device *pce_dev = (struct qce_device *) handle;
  4817. struct skcipher_request *areq = (struct skcipher_request *)
  4818. c_req->areq;
  4819. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4820. int req_info = -1;
  4821. struct ce_sps_data *pce_sps_data;
  4822. struct ce_request_info *preq_info;
  4823. req_info = qce_alloc_req_info(pce_dev);
  4824. if (req_info < 0)
  4825. return -EBUSY;
  4826. c_req->current_req_info = req_info;
  4827. preq_info = &pce_dev->ce_request_info[req_info];
  4828. pce_sps_data = &preq_info->ce_sps;
  4829. preq_info->src_nents = 0;
  4830. preq_info->dst_nents = 0;
  4831. /* cipher input */
  4832. preq_info->src_nents = count_sg(areq->src, areq->cryptlen);
  4833. if (!is_offload_op(c_req->offload_op))
  4834. qce_dma_map_sg(pce_dev->pdev, areq->src,
  4835. preq_info->src_nents,
  4836. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4837. DMA_TO_DEVICE);
  4838. /* cipher output */
  4839. if (areq->src != areq->dst) {
  4840. preq_info->dst_nents = count_sg(areq->dst, areq->cryptlen);
  4841. if (!is_offload_op(c_req->offload_op))
  4842. qce_dma_map_sg(pce_dev->pdev, areq->dst,
  4843. preq_info->dst_nents, DMA_FROM_DEVICE);
  4844. } else {
  4845. preq_info->dst_nents = preq_info->src_nents;
  4846. }
  4847. preq_info->dir = c_req->dir;
  4848. if ((pce_dev->ce_bam_info.minor_version == 0) &&
  4849. (preq_info->dir == QCE_DECRYPT) &&
  4850. (c_req->mode == QCE_MODE_CBC)) {
  4851. memcpy(preq_info->dec_iv, (unsigned char *)
  4852. sg_virt(areq->src) + areq->src->length - 16,
  4853. NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE);
  4854. }
  4855. /* set up crypto device */
  4856. if (pce_dev->support_cmd_dscr) {
  4857. cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev,
  4858. req_info, c_req);
  4859. if (cmdlistinfo == NULL) {
  4860. pr_err("Unsupported cipher algorithm %d, mode %d\n",
  4861. c_req->alg, c_req->mode);
  4862. qce_free_req_info(pce_dev, req_info, false);
  4863. return -EINVAL;
  4864. }
  4865. rc = _ce_setup_cipher(pce_dev, c_req, areq->cryptlen, 0,
  4866. cmdlistinfo);
  4867. } else {
  4868. rc = _ce_setup_cipher_direct(pce_dev, c_req, areq->cryptlen, 0);
  4869. }
  4870. if (rc < 0)
  4871. goto bad;
  4872. preq_info->mode = c_req->mode;
  4873. preq_info->offload_op = c_req->offload_op;
  4874. /* setup for client callback, and issue command to BAM */
  4875. preq_info->areq = areq;
  4876. preq_info->qce_cb = c_req->qce_cb;
  4877. /* setup xfer type for producer callback handling */
  4878. preq_info->xfer_type = QCE_XFER_CIPHERING;
  4879. preq_info->req_len = areq->cryptlen;
  4880. _qce_sps_iovec_count_init(pce_dev, req_info);
  4881. if (pce_dev->support_cmd_dscr && cmdlistinfo) {
  4882. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  4883. cmdlistinfo, &pce_sps_data->in_transfer);
  4884. if (rc)
  4885. goto bad;
  4886. }
  4887. rc = _qce_sps_add_data(areq->src->dma_address, areq->cryptlen,
  4888. &pce_sps_data->in_transfer);
  4889. if (rc)
  4890. goto bad;
  4891. _qce_set_flag(&pce_sps_data->in_transfer,
  4892. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4893. if (pce_dev->no_get_around) {
  4894. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4895. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4896. &pce_sps_data->in_transfer);
  4897. if (rc)
  4898. goto bad;
  4899. }
  4900. rc = _qce_sps_add_data(areq->dst->dma_address, areq->cryptlen,
  4901. &pce_sps_data->out_transfer);
  4902. if (rc)
  4903. goto bad;
  4904. if (pce_dev->no_get_around || areq->cryptlen <= SPS_MAX_PKT_SIZE) {
  4905. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4906. if (!is_offload_op(c_req->offload_op)) {
  4907. rc = _qce_sps_add_data(
  4908. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4909. CRYPTO_RESULT_DUMP_SIZE,
  4910. &pce_sps_data->out_transfer);
  4911. if (rc)
  4912. goto bad;
  4913. }
  4914. } else {
  4915. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4916. }
  4917. select_mode(pce_dev, preq_info);
  4918. rc = _qce_sps_transfer(pce_dev, req_info);
  4919. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4920. if (rc)
  4921. goto bad;
  4922. return 0;
  4923. bad:
  4924. if (!is_offload_op(c_req->offload_op)) {
  4925. if (areq->src != areq->dst)
  4926. if (preq_info->dst_nents)
  4927. qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
  4928. preq_info->dst_nents, DMA_FROM_DEVICE);
  4929. if (preq_info->src_nents)
  4930. qce_dma_unmap_sg(pce_dev->pdev, areq->src,
  4931. preq_info->src_nents,
  4932. (areq->src == areq->dst) ?
  4933. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  4934. }
  4935. qce_free_req_info(pce_dev, req_info, false);
  4936. return rc;
  4937. }
  4938. EXPORT_SYMBOL(qce_ablk_cipher_req);
  4939. int qce_process_sha_req(void *handle, struct qce_sha_req *sreq)
  4940. {
  4941. struct qce_device *pce_dev = (struct qce_device *) handle;
  4942. int rc;
  4943. struct ahash_request *areq;
  4944. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4945. int req_info = -1;
  4946. struct ce_sps_data *pce_sps_data;
  4947. struct ce_request_info *preq_info;
  4948. bool is_dummy = false;
  4949. if (!sreq) {
  4950. sreq = &(pce_dev->dummyreq.sreq);
  4951. req_info = DUMMY_REQ_INDEX;
  4952. is_dummy = true;
  4953. } else {
  4954. req_info = qce_alloc_req_info(pce_dev);
  4955. if (req_info < 0)
  4956. return -EBUSY;
  4957. }
  4958. sreq->current_req_info = req_info;
  4959. areq = (struct ahash_request *)sreq->areq;
  4960. preq_info = &pce_dev->ce_request_info[req_info];
  4961. pce_sps_data = &preq_info->ce_sps;
  4962. preq_info->src_nents = count_sg(sreq->src, sreq->size);
  4963. qce_dma_map_sg(pce_dev->pdev, sreq->src, preq_info->src_nents,
  4964. DMA_TO_DEVICE);
  4965. if (pce_dev->support_cmd_dscr) {
  4966. cmdlistinfo = _ce_get_hash_cmdlistinfo(pce_dev, req_info, sreq);
  4967. if (cmdlistinfo == NULL) {
  4968. pr_err("Unsupported hash algorithm %d\n", sreq->alg);
  4969. qce_free_req_info(pce_dev, req_info, false);
  4970. return -EINVAL;
  4971. }
  4972. rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo);
  4973. } else {
  4974. rc = _ce_setup_hash_direct(pce_dev, sreq);
  4975. }
  4976. if (rc < 0)
  4977. goto bad;
  4978. preq_info->areq = areq;
  4979. preq_info->qce_cb = sreq->qce_cb;
  4980. /* setup xfer type for producer callback handling */
  4981. preq_info->xfer_type = QCE_XFER_HASHING;
  4982. preq_info->req_len = sreq->size;
  4983. _qce_sps_iovec_count_init(pce_dev, req_info);
  4984. if (pce_dev->support_cmd_dscr && cmdlistinfo) {
  4985. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  4986. cmdlistinfo, &pce_sps_data->in_transfer);
  4987. if (rc)
  4988. goto bad;
  4989. }
  4990. rc = _qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
  4991. &pce_sps_data->in_transfer);
  4992. if (rc)
  4993. goto bad;
  4994. /* always ensure there is input data. ZLT does not work for bam-ndp */
  4995. if (!areq->nbytes) {
  4996. rc = _qce_sps_add_data(
  4997. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4998. pce_dev->ce_bam_info.ce_burst_size,
  4999. &pce_sps_data->in_transfer);
  5000. if (rc)
  5001. goto bad;
  5002. }
  5003. _qce_set_flag(&pce_sps_data->in_transfer,
  5004. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5005. if (pce_dev->no_get_around) {
  5006. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5007. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5008. &pce_sps_data->in_transfer);
  5009. if (rc)
  5010. goto bad;
  5011. }
  5012. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5013. CRYPTO_RESULT_DUMP_SIZE,
  5014. &pce_sps_data->out_transfer);
  5015. if (rc)
  5016. goto bad;
  5017. if (is_dummy) {
  5018. _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
  5019. rc = _qce_sps_transfer(pce_dev, req_info);
  5020. } else {
  5021. select_mode(pce_dev, preq_info);
  5022. rc = _qce_sps_transfer(pce_dev, req_info);
  5023. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5024. }
  5025. if (rc)
  5026. goto bad;
  5027. return 0;
  5028. bad:
  5029. if (preq_info->src_nents) {
  5030. qce_dma_unmap_sg(pce_dev->pdev, sreq->src,
  5031. preq_info->src_nents, DMA_TO_DEVICE);
  5032. }
  5033. qce_free_req_info(pce_dev, req_info, false);
  5034. return rc;
  5035. }
  5036. EXPORT_SYMBOL(qce_process_sha_req);
  5037. int qce_f8_req(void *handle, struct qce_f8_req *req,
  5038. void *cookie, qce_comp_func_ptr_t qce_cb)
  5039. {
  5040. struct qce_device *pce_dev = (struct qce_device *) handle;
  5041. bool key_stream_mode;
  5042. dma_addr_t dst;
  5043. int rc;
  5044. struct qce_cmdlist_info *cmdlistinfo;
  5045. int req_info = -1;
  5046. struct ce_request_info *preq_info;
  5047. struct ce_sps_data *pce_sps_data;
  5048. req_info = qce_alloc_req_info(pce_dev);
  5049. if (req_info < 0)
  5050. return -EBUSY;
  5051. req->current_req_info = req_info;
  5052. preq_info = &pce_dev->ce_request_info[req_info];
  5053. pce_sps_data = &preq_info->ce_sps;
  5054. switch (req->algorithm) {
  5055. case QCE_OTA_ALGO_KASUMI:
  5056. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
  5057. break;
  5058. case QCE_OTA_ALGO_SNOW3G:
  5059. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
  5060. break;
  5061. default:
  5062. qce_free_req_info(pce_dev, req_info, false);
  5063. return -EINVAL;
  5064. }
  5065. key_stream_mode = (req->data_in == NULL);
  5066. /* don't support key stream mode */
  5067. if (key_stream_mode || (req->bearer >= QCE_OTA_MAX_BEARER)) {
  5068. qce_free_req_info(pce_dev, req_info, false);
  5069. return -EINVAL;
  5070. }
  5071. /* F8 cipher input */
  5072. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
  5073. req->data_in, req->data_len,
  5074. (req->data_in == req->data_out) ?
  5075. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5076. /* F8 cipher output */
  5077. if (req->data_in != req->data_out) {
  5078. dst = dma_map_single(pce_dev->pdev, req->data_out,
  5079. req->data_len, DMA_FROM_DEVICE);
  5080. preq_info->phy_ota_dst = dst;
  5081. } else {
  5082. /* in place ciphering */
  5083. dst = preq_info->phy_ota_src;
  5084. preq_info->phy_ota_dst = 0;
  5085. }
  5086. preq_info->ota_size = req->data_len;
  5087. /* set up crypto device */
  5088. if (pce_dev->support_cmd_dscr)
  5089. rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0,
  5090. req->data_len, cmdlistinfo);
  5091. else
  5092. rc = _ce_f8_setup_direct(pce_dev, req, key_stream_mode, 1, 0,
  5093. req->data_len);
  5094. if (rc < 0)
  5095. goto bad;
  5096. /* setup for callback, and issue command to sps */
  5097. preq_info->areq = cookie;
  5098. preq_info->qce_cb = qce_cb;
  5099. /* setup xfer type for producer callback handling */
  5100. preq_info->xfer_type = QCE_XFER_F8;
  5101. preq_info->req_len = req->data_len;
  5102. _qce_sps_iovec_count_init(pce_dev, req_info);
  5103. if (pce_dev->support_cmd_dscr) {
  5104. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5105. cmdlistinfo, &pce_sps_data->in_transfer);
  5106. if (rc)
  5107. goto bad;
  5108. }
  5109. rc = _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->data_len,
  5110. &pce_sps_data->in_transfer);
  5111. if (rc)
  5112. goto bad;
  5113. _qce_set_flag(&pce_sps_data->in_transfer,
  5114. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5115. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5116. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5117. &pce_sps_data->in_transfer);
  5118. if (rc)
  5119. goto bad;
  5120. rc = _qce_sps_add_data((uint32_t)dst, req->data_len,
  5121. &pce_sps_data->out_transfer);
  5122. if (rc)
  5123. goto bad;
  5124. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5125. CRYPTO_RESULT_DUMP_SIZE,
  5126. &pce_sps_data->out_transfer);
  5127. if (rc)
  5128. goto bad;
  5129. select_mode(pce_dev, preq_info);
  5130. rc = _qce_sps_transfer(pce_dev, req_info);
  5131. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5132. if (rc)
  5133. goto bad;
  5134. return 0;
  5135. bad:
  5136. if (preq_info->phy_ota_dst != 0)
  5137. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
  5138. req->data_len, DMA_FROM_DEVICE);
  5139. if (preq_info->phy_ota_src != 0)
  5140. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  5141. req->data_len,
  5142. (req->data_in == req->data_out) ?
  5143. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5144. qce_free_req_info(pce_dev, req_info, false);
  5145. return rc;
  5146. }
  5147. EXPORT_SYMBOL(qce_f8_req);
  5148. int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq,
  5149. void *cookie, qce_comp_func_ptr_t qce_cb)
  5150. {
  5151. struct qce_device *pce_dev = (struct qce_device *) handle;
  5152. uint16_t num_pkt = mreq->num_pkt;
  5153. uint16_t cipher_start = mreq->cipher_start;
  5154. uint16_t cipher_size = mreq->cipher_size;
  5155. struct qce_f8_req *req = &mreq->qce_f8_req;
  5156. uint32_t total;
  5157. dma_addr_t dst = 0;
  5158. int rc = 0;
  5159. struct qce_cmdlist_info *cmdlistinfo;
  5160. int req_info = -1;
  5161. struct ce_request_info *preq_info;
  5162. struct ce_sps_data *pce_sps_data;
  5163. req_info = qce_alloc_req_info(pce_dev);
  5164. if (req_info < 0)
  5165. return -EBUSY;
  5166. req->current_req_info = req_info;
  5167. preq_info = &pce_dev->ce_request_info[req_info];
  5168. pce_sps_data = &preq_info->ce_sps;
  5169. switch (req->algorithm) {
  5170. case QCE_OTA_ALGO_KASUMI:
  5171. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
  5172. break;
  5173. case QCE_OTA_ALGO_SNOW3G:
  5174. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
  5175. break;
  5176. default:
  5177. qce_free_req_info(pce_dev, req_info, false);
  5178. return -EINVAL;
  5179. }
  5180. total = num_pkt * req->data_len;
  5181. /* F8 cipher input */
  5182. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
  5183. req->data_in, total,
  5184. (req->data_in == req->data_out) ?
  5185. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5186. /* F8 cipher output */
  5187. if (req->data_in != req->data_out) {
  5188. dst = dma_map_single(pce_dev->pdev, req->data_out, total,
  5189. DMA_FROM_DEVICE);
  5190. preq_info->phy_ota_dst = dst;
  5191. } else {
  5192. /* in place ciphering */
  5193. dst = preq_info->phy_ota_src;
  5194. preq_info->phy_ota_dst = 0;
  5195. }
  5196. preq_info->ota_size = total;
  5197. /* set up crypto device */
  5198. if (pce_dev->support_cmd_dscr)
  5199. rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start,
  5200. cipher_size, cmdlistinfo);
  5201. else
  5202. rc = _ce_f8_setup_direct(pce_dev, req, false, num_pkt,
  5203. cipher_start, cipher_size);
  5204. if (rc)
  5205. goto bad;
  5206. /* setup for callback, and issue command to sps */
  5207. preq_info->areq = cookie;
  5208. preq_info->qce_cb = qce_cb;
  5209. /* setup xfer type for producer callback handling */
  5210. preq_info->xfer_type = QCE_XFER_F8;
  5211. preq_info->req_len = total;
  5212. _qce_sps_iovec_count_init(pce_dev, req_info);
  5213. if (pce_dev->support_cmd_dscr) {
  5214. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5215. cmdlistinfo, &pce_sps_data->in_transfer);
  5216. goto bad;
  5217. }
  5218. rc = _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, total,
  5219. &pce_sps_data->in_transfer);
  5220. if (rc)
  5221. goto bad;
  5222. _qce_set_flag(&pce_sps_data->in_transfer,
  5223. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5224. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5225. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5226. &pce_sps_data->in_transfer);
  5227. if (rc)
  5228. goto bad;
  5229. rc = _qce_sps_add_data((uint32_t)dst, total,
  5230. &pce_sps_data->out_transfer);
  5231. if (rc)
  5232. goto bad;
  5233. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5234. CRYPTO_RESULT_DUMP_SIZE,
  5235. &pce_sps_data->out_transfer);
  5236. if (rc)
  5237. goto bad;
  5238. select_mode(pce_dev, preq_info);
  5239. rc = _qce_sps_transfer(pce_dev, req_info);
  5240. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5241. if (rc == 0)
  5242. return 0;
  5243. bad:
  5244. if (preq_info->phy_ota_dst)
  5245. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst, total,
  5246. DMA_FROM_DEVICE);
  5247. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, total,
  5248. (req->data_in == req->data_out) ?
  5249. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5250. qce_free_req_info(pce_dev, req_info, false);
  5251. return rc;
  5252. }
  5253. EXPORT_SYMBOL(qce_f8_multi_pkt_req);
  5254. int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie,
  5255. qce_comp_func_ptr_t qce_cb)
  5256. {
  5257. struct qce_device *pce_dev = (struct qce_device *) handle;
  5258. int rc;
  5259. struct qce_cmdlist_info *cmdlistinfo;
  5260. int req_info = -1;
  5261. struct ce_sps_data *pce_sps_data;
  5262. struct ce_request_info *preq_info;
  5263. req_info = qce_alloc_req_info(pce_dev);
  5264. if (req_info < 0)
  5265. return -EBUSY;
  5266. req->current_req_info = req_info;
  5267. preq_info = &pce_dev->ce_request_info[req_info];
  5268. pce_sps_data = &preq_info->ce_sps;
  5269. switch (req->algorithm) {
  5270. case QCE_OTA_ALGO_KASUMI:
  5271. cmdlistinfo = &pce_sps_data->cmdlistptr.f9_kasumi;
  5272. break;
  5273. case QCE_OTA_ALGO_SNOW3G:
  5274. cmdlistinfo = &pce_sps_data->cmdlistptr.f9_snow3g;
  5275. break;
  5276. default:
  5277. qce_free_req_info(pce_dev, req_info, false);
  5278. return -EINVAL;
  5279. }
  5280. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev, req->message,
  5281. req->msize, DMA_TO_DEVICE);
  5282. preq_info->ota_size = req->msize;
  5283. if (pce_dev->support_cmd_dscr)
  5284. rc = _ce_f9_setup(pce_dev, req, cmdlistinfo);
  5285. else
  5286. rc = _ce_f9_setup_direct(pce_dev, req);
  5287. if (rc < 0)
  5288. goto bad;
  5289. /* setup for callback, and issue command to sps */
  5290. preq_info->areq = cookie;
  5291. preq_info->qce_cb = qce_cb;
  5292. /* setup xfer type for producer callback handling */
  5293. preq_info->xfer_type = QCE_XFER_F9;
  5294. preq_info->req_len = req->msize;
  5295. _qce_sps_iovec_count_init(pce_dev, req_info);
  5296. if (pce_dev->support_cmd_dscr) {
  5297. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK,
  5298. cmdlistinfo, &pce_sps_data->in_transfer);
  5299. if (rc)
  5300. goto bad;
  5301. }
  5302. rc = _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->msize,
  5303. &pce_sps_data->in_transfer);
  5304. if (rc)
  5305. goto bad;
  5306. _qce_set_flag(&pce_sps_data->in_transfer,
  5307. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5308. rc = _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5309. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5310. &pce_sps_data->in_transfer);
  5311. if (rc)
  5312. goto bad;
  5313. rc = _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5314. CRYPTO_RESULT_DUMP_SIZE,
  5315. &pce_sps_data->out_transfer);
  5316. if (rc)
  5317. goto bad;
  5318. select_mode(pce_dev, preq_info);
  5319. rc = _qce_sps_transfer(pce_dev, req_info);
  5320. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5321. if (rc)
  5322. goto bad;
  5323. return 0;
  5324. bad:
  5325. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  5326. req->msize, DMA_TO_DEVICE);
  5327. qce_free_req_info(pce_dev, req_info, false);
  5328. return rc;
  5329. }
  5330. EXPORT_SYMBOL(qce_f9_req);
  5331. static int __qce_get_device_tree_data(struct platform_device *pdev,
  5332. struct qce_device *pce_dev)
  5333. {
  5334. struct resource *resource;
  5335. int rc = 0, i = 0;
  5336. pce_dev->is_shared = of_property_read_bool((&pdev->dev)->of_node,
  5337. "qcom,ce-hw-shared");
  5338. pce_dev->support_hw_key = of_property_read_bool((&pdev->dev)->of_node,
  5339. "qcom,ce-hw-key");
  5340. pce_dev->use_sw_aes_cbc_ecb_ctr_algo =
  5341. of_property_read_bool((&pdev->dev)->of_node,
  5342. "qcom,use-sw-aes-cbc-ecb-ctr-algo");
  5343. pce_dev->use_sw_aead_algo =
  5344. of_property_read_bool((&pdev->dev)->of_node,
  5345. "qcom,use-sw-aead-algo");
  5346. pce_dev->use_sw_aes_xts_algo =
  5347. of_property_read_bool((&pdev->dev)->of_node,
  5348. "qcom,use-sw-aes-xts-algo");
  5349. pce_dev->use_sw_ahash_algo =
  5350. of_property_read_bool((&pdev->dev)->of_node,
  5351. "qcom,use-sw-ahash-algo");
  5352. pce_dev->use_sw_hmac_algo =
  5353. of_property_read_bool((&pdev->dev)->of_node,
  5354. "qcom,use-sw-hmac-algo");
  5355. pce_dev->use_sw_aes_ccm_algo =
  5356. of_property_read_bool((&pdev->dev)->of_node,
  5357. "qcom,use-sw-aes-ccm-algo");
  5358. pce_dev->support_clk_mgmt_sus_res = of_property_read_bool(
  5359. (&pdev->dev)->of_node, "qcom,clk-mgmt-sus-res");
  5360. pce_dev->support_only_core_src_clk = of_property_read_bool(
  5361. (&pdev->dev)->of_node, "qcom,support-core-clk-only");
  5362. pce_dev->request_bw_before_clk = of_property_read_bool(
  5363. (&pdev->dev)->of_node, "qcom,request-bw-before-clk");
  5364. pce_dev->kernel_pipes_support = true;
  5365. if (of_property_read_u32((&pdev->dev)->of_node,
  5366. "qcom,bam-pipe-pair",
  5367. &pce_dev->ce_bam_info.pipe_pair_index[0])) {
  5368. pr_warn("Kernel pipes not supported.\n");
  5369. //Unused pipe, just as failsafe.
  5370. pce_dev->ce_bam_info.pipe_pair_index[0] = 2;
  5371. pce_dev->kernel_pipes_support = false;
  5372. }
  5373. if (of_property_read_bool((&pdev->dev)->of_node,
  5374. "qcom,offload-ops-support")) {
  5375. pce_dev->offload_pipes_support = true;
  5376. if (of_property_read_u32((&pdev->dev)->of_node,
  5377. "qcom,bam-pipe-offload-cpb-hlos",
  5378. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_CPB_HLOS])) {
  5379. pr_err("Fail to get bam offload cpb-hlos pipe pair info.\n");
  5380. return -EINVAL;
  5381. }
  5382. if (of_property_read_u32((&pdev->dev)->of_node,
  5383. "qcom,bam-pipe-offload-hlos-hlos",
  5384. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_HLOS])) {
  5385. pr_err("Fail to get bam offload hlos-hlos info.\n");
  5386. return -EINVAL;
  5387. }
  5388. if (of_property_read_u32((&pdev->dev)->of_node,
  5389. "qcom,bam-pipe-offload-hlos-cpb",
  5390. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_CPB])) {
  5391. pr_err("Fail to get bam offload hlos-cpb info\n");
  5392. return -EINVAL;
  5393. }
  5394. }
  5395. if (of_property_read_u32((&pdev->dev)->of_node,
  5396. "qcom,ce-device",
  5397. &pce_dev->ce_bam_info.ce_device)) {
  5398. pr_err("Fail to get CE device information.\n");
  5399. return -EINVAL;
  5400. }
  5401. if (of_property_read_u32((&pdev->dev)->of_node,
  5402. "qcom,ce-hw-instance",
  5403. &pce_dev->ce_bam_info.ce_hw_instance)) {
  5404. pr_err("Fail to get CE hw instance information.\n");
  5405. return -EINVAL;
  5406. }
  5407. if (of_property_read_u32((&pdev->dev)->of_node,
  5408. "qcom,bam-ee",
  5409. &pce_dev->ce_bam_info.bam_ee)) {
  5410. pr_info("BAM Apps EE is not defined, setting to default 1\n");
  5411. pce_dev->ce_bam_info.bam_ee = 1;
  5412. }
  5413. if (of_property_read_u32((&pdev->dev)->of_node,
  5414. "qcom,ce-opp-freq",
  5415. &pce_dev->ce_opp_freq_hz)) {
  5416. pr_info("CE operating frequency is not defined, setting to default 100MHZ\n");
  5417. pce_dev->ce_opp_freq_hz = CE_CLK_100MHZ;
  5418. }
  5419. if (of_property_read_bool((&pdev->dev)->of_node, "qcom,smmu-s1-enable"))
  5420. pce_dev->enable_s1_smmu = true;
  5421. pce_dev->no_clock_support = of_property_read_bool((&pdev->dev)->of_node,
  5422. "qcom,no-clock-support");
  5423. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  5424. /* Source/destination pipes for all usecases */
  5425. pce_dev->ce_bam_info.dest_pipe_index[i] =
  5426. 2 * pce_dev->ce_bam_info.pipe_pair_index[i];
  5427. pce_dev->ce_bam_info.src_pipe_index[i] =
  5428. pce_dev->ce_bam_info.dest_pipe_index[i] + 1;
  5429. }
  5430. resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  5431. "crypto-base");
  5432. if (resource) {
  5433. pce_dev->phy_iobase = resource->start;
  5434. pce_dev->iobase = ioremap(resource->start,
  5435. resource_size(resource));
  5436. if (!pce_dev->iobase) {
  5437. pr_err("Can not map CRYPTO io memory\n");
  5438. return -ENOMEM;
  5439. }
  5440. } else {
  5441. pr_err("CRYPTO HW mem unavailable.\n");
  5442. return -ENODEV;
  5443. }
  5444. resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  5445. "crypto-bam-base");
  5446. if (resource) {
  5447. pce_dev->bam_mem = resource->start;
  5448. pce_dev->bam_mem_size = resource_size(resource);
  5449. } else {
  5450. pr_err("CRYPTO BAM mem unavailable.\n");
  5451. rc = -ENODEV;
  5452. goto err_getting_bam_info;
  5453. }
  5454. resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  5455. if (resource) {
  5456. pce_dev->ce_bam_info.bam_irq = resource->start;
  5457. } else {
  5458. pr_err("CRYPTO BAM IRQ unavailable.\n");
  5459. goto err_dev;
  5460. }
  5461. return rc;
  5462. err_dev:
  5463. if (pce_dev->ce_bam_info.bam_iobase)
  5464. iounmap(pce_dev->ce_bam_info.bam_iobase);
  5465. err_getting_bam_info:
  5466. if (pce_dev->iobase)
  5467. iounmap(pce_dev->iobase);
  5468. return rc;
  5469. }
  5470. static int __qce_init_clk(struct qce_device *pce_dev)
  5471. {
  5472. int rc = 0;
  5473. if (pce_dev->no_clock_support) {
  5474. pr_debug("No clock support defined in dts\n");
  5475. return rc;
  5476. }
  5477. pce_dev->ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src");
  5478. if (!IS_ERR(pce_dev->ce_core_src_clk)) {
  5479. if (pce_dev->request_bw_before_clk)
  5480. goto skip_set_rate;
  5481. rc = clk_set_rate(pce_dev->ce_core_src_clk,
  5482. pce_dev->ce_opp_freq_hz);
  5483. if (rc) {
  5484. pr_err("Unable to set the core src clk @%uMhz.\n",
  5485. pce_dev->ce_opp_freq_hz/CE_CLK_DIV);
  5486. goto exit_put_core_src_clk;
  5487. }
  5488. } else {
  5489. if (pce_dev->support_only_core_src_clk) {
  5490. rc = PTR_ERR(pce_dev->ce_core_src_clk);
  5491. pce_dev->ce_core_src_clk = NULL;
  5492. pr_err("Unable to get CE core src clk\n");
  5493. return rc;
  5494. }
  5495. pr_warn("Unable to get CE core src clk, set to NULL\n");
  5496. pce_dev->ce_core_src_clk = NULL;
  5497. }
  5498. skip_set_rate:
  5499. if (pce_dev->support_only_core_src_clk) {
  5500. pce_dev->ce_core_clk = NULL;
  5501. pce_dev->ce_clk = NULL;
  5502. pce_dev->ce_bus_clk = NULL;
  5503. } else {
  5504. pce_dev->ce_core_clk = clk_get(pce_dev->pdev, "core_clk");
  5505. if (IS_ERR(pce_dev->ce_core_clk)) {
  5506. rc = PTR_ERR(pce_dev->ce_core_clk);
  5507. pr_err("Unable to get CE core clk\n");
  5508. goto exit_put_core_src_clk;
  5509. }
  5510. pce_dev->ce_clk = clk_get(pce_dev->pdev, "iface_clk");
  5511. if (IS_ERR(pce_dev->ce_clk)) {
  5512. rc = PTR_ERR(pce_dev->ce_clk);
  5513. pr_err("Unable to get CE interface clk\n");
  5514. goto exit_put_core_clk;
  5515. }
  5516. pce_dev->ce_bus_clk = clk_get(pce_dev->pdev, "bus_clk");
  5517. if (IS_ERR(pce_dev->ce_bus_clk)) {
  5518. rc = PTR_ERR(pce_dev->ce_bus_clk);
  5519. pr_err("Unable to get CE BUS interface clk\n");
  5520. goto exit_put_iface_clk;
  5521. }
  5522. }
  5523. return rc;
  5524. exit_put_iface_clk:
  5525. if (pce_dev->ce_clk)
  5526. clk_put(pce_dev->ce_clk);
  5527. exit_put_core_clk:
  5528. if (pce_dev->ce_core_clk)
  5529. clk_put(pce_dev->ce_core_clk);
  5530. exit_put_core_src_clk:
  5531. if (pce_dev->ce_core_src_clk)
  5532. clk_put(pce_dev->ce_core_src_clk);
  5533. pr_err("Unable to init CE clks, rc = %d\n", rc);
  5534. return rc;
  5535. }
  5536. static void __qce_deinit_clk(struct qce_device *pce_dev)
  5537. {
  5538. if (pce_dev->no_clock_support) {
  5539. pr_debug("No clock support defined in dts\n");
  5540. return;
  5541. }
  5542. if (pce_dev->ce_bus_clk)
  5543. clk_put(pce_dev->ce_bus_clk);
  5544. if (pce_dev->ce_clk)
  5545. clk_put(pce_dev->ce_clk);
  5546. if (pce_dev->ce_core_clk)
  5547. clk_put(pce_dev->ce_core_clk);
  5548. if (pce_dev->ce_core_src_clk)
  5549. clk_put(pce_dev->ce_core_src_clk);
  5550. }
  5551. int qce_enable_clk(void *handle)
  5552. {
  5553. struct qce_device *pce_dev = (struct qce_device *)handle;
  5554. int rc = 0;
  5555. if (pce_dev->no_clock_support) {
  5556. pr_debug("No clock support defined in dts\n");
  5557. return rc;
  5558. }
  5559. if (pce_dev->ce_core_src_clk) {
  5560. rc = clk_prepare_enable(pce_dev->ce_core_src_clk);
  5561. if (rc) {
  5562. pr_err("Unable to enable/prepare CE core src clk\n");
  5563. return rc;
  5564. }
  5565. }
  5566. if (pce_dev->support_only_core_src_clk)
  5567. return rc;
  5568. if (pce_dev->ce_core_clk) {
  5569. rc = clk_prepare_enable(pce_dev->ce_core_clk);
  5570. if (rc) {
  5571. pr_err("Unable to enable/prepare CE core clk\n");
  5572. goto exit_disable_core_src_clk;
  5573. }
  5574. }
  5575. if (pce_dev->ce_clk) {
  5576. rc = clk_prepare_enable(pce_dev->ce_clk);
  5577. if (rc) {
  5578. pr_err("Unable to enable/prepare CE iface clk\n");
  5579. goto exit_disable_core_clk;
  5580. }
  5581. }
  5582. if (pce_dev->ce_bus_clk) {
  5583. rc = clk_prepare_enable(pce_dev->ce_bus_clk);
  5584. if (rc) {
  5585. pr_err("Unable to enable/prepare CE BUS clk\n");
  5586. goto exit_disable_ce_clk;
  5587. }
  5588. }
  5589. return rc;
  5590. exit_disable_ce_clk:
  5591. if (pce_dev->ce_clk)
  5592. clk_disable_unprepare(pce_dev->ce_clk);
  5593. exit_disable_core_clk:
  5594. if (pce_dev->ce_core_clk)
  5595. clk_disable_unprepare(pce_dev->ce_core_clk);
  5596. exit_disable_core_src_clk:
  5597. if (pce_dev->ce_core_src_clk)
  5598. clk_disable_unprepare(pce_dev->ce_core_src_clk);
  5599. return rc;
  5600. }
  5601. EXPORT_SYMBOL(qce_enable_clk);
  5602. int qce_disable_clk(void *handle)
  5603. {
  5604. struct qce_device *pce_dev = (struct qce_device *) handle;
  5605. if (pce_dev->no_clock_support) {
  5606. pr_debug("No clock support defined in dts\n");
  5607. return 0;
  5608. }
  5609. if (pce_dev->ce_bus_clk)
  5610. clk_disable_unprepare(pce_dev->ce_bus_clk);
  5611. if (pce_dev->ce_clk)
  5612. clk_disable_unprepare(pce_dev->ce_clk);
  5613. if (pce_dev->ce_core_clk)
  5614. clk_disable_unprepare(pce_dev->ce_core_clk);
  5615. if (pce_dev->ce_core_src_clk)
  5616. clk_disable_unprepare(pce_dev->ce_core_src_clk);
  5617. return 0;
  5618. }
  5619. EXPORT_SYMBOL(qce_disable_clk);
  5620. /* dummy req setup */
  5621. static int setup_dummy_req(struct qce_device *pce_dev)
  5622. {
  5623. char *input =
  5624. "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopqopqrpqrs";
  5625. int len = DUMMY_REQ_DATA_LEN;
  5626. memcpy(pce_dev->dummyreq_in_buf, input, len);
  5627. sg_init_one(&pce_dev->dummyreq.sg, pce_dev->dummyreq_in_buf, len);
  5628. pce_dev->dummyreq.sreq.alg = QCE_HASH_SHA1;
  5629. pce_dev->dummyreq.sreq.qce_cb = qce_dummy_complete;
  5630. pce_dev->dummyreq.sreq.src = &pce_dev->dummyreq.sg;
  5631. pce_dev->dummyreq.sreq.auth_data[0] = 0;
  5632. pce_dev->dummyreq.sreq.auth_data[1] = 0;
  5633. pce_dev->dummyreq.sreq.auth_data[2] = 0;
  5634. pce_dev->dummyreq.sreq.auth_data[3] = 0;
  5635. pce_dev->dummyreq.sreq.first_blk = true;
  5636. pce_dev->dummyreq.sreq.last_blk = true;
  5637. pce_dev->dummyreq.sreq.size = len;
  5638. pce_dev->dummyreq.sreq.areq = &pce_dev->dummyreq.areq;
  5639. pce_dev->dummyreq.sreq.flags = 0;
  5640. pce_dev->dummyreq.sreq.authkey = NULL;
  5641. pce_dev->dummyreq.areq.src = pce_dev->dummyreq.sreq.src;
  5642. pce_dev->dummyreq.areq.nbytes = pce_dev->dummyreq.sreq.size;
  5643. return 0;
  5644. }
  5645. static int qce_smmu_init(struct qce_device *pce_dev)
  5646. {
  5647. struct device *dev = pce_dev->pdev;
  5648. if (!dev->dma_parms) {
  5649. dev->dma_parms = devm_kzalloc(dev,
  5650. sizeof(*dev->dma_parms), GFP_KERNEL);
  5651. if (!dev->dma_parms)
  5652. return -ENOMEM;
  5653. }
  5654. dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
  5655. dma_set_seg_boundary(dev, (unsigned long)DMA_BIT_MASK(64));
  5656. return 0;
  5657. }
  5658. /* crypto engine open function. */
  5659. void *qce_open(struct platform_device *pdev, int *rc)
  5660. {
  5661. struct qce_device *pce_dev;
  5662. int i;
  5663. static int pcedev_no = 1;
  5664. pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL);
  5665. if (!pce_dev) {
  5666. *rc = -ENOMEM;
  5667. pr_err("Can not allocate memory: %d\n", *rc);
  5668. return NULL;
  5669. }
  5670. pce_dev->pdev = &pdev->dev;
  5671. mutex_lock(&qce_iomap_mutex);
  5672. if (pdev->dev.of_node) {
  5673. *rc = __qce_get_device_tree_data(pdev, pce_dev);
  5674. if (*rc)
  5675. goto err_pce_dev;
  5676. } else {
  5677. *rc = -EINVAL;
  5678. pr_err("Device Node not found.\n");
  5679. goto err_pce_dev;
  5680. }
  5681. if (pce_dev->enable_s1_smmu) {
  5682. if (qce_smmu_init(pce_dev)) {
  5683. *rc = -EIO;
  5684. goto err_pce_dev;
  5685. }
  5686. }
  5687. for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++)
  5688. atomic_set(&pce_dev->ce_request_info[i].in_use, false);
  5689. pce_dev->ce_request_index = 0;
  5690. pce_dev->memsize = 10 * PAGE_SIZE * MAX_QCE_ALLOC_BAM_REQ;
  5691. pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev,
  5692. pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL);
  5693. if (pce_dev->coh_vmem == NULL) {
  5694. *rc = -ENOMEM;
  5695. pr_err("Can not allocate coherent memory for sps data\n");
  5696. goto err_iobase;
  5697. }
  5698. pce_dev->iovec_memsize = TOTAL_IOVEC_SPACE_PER_PIPE *
  5699. MAX_QCE_ALLOC_BAM_REQ * 2;
  5700. pce_dev->iovec_vmem = kzalloc(pce_dev->iovec_memsize, GFP_KERNEL);
  5701. if (pce_dev->iovec_vmem == NULL)
  5702. goto err_mem;
  5703. pce_dev->dummyreq_in_buf = kzalloc(DUMMY_REQ_DATA_LEN, GFP_KERNEL);
  5704. if (pce_dev->dummyreq_in_buf == NULL)
  5705. goto err_mem;
  5706. *rc = __qce_init_clk(pce_dev);
  5707. if (*rc)
  5708. goto err_mem;
  5709. *rc = qce_enable_clk(pce_dev);
  5710. if (*rc)
  5711. goto err_enable_clk;
  5712. if (_probe_ce_engine(pce_dev)) {
  5713. *rc = -ENXIO;
  5714. goto err;
  5715. }
  5716. *rc = 0;
  5717. qce_init_ce_cfg_val(pce_dev);
  5718. *rc = qce_sps_init(pce_dev);
  5719. if (*rc)
  5720. goto err;
  5721. qce_setup_ce_sps_data(pce_dev);
  5722. qce_disable_clk(pce_dev);
  5723. setup_dummy_req(pce_dev);
  5724. atomic_set(&pce_dev->no_of_queued_req, 0);
  5725. pce_dev->mode = IN_INTERRUPT_MODE;
  5726. timer_setup(&(pce_dev->timer), qce_multireq_timeout, 0);
  5727. //pce_dev->timer.function = qce_multireq_timeout;
  5728. //pce_dev->timer.data = (unsigned long)pce_dev;
  5729. pce_dev->timer.expires = jiffies + DELAY_IN_JIFFIES;
  5730. pce_dev->intr_cadence = 0;
  5731. pce_dev->dev_no = pcedev_no;
  5732. pcedev_no++;
  5733. pce_dev->owner = QCE_OWNER_NONE;
  5734. mutex_unlock(&qce_iomap_mutex);
  5735. return pce_dev;
  5736. err:
  5737. qce_disable_clk(pce_dev);
  5738. err_enable_clk:
  5739. __qce_deinit_clk(pce_dev);
  5740. err_mem:
  5741. kfree(pce_dev->dummyreq_in_buf);
  5742. kfree(pce_dev->iovec_vmem);
  5743. if (pce_dev->coh_vmem)
  5744. dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
  5745. pce_dev->coh_vmem, pce_dev->coh_pmem);
  5746. err_iobase:
  5747. if (pce_dev->iobase)
  5748. iounmap(pce_dev->iobase);
  5749. err_pce_dev:
  5750. mutex_unlock(&qce_iomap_mutex);
  5751. kfree(pce_dev);
  5752. return NULL;
  5753. }
  5754. EXPORT_SYMBOL(qce_open);
  5755. /* crypto engine close function. */
  5756. int qce_close(void *handle)
  5757. {
  5758. struct qce_device *pce_dev = (struct qce_device *) handle;
  5759. if (handle == NULL)
  5760. return -ENODEV;
  5761. mutex_lock(&qce_iomap_mutex);
  5762. qce_enable_clk(pce_dev);
  5763. qce_sps_exit(pce_dev);
  5764. if (pce_dev->iobase)
  5765. iounmap(pce_dev->iobase);
  5766. if (pce_dev->coh_vmem)
  5767. dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
  5768. pce_dev->coh_vmem, pce_dev->coh_pmem);
  5769. kfree(pce_dev->dummyreq_in_buf);
  5770. kfree(pce_dev->iovec_vmem);
  5771. qce_disable_clk(pce_dev);
  5772. __qce_deinit_clk(pce_dev);
  5773. mutex_unlock(&qce_iomap_mutex);
  5774. kfree(handle);
  5775. return 0;
  5776. }
  5777. EXPORT_SYMBOL(qce_close);
  5778. #define OTA_SUPPORT_MASK (1 << CRYPTO_ENCR_SNOW3G_SEL |\
  5779. 1 << CRYPTO_ENCR_KASUMI_SEL |\
  5780. 1 << CRYPTO_AUTH_SNOW3G_SEL |\
  5781. 1 << CRYPTO_AUTH_KASUMI_SEL)
  5782. int qce_hw_support(void *handle, struct ce_hw_support *ce_support)
  5783. {
  5784. struct qce_device *pce_dev = (struct qce_device *)handle;
  5785. if (ce_support == NULL)
  5786. return -EINVAL;
  5787. ce_support->sha1_hmac_20 = false;
  5788. ce_support->sha1_hmac = false;
  5789. ce_support->sha256_hmac = false;
  5790. ce_support->sha_hmac = true;
  5791. ce_support->cmac = true;
  5792. ce_support->aes_key_192 = false;
  5793. ce_support->aes_xts = true;
  5794. if ((pce_dev->engines_avail & OTA_SUPPORT_MASK) == OTA_SUPPORT_MASK)
  5795. ce_support->ota = true;
  5796. else
  5797. ce_support->ota = false;
  5798. ce_support->bam = true;
  5799. ce_support->is_shared = (pce_dev->is_shared == 1) ? true : false;
  5800. ce_support->hw_key = pce_dev->support_hw_key;
  5801. ce_support->aes_ccm = true;
  5802. ce_support->clk_mgmt_sus_res = pce_dev->support_clk_mgmt_sus_res;
  5803. ce_support->req_bw_before_clk = pce_dev->request_bw_before_clk;
  5804. if (pce_dev->ce_bam_info.minor_version)
  5805. ce_support->aligned_only = false;
  5806. else
  5807. ce_support->aligned_only = true;
  5808. ce_support->use_sw_aes_cbc_ecb_ctr_algo =
  5809. pce_dev->use_sw_aes_cbc_ecb_ctr_algo;
  5810. ce_support->use_sw_aead_algo =
  5811. pce_dev->use_sw_aead_algo;
  5812. ce_support->use_sw_aes_xts_algo =
  5813. pce_dev->use_sw_aes_xts_algo;
  5814. ce_support->use_sw_ahash_algo =
  5815. pce_dev->use_sw_ahash_algo;
  5816. ce_support->use_sw_hmac_algo =
  5817. pce_dev->use_sw_hmac_algo;
  5818. ce_support->use_sw_aes_ccm_algo =
  5819. pce_dev->use_sw_aes_ccm_algo;
  5820. ce_support->ce_device = pce_dev->ce_bam_info.ce_device;
  5821. ce_support->ce_hw_instance = pce_dev->ce_bam_info.ce_hw_instance;
  5822. if (pce_dev->no_get_around)
  5823. ce_support->max_request = MAX_QCE_BAM_REQ;
  5824. else
  5825. ce_support->max_request = 1;
  5826. return 0;
  5827. }
  5828. EXPORT_SYMBOL(qce_hw_support);
  5829. void qce_dump_req(void *handle)
  5830. {
  5831. int i;
  5832. bool req_in_use;
  5833. struct qce_device *pce_dev = (struct qce_device *)handle;
  5834. for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
  5835. req_in_use = atomic_read(&pce_dev->ce_request_info[i].in_use);
  5836. pr_info("%s: %d %d\n", __func__, i, req_in_use);
  5837. if (req_in_use)
  5838. _qce_dump_descr_fifos(pce_dev, i);
  5839. }
  5840. }
  5841. EXPORT_SYMBOL(qce_dump_req);
  5842. MODULE_LICENSE("GPL v2");
  5843. MODULE_DESCRIPTION("Crypto Engine driver");