dp_rx.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DUP_RX_DESC_WAR
  42. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  43. hal_ring_handle_t hal_ring,
  44. hal_ring_desc_t ring_desc,
  45. struct dp_rx_desc *rx_desc)
  46. {
  47. void *hal_soc = soc->hal_soc;
  48. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  49. dp_rx_desc_dump(rx_desc);
  50. }
  51. #else
  52. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  53. hal_ring_handle_t hal_ring_hdl,
  54. hal_ring_desc_t ring_desc,
  55. struct dp_rx_desc *rx_desc)
  56. {
  57. hal_soc_handle_t hal_soc = soc->hal_soc;
  58. dp_rx_desc_dump(rx_desc);
  59. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  60. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  61. qdf_assert_always(0);
  62. }
  63. #endif
  64. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  65. #ifdef RX_DESC_SANITY_WAR
  66. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  67. hal_ring_handle_t hal_ring_hdl,
  68. hal_ring_desc_t ring_desc,
  69. struct dp_rx_desc *rx_desc)
  70. {
  71. uint8_t return_buffer_manager;
  72. if (qdf_unlikely(!rx_desc)) {
  73. /*
  74. * This is an unlikely case where the cookie obtained
  75. * from the ring_desc is invalid and hence we are not
  76. * able to find the corresponding rx_desc
  77. */
  78. goto fail;
  79. }
  80. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  81. if (qdf_unlikely(!(return_buffer_manager ==
  82. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  83. return_buffer_manager ==
  84. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  85. goto fail;
  86. }
  87. return QDF_STATUS_SUCCESS;
  88. fail:
  89. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  90. dp_err("Ring Desc:");
  91. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  92. ring_desc);
  93. return QDF_STATUS_E_NULL_VALUE;
  94. }
  95. #endif
  96. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  97. /**
  98. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  99. *
  100. * @dp_soc: struct dp_soc *
  101. * @nbuf_frag_info_t: nbuf frag info
  102. * @dp_pdev: struct dp_pdev *
  103. * @rx_desc_pool: Rx desc pool
  104. *
  105. * Return: QDF_STATUS
  106. */
  107. #ifdef DP_RX_MON_MEM_FRAG
  108. static inline QDF_STATUS
  109. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  110. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  111. struct dp_pdev *dp_pdev,
  112. struct rx_desc_pool *rx_desc_pool)
  113. {
  114. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  115. (nbuf_frag_info_t->virt_addr).vaddr =
  116. qdf_frag_alloc(rx_desc_pool->buf_size);
  117. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  118. dp_err("Frag alloc failed");
  119. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  120. return QDF_STATUS_E_NOMEM;
  121. }
  122. ret = qdf_mem_map_page(dp_soc->osdev,
  123. (nbuf_frag_info_t->virt_addr).vaddr,
  124. QDF_DMA_FROM_DEVICE,
  125. rx_desc_pool->buf_size,
  126. &nbuf_frag_info_t->paddr);
  127. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  128. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  129. dp_err("Frag map failed");
  130. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  131. return QDF_STATUS_E_FAULT;
  132. }
  133. return QDF_STATUS_SUCCESS;
  134. }
  135. #else
  136. static inline QDF_STATUS
  137. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  138. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  139. struct dp_pdev *dp_pdev,
  140. struct rx_desc_pool *rx_desc_pool)
  141. {
  142. return QDF_STATUS_SUCCESS;
  143. }
  144. #endif /* DP_RX_MON_MEM_FRAG */
  145. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  146. /**
  147. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  148. * @soc: Datapath soc structure
  149. * @ring_num: Refill ring number
  150. * @num_req: number of buffers requested for refill
  151. * @num_refill: number of buffers refilled
  152. *
  153. * Returns: None
  154. */
  155. static inline void
  156. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  157. hal_ring_handle_t hal_ring_hdl,
  158. uint32_t num_req, uint32_t num_refill)
  159. {
  160. struct dp_refill_info_record *record;
  161. uint32_t idx;
  162. uint32_t tp;
  163. uint32_t hp;
  164. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  165. !soc->rx_refill_ring_history[ring_num]))
  166. return;
  167. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  168. DP_RX_REFILL_HIST_MAX);
  169. /* No NULL check needed for record since its an array */
  170. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  171. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  172. record->timestamp = qdf_get_log_timestamp();
  173. record->num_req = num_req;
  174. record->num_refill = num_refill;
  175. record->hp = hp;
  176. record->tp = tp;
  177. }
  178. #else
  179. static inline void
  180. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  181. hal_ring_handle_t hal_ring_hdl,
  182. uint32_t num_req, uint32_t num_refill)
  183. {
  184. }
  185. #endif
  186. /**
  187. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  188. *
  189. * @dp_soc: struct dp_soc *
  190. * @mac_id: Mac id
  191. * @num_entries_avail: num_entries_avail
  192. * @nbuf_frag_info_t: nbuf frag info
  193. * @dp_pdev: struct dp_pdev *
  194. * @rx_desc_pool: Rx desc pool
  195. *
  196. * Return: QDF_STATUS
  197. */
  198. static inline QDF_STATUS
  199. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  200. uint32_t mac_id,
  201. uint32_t num_entries_avail,
  202. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  203. struct dp_pdev *dp_pdev,
  204. struct rx_desc_pool *rx_desc_pool)
  205. {
  206. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  207. (nbuf_frag_info_t->virt_addr).nbuf =
  208. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  209. mac_id,
  210. rx_desc_pool,
  211. num_entries_avail);
  212. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  213. dp_err("nbuf alloc failed");
  214. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  215. return QDF_STATUS_E_NOMEM;
  216. }
  217. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  218. nbuf_frag_info_t);
  219. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  220. dp_rx_buffer_pool_nbuf_free(dp_soc,
  221. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  222. dp_err("nbuf map failed");
  223. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  224. return QDF_STATUS_E_FAULT;
  225. }
  226. nbuf_frag_info_t->paddr =
  227. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  228. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  229. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  230. rx_desc_pool->buf_size,
  231. true);
  232. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  233. &nbuf_frag_info_t->paddr,
  234. rx_desc_pool);
  235. if (ret == QDF_STATUS_E_FAILURE) {
  236. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  237. return QDF_STATUS_E_ADDRNOTAVAIL;
  238. }
  239. return QDF_STATUS_SUCCESS;
  240. }
  241. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  242. QDF_STATUS
  243. __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
  244. struct dp_srng *dp_rxdma_srng,
  245. struct rx_desc_pool *rx_desc_pool)
  246. {
  247. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  248. uint32_t count;
  249. void *rxdma_ring_entry;
  250. union dp_rx_desc_list_elem_t *next = NULL;
  251. void *rxdma_srng;
  252. qdf_nbuf_t nbuf;
  253. qdf_dma_addr_t paddr;
  254. uint16_t num_entries_avail = 0;
  255. uint16_t num_alloc_desc = 0;
  256. union dp_rx_desc_list_elem_t *desc_list = NULL;
  257. union dp_rx_desc_list_elem_t *tail = NULL;
  258. int sync_hw_ptr = 0;
  259. rxdma_srng = dp_rxdma_srng->hal_srng;
  260. if (qdf_unlikely(!dp_pdev)) {
  261. dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
  262. return QDF_STATUS_E_FAILURE;
  263. }
  264. if (qdf_unlikely(!rxdma_srng)) {
  265. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  266. return QDF_STATUS_E_FAILURE;
  267. }
  268. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  269. num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
  270. rxdma_srng,
  271. sync_hw_ptr);
  272. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  273. soc, num_entries_avail);
  274. if (qdf_unlikely(num_entries_avail <
  275. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  276. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  277. return QDF_STATUS_E_FAILURE;
  278. }
  279. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  280. num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
  281. rx_desc_pool,
  282. num_entries_avail,
  283. &desc_list,
  284. &tail);
  285. if (!num_alloc_desc) {
  286. dp_rx_err("%pK: no free rx_descs in freelist", soc);
  287. DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
  288. num_entries_avail);
  289. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  290. return QDF_STATUS_E_NOMEM;
  291. }
  292. for (count = 0; count < num_alloc_desc; count++) {
  293. next = desc_list->next;
  294. qdf_prefetch(next);
  295. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  296. if (qdf_unlikely(!nbuf)) {
  297. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  298. break;
  299. }
  300. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  301. rx_desc_pool->buf_size);
  302. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
  303. rxdma_srng);
  304. qdf_assert_always(rxdma_ring_entry);
  305. desc_list->rx_desc.nbuf = nbuf;
  306. desc_list->rx_desc.rx_buf_start = nbuf->data;
  307. desc_list->rx_desc.unmapped = 0;
  308. /* rx_desc.in_use should be zero at this time*/
  309. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  310. desc_list->rx_desc.in_use = 1;
  311. desc_list->rx_desc.in_err_state = 0;
  312. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  313. paddr,
  314. desc_list->rx_desc.cookie,
  315. rx_desc_pool->owner);
  316. desc_list = next;
  317. }
  318. qdf_dsb();
  319. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  320. /* No need to count the number of bytes received during replenish.
  321. * Therefore set replenish.pkts.bytes as 0.
  322. */
  323. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  324. DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
  325. /*
  326. * add any available free desc back to the free list
  327. */
  328. if (desc_list)
  329. dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
  330. mac_id, rx_desc_pool);
  331. return QDF_STATUS_SUCCESS;
  332. }
  333. QDF_STATUS
  334. __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
  335. struct dp_srng *dp_rxdma_srng,
  336. struct rx_desc_pool *rx_desc_pool,
  337. uint32_t num_req_buffers,
  338. union dp_rx_desc_list_elem_t **desc_list,
  339. union dp_rx_desc_list_elem_t **tail)
  340. {
  341. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  342. uint32_t count;
  343. void *rxdma_ring_entry;
  344. union dp_rx_desc_list_elem_t *next;
  345. void *rxdma_srng;
  346. qdf_nbuf_t nbuf;
  347. qdf_dma_addr_t paddr;
  348. rxdma_srng = dp_rxdma_srng->hal_srng;
  349. if (qdf_unlikely(!dp_pdev)) {
  350. dp_rx_err("%pK: pdev is null for mac_id = %d",
  351. soc, mac_id);
  352. return QDF_STATUS_E_FAILURE;
  353. }
  354. if (qdf_unlikely(!rxdma_srng)) {
  355. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  356. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  357. return QDF_STATUS_E_FAILURE;
  358. }
  359. dp_rx_debug("%pK: requested %d buffers for replenish",
  360. soc, num_req_buffers);
  361. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  362. for (count = 0; count < num_req_buffers; count++) {
  363. next = (*desc_list)->next;
  364. qdf_prefetch(next);
  365. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  366. if (qdf_unlikely(!nbuf)) {
  367. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  368. break;
  369. }
  370. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  371. rx_desc_pool->buf_size);
  372. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  373. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  374. if (!rxdma_ring_entry)
  375. break;
  376. qdf_assert_always(rxdma_ring_entry);
  377. (*desc_list)->rx_desc.nbuf = nbuf;
  378. (*desc_list)->rx_desc.rx_buf_start = nbuf->data;
  379. (*desc_list)->rx_desc.unmapped = 0;
  380. /* rx_desc.in_use should be zero at this time*/
  381. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  382. (*desc_list)->rx_desc.in_use = 1;
  383. (*desc_list)->rx_desc.in_err_state = 0;
  384. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  385. paddr,
  386. (*desc_list)->rx_desc.cookie,
  387. rx_desc_pool->owner);
  388. *desc_list = next;
  389. }
  390. qdf_dsb();
  391. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  392. /* No need to count the number of bytes received during replenish.
  393. * Therefore set replenish.pkts.bytes as 0.
  394. */
  395. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  396. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  397. /*
  398. * add any available free desc back to the free list
  399. */
  400. if (*desc_list)
  401. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  402. mac_id, rx_desc_pool);
  403. return QDF_STATUS_SUCCESS;
  404. }
  405. QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
  406. uint32_t mac_id,
  407. struct dp_srng *dp_rxdma_srng,
  408. struct rx_desc_pool *rx_desc_pool,
  409. uint32_t num_req_buffers)
  410. {
  411. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  412. uint32_t count;
  413. uint32_t nr_descs = 0;
  414. void *rxdma_ring_entry;
  415. union dp_rx_desc_list_elem_t *next;
  416. void *rxdma_srng;
  417. qdf_nbuf_t nbuf;
  418. qdf_dma_addr_t paddr;
  419. union dp_rx_desc_list_elem_t *desc_list = NULL;
  420. union dp_rx_desc_list_elem_t *tail = NULL;
  421. rxdma_srng = dp_rxdma_srng->hal_srng;
  422. if (qdf_unlikely(!dp_pdev)) {
  423. dp_rx_err("%pK: pdev is null for mac_id = %d",
  424. soc, mac_id);
  425. return QDF_STATUS_E_FAILURE;
  426. }
  427. if (qdf_unlikely(!rxdma_srng)) {
  428. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  429. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  430. return QDF_STATUS_E_FAILURE;
  431. }
  432. dp_rx_debug("%pK: requested %d buffers for replenish",
  433. soc, num_req_buffers);
  434. nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
  435. num_req_buffers, &desc_list, &tail);
  436. if (!nr_descs) {
  437. dp_err("no free rx_descs in freelist");
  438. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  439. return QDF_STATUS_E_NOMEM;
  440. }
  441. dp_debug("got %u RX descs for driver attach", nr_descs);
  442. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  443. for (count = 0; count < nr_descs; count++) {
  444. next = desc_list->next;
  445. qdf_prefetch(next);
  446. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  447. if (qdf_unlikely(!nbuf)) {
  448. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  449. break;
  450. }
  451. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  452. rx_desc_pool->buf_size);
  453. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  454. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  455. if (!rxdma_ring_entry)
  456. break;
  457. qdf_assert_always(rxdma_ring_entry);
  458. desc_list->rx_desc.nbuf = nbuf;
  459. desc_list->rx_desc.rx_buf_start = nbuf->data;
  460. desc_list->rx_desc.unmapped = 0;
  461. /* rx_desc.in_use should be zero at this time*/
  462. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  463. desc_list->rx_desc.in_use = 1;
  464. desc_list->rx_desc.in_err_state = 0;
  465. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  466. paddr,
  467. desc_list->rx_desc.cookie,
  468. rx_desc_pool->owner);
  469. desc_list = next;
  470. }
  471. qdf_dsb();
  472. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  473. /* No need to count the number of bytes received during replenish.
  474. * Therefore set replenish.pkts.bytes as 0.
  475. */
  476. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  477. return QDF_STATUS_SUCCESS;
  478. }
  479. #endif
  480. /*
  481. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  482. * called during dp rx initialization
  483. * and at the end of dp_rx_process.
  484. *
  485. * @soc: core txrx main context
  486. * @mac_id: mac_id which is one of 3 mac_ids
  487. * @dp_rxdma_srng: dp rxdma circular ring
  488. * @rx_desc_pool: Pointer to free Rx descriptor pool
  489. * @num_req_buffers: number of buffer to be replenished
  490. * @desc_list: list of descs if called from dp_rx_process
  491. * or NULL during dp rx initialization or out of buffer
  492. * interrupt.
  493. * @tail: tail of descs list
  494. * @func_name: name of the caller function
  495. * Return: return success or failure
  496. */
  497. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  498. struct dp_srng *dp_rxdma_srng,
  499. struct rx_desc_pool *rx_desc_pool,
  500. uint32_t num_req_buffers,
  501. union dp_rx_desc_list_elem_t **desc_list,
  502. union dp_rx_desc_list_elem_t **tail,
  503. const char *func_name)
  504. {
  505. uint32_t num_alloc_desc;
  506. uint16_t num_desc_to_free = 0;
  507. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  508. uint32_t num_entries_avail;
  509. uint32_t count;
  510. int sync_hw_ptr = 1;
  511. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  512. void *rxdma_ring_entry;
  513. union dp_rx_desc_list_elem_t *next;
  514. QDF_STATUS ret;
  515. void *rxdma_srng;
  516. rxdma_srng = dp_rxdma_srng->hal_srng;
  517. if (qdf_unlikely(!dp_pdev)) {
  518. dp_rx_err("%pK: pdev is null for mac_id = %d",
  519. dp_soc, mac_id);
  520. return QDF_STATUS_E_FAILURE;
  521. }
  522. if (qdf_unlikely(!rxdma_srng)) {
  523. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  524. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  525. return QDF_STATUS_E_FAILURE;
  526. }
  527. dp_rx_debug("%pK: requested %d buffers for replenish",
  528. dp_soc, num_req_buffers);
  529. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  530. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  531. rxdma_srng,
  532. sync_hw_ptr);
  533. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  534. dp_soc, num_entries_avail);
  535. if (!(*desc_list) && (num_entries_avail >
  536. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  537. num_req_buffers = num_entries_avail;
  538. } else if (num_entries_avail < num_req_buffers) {
  539. num_desc_to_free = num_req_buffers - num_entries_avail;
  540. num_req_buffers = num_entries_avail;
  541. }
  542. if (qdf_unlikely(!num_req_buffers)) {
  543. num_desc_to_free = num_req_buffers;
  544. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  545. goto free_descs;
  546. }
  547. /*
  548. * if desc_list is NULL, allocate the descs from freelist
  549. */
  550. if (!(*desc_list)) {
  551. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  552. rx_desc_pool,
  553. num_req_buffers,
  554. desc_list,
  555. tail);
  556. if (!num_alloc_desc) {
  557. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  558. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  559. num_req_buffers);
  560. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  561. return QDF_STATUS_E_NOMEM;
  562. }
  563. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  564. num_req_buffers = num_alloc_desc;
  565. }
  566. count = 0;
  567. while (count < num_req_buffers) {
  568. /* Flag is set while pdev rx_desc_pool initialization */
  569. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  570. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  571. &nbuf_frag_info,
  572. dp_pdev,
  573. rx_desc_pool);
  574. else
  575. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  576. mac_id,
  577. num_entries_avail, &nbuf_frag_info,
  578. dp_pdev, rx_desc_pool);
  579. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  580. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  581. continue;
  582. break;
  583. }
  584. count++;
  585. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  586. rxdma_srng);
  587. qdf_assert_always(rxdma_ring_entry);
  588. next = (*desc_list)->next;
  589. /* Flag is set while pdev rx_desc_pool initialization */
  590. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  591. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  592. &nbuf_frag_info);
  593. else
  594. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  595. &nbuf_frag_info);
  596. /* rx_desc.in_use should be zero at this time*/
  597. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  598. (*desc_list)->rx_desc.in_use = 1;
  599. (*desc_list)->rx_desc.in_err_state = 0;
  600. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  601. func_name, RX_DESC_REPLENISHED);
  602. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  603. nbuf_frag_info.virt_addr.nbuf,
  604. (unsigned long long)(nbuf_frag_info.paddr),
  605. (*desc_list)->rx_desc.cookie);
  606. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  607. nbuf_frag_info.paddr,
  608. (*desc_list)->rx_desc.cookie,
  609. rx_desc_pool->owner);
  610. *desc_list = next;
  611. }
  612. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  613. num_req_buffers, count);
  614. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  615. dp_rx_schedule_refill_thread(dp_soc);
  616. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  617. count, num_desc_to_free);
  618. /* No need to count the number of bytes received during replenish.
  619. * Therefore set replenish.pkts.bytes as 0.
  620. */
  621. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  622. free_descs:
  623. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  624. /*
  625. * add any available free desc back to the free list
  626. */
  627. if (*desc_list)
  628. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  629. mac_id, rx_desc_pool);
  630. return QDF_STATUS_SUCCESS;
  631. }
  632. qdf_export_symbol(__dp_rx_buffers_replenish);
  633. /*
  634. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  635. * pkts to RAW mode simulation to
  636. * decapsulate the pkt.
  637. *
  638. * @vdev: vdev on which RAW mode is enabled
  639. * @nbuf_list: list of RAW pkts to process
  640. * @txrx_peer: peer object from which the pkt is rx
  641. *
  642. * Return: void
  643. */
  644. void
  645. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  646. struct dp_txrx_peer *txrx_peer)
  647. {
  648. qdf_nbuf_t deliver_list_head = NULL;
  649. qdf_nbuf_t deliver_list_tail = NULL;
  650. qdf_nbuf_t nbuf;
  651. nbuf = nbuf_list;
  652. while (nbuf) {
  653. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  654. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  655. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  656. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
  657. qdf_nbuf_len(nbuf));
  658. /*
  659. * reset the chfrag_start and chfrag_end bits in nbuf cb
  660. * as this is a non-amsdu pkt and RAW mode simulation expects
  661. * these bit s to be 0 for non-amsdu pkt.
  662. */
  663. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  664. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  665. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  666. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  667. }
  668. nbuf = next;
  669. }
  670. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  671. &deliver_list_tail);
  672. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  673. }
  674. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  675. #ifndef FEATURE_WDS
  676. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  677. struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
  678. {
  679. }
  680. #endif
  681. #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
  682. /*
  683. * dp_classify_critical_pkts() - API for marking critical packets
  684. * @soc: dp_soc context
  685. * @vdev: vdev on which packet is to be sent
  686. * @nbuf: nbuf that has to be classified
  687. *
  688. * The function parses the packet, identifies whether its a critical frame and
  689. * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
  690. * Code for marking which frames are CRITICAL is accessed via callback.
  691. * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
  692. *
  693. * Return: None
  694. */
  695. static
  696. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  697. qdf_nbuf_t nbuf)
  698. {
  699. if (vdev->tx_classify_critical_pkt_cb)
  700. vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
  701. }
  702. #else
  703. static inline
  704. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  705. qdf_nbuf_t nbuf)
  706. {
  707. }
  708. #endif
  709. /*
  710. * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
  711. *
  712. * @soc: core txrx main context
  713. * @ta_peer : source peer entry
  714. * @rx_tlv_hdr : start address of rx tlvs
  715. * @nbuf : nbuf that has to be intrabss forwarded
  716. * @tid_stats : tid stats pointer
  717. *
  718. * Return: bool: true if it is forwarded else false
  719. */
  720. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  721. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  722. struct cdp_tid_rx_stats *tid_stats)
  723. {
  724. uint16_t len;
  725. qdf_nbuf_t nbuf_copy;
  726. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  727. nbuf))
  728. return true;
  729. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  730. return false;
  731. /* If the source peer in the isolation list
  732. * then dont forward instead push to bridge stack
  733. */
  734. if (dp_get_peer_isolation(ta_peer))
  735. return false;
  736. nbuf_copy = qdf_nbuf_copy(nbuf);
  737. if (!nbuf_copy)
  738. return false;
  739. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  740. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
  741. if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy,
  742. tid_stats))
  743. return false;
  744. /* set TX notify flag 0 to avoid unnecessary TX comp callback */
  745. qdf_nbuf_tx_notify_comp_set(nbuf_copy, 0);
  746. if (dp_tx_send((struct cdp_soc_t *)soc,
  747. ta_peer->vdev->vdev_id, nbuf_copy)) {
  748. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  749. len);
  750. tid_stats->fail_cnt[INTRABSS_DROP]++;
  751. dp_rx_nbuf_free(nbuf_copy);
  752. } else {
  753. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  754. len);
  755. tid_stats->intrabss_cnt++;
  756. }
  757. return false;
  758. }
  759. /*
  760. * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
  761. *
  762. * @soc: core txrx main context
  763. * @ta_peer: source peer entry
  764. * @tx_vdev_id: VDEV ID for Intra-BSS TX
  765. * @rx_tlv_hdr: start address of rx tlvs
  766. * @nbuf: nbuf that has to be intrabss forwarded
  767. * @tid_stats: tid stats pointer
  768. *
  769. * Return: bool: true if it is forwarded else false
  770. */
  771. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  772. uint8_t tx_vdev_id,
  773. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  774. struct cdp_tid_rx_stats *tid_stats)
  775. {
  776. uint16_t len;
  777. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  778. /* linearize the nbuf just before we send to
  779. * dp_tx_send()
  780. */
  781. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  782. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  783. return false;
  784. nbuf = qdf_nbuf_unshare(nbuf);
  785. if (!nbuf) {
  786. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
  787. rx.intra_bss.fail,
  788. 1, len);
  789. /* return true even though the pkt is
  790. * not forwarded. Basically skb_unshare
  791. * failed and we want to continue with
  792. * next nbuf.
  793. */
  794. tid_stats->fail_cnt[INTRABSS_DROP]++;
  795. return false;
  796. }
  797. }
  798. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
  799. if (!dp_tx_send((struct cdp_soc_t *)soc,
  800. tx_vdev_id, nbuf)) {
  801. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  802. len);
  803. } else {
  804. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  805. len);
  806. tid_stats->fail_cnt[INTRABSS_DROP]++;
  807. return false;
  808. }
  809. return true;
  810. }
  811. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  812. #ifdef MESH_MODE_SUPPORT
  813. /**
  814. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  815. *
  816. * @vdev: DP Virtual device handle
  817. * @nbuf: Buffer pointer
  818. * @rx_tlv_hdr: start of rx tlv header
  819. * @txrx_peer: pointer to peer
  820. *
  821. * This function allocated memory for mesh receive stats and fill the
  822. * required stats. Stores the memory address in skb cb.
  823. *
  824. * Return: void
  825. */
  826. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  827. uint8_t *rx_tlv_hdr,
  828. struct dp_txrx_peer *txrx_peer)
  829. {
  830. struct mesh_recv_hdr_s *rx_info = NULL;
  831. uint32_t pkt_type;
  832. uint32_t nss;
  833. uint32_t rate_mcs;
  834. uint32_t bw;
  835. uint8_t primary_chan_num;
  836. uint32_t center_chan_freq;
  837. struct dp_soc *soc = vdev->pdev->soc;
  838. struct dp_peer *peer;
  839. struct dp_peer *primary_link_peer;
  840. struct dp_soc *link_peer_soc;
  841. cdp_peer_stats_param_t buf = {0};
  842. /* fill recv mesh stats */
  843. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  844. /* upper layers are resposible to free this memory */
  845. if (!rx_info) {
  846. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  847. vdev->pdev->soc);
  848. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  849. return;
  850. }
  851. rx_info->rs_flags = MESH_RXHDR_VER1;
  852. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  853. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  854. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  855. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  856. peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
  857. if (peer) {
  858. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  859. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  860. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  861. rx_tlv_hdr);
  862. if (vdev->osif_get_key)
  863. vdev->osif_get_key(vdev->osif_vdev,
  864. &rx_info->rs_decryptkey[0],
  865. &peer->mac_addr.raw[0],
  866. rx_info->rs_keyix);
  867. }
  868. dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
  869. }
  870. primary_link_peer = dp_get_primary_link_peer_by_id(soc,
  871. txrx_peer->peer_id,
  872. DP_MOD_ID_MESH);
  873. if (qdf_likely(primary_link_peer)) {
  874. link_peer_soc = primary_link_peer->vdev->pdev->soc;
  875. dp_monitor_peer_get_stats_param(link_peer_soc,
  876. primary_link_peer,
  877. cdp_peer_rx_snr, &buf);
  878. rx_info->rs_snr = buf.rx_snr;
  879. dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
  880. }
  881. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  882. soc = vdev->pdev->soc;
  883. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  884. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  885. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  886. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  887. soc->ctrl_psoc,
  888. vdev->pdev->pdev_id,
  889. center_chan_freq);
  890. }
  891. rx_info->rs_channel = primary_chan_num;
  892. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  893. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  894. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  895. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  896. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  897. (bw << 24);
  898. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  899. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  900. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  901. rx_info->rs_flags,
  902. rx_info->rs_rssi,
  903. rx_info->rs_channel,
  904. rx_info->rs_ratephy1,
  905. rx_info->rs_keyix,
  906. rx_info->rs_snr);
  907. }
  908. /**
  909. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  910. *
  911. * @vdev: DP Virtual device handle
  912. * @nbuf: Buffer pointer
  913. * @rx_tlv_hdr: start of rx tlv header
  914. *
  915. * This checks if the received packet is matching any filter out
  916. * catogery and and drop the packet if it matches.
  917. *
  918. * Return: status(0 indicates drop, 1 indicate to no drop)
  919. */
  920. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  921. uint8_t *rx_tlv_hdr)
  922. {
  923. union dp_align_mac_addr mac_addr;
  924. struct dp_soc *soc = vdev->pdev->soc;
  925. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  926. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  927. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  928. rx_tlv_hdr))
  929. return QDF_STATUS_SUCCESS;
  930. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  931. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  932. rx_tlv_hdr))
  933. return QDF_STATUS_SUCCESS;
  934. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  935. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  936. rx_tlv_hdr) &&
  937. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  938. rx_tlv_hdr))
  939. return QDF_STATUS_SUCCESS;
  940. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  941. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  942. rx_tlv_hdr,
  943. &mac_addr.raw[0]))
  944. return QDF_STATUS_E_FAILURE;
  945. if (!qdf_mem_cmp(&mac_addr.raw[0],
  946. &vdev->mac_addr.raw[0],
  947. QDF_MAC_ADDR_SIZE))
  948. return QDF_STATUS_SUCCESS;
  949. }
  950. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  951. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  952. rx_tlv_hdr,
  953. &mac_addr.raw[0]))
  954. return QDF_STATUS_E_FAILURE;
  955. if (!qdf_mem_cmp(&mac_addr.raw[0],
  956. &vdev->mac_addr.raw[0],
  957. QDF_MAC_ADDR_SIZE))
  958. return QDF_STATUS_SUCCESS;
  959. }
  960. }
  961. return QDF_STATUS_E_FAILURE;
  962. }
  963. #else
  964. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  965. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
  966. {
  967. }
  968. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  969. uint8_t *rx_tlv_hdr)
  970. {
  971. return QDF_STATUS_E_FAILURE;
  972. }
  973. #endif
  974. #ifdef FEATURE_NAC_RSSI
  975. /**
  976. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  977. * @soc: DP SOC handle
  978. * @mpdu: mpdu for which peer is invalid
  979. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  980. * pool_id has same mapping)
  981. *
  982. * return: integer type
  983. */
  984. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  985. uint8_t mac_id)
  986. {
  987. struct dp_invalid_peer_msg msg;
  988. struct dp_vdev *vdev = NULL;
  989. struct dp_pdev *pdev = NULL;
  990. struct ieee80211_frame *wh;
  991. qdf_nbuf_t curr_nbuf, next_nbuf;
  992. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  993. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  994. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  995. dp_rx_debug("%pK: Drop decapped frames", soc);
  996. goto free;
  997. }
  998. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  999. if (!DP_FRAME_IS_DATA(wh)) {
  1000. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  1001. goto free;
  1002. }
  1003. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1004. dp_rx_err("%pK: Invalid nbuf length", soc);
  1005. goto free;
  1006. }
  1007. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1008. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  1009. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  1010. goto free;
  1011. }
  1012. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  1013. QDF_STATUS_SUCCESS)
  1014. return 0;
  1015. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1016. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1017. QDF_MAC_ADDR_SIZE) == 0) {
  1018. goto out;
  1019. }
  1020. }
  1021. if (!vdev) {
  1022. dp_rx_err("%pK: VDEV not found", soc);
  1023. goto free;
  1024. }
  1025. out:
  1026. msg.wh = wh;
  1027. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  1028. msg.nbuf = mpdu;
  1029. msg.vdev_id = vdev->vdev_id;
  1030. /*
  1031. * NOTE: Only valid for HKv1.
  1032. * If smart monitor mode is enabled on RE, we are getting invalid
  1033. * peer frames with RA as STA mac of RE and the TA not matching
  1034. * with any NAC list or the the BSSID.Such frames need to dropped
  1035. * in order to avoid HM_WDS false addition.
  1036. */
  1037. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  1038. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  1039. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  1040. soc, wh->i_addr1);
  1041. goto free;
  1042. }
  1043. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  1044. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  1045. pdev->pdev_id, &msg);
  1046. }
  1047. free:
  1048. /* Drop and free packet */
  1049. curr_nbuf = mpdu;
  1050. while (curr_nbuf) {
  1051. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1052. dp_rx_nbuf_free(curr_nbuf);
  1053. curr_nbuf = next_nbuf;
  1054. }
  1055. return 0;
  1056. }
  1057. /**
  1058. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  1059. * @soc: DP SOC handle
  1060. * @mpdu: mpdu for which peer is invalid
  1061. * @mpdu_done: if an mpdu is completed
  1062. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  1063. * pool_id has same mapping)
  1064. *
  1065. * return: integer type
  1066. */
  1067. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1068. qdf_nbuf_t mpdu, bool mpdu_done,
  1069. uint8_t mac_id)
  1070. {
  1071. /* Only trigger the process when mpdu is completed */
  1072. if (mpdu_done)
  1073. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1074. }
  1075. #else
  1076. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1077. uint8_t mac_id)
  1078. {
  1079. qdf_nbuf_t curr_nbuf, next_nbuf;
  1080. struct dp_pdev *pdev;
  1081. struct dp_vdev *vdev = NULL;
  1082. struct ieee80211_frame *wh;
  1083. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1084. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  1085. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1086. if (!DP_FRAME_IS_DATA(wh)) {
  1087. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  1088. "only for data frames");
  1089. goto free;
  1090. }
  1091. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1092. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  1093. goto free;
  1094. }
  1095. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1096. if (!pdev) {
  1097. dp_rx_info_rl("%pK: PDEV not found", soc);
  1098. goto free;
  1099. }
  1100. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  1101. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  1102. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1103. QDF_MAC_ADDR_SIZE) == 0) {
  1104. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1105. goto out;
  1106. }
  1107. }
  1108. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1109. if (!vdev) {
  1110. dp_rx_info_rl("%pK: VDEV not found", soc);
  1111. goto free;
  1112. }
  1113. out:
  1114. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  1115. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  1116. free:
  1117. /* reset the head and tail pointers */
  1118. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1119. if (pdev) {
  1120. pdev->invalid_peer_head_msdu = NULL;
  1121. pdev->invalid_peer_tail_msdu = NULL;
  1122. }
  1123. /* Drop and free packet */
  1124. curr_nbuf = mpdu;
  1125. while (curr_nbuf) {
  1126. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1127. dp_rx_nbuf_free(curr_nbuf);
  1128. curr_nbuf = next_nbuf;
  1129. }
  1130. /* Reset the head and tail pointers */
  1131. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1132. if (pdev) {
  1133. pdev->invalid_peer_head_msdu = NULL;
  1134. pdev->invalid_peer_tail_msdu = NULL;
  1135. }
  1136. return 0;
  1137. }
  1138. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1139. qdf_nbuf_t mpdu, bool mpdu_done,
  1140. uint8_t mac_id)
  1141. {
  1142. /* Process the nbuf */
  1143. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1144. }
  1145. #endif
  1146. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1147. #ifdef RECEIVE_OFFLOAD
  1148. /**
  1149. * dp_rx_print_offload_info() - Print offload info from RX TLV
  1150. * @soc: dp soc handle
  1151. * @msdu: MSDU for which the offload info is to be printed
  1152. *
  1153. * Return: None
  1154. */
  1155. static void dp_rx_print_offload_info(struct dp_soc *soc,
  1156. qdf_nbuf_t msdu)
  1157. {
  1158. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  1159. dp_verbose_debug("lro_eligible 0x%x",
  1160. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  1161. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  1162. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  1163. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  1164. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  1165. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  1166. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  1167. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  1168. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  1169. dp_verbose_debug("---------------------------------------------------------");
  1170. }
  1171. /**
  1172. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  1173. * @soc: DP SOC handle
  1174. * @rx_tlv: RX TLV received for the msdu
  1175. * @msdu: msdu for which GRO info needs to be filled
  1176. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  1177. *
  1178. * Return: None
  1179. */
  1180. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1181. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1182. {
  1183. struct hal_offload_info offload_info;
  1184. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1185. return;
  1186. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  1187. return;
  1188. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1189. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  1190. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  1191. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1192. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1193. rx_tlv);
  1194. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  1195. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  1196. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  1197. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  1198. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  1199. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  1200. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  1201. dp_rx_print_offload_info(soc, msdu);
  1202. }
  1203. #endif /* RECEIVE_OFFLOAD */
  1204. /**
  1205. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1206. *
  1207. * @soc: DP soc handle
  1208. * @nbuf: pointer to msdu.
  1209. * @mpdu_len: mpdu length
  1210. * @l3_pad_len: L3 padding length by HW
  1211. *
  1212. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1213. */
  1214. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  1215. qdf_nbuf_t nbuf,
  1216. uint16_t *mpdu_len,
  1217. uint32_t l3_pad_len)
  1218. {
  1219. bool last_nbuf;
  1220. uint32_t pkt_hdr_size;
  1221. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  1222. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  1223. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1224. last_nbuf = false;
  1225. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  1226. } else {
  1227. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  1228. last_nbuf = true;
  1229. *mpdu_len = 0;
  1230. }
  1231. return last_nbuf;
  1232. }
  1233. /**
  1234. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  1235. *
  1236. * @soc: DP soc handle
  1237. * @nbuf: pointer to msdu.
  1238. *
  1239. * Return: returns padding length in bytes.
  1240. */
  1241. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  1242. qdf_nbuf_t nbuf)
  1243. {
  1244. uint32_t l3_hdr_pad = 0;
  1245. uint8_t *rx_tlv_hdr;
  1246. struct hal_rx_msdu_metadata msdu_metadata;
  1247. while (nbuf) {
  1248. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1249. /* scattered msdu end with continuation is 0 */
  1250. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1251. hal_rx_msdu_metadata_get(soc->hal_soc,
  1252. rx_tlv_hdr,
  1253. &msdu_metadata);
  1254. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  1255. break;
  1256. }
  1257. nbuf = nbuf->next;
  1258. }
  1259. return l3_hdr_pad;
  1260. }
  1261. /**
  1262. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1263. * multiple nbufs.
  1264. * @soc: DP SOC handle
  1265. * @nbuf: pointer to the first msdu of an amsdu.
  1266. *
  1267. * This function implements the creation of RX frag_list for cases
  1268. * where an MSDU is spread across multiple nbufs.
  1269. *
  1270. * Return: returns the head nbuf which contains complete frag_list.
  1271. */
  1272. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1273. {
  1274. qdf_nbuf_t parent, frag_list, next = NULL;
  1275. uint16_t frag_list_len = 0;
  1276. uint16_t mpdu_len;
  1277. bool last_nbuf;
  1278. uint32_t l3_hdr_pad_offset = 0;
  1279. /*
  1280. * Use msdu len got from REO entry descriptor instead since
  1281. * there is case the RX PKT TLV is corrupted while msdu_len
  1282. * from REO descriptor is right for non-raw RX scatter msdu.
  1283. */
  1284. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1285. /*
  1286. * this is a case where the complete msdu fits in one single nbuf.
  1287. * in this case HW sets both start and end bit and we only need to
  1288. * reset these bits for RAW mode simulator to decap the pkt
  1289. */
  1290. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1291. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1292. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  1293. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1294. return nbuf;
  1295. }
  1296. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1297. /*
  1298. * This is a case where we have multiple msdus (A-MSDU) spread across
  1299. * multiple nbufs. here we create a fraglist out of these nbufs.
  1300. *
  1301. * the moment we encounter a nbuf with continuation bit set we
  1302. * know for sure we have an MSDU which is spread across multiple
  1303. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1304. */
  1305. parent = nbuf;
  1306. frag_list = nbuf->next;
  1307. nbuf = nbuf->next;
  1308. /*
  1309. * set the start bit in the first nbuf we encounter with continuation
  1310. * bit set. This has the proper mpdu length set as it is the first
  1311. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1312. * nbufs will form the frag_list of the parent nbuf.
  1313. */
  1314. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1315. /*
  1316. * L3 header padding is only needed for the 1st buffer
  1317. * in a scattered msdu
  1318. */
  1319. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1320. l3_hdr_pad_offset);
  1321. /*
  1322. * MSDU cont bit is set but reported MPDU length can fit
  1323. * in to single buffer
  1324. *
  1325. * Increment error stats and avoid SG list creation
  1326. */
  1327. if (last_nbuf) {
  1328. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1329. qdf_nbuf_pull_head(parent,
  1330. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1331. return parent;
  1332. }
  1333. /*
  1334. * this is where we set the length of the fragments which are
  1335. * associated to the parent nbuf. We iterate through the frag_list
  1336. * till we hit the last_nbuf of the list.
  1337. */
  1338. do {
  1339. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1340. qdf_nbuf_pull_head(nbuf,
  1341. soc->rx_pkt_tlv_size);
  1342. frag_list_len += qdf_nbuf_len(nbuf);
  1343. if (last_nbuf) {
  1344. next = nbuf->next;
  1345. nbuf->next = NULL;
  1346. break;
  1347. } else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1348. dp_err("Invalid packet length\n");
  1349. qdf_assert_always(0);
  1350. }
  1351. nbuf = nbuf->next;
  1352. } while (!last_nbuf);
  1353. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1354. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1355. parent->next = next;
  1356. qdf_nbuf_pull_head(parent,
  1357. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1358. return parent;
  1359. }
  1360. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1361. #ifdef QCA_PEER_EXT_STATS
  1362. /*
  1363. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1364. * @peer: DP soc context
  1365. * @nbuf: NBuffer
  1366. *
  1367. * Return: Void
  1368. */
  1369. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1370. qdf_nbuf_t nbuf)
  1371. {
  1372. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1373. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1374. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1375. }
  1376. #endif /* QCA_PEER_EXT_STATS */
  1377. /**
  1378. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1379. * to pass in correct fields
  1380. *
  1381. * @vdev: pdev handle
  1382. * @tx_desc: tx descriptor
  1383. * @tid: tid value
  1384. * Return: none
  1385. */
  1386. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1387. {
  1388. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1389. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1390. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1391. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1392. uint32_t interframe_delay =
  1393. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1394. struct cdp_tid_rx_stats *rstats =
  1395. &vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1396. dp_update_delay_stats(NULL, rstats, to_stack, tid,
  1397. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1398. /*
  1399. * Update interframe delay stats calculated at deliver_data_ol point.
  1400. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1401. * interframe delay will not be calculate correctly for 1st frame.
  1402. * On the other side, this will help in avoiding extra per packet check
  1403. * of vdev->prev_rx_deliver_tstamp.
  1404. */
  1405. dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
  1406. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1407. vdev->prev_rx_deliver_tstamp = current_ts;
  1408. }
  1409. /**
  1410. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1411. * @pdev: dp pdev reference
  1412. * @buf_list: buffer list to be dropepd
  1413. *
  1414. * Return: int (number of bufs dropped)
  1415. */
  1416. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1417. qdf_nbuf_t buf_list)
  1418. {
  1419. struct cdp_tid_rx_stats *stats = NULL;
  1420. uint8_t tid = 0, ring_id = 0;
  1421. int num_dropped = 0;
  1422. qdf_nbuf_t buf, next_buf;
  1423. buf = buf_list;
  1424. while (buf) {
  1425. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1426. next_buf = qdf_nbuf_queue_next(buf);
  1427. tid = qdf_nbuf_get_tid_val(buf);
  1428. if (qdf_likely(pdev)) {
  1429. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1430. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1431. stats->delivered_to_stack--;
  1432. }
  1433. dp_rx_nbuf_free(buf);
  1434. buf = next_buf;
  1435. num_dropped++;
  1436. }
  1437. return num_dropped;
  1438. }
  1439. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1440. /**
  1441. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1442. * @soc: core txrx main context
  1443. * @vdev: vdev
  1444. * @txrx_peer: txrx peer
  1445. * @nbuf_head: skb list head
  1446. *
  1447. * Return: true if packet is delivered to netdev per STA.
  1448. */
  1449. static inline bool
  1450. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1451. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1452. {
  1453. /*
  1454. * When extended WDS is disabled, frames are sent to AP netdevice.
  1455. */
  1456. if (qdf_likely(!vdev->wds_ext_enabled))
  1457. return false;
  1458. /*
  1459. * There can be 2 cases:
  1460. * 1. Send frame to parent netdev if its not for netdev per STA
  1461. * 2. If frame is meant for netdev per STA:
  1462. * a. Send frame to appropriate netdev using registered fp.
  1463. * b. If fp is NULL, drop the frames.
  1464. */
  1465. if (!txrx_peer->wds_ext.init)
  1466. return false;
  1467. if (txrx_peer->osif_rx)
  1468. txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
  1469. else
  1470. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1471. return true;
  1472. }
  1473. #else
  1474. static inline bool
  1475. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1476. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1477. {
  1478. return false;
  1479. }
  1480. #endif
  1481. #ifdef PEER_CACHE_RX_PKTS
  1482. /**
  1483. * dp_rx_flush_rx_cached() - flush cached rx frames
  1484. * @peer: peer
  1485. * @drop: flag to drop frames or forward to net stack
  1486. *
  1487. * Return: None
  1488. */
  1489. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1490. {
  1491. struct dp_peer_cached_bufq *bufqi;
  1492. struct dp_rx_cached_buf *cache_buf = NULL;
  1493. ol_txrx_rx_fp data_rx = NULL;
  1494. int num_buff_elem;
  1495. QDF_STATUS status;
  1496. /*
  1497. * Flush dp cached frames only for mld peers and legacy peers, as
  1498. * link peers don't store cached frames
  1499. */
  1500. if (IS_MLO_DP_LINK_PEER(peer))
  1501. return;
  1502. if (!peer->txrx_peer) {
  1503. if (!peer->sta_self_peer) {
  1504. qdf_err("txrx_peer NULL!!");
  1505. qdf_assert_always(0);
  1506. }
  1507. return;
  1508. }
  1509. if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
  1510. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1511. return;
  1512. }
  1513. qdf_spin_lock_bh(&peer->peer_info_lock);
  1514. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1515. data_rx = peer->vdev->osif_rx;
  1516. else
  1517. drop = true;
  1518. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1519. bufqi = &peer->txrx_peer->bufq_info;
  1520. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1521. qdf_list_remove_front(&bufqi->cached_bufq,
  1522. (qdf_list_node_t **)&cache_buf);
  1523. while (cache_buf) {
  1524. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1525. cache_buf->buf);
  1526. bufqi->entries -= num_buff_elem;
  1527. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1528. if (drop) {
  1529. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1530. cache_buf->buf);
  1531. } else {
  1532. /* Flush the cached frames to OSIF DEV */
  1533. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1534. if (status != QDF_STATUS_SUCCESS)
  1535. bufqi->dropped = dp_rx_drop_nbuf_list(
  1536. peer->vdev->pdev,
  1537. cache_buf->buf);
  1538. }
  1539. qdf_mem_free(cache_buf);
  1540. cache_buf = NULL;
  1541. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1542. qdf_list_remove_front(&bufqi->cached_bufq,
  1543. (qdf_list_node_t **)&cache_buf);
  1544. }
  1545. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1546. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1547. }
  1548. /**
  1549. * dp_rx_enqueue_rx() - cache rx frames
  1550. * @peer: peer
  1551. * @rx_buf_list: cache buffer list
  1552. *
  1553. * Return: None
  1554. */
  1555. static QDF_STATUS
  1556. dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
  1557. {
  1558. struct dp_rx_cached_buf *cache_buf;
  1559. struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
  1560. int num_buff_elem;
  1561. QDF_STATUS ret = QDF_STATUS_SUCCESS;
  1562. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  1563. struct dp_peer *peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  1564. DP_MOD_ID_RX);
  1565. if (!peer) {
  1566. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1567. rx_buf_list);
  1568. return QDF_STATUS_E_INVAL;
  1569. }
  1570. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1571. bufqi->dropped);
  1572. if (!peer->valid) {
  1573. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1574. rx_buf_list);
  1575. ret = QDF_STATUS_E_INVAL;
  1576. goto fail;
  1577. }
  1578. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1579. if (bufqi->entries >= bufqi->thresh) {
  1580. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1581. rx_buf_list);
  1582. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1583. ret = QDF_STATUS_E_RESOURCES;
  1584. goto fail;
  1585. }
  1586. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1587. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1588. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1589. if (!cache_buf) {
  1590. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1591. "Failed to allocate buf to cache rx frames");
  1592. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1593. rx_buf_list);
  1594. ret = QDF_STATUS_E_NOMEM;
  1595. goto fail;
  1596. }
  1597. cache_buf->buf = rx_buf_list;
  1598. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1599. qdf_list_insert_back(&bufqi->cached_bufq,
  1600. &cache_buf->node);
  1601. bufqi->entries += num_buff_elem;
  1602. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1603. fail:
  1604. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  1605. return ret;
  1606. }
  1607. static inline
  1608. bool dp_rx_is_peer_cache_bufq_supported(void)
  1609. {
  1610. return true;
  1611. }
  1612. #else
  1613. static inline
  1614. bool dp_rx_is_peer_cache_bufq_supported(void)
  1615. {
  1616. return false;
  1617. }
  1618. static inline QDF_STATUS
  1619. dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
  1620. {
  1621. return QDF_STATUS_SUCCESS;
  1622. }
  1623. #endif
  1624. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1625. /**
  1626. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1627. * using the appropriate call back functions.
  1628. * @soc: soc
  1629. * @vdev: vdev
  1630. * @peer: peer
  1631. * @nbuf_head: skb list head
  1632. * @nbuf_tail: skb list tail
  1633. *
  1634. * Return: None
  1635. */
  1636. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1637. struct dp_vdev *vdev,
  1638. struct dp_txrx_peer *txrx_peer,
  1639. qdf_nbuf_t nbuf_head)
  1640. {
  1641. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1642. txrx_peer, nbuf_head)))
  1643. return;
  1644. /* Function pointer initialized only when FISA is enabled */
  1645. if (vdev->osif_fisa_rx)
  1646. /* on failure send it via regular path */
  1647. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1648. else
  1649. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1650. }
  1651. #else
  1652. /**
  1653. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1654. * using the appropriate call back functions.
  1655. * @soc: soc
  1656. * @vdev: vdev
  1657. * @txrx_peer: txrx peer
  1658. * @nbuf_head: skb list head
  1659. * @nbuf_tail: skb list tail
  1660. *
  1661. * Check the return status of the call back function and drop
  1662. * the packets if the return status indicates a failure.
  1663. *
  1664. * Return: None
  1665. */
  1666. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1667. struct dp_vdev *vdev,
  1668. struct dp_txrx_peer *txrx_peer,
  1669. qdf_nbuf_t nbuf_head)
  1670. {
  1671. int num_nbuf = 0;
  1672. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1673. /* Function pointer initialized only when FISA is enabled */
  1674. if (vdev->osif_fisa_rx)
  1675. /* on failure send it via regular path */
  1676. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1677. else if (vdev->osif_rx)
  1678. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1679. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1680. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1681. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1682. if (txrx_peer)
  1683. DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
  1684. num_nbuf);
  1685. }
  1686. }
  1687. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1688. /*
  1689. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1690. * @soc DP soc
  1691. * @vdev: DP vdev handle
  1692. * @txrx_peer: pointer to the txrx peer object
  1693. * nbuf_head: skb list head
  1694. *
  1695. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1696. * QDF_STATUS_E_FAILURE
  1697. */
  1698. static inline QDF_STATUS
  1699. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1700. struct dp_vdev *vdev,
  1701. struct dp_txrx_peer *txrx_peer,
  1702. qdf_nbuf_t nbuf_head)
  1703. {
  1704. int num_nbuf;
  1705. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1706. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1707. /*
  1708. * This is a special case where vdev is invalid,
  1709. * so we cannot know the pdev to which this packet
  1710. * belonged. Hence we update the soc rx error stats.
  1711. */
  1712. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1713. return QDF_STATUS_E_FAILURE;
  1714. }
  1715. /*
  1716. * highly unlikely to have a vdev without a registered rx
  1717. * callback function. if so let us free the nbuf_list.
  1718. */
  1719. if (qdf_unlikely(!vdev->osif_rx)) {
  1720. if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
  1721. dp_rx_enqueue_rx(txrx_peer, nbuf_head);
  1722. } else {
  1723. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1724. nbuf_head);
  1725. DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
  1726. vdev->pdev->enhanced_stats_en);
  1727. }
  1728. return QDF_STATUS_E_FAILURE;
  1729. }
  1730. return QDF_STATUS_SUCCESS;
  1731. }
  1732. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  1733. struct dp_vdev *vdev,
  1734. struct dp_txrx_peer *txrx_peer,
  1735. qdf_nbuf_t nbuf_head,
  1736. qdf_nbuf_t nbuf_tail)
  1737. {
  1738. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  1739. QDF_STATUS_SUCCESS)
  1740. return QDF_STATUS_E_FAILURE;
  1741. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1742. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1743. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1744. &nbuf_tail);
  1745. }
  1746. dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
  1747. return QDF_STATUS_SUCCESS;
  1748. }
  1749. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  1750. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  1751. struct dp_vdev *vdev,
  1752. struct dp_txrx_peer *txrx_peer,
  1753. qdf_nbuf_t nbuf_head,
  1754. qdf_nbuf_t nbuf_tail)
  1755. {
  1756. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  1757. QDF_STATUS_SUCCESS)
  1758. return QDF_STATUS_E_FAILURE;
  1759. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  1760. return QDF_STATUS_SUCCESS;
  1761. }
  1762. #endif
  1763. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1764. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1765. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
  1766. { \
  1767. qdf_nbuf_t nbuf_local; \
  1768. struct dp_txrx_peer *txrx_peer_local; \
  1769. struct dp_vdev *vdev_local = vdev_hdl; \
  1770. do { \
  1771. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1772. break; \
  1773. nbuf_local = nbuf; \
  1774. txrx_peer_local = txrx_peer; \
  1775. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1776. break; \
  1777. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1778. break; \
  1779. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1780. (nbuf_local), \
  1781. (txrx_peer_local), 0, 1); \
  1782. } while (0); \
  1783. }
  1784. #else
  1785. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
  1786. #endif
  1787. #ifndef QCA_ENHANCED_STATS_SUPPORT
  1788. /**
  1789. * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
  1790. *
  1791. * @soc: datapath soc handle
  1792. * @nbuf: received msdu buffer
  1793. * @rx_tlv_hdr: rx tlv header
  1794. * @txrx_peer: datapath txrx_peer handle
  1795. *
  1796. * Return: void
  1797. */
  1798. static inline
  1799. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1800. uint8_t *rx_tlv_hdr,
  1801. struct dp_txrx_peer *txrx_peer)
  1802. {
  1803. bool is_ampdu;
  1804. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1805. /*
  1806. * TODO - For KIWI this field is present in ring_desc
  1807. * Try to use ring desc instead of tlv.
  1808. */
  1809. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  1810. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
  1811. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1812. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  1813. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1814. tid = qdf_nbuf_get_tid_val(nbuf);
  1815. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1816. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1817. rx_tlv_hdr);
  1818. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1819. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1820. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
  1821. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1822. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1823. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1824. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
  1825. /*
  1826. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1827. * then increase index [nss - 1] in array counter.
  1828. */
  1829. if (nss > 0 && (pkt_type == DOT11_N ||
  1830. pkt_type == DOT11_AC ||
  1831. pkt_type == DOT11_AX))
  1832. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
  1833. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
  1834. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
  1835. hal_rx_tlv_mic_err_get(soc->hal_soc,
  1836. rx_tlv_hdr));
  1837. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
  1838. hal_rx_tlv_decrypt_err_get(soc->hal_soc,
  1839. rx_tlv_hdr));
  1840. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1841. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
  1842. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1843. rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1844. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1845. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1846. rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1847. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1848. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1849. rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1850. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1851. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1852. rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1853. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1854. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1855. rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1856. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1857. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1858. rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1859. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1860. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1861. rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1862. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1863. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1864. rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1865. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1866. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1867. rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1868. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1869. DP_PEER_EXTD_STATS_INCC(txrx_peer,
  1870. rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1871. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1872. }
  1873. #else
  1874. static inline
  1875. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1876. uint8_t *rx_tlv_hdr,
  1877. struct dp_txrx_peer *txrx_peer)
  1878. {
  1879. }
  1880. #endif
  1881. /**
  1882. * dp_rx_msdu_stats_update() - update per msdu stats.
  1883. * @soc: core txrx main context
  1884. * @nbuf: pointer to the first msdu of an amsdu.
  1885. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1886. * @txrx_peer: pointer to the txrx peer object.
  1887. * @ring_id: reo dest ring number on which pkt is reaped.
  1888. * @tid_stats: per tid rx stats.
  1889. *
  1890. * update all the per msdu stats for that nbuf.
  1891. * Return: void
  1892. */
  1893. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1894. uint8_t *rx_tlv_hdr,
  1895. struct dp_txrx_peer *txrx_peer,
  1896. uint8_t ring_id,
  1897. struct cdp_tid_rx_stats *tid_stats)
  1898. {
  1899. bool is_not_amsdu;
  1900. struct dp_vdev *vdev = txrx_peer->vdev;
  1901. bool enh_flag;
  1902. qdf_ether_header_t *eh;
  1903. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1904. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
  1905. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1906. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1907. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
  1908. msdu_len);
  1909. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
  1910. is_not_amsdu);
  1911. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1912. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
  1913. qdf_nbuf_is_rx_retry_flag(nbuf));
  1914. tid_stats->msdu_cnt++;
  1915. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1916. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1917. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1918. enh_flag = vdev->pdev->enhanced_stats_en;
  1919. DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
  1920. tid_stats->mcast_msdu_cnt++;
  1921. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1922. DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
  1923. tid_stats->bcast_msdu_cnt++;
  1924. }
  1925. }
  1926. txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
  1927. dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
  1928. }
  1929. #ifndef WDS_VENDOR_EXTENSION
  1930. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1931. struct dp_vdev *vdev,
  1932. struct dp_txrx_peer *txrx_peer)
  1933. {
  1934. return 1;
  1935. }
  1936. #endif
  1937. #ifdef RX_DESC_DEBUG_CHECK
  1938. /**
  1939. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1940. * corruption
  1941. *
  1942. * @ring_desc: REO ring descriptor
  1943. * @rx_desc: Rx descriptor
  1944. *
  1945. * Return: NONE
  1946. */
  1947. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  1948. hal_ring_desc_t ring_desc,
  1949. struct dp_rx_desc *rx_desc)
  1950. {
  1951. struct hal_buf_info hbi;
  1952. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1953. /* Sanity check for possible buffer paddr corruption */
  1954. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1955. return QDF_STATUS_SUCCESS;
  1956. return QDF_STATUS_E_FAILURE;
  1957. }
  1958. /**
  1959. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1960. * out of bound access from H.W
  1961. *
  1962. * @soc: DP soc
  1963. * @pkt_len: Packet length received from H.W
  1964. *
  1965. * Return: NONE
  1966. */
  1967. static inline void
  1968. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1969. uint32_t pkt_len)
  1970. {
  1971. struct rx_desc_pool *rx_desc_pool;
  1972. rx_desc_pool = &soc->rx_desc_buf[0];
  1973. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1974. }
  1975. #else
  1976. static inline void
  1977. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1978. #endif
  1979. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1980. /**
  1981. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1982. * no corresbonding peer found
  1983. * @soc: core txrx main context
  1984. * @nbuf: pkt skb pointer
  1985. *
  1986. * This function will try to deliver some RX special frames to stack
  1987. * even there is no peer matched found. for instance, LFR case, some
  1988. * eapol data will be sent to host before peer_map done.
  1989. *
  1990. * Return: None
  1991. */
  1992. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1993. {
  1994. uint16_t peer_id;
  1995. uint8_t vdev_id;
  1996. struct dp_vdev *vdev = NULL;
  1997. uint32_t l2_hdr_offset = 0;
  1998. uint16_t msdu_len = 0;
  1999. uint32_t pkt_len = 0;
  2000. uint8_t *rx_tlv_hdr;
  2001. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  2002. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  2003. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2004. if (peer_id > soc->max_peer_id)
  2005. goto deliver_fail;
  2006. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2007. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  2008. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  2009. goto deliver_fail;
  2010. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  2011. goto deliver_fail;
  2012. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2013. l2_hdr_offset =
  2014. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2015. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2016. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  2017. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2018. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2019. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  2020. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2021. qdf_nbuf_set_exc_frame(nbuf, 1);
  2022. if (QDF_STATUS_SUCCESS !=
  2023. vdev->osif_rx(vdev->osif_vdev, nbuf))
  2024. goto deliver_fail;
  2025. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  2026. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2027. return;
  2028. }
  2029. deliver_fail:
  2030. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2031. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2032. dp_rx_nbuf_free(nbuf);
  2033. if (vdev)
  2034. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2035. }
  2036. #else
  2037. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2038. {
  2039. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2040. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2041. dp_rx_nbuf_free(nbuf);
  2042. }
  2043. #endif
  2044. /**
  2045. * dp_rx_srng_get_num_pending() - get number of pending entries
  2046. * @hal_soc: hal soc opaque pointer
  2047. * @hal_ring: opaque pointer to the HAL Rx Ring
  2048. * @num_entries: number of entries in the hal_ring.
  2049. * @near_full: pointer to a boolean. This is set if ring is near full.
  2050. *
  2051. * The function returns the number of entries in a destination ring which are
  2052. * yet to be reaped. The function also checks if the ring is near full.
  2053. * If more than half of the ring needs to be reaped, the ring is considered
  2054. * approaching full.
  2055. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  2056. * entries. It should not be called within a SRNG lock. HW pointer value is
  2057. * synced into cached_hp.
  2058. *
  2059. * Return: Number of pending entries if any
  2060. */
  2061. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  2062. hal_ring_handle_t hal_ring_hdl,
  2063. uint32_t num_entries,
  2064. bool *near_full)
  2065. {
  2066. uint32_t num_pending = 0;
  2067. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  2068. hal_ring_hdl,
  2069. true);
  2070. if (num_entries && (num_pending >= num_entries >> 1))
  2071. *near_full = true;
  2072. else
  2073. *near_full = false;
  2074. return num_pending;
  2075. }
  2076. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2077. #ifdef WLAN_SUPPORT_RX_FISA
  2078. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2079. {
  2080. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  2081. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2082. }
  2083. #else
  2084. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2085. {
  2086. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2087. }
  2088. #endif
  2089. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  2090. #ifdef DP_RX_DROP_RAW_FRM
  2091. /**
  2092. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  2093. * @nbuf: pkt skb pointer
  2094. *
  2095. * Return: true - raw frame, dropped
  2096. * false - not raw frame, do nothing
  2097. */
  2098. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  2099. {
  2100. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2101. dp_rx_nbuf_free(nbuf);
  2102. return true;
  2103. }
  2104. return false;
  2105. }
  2106. #endif
  2107. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  2108. /**
  2109. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  2110. * @soc: Datapath soc structure
  2111. * @ring_num: REO ring number
  2112. * @ring_desc: REO ring descriptor
  2113. *
  2114. * Returns: None
  2115. */
  2116. void
  2117. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  2118. hal_ring_desc_t ring_desc)
  2119. {
  2120. struct dp_buf_info_record *record;
  2121. struct hal_buf_info hbi;
  2122. uint32_t idx;
  2123. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  2124. return;
  2125. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  2126. /* buffer_addr_info is the first element of ring_desc */
  2127. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  2128. &hbi);
  2129. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  2130. DP_RX_HIST_MAX);
  2131. /* No NULL check needed for record since its an array */
  2132. record = &soc->rx_ring_history[ring_num]->entry[idx];
  2133. record->timestamp = qdf_get_log_timestamp();
  2134. record->hbi.paddr = hbi.paddr;
  2135. record->hbi.sw_cookie = hbi.sw_cookie;
  2136. record->hbi.rbm = hbi.rbm;
  2137. }
  2138. #endif
  2139. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  2140. /**
  2141. * dp_rx_update_stats() - Update soc level rx packet count
  2142. * @soc: DP soc handle
  2143. * @nbuf: nbuf received
  2144. *
  2145. * Returns: none
  2146. */
  2147. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2148. {
  2149. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  2150. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2151. }
  2152. #endif
  2153. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  2154. /**
  2155. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  2156. * @soc : dp_soc handle
  2157. * @pdev: dp_pdev handle
  2158. * @peer_id: peer_id of the peer for which completion came
  2159. * @ppdu_id: ppdu_id
  2160. * @netbuf: Buffer pointer
  2161. *
  2162. * This function is used to deliver rx packet to packet capture
  2163. */
  2164. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  2165. uint16_t peer_id, uint32_t is_offload,
  2166. qdf_nbuf_t netbuf)
  2167. {
  2168. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2169. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  2170. peer_id, is_offload, pdev->pdev_id);
  2171. }
  2172. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2173. uint32_t is_offload)
  2174. {
  2175. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2176. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  2177. soc, nbuf, HTT_INVALID_VDEV,
  2178. is_offload, 0);
  2179. }
  2180. #endif
  2181. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2182. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2183. {
  2184. QDF_STATUS ret;
  2185. if (vdev->osif_rx_flush) {
  2186. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2187. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2188. dp_err("Failed to flush rx pkts for vdev %d\n",
  2189. vdev->vdev_id);
  2190. return ret;
  2191. }
  2192. }
  2193. return QDF_STATUS_SUCCESS;
  2194. }
  2195. static QDF_STATUS
  2196. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2197. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2198. struct dp_pdev *dp_pdev,
  2199. struct rx_desc_pool *rx_desc_pool)
  2200. {
  2201. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2202. (nbuf_frag_info_t->virt_addr).nbuf =
  2203. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2204. RX_BUFFER_RESERVATION,
  2205. rx_desc_pool->buf_alignment, FALSE);
  2206. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2207. dp_err("nbuf alloc failed");
  2208. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2209. return ret;
  2210. }
  2211. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2212. (nbuf_frag_info_t->virt_addr).nbuf,
  2213. QDF_DMA_FROM_DEVICE,
  2214. rx_desc_pool->buf_size);
  2215. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2216. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2217. dp_err("nbuf map failed");
  2218. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2219. return ret;
  2220. }
  2221. nbuf_frag_info_t->paddr =
  2222. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2223. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2224. &nbuf_frag_info_t->paddr,
  2225. rx_desc_pool);
  2226. if (ret == QDF_STATUS_E_FAILURE) {
  2227. dp_err("nbuf check x86 failed");
  2228. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2229. return ret;
  2230. }
  2231. return QDF_STATUS_SUCCESS;
  2232. }
  2233. QDF_STATUS
  2234. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2235. struct dp_srng *dp_rxdma_srng,
  2236. struct rx_desc_pool *rx_desc_pool,
  2237. uint32_t num_req_buffers)
  2238. {
  2239. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2240. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2241. union dp_rx_desc_list_elem_t *next;
  2242. void *rxdma_ring_entry;
  2243. qdf_dma_addr_t paddr;
  2244. struct dp_rx_nbuf_frag_info *nf_info;
  2245. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2246. uint32_t buffer_index, nbuf_ptrs_per_page;
  2247. qdf_nbuf_t nbuf;
  2248. QDF_STATUS ret;
  2249. int page_idx, total_pages;
  2250. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2251. union dp_rx_desc_list_elem_t *tail = NULL;
  2252. int sync_hw_ptr = 1;
  2253. uint32_t num_entries_avail;
  2254. if (qdf_unlikely(!dp_pdev)) {
  2255. dp_rx_err("%pK: pdev is null for mac_id = %d",
  2256. dp_soc, mac_id);
  2257. return QDF_STATUS_E_FAILURE;
  2258. }
  2259. if (qdf_unlikely(!rxdma_srng)) {
  2260. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2261. return QDF_STATUS_E_FAILURE;
  2262. }
  2263. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2264. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2265. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2266. rxdma_srng,
  2267. sync_hw_ptr);
  2268. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2269. if (!num_entries_avail) {
  2270. dp_err("Num of available entries is zero, nothing to do");
  2271. return QDF_STATUS_E_NOMEM;
  2272. }
  2273. if (num_entries_avail < num_req_buffers)
  2274. num_req_buffers = num_entries_avail;
  2275. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2276. num_req_buffers, &desc_list, &tail);
  2277. if (!nr_descs) {
  2278. dp_err("no free rx_descs in freelist");
  2279. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2280. return QDF_STATUS_E_NOMEM;
  2281. }
  2282. dp_debug("got %u RX descs for driver attach", nr_descs);
  2283. /*
  2284. * Try to allocate pointers to the nbuf one page at a time.
  2285. * Take pointers that can fit in one page of memory and
  2286. * iterate through the total descriptors that need to be
  2287. * allocated in order of pages. Reuse the pointers that
  2288. * have been allocated to fit in one page across each
  2289. * iteration to index into the nbuf.
  2290. */
  2291. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2292. /*
  2293. * Add an extra page to store the remainder if any
  2294. */
  2295. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2296. total_pages++;
  2297. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2298. if (!nf_info) {
  2299. dp_err("failed to allocate nbuf array");
  2300. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2301. QDF_BUG(0);
  2302. return QDF_STATUS_E_NOMEM;
  2303. }
  2304. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2305. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2306. qdf_mem_zero(nf_info, PAGE_SIZE);
  2307. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2308. /*
  2309. * The last page of buffer pointers may not be required
  2310. * completely based on the number of descriptors. Below
  2311. * check will ensure we are allocating only the
  2312. * required number of descriptors.
  2313. */
  2314. if (nr_nbuf_total >= nr_descs)
  2315. break;
  2316. /* Flag is set while pdev rx_desc_pool initialization */
  2317. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2318. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2319. &nf_info[nr_nbuf], dp_pdev,
  2320. rx_desc_pool);
  2321. else
  2322. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2323. &nf_info[nr_nbuf], dp_pdev,
  2324. rx_desc_pool);
  2325. if (QDF_IS_STATUS_ERROR(ret))
  2326. break;
  2327. nr_nbuf_total++;
  2328. }
  2329. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2330. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2331. rxdma_ring_entry =
  2332. hal_srng_src_get_next(dp_soc->hal_soc,
  2333. rxdma_srng);
  2334. qdf_assert_always(rxdma_ring_entry);
  2335. next = desc_list->next;
  2336. paddr = nf_info[buffer_index].paddr;
  2337. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2338. /* Flag is set while pdev rx_desc_pool initialization */
  2339. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2340. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2341. &nf_info[buffer_index]);
  2342. else
  2343. dp_rx_desc_prep(&desc_list->rx_desc,
  2344. &nf_info[buffer_index]);
  2345. desc_list->rx_desc.in_use = 1;
  2346. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2347. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2348. __func__,
  2349. RX_DESC_REPLENISHED);
  2350. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2351. desc_list->rx_desc.cookie,
  2352. rx_desc_pool->owner);
  2353. dp_ipa_handle_rx_buf_smmu_mapping(
  2354. dp_soc, nbuf,
  2355. rx_desc_pool->buf_size,
  2356. true);
  2357. desc_list = next;
  2358. }
  2359. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2360. rxdma_srng, nr_nbuf, nr_nbuf);
  2361. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2362. }
  2363. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2364. qdf_mem_free(nf_info);
  2365. if (!nr_nbuf_total) {
  2366. dp_err("No nbuf's allocated");
  2367. QDF_BUG(0);
  2368. return QDF_STATUS_E_RESOURCES;
  2369. }
  2370. /* No need to count the number of bytes received during replenish.
  2371. * Therefore set replenish.pkts.bytes as 0.
  2372. */
  2373. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2374. return QDF_STATUS_SUCCESS;
  2375. }
  2376. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2377. /**
  2378. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2379. * monitor destination ring via frag.
  2380. *
  2381. * Enable this flag only for monitor destination buffer processing
  2382. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2383. * If flag is set then frag based function will be called for alloc,
  2384. * map, prep desc and free ops for desc buffer else normal nbuf based
  2385. * function will be called.
  2386. *
  2387. * @rx_desc_pool: Rx desc pool
  2388. * @is_mon_dest_desc: Is it for monitor dest buffer
  2389. *
  2390. * Return: None
  2391. */
  2392. #ifdef DP_RX_MON_MEM_FRAG
  2393. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2394. bool is_mon_dest_desc)
  2395. {
  2396. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2397. if (is_mon_dest_desc)
  2398. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2399. }
  2400. #else
  2401. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2402. bool is_mon_dest_desc)
  2403. {
  2404. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2405. if (is_mon_dest_desc)
  2406. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2407. }
  2408. #endif
  2409. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2410. /*
  2411. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2412. * pool
  2413. *
  2414. * @pdev: core txrx pdev context
  2415. *
  2416. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2417. * QDF_STATUS_E_NOMEM
  2418. */
  2419. QDF_STATUS
  2420. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2421. {
  2422. struct dp_soc *soc = pdev->soc;
  2423. uint32_t rxdma_entries;
  2424. uint32_t rx_sw_desc_num;
  2425. struct dp_srng *dp_rxdma_srng;
  2426. struct rx_desc_pool *rx_desc_pool;
  2427. uint32_t status = QDF_STATUS_SUCCESS;
  2428. int mac_for_pdev;
  2429. mac_for_pdev = pdev->lmac_id;
  2430. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2431. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2432. soc, mac_for_pdev);
  2433. return status;
  2434. }
  2435. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2436. rxdma_entries = dp_rxdma_srng->num_entries;
  2437. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2438. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2439. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2440. status = dp_rx_desc_pool_alloc(soc,
  2441. rx_sw_desc_num,
  2442. rx_desc_pool);
  2443. if (status != QDF_STATUS_SUCCESS)
  2444. return status;
  2445. return status;
  2446. }
  2447. /*
  2448. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2449. *
  2450. * @pdev: core txrx pdev context
  2451. */
  2452. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2453. {
  2454. int mac_for_pdev = pdev->lmac_id;
  2455. struct dp_soc *soc = pdev->soc;
  2456. struct rx_desc_pool *rx_desc_pool;
  2457. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2458. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2459. }
  2460. /*
  2461. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2462. *
  2463. * @pdev: core txrx pdev context
  2464. *
  2465. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2466. * QDF_STATUS_E_NOMEM
  2467. */
  2468. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2469. {
  2470. int mac_for_pdev = pdev->lmac_id;
  2471. struct dp_soc *soc = pdev->soc;
  2472. uint32_t rxdma_entries;
  2473. uint32_t rx_sw_desc_num;
  2474. struct dp_srng *dp_rxdma_srng;
  2475. struct rx_desc_pool *rx_desc_pool;
  2476. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2477. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2478. /**
  2479. * If NSS is enabled, rx_desc_pool is already filled.
  2480. * Hence, just disable desc_pool frag flag.
  2481. */
  2482. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2483. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2484. soc, mac_for_pdev);
  2485. return QDF_STATUS_SUCCESS;
  2486. }
  2487. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2488. return QDF_STATUS_E_NOMEM;
  2489. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2490. rxdma_entries = dp_rxdma_srng->num_entries;
  2491. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2492. rx_sw_desc_num =
  2493. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2494. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2495. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2496. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2497. /* Disable monitor dest processing via frag */
  2498. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2499. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2500. rx_sw_desc_num, rx_desc_pool);
  2501. return QDF_STATUS_SUCCESS;
  2502. }
  2503. /*
  2504. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2505. * @pdev: core txrx pdev context
  2506. *
  2507. * This function resets the freelist of rx descriptors and destroys locks
  2508. * associated with this list of descriptors.
  2509. */
  2510. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2511. {
  2512. int mac_for_pdev = pdev->lmac_id;
  2513. struct dp_soc *soc = pdev->soc;
  2514. struct rx_desc_pool *rx_desc_pool;
  2515. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2516. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2517. }
  2518. /*
  2519. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2520. *
  2521. * @pdev: core txrx pdev context
  2522. *
  2523. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2524. * QDF_STATUS_E_NOMEM
  2525. */
  2526. QDF_STATUS
  2527. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2528. {
  2529. int mac_for_pdev = pdev->lmac_id;
  2530. struct dp_soc *soc = pdev->soc;
  2531. struct dp_srng *dp_rxdma_srng;
  2532. struct rx_desc_pool *rx_desc_pool;
  2533. uint32_t rxdma_entries;
  2534. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2535. rxdma_entries = dp_rxdma_srng->num_entries;
  2536. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2537. /* Initialize RX buffer pool which will be
  2538. * used during low memory conditions
  2539. */
  2540. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2541. return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
  2542. dp_rxdma_srng,
  2543. rx_desc_pool,
  2544. rxdma_entries - 1);
  2545. }
  2546. /*
  2547. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2548. *
  2549. * @pdev: core txrx pdev context
  2550. */
  2551. void
  2552. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2553. {
  2554. int mac_for_pdev = pdev->lmac_id;
  2555. struct dp_soc *soc = pdev->soc;
  2556. struct rx_desc_pool *rx_desc_pool;
  2557. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2558. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2559. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2560. }
  2561. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2562. bool dp_rx_deliver_special_frame(struct dp_soc *soc,
  2563. struct dp_txrx_peer *txrx_peer,
  2564. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2565. uint8_t *rx_tlv_hdr)
  2566. {
  2567. uint32_t l2_hdr_offset = 0;
  2568. uint16_t msdu_len = 0;
  2569. uint32_t skip_len;
  2570. l2_hdr_offset =
  2571. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2572. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2573. skip_len = l2_hdr_offset;
  2574. } else {
  2575. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2576. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2577. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2578. }
  2579. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2580. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2581. qdf_nbuf_pull_head(nbuf, skip_len);
  2582. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2583. dp_info("special frame, mpdu sn 0x%x",
  2584. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2585. qdf_nbuf_set_exc_frame(nbuf, 1);
  2586. dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
  2587. nbuf, NULL);
  2588. return true;
  2589. }
  2590. return false;
  2591. }
  2592. #endif
  2593. #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
  2594. void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
  2595. uint8_t *rx_tlv,
  2596. qdf_nbuf_t nbuf)
  2597. {
  2598. struct dp_soc *soc;
  2599. if (!pdev->is_first_wakeup_packet)
  2600. return;
  2601. soc = pdev->soc;
  2602. if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
  2603. qdf_nbuf_mark_wakeup_frame(nbuf);
  2604. dp_info("First packet after WOW Wakeup rcvd");
  2605. }
  2606. }
  2607. #endif