msm_cvp_res_parse.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/iommu.h>
  6. #include <linux/of.h>
  7. #include <linux/slab.h>
  8. #include <linux/sort.h>
  9. #include <linux/of_reserved_mem.h>
  10. #include "msm_cvp_debug.h"
  11. #include "msm_cvp_resources.h"
  12. #include "msm_cvp_res_parse.h"
  13. #include "cvp_core_hfi.h"
  14. #include "soc/qcom/secure_buffer.h"
  15. enum clock_properties {
  16. CLOCK_PROP_HAS_SCALING = 1 << 0,
  17. CLOCK_PROP_HAS_MEM_RETENTION = 1 << 1,
  18. };
  19. #define PERF_GOV "performance"
  20. static inline struct device *msm_iommu_get_ctx(const char *ctx_name)
  21. {
  22. return NULL;
  23. }
  24. static size_t get_u32_array_num_elements(struct device_node *np,
  25. char *name)
  26. {
  27. int len;
  28. size_t num_elements = 0;
  29. if (!of_get_property(np, name, &len)) {
  30. dprintk(CVP_ERR, "Failed to read %s from device tree\n",
  31. name);
  32. goto fail_read;
  33. }
  34. num_elements = len / sizeof(u32);
  35. if (num_elements <= 0) {
  36. dprintk(CVP_ERR, "%s not specified in device tree\n",
  37. name);
  38. goto fail_read;
  39. }
  40. return num_elements;
  41. fail_read:
  42. return 0;
  43. }
  44. static inline void msm_cvp_free_allowed_clocks_table(
  45. struct msm_cvp_platform_resources *res)
  46. {
  47. res->allowed_clks_tbl = NULL;
  48. }
  49. static inline void msm_cvp_free_cycles_per_mb_table(
  50. struct msm_cvp_platform_resources *res)
  51. {
  52. res->clock_freq_tbl.clk_prof_entries = NULL;
  53. }
  54. static inline void msm_cvp_free_reg_table(
  55. struct msm_cvp_platform_resources *res)
  56. {
  57. res->reg_set.reg_tbl = NULL;
  58. }
  59. static inline void msm_cvp_free_qdss_addr_table(
  60. struct msm_cvp_platform_resources *res)
  61. {
  62. res->qdss_addr_set.addr_tbl = NULL;
  63. }
  64. static inline void msm_cvp_free_bus_vectors(
  65. struct msm_cvp_platform_resources *res)
  66. {
  67. kfree(res->bus_set.bus_tbl);
  68. res->bus_set.bus_tbl = NULL;
  69. res->bus_set.count = 0;
  70. }
  71. static inline void msm_cvp_free_regulator_table(
  72. struct msm_cvp_platform_resources *res)
  73. {
  74. int c = 0;
  75. for (c = 0; c < res->regulator_set.count; ++c) {
  76. struct regulator_info *rinfo =
  77. &res->regulator_set.regulator_tbl[c];
  78. rinfo->name = NULL;
  79. }
  80. res->regulator_set.regulator_tbl = NULL;
  81. res->regulator_set.count = 0;
  82. }
  83. static inline void msm_cvp_free_clock_table(
  84. struct msm_cvp_platform_resources *res)
  85. {
  86. res->clock_set.clock_tbl = NULL;
  87. res->clock_set.count = 0;
  88. }
  89. void msm_cvp_free_platform_resources(
  90. struct msm_cvp_platform_resources *res)
  91. {
  92. msm_cvp_free_clock_table(res);
  93. msm_cvp_free_regulator_table(res);
  94. msm_cvp_free_allowed_clocks_table(res);
  95. msm_cvp_free_reg_table(res);
  96. msm_cvp_free_qdss_addr_table(res);
  97. msm_cvp_free_bus_vectors(res);
  98. }
  99. static int msm_cvp_load_ipcc_regs(struct msm_cvp_platform_resources *res)
  100. {
  101. int ret = 0;
  102. unsigned int reg_config[2];
  103. struct platform_device *pdev = res->pdev;
  104. ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,ipcc-reg",
  105. reg_config, 2);
  106. if (ret) {
  107. dprintk(CVP_ERR, "Failed to read ipcc reg: %d\n", ret);
  108. return ret;
  109. }
  110. res->ipcc_reg_base = reg_config[0];
  111. res->ipcc_reg_size = reg_config[1];
  112. return ret;
  113. }
  114. static int msm_cvp_load_gcc_regs(struct msm_cvp_platform_resources *res)
  115. {
  116. int ret = 0;
  117. unsigned int reg_config[2];
  118. struct platform_device *pdev = res->pdev;
  119. ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,gcc-reg",
  120. reg_config, 2);
  121. if (ret) {
  122. dprintk(CVP_WARN, "No gcc reg configured: %d\n", ret);
  123. return ret;
  124. }
  125. res->gcc_reg_base = reg_config[0];
  126. res->gcc_reg_size = reg_config[1];
  127. return ret;
  128. }
  129. static int msm_cvp_load_reg_table(struct msm_cvp_platform_resources *res)
  130. {
  131. struct reg_set *reg_set;
  132. struct platform_device *pdev = res->pdev;
  133. int i;
  134. int rc = 0;
  135. if (!of_find_property(pdev->dev.of_node, "qcom,reg-presets", NULL)) {
  136. /*
  137. * qcom,reg-presets is an optional property. It likely won't be
  138. * present if we don't have any register settings to program
  139. */
  140. dprintk(CVP_CORE, "qcom,reg-presets not found\n");
  141. return 0;
  142. }
  143. reg_set = &res->reg_set;
  144. reg_set->count = get_u32_array_num_elements(pdev->dev.of_node,
  145. "qcom,reg-presets");
  146. reg_set->count /= sizeof(*reg_set->reg_tbl) / sizeof(u32);
  147. if (!reg_set->count) {
  148. dprintk(CVP_CORE, "no elements in reg set\n");
  149. return rc;
  150. }
  151. reg_set->reg_tbl = devm_kzalloc(&pdev->dev, reg_set->count *
  152. sizeof(*(reg_set->reg_tbl)), GFP_KERNEL);
  153. if (!reg_set->reg_tbl) {
  154. dprintk(CVP_ERR, "%s Failed to alloc register table\n",
  155. __func__);
  156. return -ENOMEM;
  157. }
  158. if (of_property_read_u32_array(pdev->dev.of_node, "qcom,reg-presets",
  159. (u32 *)reg_set->reg_tbl, reg_set->count * 2)) {
  160. dprintk(CVP_ERR, "Failed to read register table\n");
  161. msm_cvp_free_reg_table(res);
  162. return -EINVAL;
  163. }
  164. for (i = 0; i < reg_set->count; i++) {
  165. dprintk(CVP_CORE,
  166. "reg = %x, value = %x\n",
  167. reg_set->reg_tbl[i].reg,
  168. reg_set->reg_tbl[i].value
  169. );
  170. }
  171. return rc;
  172. }
  173. static int msm_cvp_load_qdss_table(struct msm_cvp_platform_resources *res)
  174. {
  175. struct addr_set *qdss_addr_set;
  176. struct platform_device *pdev = res->pdev;
  177. int i;
  178. int rc = 0;
  179. if (!of_find_property(pdev->dev.of_node, "qcom,qdss-presets", NULL)) {
  180. /*
  181. * qcom,qdss-presets is an optional property. It likely won't be
  182. * present if we don't have any register settings to program
  183. */
  184. dprintk(CVP_CORE, "qcom,qdss-presets not found\n");
  185. return rc;
  186. }
  187. qdss_addr_set = &res->qdss_addr_set;
  188. qdss_addr_set->count = get_u32_array_num_elements(pdev->dev.of_node,
  189. "qcom,qdss-presets");
  190. qdss_addr_set->count /= sizeof(*qdss_addr_set->addr_tbl) / sizeof(u32);
  191. if (!qdss_addr_set->count) {
  192. dprintk(CVP_CORE, "no elements in qdss reg set\n");
  193. return rc;
  194. }
  195. qdss_addr_set->addr_tbl = devm_kzalloc(&pdev->dev,
  196. qdss_addr_set->count * sizeof(*qdss_addr_set->addr_tbl),
  197. GFP_KERNEL);
  198. if (!qdss_addr_set->addr_tbl) {
  199. dprintk(CVP_ERR, "%s Failed to alloc register table\n",
  200. __func__);
  201. rc = -ENOMEM;
  202. goto err_qdss_addr_tbl;
  203. }
  204. rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,qdss-presets",
  205. (u32 *)qdss_addr_set->addr_tbl, qdss_addr_set->count * 2);
  206. if (rc) {
  207. dprintk(CVP_ERR, "Failed to read qdss address table\n");
  208. msm_cvp_free_qdss_addr_table(res);
  209. rc = -EINVAL;
  210. goto err_qdss_addr_tbl;
  211. }
  212. for (i = 0; i < qdss_addr_set->count; i++) {
  213. dprintk(CVP_CORE, "qdss addr = %x, value = %x\n",
  214. qdss_addr_set->addr_tbl[i].start,
  215. qdss_addr_set->addr_tbl[i].size);
  216. }
  217. err_qdss_addr_tbl:
  218. return rc;
  219. }
  220. static int msm_cvp_load_subcache_info(struct msm_cvp_platform_resources *res)
  221. {
  222. int rc = 0, num_subcaches = 0, c;
  223. struct platform_device *pdev = res->pdev;
  224. struct subcache_set *subcaches = &res->subcache_set;
  225. num_subcaches = of_property_count_strings(pdev->dev.of_node,
  226. "cache-slice-names");
  227. if (num_subcaches <= 0) {
  228. dprintk(CVP_CORE, "No subcaches found\n");
  229. goto err_load_subcache_table_fail;
  230. }
  231. subcaches->subcache_tbl = devm_kzalloc(&pdev->dev,
  232. sizeof(*subcaches->subcache_tbl) * num_subcaches, GFP_KERNEL);
  233. if (!subcaches->subcache_tbl) {
  234. dprintk(CVP_ERR,
  235. "Failed to allocate memory for subcache tbl\n");
  236. rc = -ENOMEM;
  237. goto err_load_subcache_table_fail;
  238. }
  239. subcaches->count = num_subcaches;
  240. dprintk(CVP_CORE, "Found %d subcaches\n", num_subcaches);
  241. for (c = 0; c < num_subcaches; ++c) {
  242. struct subcache_info *vsc = &res->subcache_set.subcache_tbl[c];
  243. of_property_read_string_index(pdev->dev.of_node,
  244. "cache-slice-names", c, &vsc->name);
  245. }
  246. res->sys_cache_present = true;
  247. return 0;
  248. err_load_subcache_table_fail:
  249. res->sys_cache_present = false;
  250. subcaches->count = 0;
  251. subcaches->subcache_tbl = NULL;
  252. return rc;
  253. }
  254. /**
  255. * msm_cvp_load_u32_table() - load dtsi table entries
  256. * @pdev: A pointer to the platform device.
  257. * @of_node: A pointer to the device node.
  258. * @table_name: A pointer to the dtsi table entry name.
  259. * @struct_size: The size of the structure which is nothing but
  260. * a single entry in the dtsi table.
  261. * @table: A pointer to the table pointer which needs to be
  262. * filled by the dtsi table entries.
  263. * @num_elements: Number of elements pointer which needs to be filled
  264. * with the number of elements in the table.
  265. *
  266. * This is a generic implementation to load single or multiple array
  267. * table from dtsi. The array elements should be of size equal to u32.
  268. *
  269. * Return: Return '0' for success else appropriate error value.
  270. */
  271. int msm_cvp_load_u32_table(struct platform_device *pdev,
  272. struct device_node *of_node, char *table_name, int struct_size,
  273. u32 **table, u32 *num_elements)
  274. {
  275. int rc = 0, num_elemts = 0;
  276. u32 *ptbl = NULL;
  277. if (!of_find_property(of_node, table_name, NULL)) {
  278. dprintk(CVP_CORE, "%s not found\n", table_name);
  279. return 0;
  280. }
  281. num_elemts = get_u32_array_num_elements(of_node, table_name);
  282. if (!num_elemts) {
  283. dprintk(CVP_ERR, "no elements in %s\n", table_name);
  284. return 0;
  285. }
  286. num_elemts /= struct_size / sizeof(u32);
  287. ptbl = devm_kzalloc(&pdev->dev, num_elemts * struct_size, GFP_KERNEL);
  288. if (!ptbl) {
  289. dprintk(CVP_ERR, "Failed to alloc table %s\n", table_name);
  290. return -ENOMEM;
  291. }
  292. if (of_property_read_u32_array(of_node, table_name, ptbl,
  293. num_elemts * struct_size / sizeof(u32))) {
  294. dprintk(CVP_ERR, "Failed to read %s\n", table_name);
  295. return -EINVAL;
  296. }
  297. *table = ptbl;
  298. if (num_elements)
  299. *num_elements = num_elemts;
  300. return rc;
  301. }
  302. EXPORT_SYMBOL(msm_cvp_load_u32_table);
  303. /* A comparator to compare loads (needed later on) */
  304. static int cmp(const void *a, const void *b)
  305. {
  306. return ((struct allowed_clock_rates_table *)a)->clock_rate -
  307. ((struct allowed_clock_rates_table *)b)->clock_rate;
  308. }
  309. static int msm_cvp_load_allowed_clocks_table(
  310. struct msm_cvp_platform_resources *res)
  311. {
  312. int rc = 0;
  313. struct platform_device *pdev = res->pdev;
  314. if (!of_find_property(pdev->dev.of_node,
  315. "qcom,allowed-clock-rates", NULL)) {
  316. dprintk(CVP_CORE, "qcom,allowed-clock-rates not found\n");
  317. return 0;
  318. }
  319. rc = msm_cvp_load_u32_table(pdev, pdev->dev.of_node,
  320. "qcom,allowed-clock-rates",
  321. sizeof(*res->allowed_clks_tbl),
  322. (u32 **)&res->allowed_clks_tbl,
  323. &res->allowed_clks_tbl_size);
  324. if (rc) {
  325. dprintk(CVP_ERR,
  326. "%s: failed to read allowed clocks table\n", __func__);
  327. return rc;
  328. }
  329. sort(res->allowed_clks_tbl, res->allowed_clks_tbl_size,
  330. sizeof(*res->allowed_clks_tbl), cmp, NULL);
  331. return 0;
  332. }
  333. static int msm_cvp_populate_mem_cdsp(struct device *dev,
  334. struct msm_cvp_platform_resources *res)
  335. {
  336. struct device_node *mem_node;
  337. int ret;
  338. mem_node = of_parse_phandle(dev->of_node, "memory-region", 0);
  339. if (mem_node) {
  340. ret = of_reserved_mem_device_init_by_idx(dev,
  341. dev->of_node, 0);
  342. of_node_put(dev->of_node);
  343. if (ret) {
  344. dprintk(CVP_ERR,
  345. "Failed to initialize reserved mem, ret %d\n",
  346. ret);
  347. return ret;
  348. }
  349. }
  350. res->mem_cdsp.dev = dev;
  351. return 0;
  352. }
  353. static int msm_cvp_populate_bus(struct device *dev,
  354. struct msm_cvp_platform_resources *res)
  355. {
  356. struct bus_set *buses = &res->bus_set;
  357. const char *temp_name = NULL;
  358. struct bus_info *bus = NULL, *temp_table;
  359. u32 range[2];
  360. int rc = 0;
  361. temp_table = krealloc(buses->bus_tbl, sizeof(*temp_table) *
  362. (buses->count + 1), GFP_KERNEL);
  363. if (!temp_table) {
  364. dprintk(CVP_ERR, "%s: Failed to allocate memory", __func__);
  365. rc = -ENOMEM;
  366. goto err_bus;
  367. }
  368. buses->bus_tbl = temp_table;
  369. bus = &buses->bus_tbl[buses->count];
  370. memset(bus, 0x0, sizeof(struct bus_info));
  371. rc = of_property_read_string(dev->of_node, "label", &temp_name);
  372. if (rc) {
  373. dprintk(CVP_ERR, "'label' not found in node\n");
  374. goto err_bus;
  375. }
  376. /* need a non-const version of name, hence copying it over */
  377. bus->name = devm_kstrdup(dev, temp_name, GFP_KERNEL);
  378. if (!bus->name) {
  379. rc = -ENOMEM;
  380. goto err_bus;
  381. }
  382. rc = of_property_read_u32(dev->of_node, "qcom,bus-master",
  383. &bus->master);
  384. if (rc) {
  385. dprintk(CVP_ERR, "'qcom,bus-master' not found in node\n");
  386. goto err_bus;
  387. }
  388. rc = of_property_read_u32(dev->of_node, "qcom,bus-slave", &bus->slave);
  389. if (rc) {
  390. dprintk(CVP_ERR, "'qcom,bus-slave' not found in node\n");
  391. goto err_bus;
  392. }
  393. rc = of_property_read_string(dev->of_node, "qcom,bus-governor",
  394. &bus->governor);
  395. if (rc) {
  396. rc = 0;
  397. dprintk(CVP_CORE,
  398. "'qcom,bus-governor' not found, default to performance governor\n");
  399. bus->governor = PERF_GOV;
  400. }
  401. if (!strcmp(bus->governor, PERF_GOV))
  402. bus->is_prfm_gov_used = true;
  403. rc = of_property_read_u32_array(dev->of_node, "qcom,bus-range-kbps",
  404. range, ARRAY_SIZE(range));
  405. if (rc) {
  406. rc = 0;
  407. dprintk(CVP_CORE,
  408. "'qcom,range' not found defaulting to <0 INT_MAX>\n");
  409. range[0] = 0;
  410. range[1] = INT_MAX;
  411. }
  412. bus->range[0] = range[0]; /* min */
  413. bus->range[1] = range[1]; /* max */
  414. buses->count++;
  415. bus->dev = dev;
  416. dprintk(CVP_CORE, "Found bus %s [%d->%d] with governor %s\n",
  417. bus->name, bus->master, bus->slave, bus->governor);
  418. err_bus:
  419. return rc;
  420. }
  421. static int msm_cvp_load_regulator_table(
  422. struct msm_cvp_platform_resources *res)
  423. {
  424. int rc = 0;
  425. struct platform_device *pdev = res->pdev;
  426. struct regulator_set *regulators = &res->regulator_set;
  427. struct device_node *domains_parent_node = NULL;
  428. struct property *domains_property = NULL;
  429. int reg_count = 0;
  430. regulators->count = 0;
  431. regulators->regulator_tbl = NULL;
  432. domains_parent_node = pdev->dev.of_node;
  433. for_each_property_of_node(domains_parent_node, domains_property) {
  434. const char *search_string = "-supply";
  435. char *supply;
  436. bool matched = false;
  437. /* check if current property is possibly a regulator */
  438. supply = strnstr(domains_property->name, search_string,
  439. strlen(domains_property->name) + 1);
  440. matched = supply && (*(supply + strlen(search_string)) == '\0');
  441. if (!matched)
  442. continue;
  443. reg_count++;
  444. }
  445. regulators->regulator_tbl = devm_kzalloc(&pdev->dev,
  446. sizeof(*regulators->regulator_tbl) *
  447. reg_count, GFP_KERNEL);
  448. if (!regulators->regulator_tbl) {
  449. rc = -ENOMEM;
  450. dprintk(CVP_ERR,
  451. "Failed to alloc memory for regulator table\n");
  452. goto err_reg_tbl_alloc;
  453. }
  454. for_each_property_of_node(domains_parent_node, domains_property) {
  455. const char *search_string = "-supply";
  456. char *supply;
  457. bool matched = false;
  458. struct device_node *regulator_node = NULL;
  459. struct regulator_info *rinfo = NULL;
  460. /* check if current property is possibly a regulator */
  461. supply = strnstr(domains_property->name, search_string,
  462. strlen(domains_property->name) + 1);
  463. matched = supply && (supply[strlen(search_string)] == '\0');
  464. if (!matched)
  465. continue;
  466. /* make sure prop isn't being misused */
  467. regulator_node = of_parse_phandle(domains_parent_node,
  468. domains_property->name, 0);
  469. if (IS_ERR(regulator_node)) {
  470. dprintk(CVP_WARN, "%s is not a phandle\n",
  471. domains_property->name);
  472. continue;
  473. }
  474. regulators->count++;
  475. /* populate regulator info */
  476. rinfo = &regulators->regulator_tbl[regulators->count - 1];
  477. rinfo->name = devm_kzalloc(&pdev->dev,
  478. (supply - domains_property->name) + 1, GFP_KERNEL);
  479. if (!rinfo->name) {
  480. rc = -ENOMEM;
  481. dprintk(CVP_ERR,
  482. "Failed to alloc memory for regulator name\n");
  483. goto err_reg_name_alloc;
  484. }
  485. strlcpy(rinfo->name, domains_property->name,
  486. (supply - domains_property->name) + 1);
  487. rinfo->has_hw_power_collapse = of_property_read_bool(
  488. regulator_node, "qcom,support-hw-trigger");
  489. dprintk(CVP_CORE, "Found regulator %s: h/w collapse = %s\n",
  490. rinfo->name,
  491. rinfo->has_hw_power_collapse ? "yes" : "no");
  492. }
  493. if (!regulators->count)
  494. dprintk(CVP_CORE, "No regulators found");
  495. return 0;
  496. err_reg_name_alloc:
  497. err_reg_tbl_alloc:
  498. msm_cvp_free_regulator_table(res);
  499. return rc;
  500. }
  501. static int msm_cvp_load_clock_table(
  502. struct msm_cvp_platform_resources *res)
  503. {
  504. int rc = 0, num_clocks = 0, c = 0;
  505. struct platform_device *pdev = res->pdev;
  506. int *clock_ids = NULL;
  507. int *clock_props = NULL;
  508. struct clock_set *clocks = &res->clock_set;
  509. num_clocks = of_property_count_strings(pdev->dev.of_node,
  510. "clock-names");
  511. if (num_clocks <= 0) {
  512. dprintk(CVP_CORE, "No clocks found\n");
  513. clocks->count = 0;
  514. rc = 0;
  515. goto err_load_clk_table_fail;
  516. }
  517. clock_ids = devm_kzalloc(&pdev->dev, num_clocks *
  518. sizeof(*clock_ids), GFP_KERNEL);
  519. if (!clock_ids) {
  520. dprintk(CVP_ERR, "No memory to read clock ids\n");
  521. rc = -ENOMEM;
  522. goto err_load_clk_table_fail;
  523. }
  524. rc = of_property_read_u32_array(pdev->dev.of_node,
  525. "clock-ids", clock_ids,
  526. num_clocks);
  527. if (rc) {
  528. dprintk(CVP_CORE, "Failed to read clock ids: %d\n", rc);
  529. msm_cvp_mmrm_enabled = false;
  530. dprintk(CVP_CORE, "flag msm_cvp_mmrm_enabled disabled\n");
  531. }
  532. clock_props = devm_kzalloc(&pdev->dev, num_clocks *
  533. sizeof(*clock_props), GFP_KERNEL);
  534. if (!clock_props) {
  535. dprintk(CVP_ERR, "No memory to read clock properties\n");
  536. rc = -ENOMEM;
  537. goto err_load_clk_table_fail;
  538. }
  539. rc = of_property_read_u32_array(pdev->dev.of_node,
  540. "qcom,clock-configs", clock_props,
  541. num_clocks);
  542. if (rc) {
  543. dprintk(CVP_ERR, "Failed to read clock properties: %d\n", rc);
  544. goto err_load_clk_prop_fail;
  545. }
  546. clocks->clock_tbl = devm_kzalloc(&pdev->dev, sizeof(*clocks->clock_tbl)
  547. * num_clocks, GFP_KERNEL);
  548. if (!clocks->clock_tbl) {
  549. dprintk(CVP_ERR, "Failed to allocate memory for clock tbl\n");
  550. rc = -ENOMEM;
  551. goto err_load_clk_prop_fail;
  552. }
  553. clocks->count = num_clocks;
  554. dprintk(CVP_CORE, "Found %d clocks\n", num_clocks);
  555. for (c = 0; c < num_clocks; ++c) {
  556. struct clock_info *vc = &res->clock_set.clock_tbl[c];
  557. of_property_read_string_index(pdev->dev.of_node,
  558. "clock-names", c, &vc->name);
  559. if (msm_cvp_mmrm_enabled == true)
  560. vc->clk_id = clock_ids[c];
  561. if (clock_props[c] & CLOCK_PROP_HAS_SCALING) {
  562. vc->has_scaling = true;
  563. } else {
  564. vc->count = 0;
  565. vc->has_scaling = false;
  566. }
  567. if (clock_props[c] & CLOCK_PROP_HAS_MEM_RETENTION)
  568. vc->has_mem_retention = true;
  569. else
  570. vc->has_mem_retention = false;
  571. dprintk(CVP_CORE, "Found clock %s id %d: scale-able = %s\n",
  572. vc->name, vc->clk_id, vc->count ? "yes" : "no");
  573. }
  574. return 0;
  575. err_load_clk_prop_fail:
  576. err_load_clk_table_fail:
  577. return rc;
  578. }
  579. #define MAX_CLK_RESETS 5
  580. static int msm_cvp_load_reset_table(
  581. struct msm_cvp_platform_resources *res)
  582. {
  583. struct platform_device *pdev = res->pdev;
  584. struct reset_set *rst = &res->reset_set;
  585. int num_clocks = 0, c = 0, ret = 0;
  586. int pwr_stats[MAX_CLK_RESETS];
  587. num_clocks = of_property_count_strings(pdev->dev.of_node,
  588. "reset-names");
  589. if (num_clocks <= 0 || num_clocks > MAX_CLK_RESETS) {
  590. dprintk(CVP_ERR, "Num reset clocks out of range\n");
  591. rst->count = 0;
  592. return 0;
  593. }
  594. rst->reset_tbl = devm_kcalloc(&pdev->dev, num_clocks,
  595. sizeof(*rst->reset_tbl), GFP_KERNEL);
  596. if (!rst->reset_tbl)
  597. return -ENOMEM;
  598. rst->count = num_clocks;
  599. dprintk(CVP_CORE, "Found %d reset clocks\n", num_clocks);
  600. ret = of_property_read_u32_array(pdev->dev.of_node,
  601. "reset-power-status", pwr_stats,
  602. num_clocks);
  603. if (ret) {
  604. dprintk(CVP_ERR, "Failed to read reset pwr state: %d\n", ret);
  605. devm_kfree(&pdev->dev, rst->reset_tbl);
  606. return ret;
  607. }
  608. for (c = 0; c < num_clocks; ++c) {
  609. struct reset_info *rc = &res->reset_set.reset_tbl[c];
  610. of_property_read_string_index(pdev->dev.of_node,
  611. "reset-names", c, &rc->name);
  612. rc->required_state = pwr_stats[c];
  613. }
  614. return 0;
  615. }
  616. static int find_key_value(struct msm_cvp_platform_data *platform_data,
  617. const char *key)
  618. {
  619. int i = 0;
  620. struct msm_cvp_common_data *common_data = platform_data->common_data;
  621. int size = platform_data->common_data_length;
  622. for (i = 0; i < size; i++) {
  623. if (!strcmp(common_data[i].key, key))
  624. return common_data[i].value;
  625. }
  626. return 0;
  627. }
  628. int cvp_read_platform_resources_from_drv_data(
  629. struct msm_cvp_core *core)
  630. {
  631. struct msm_cvp_platform_data *platform_data;
  632. struct msm_cvp_platform_resources *res;
  633. int rc = 0, i;
  634. if (!core || !core->platform_data) {
  635. dprintk(CVP_ERR, "%s Invalid data\n", __func__);
  636. return -ENOENT;
  637. }
  638. platform_data = core->platform_data;
  639. res = &core->resources;
  640. res->sku_version = platform_data->sku_version;
  641. res->fw_name = "evass";
  642. dprintk(CVP_CORE, "Firmware filename: %s\n", res->fw_name);
  643. res->dsp_enabled = find_key_value(platform_data,
  644. "qcom,dsp-enabled");
  645. res->max_ssr_allowed = find_key_value(platform_data,
  646. "qcom,max-ssr-allowed");
  647. res->sw_power_collapsible = find_key_value(platform_data,
  648. "qcom,sw-power-collapse");
  649. res->debug_timeout = find_key_value(platform_data,
  650. "qcom,debug-timeout");
  651. res->pm_qos.latency_us = find_key_value(platform_data,
  652. "qcom,pm-qos-latency-us");
  653. res->pm_qos.silver_count = 4;
  654. for (i = 0; i < res->pm_qos.silver_count; i++)
  655. res->pm_qos.silver_cores[i] = i;
  656. res->pm_qos.off_vote_cnt = 0;
  657. spin_lock_init(&res->pm_qos.lock);
  658. res->max_secure_inst_count = find_key_value(platform_data,
  659. "qcom,max-secure-instances");
  660. res->thermal_mitigable = find_key_value(platform_data,
  661. "qcom,enable-thermal-mitigation");
  662. res->msm_cvp_pwr_collapse_delay = find_key_value(platform_data,
  663. "qcom,power-collapse-delay");
  664. res->msm_cvp_firmware_unload_delay = find_key_value(platform_data,
  665. "qcom,fw-unload-delay");
  666. res->msm_cvp_hw_rsp_timeout = find_key_value(platform_data,
  667. "qcom,hw-resp-timeout");
  668. res->msm_cvp_dsp_rsp_timeout = find_key_value(platform_data,
  669. "qcom,dsp-resp-timeout");
  670. res->non_fatal_pagefaults = find_key_value(platform_data,
  671. "qcom,domain-attr-non-fatal-faults");
  672. res->vpu_ver = platform_data->vpu_ver;
  673. res->ubwc_config = platform_data->ubwc_config;
  674. res->fatal_ssr = false;
  675. return rc;
  676. }
  677. int cvp_read_platform_resources_from_dt(
  678. struct msm_cvp_platform_resources *res)
  679. {
  680. struct platform_device *pdev = res->pdev;
  681. struct resource *kres = NULL;
  682. int rc = 0;
  683. uint32_t firmware_base = 0;
  684. if (!pdev->dev.of_node) {
  685. dprintk(CVP_ERR, "DT node not found\n");
  686. return -ENOENT;
  687. }
  688. INIT_LIST_HEAD(&res->context_banks);
  689. res->firmware_base = (phys_addr_t)firmware_base;
  690. kres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  691. res->register_base = kres ? kres->start : -1;
  692. res->register_size = kres ? (kres->end + 1 - kres->start) : -1;
  693. kres = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  694. res->irq = kres ? kres->start : -1;
  695. rc = msm_cvp_load_subcache_info(res);
  696. if (rc)
  697. dprintk(CVP_WARN, "Failed to load subcache info: %d\n", rc);
  698. rc = msm_cvp_load_qdss_table(res);
  699. if (rc)
  700. dprintk(CVP_WARN, "Failed to load qdss reg table: %d\n", rc);
  701. rc = msm_cvp_load_reg_table(res);
  702. if (rc) {
  703. dprintk(CVP_ERR, "Failed to load reg table: %d\n", rc);
  704. goto err_load_reg_table;
  705. }
  706. rc = msm_cvp_load_ipcc_regs(res);
  707. if (rc)
  708. dprintk(CVP_ERR, "Failed to load IPCC regs: %d\n", rc);
  709. rc = msm_cvp_load_gcc_regs(res);
  710. rc = msm_cvp_load_regulator_table(res);
  711. if (rc) {
  712. dprintk(CVP_ERR, "Failed to load list of regulators %d\n", rc);
  713. goto err_load_regulator_table;
  714. }
  715. rc = msm_cvp_load_clock_table(res);
  716. if (rc) {
  717. dprintk(CVP_ERR,
  718. "Failed to load clock table: %d\n", rc);
  719. goto err_load_clock_table;
  720. }
  721. rc = msm_cvp_load_allowed_clocks_table(res);
  722. if (rc) {
  723. dprintk(CVP_ERR,
  724. "Failed to load allowed clocks table: %d\n", rc);
  725. goto err_load_allowed_clocks_table;
  726. }
  727. rc = msm_cvp_load_reset_table(res);
  728. if (rc) {
  729. dprintk(CVP_ERR,
  730. "Failed to load reset table: %d\n", rc);
  731. goto err_load_reset_table;
  732. }
  733. res->use_non_secure_pil = of_property_read_bool(pdev->dev.of_node,
  734. "qcom,use-non-secure-pil");
  735. if (res->use_non_secure_pil || !is_iommu_present(res)) {
  736. of_property_read_u32(pdev->dev.of_node, "qcom,fw-bias",
  737. &firmware_base);
  738. res->firmware_base = (phys_addr_t)firmware_base;
  739. dprintk(CVP_CORE,
  740. "Using fw-bias : %pa", &res->firmware_base);
  741. }
  742. return rc;
  743. err_load_reset_table:
  744. msm_cvp_free_allowed_clocks_table(res);
  745. err_load_allowed_clocks_table:
  746. msm_cvp_free_clock_table(res);
  747. err_load_clock_table:
  748. msm_cvp_free_regulator_table(res);
  749. err_load_regulator_table:
  750. msm_cvp_free_reg_table(res);
  751. err_load_reg_table:
  752. return rc;
  753. }
  754. static int msm_cvp_setup_context_bank(struct msm_cvp_platform_resources *res,
  755. struct context_bank_info *cb, struct device *dev)
  756. {
  757. int rc = 0;
  758. struct bus_type *bus;
  759. if (!dev || !cb || !res) {
  760. dprintk(CVP_ERR,
  761. "%s: Invalid Input params\n", __func__);
  762. return -EINVAL;
  763. }
  764. cb->dev = dev;
  765. bus = cb->dev->bus;
  766. if (IS_ERR_OR_NULL(bus)) {
  767. dprintk(CVP_ERR, "%s - failed to get bus type\n", __func__);
  768. rc = PTR_ERR(bus) ?: -ENODEV;
  769. goto remove_cb;
  770. }
  771. /*
  772. * configure device segment size and segment boundary to ensure
  773. * iommu mapping returns one mapping (which is required for partial
  774. * cache operations)
  775. */
  776. if (!dev->dma_parms)
  777. dev->dma_parms =
  778. devm_kzalloc(dev, sizeof(*dev->dma_parms), GFP_KERNEL);
  779. dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
  780. dma_set_seg_boundary(dev, DMA_BIT_MASK(64));
  781. dprintk(CVP_CORE, "Attached %s and created mapping\n", dev_name(dev));
  782. dprintk(CVP_CORE,
  783. "Context bank name:%s, buffer_type: %#x, is_secure: %d, address range start: %#x, size: %#x, dev: %pK",
  784. cb->name, cb->buffer_type, cb->is_secure, cb->addr_range.start,
  785. cb->addr_range.size, cb->dev);
  786. return rc;
  787. remove_cb:
  788. return rc;
  789. }
  790. int msm_cvp_smmu_fault_handler(struct iommu_domain *domain,
  791. struct device *dev, unsigned long iova, int flags, void *token)
  792. {
  793. struct msm_cvp_core *core = token;
  794. struct iris_hfi_device *hdev;
  795. struct msm_cvp_inst *inst;
  796. bool log = false;
  797. if (!domain || !core) {
  798. dprintk(CVP_ERR, "%s - invalid param %pK %pK\n",
  799. __func__, domain, core);
  800. return -EINVAL;
  801. }
  802. core->smmu_fault_count++;
  803. if (!core->last_fault_addr)
  804. core->last_fault_addr = iova;
  805. dprintk(CVP_ERR, "%s - faulting address: %lx, %d\n",
  806. __func__, iova, core->smmu_fault_count);
  807. mutex_lock(&core->lock);
  808. log = (core->log.snapshot_index > 0)? false : true;
  809. list_for_each_entry(inst, &core->instances, list) {
  810. msm_cvp_print_inst_bufs(inst, log);
  811. }
  812. hdev = core->device->hfi_device_data;
  813. if (hdev)
  814. hdev->error = CVP_ERR_NOC_ERROR;
  815. mutex_unlock(&core->lock);
  816. /*
  817. * Return -EINVAL to elicit the default behaviour of smmu driver.
  818. * If we return -ENOSYS, then smmu driver assumes page fault handler
  819. * is not installed and prints a list of useful debug information like
  820. * FAR, SID etc. This information is not printed if we return 0.
  821. */
  822. return -ENOSYS;
  823. }
  824. static int msm_cvp_populate_context_bank(struct device *dev,
  825. struct msm_cvp_core *core)
  826. {
  827. int rc = 0;
  828. struct context_bank_info *cb = NULL;
  829. struct device_node *np = NULL;
  830. if (!dev || !core) {
  831. dprintk(CVP_ERR, "%s - invalid inputs\n", __func__);
  832. return -EINVAL;
  833. }
  834. np = dev->of_node;
  835. cb = devm_kzalloc(dev, sizeof(*cb), GFP_KERNEL);
  836. if (!cb) {
  837. dprintk(CVP_ERR, "%s - Failed to allocate cb\n", __func__);
  838. return -ENOMEM;
  839. }
  840. INIT_LIST_HEAD(&cb->list);
  841. list_add_tail(&cb->list, &core->resources.context_banks);
  842. rc = of_property_read_string(np, "label", &cb->name);
  843. if (rc) {
  844. dprintk(CVP_CORE,
  845. "Failed to read cb label from device tree\n");
  846. rc = 0;
  847. }
  848. dprintk(CVP_CORE, "%s: context bank has name %s\n", __func__, cb->name);
  849. rc = of_property_read_u32_array(np, "qcom,iommu-dma-addr-pool",
  850. (u32 *)&cb->addr_range, 2);
  851. if (rc) {
  852. dprintk(CVP_ERR,
  853. "Could not read addr pool for context bank : %s %d\n",
  854. cb->name, rc);
  855. goto err_setup_cb;
  856. }
  857. cb->is_secure = of_property_read_bool(np, "qcom,iommu-vmid");
  858. dprintk(CVP_CORE, "context bank %s : secure = %d\n",
  859. cb->name, cb->is_secure);
  860. /* setup buffer type for each sub device*/
  861. rc = of_property_read_u32(np, "buffer-types", &cb->buffer_type);
  862. if (rc) {
  863. dprintk(CVP_ERR, "failed to load buffer_type info %d\n", rc);
  864. rc = -ENOENT;
  865. goto err_setup_cb;
  866. }
  867. dprintk(CVP_CORE,
  868. "context bank %s address start = %x address size = %x buffer_type = %x\n",
  869. cb->name, cb->addr_range.start,
  870. cb->addr_range.size, cb->buffer_type);
  871. cb->domain = iommu_get_domain_for_dev(dev);
  872. if (IS_ERR_OR_NULL(cb->domain)) {
  873. dprintk(CVP_ERR, "Create domain failed\n");
  874. rc = -ENODEV;
  875. goto err_setup_cb;
  876. }
  877. rc = msm_cvp_setup_context_bank(&core->resources, cb, dev);
  878. if (rc) {
  879. dprintk(CVP_ERR, "Cannot setup context bank %d\n", rc);
  880. goto err_setup_cb;
  881. }
  882. iommu_set_fault_handler(cb->domain,
  883. msm_cvp_smmu_fault_handler, (void *)core);
  884. return 0;
  885. err_setup_cb:
  886. list_del(&cb->list);
  887. return rc;
  888. }
  889. int cvp_read_context_bank_resources_from_dt(struct platform_device *pdev)
  890. {
  891. struct msm_cvp_core *core;
  892. int rc = 0;
  893. if (!pdev) {
  894. dprintk(CVP_ERR, "Invalid platform device\n");
  895. return -EINVAL;
  896. } else if (!pdev->dev.parent) {
  897. dprintk(CVP_ERR, "Failed to find a parent for %s\n",
  898. dev_name(&pdev->dev));
  899. return -ENODEV;
  900. }
  901. core = dev_get_drvdata(pdev->dev.parent);
  902. if (!core) {
  903. dprintk(CVP_ERR, "Failed to find cookie in parent device %s",
  904. dev_name(pdev->dev.parent));
  905. return -EINVAL;
  906. }
  907. rc = msm_cvp_populate_context_bank(&pdev->dev, core);
  908. if (rc)
  909. dprintk(CVP_ERR, "Failed to probe context bank\n");
  910. else
  911. dprintk(CVP_CORE, "Successfully probed context bank\n");
  912. return rc;
  913. }
  914. int cvp_read_bus_resources_from_dt(struct platform_device *pdev)
  915. {
  916. struct msm_cvp_core *core;
  917. if (!pdev) {
  918. dprintk(CVP_ERR, "Invalid platform device\n");
  919. return -EINVAL;
  920. } else if (!pdev->dev.parent) {
  921. dprintk(CVP_ERR, "Failed to find a parent for %s\n",
  922. dev_name(&pdev->dev));
  923. return -ENODEV;
  924. }
  925. core = dev_get_drvdata(pdev->dev.parent);
  926. if (!core) {
  927. dprintk(CVP_ERR, "Failed to find cookie in parent device %s",
  928. dev_name(pdev->dev.parent));
  929. return -EINVAL;
  930. }
  931. return msm_cvp_populate_bus(&pdev->dev, &core->resources);
  932. }
  933. int cvp_read_mem_cdsp_resources_from_dt(struct platform_device *pdev)
  934. {
  935. struct msm_cvp_core *core;
  936. if (!pdev) {
  937. dprintk(CVP_ERR, "%s: invalid platform device\n", __func__);
  938. return -EINVAL;
  939. } else if (!pdev->dev.parent) {
  940. dprintk(CVP_ERR, "Failed to find a parent for %s\n",
  941. dev_name(&pdev->dev));
  942. return -ENODEV;
  943. }
  944. core = dev_get_drvdata(pdev->dev.parent);
  945. if (!core) {
  946. dprintk(CVP_ERR, "Failed to find cookie in parent device %s",
  947. dev_name(pdev->dev.parent));
  948. return -EINVAL;
  949. }
  950. return msm_cvp_populate_mem_cdsp(&pdev->dev, &core->resources);
  951. }