hal_srng.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "hal_api.h"
  21. #include "hal_reo.h"
  22. #include "target_type.h"
  23. #include "qdf_module.h"
  24. #include "wcss_version.h"
  25. #ifdef QCA_WIFI_QCA8074
  26. void hal_qca6290_attach(struct hal_soc *hal);
  27. #endif
  28. #ifdef QCA_WIFI_QCA8074
  29. void hal_qca8074_attach(struct hal_soc *hal);
  30. #endif
  31. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  32. defined(QCA_WIFI_QCA9574)
  33. void hal_qca8074v2_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6390
  36. void hal_qca6390_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCA6490
  39. void hal_qca6490_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCN9000
  42. void hal_qcn9000_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCN9224
  45. void hal_qcn9224_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef QCA_WIFI_QCN6122
  48. void hal_qcn6122_attach(struct hal_soc *hal);
  49. #endif
  50. #ifdef QCA_WIFI_QCA6750
  51. void hal_qca6750_attach(struct hal_soc *hal);
  52. #endif
  53. #ifdef QCA_WIFI_QCA5018
  54. void hal_qca5018_attach(struct hal_soc *hal);
  55. #endif
  56. #ifdef QCA_WIFI_WCN7850
  57. void hal_wcn7850_attach(struct hal_soc *hal);
  58. #endif
  59. #ifdef ENABLE_VERBOSE_DEBUG
  60. bool is_hal_verbose_debug_enabled;
  61. #endif
  62. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  63. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  64. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  65. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  66. #ifdef ENABLE_HAL_REG_WR_HISTORY
  67. struct hal_reg_write_fail_history hal_reg_wr_hist;
  68. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  69. uint32_t offset,
  70. uint32_t wr_val, uint32_t rd_val)
  71. {
  72. struct hal_reg_write_fail_entry *record;
  73. int idx;
  74. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  75. HAL_REG_WRITE_HIST_SIZE);
  76. record = &hal_soc->reg_wr_fail_hist->record[idx];
  77. record->timestamp = qdf_get_log_timestamp();
  78. record->reg_offset = offset;
  79. record->write_val = wr_val;
  80. record->read_val = rd_val;
  81. }
  82. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  83. {
  84. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  85. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  86. }
  87. #else
  88. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  89. {
  90. }
  91. #endif
  92. /**
  93. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  94. * @hal: hal_soc data structure
  95. * @ring_type: type enum describing the ring
  96. * @ring_num: which ring of the ring type
  97. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  98. *
  99. * Return: the ring id or -EINVAL if the ring does not exist.
  100. */
  101. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  102. int ring_num, int mac_id)
  103. {
  104. struct hal_hw_srng_config *ring_config =
  105. HAL_SRNG_CONFIG(hal, ring_type);
  106. int ring_id;
  107. if (ring_num >= ring_config->max_rings) {
  108. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  109. "%s: ring_num exceeded maximum no. of supported rings",
  110. __func__);
  111. /* TODO: This is a programming error. Assert if this happens */
  112. return -EINVAL;
  113. }
  114. /*
  115. * For BE, dmac_cmn_src_rxbuf_ring is set. If this is set
  116. * and ring is dst and also lmac ring then provide ring id per lmac
  117. */
  118. if (ring_config->lmac_ring &&
  119. (!hal->dmac_cmn_src_rxbuf_ring ||
  120. ring_config->ring_dir == HAL_SRNG_DST_RING)) {
  121. ring_id = (ring_config->start_ring_id + ring_num +
  122. (mac_id * HAL_MAX_RINGS_PER_LMAC));
  123. } else {
  124. ring_id = ring_config->start_ring_id + ring_num;
  125. }
  126. return ring_id;
  127. }
  128. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  129. {
  130. /* TODO: Should we allocate srng structures dynamically? */
  131. return &(hal->srng_list[ring_id]);
  132. }
  133. #ifndef SHADOW_REG_CONFIG_DISABLED
  134. #define HP_OFFSET_IN_REG_START 1
  135. #define OFFSET_FROM_HP_TO_TP 4
  136. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  137. int shadow_config_index,
  138. int ring_type,
  139. int ring_num)
  140. {
  141. struct hal_srng *srng;
  142. int ring_id;
  143. struct hal_hw_srng_config *ring_config =
  144. HAL_SRNG_CONFIG(hal_soc, ring_type);
  145. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  146. if (ring_id < 0)
  147. return;
  148. srng = hal_get_srng(hal_soc, ring_id);
  149. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  150. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  151. + hal_soc->dev_base_addr;
  152. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  153. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  154. shadow_config_index);
  155. } else {
  156. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  157. + hal_soc->dev_base_addr;
  158. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  159. srng->u.src_ring.hp_addr,
  160. hal_soc->dev_base_addr, shadow_config_index);
  161. }
  162. }
  163. #endif
  164. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  165. void hal_set_one_target_reg_config(struct hal_soc *hal,
  166. uint32_t target_reg_offset,
  167. int list_index)
  168. {
  169. int i = list_index;
  170. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  171. hal->list_shadow_reg_config[i].target_register =
  172. target_reg_offset;
  173. hal->num_generic_shadow_regs_configured++;
  174. }
  175. qdf_export_symbol(hal_set_one_target_reg_config);
  176. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  177. #define MAX_REO_REMAP_SHADOW_REGS 4
  178. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  179. {
  180. uint32_t target_reg_offset;
  181. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  182. int i;
  183. struct hal_hw_srng_config *srng_config =
  184. &hal->hw_srng_table[WBM2SW_RELEASE];
  185. uint32_t reo_reg_base;
  186. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  187. target_reg_offset =
  188. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  189. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  190. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  191. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  192. }
  193. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  194. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  195. * HAL_IPA_TX_COMP_RING_IDX);
  196. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  197. return QDF_STATUS_SUCCESS;
  198. }
  199. qdf_export_symbol(hal_set_shadow_regs);
  200. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  201. {
  202. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  203. int shadow_config_index = hal->num_shadow_registers_configured;
  204. int i;
  205. int num_regs = hal->num_generic_shadow_regs_configured;
  206. for (i = 0; i < num_regs; i++) {
  207. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  208. hal->shadow_config[shadow_config_index].addr =
  209. hal->list_shadow_reg_config[i].target_register;
  210. hal->list_shadow_reg_config[i].shadow_config_index =
  211. shadow_config_index;
  212. hal->list_shadow_reg_config[i].va =
  213. SHADOW_REGISTER(shadow_config_index) +
  214. (uintptr_t)hal->dev_base_addr;
  215. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  216. hal->shadow_config[shadow_config_index].addr,
  217. SHADOW_REGISTER(shadow_config_index),
  218. shadow_config_index);
  219. shadow_config_index++;
  220. hal->num_shadow_registers_configured++;
  221. }
  222. return QDF_STATUS_SUCCESS;
  223. }
  224. qdf_export_symbol(hal_construct_shadow_regs);
  225. #endif
  226. #ifndef SHADOW_REG_CONFIG_DISABLED
  227. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  228. int ring_type,
  229. int ring_num)
  230. {
  231. uint32_t target_register;
  232. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  233. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  234. int shadow_config_index = hal->num_shadow_registers_configured;
  235. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  236. QDF_ASSERT(0);
  237. return QDF_STATUS_E_RESOURCES;
  238. }
  239. hal->num_shadow_registers_configured++;
  240. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  241. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  242. *ring_num);
  243. /* if the ring is a dst ring, we need to shadow the tail pointer */
  244. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  245. target_register += OFFSET_FROM_HP_TO_TP;
  246. hal->shadow_config[shadow_config_index].addr = target_register;
  247. /* update hp/tp addr in the hal_soc structure*/
  248. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  249. ring_num);
  250. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  251. target_register,
  252. SHADOW_REGISTER(shadow_config_index),
  253. shadow_config_index,
  254. ring_type, ring_num);
  255. return QDF_STATUS_SUCCESS;
  256. }
  257. qdf_export_symbol(hal_set_one_shadow_config);
  258. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  259. {
  260. int ring_type, ring_num;
  261. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  262. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  263. struct hal_hw_srng_config *srng_config =
  264. &hal->hw_srng_table[ring_type];
  265. if (ring_type == CE_SRC ||
  266. ring_type == CE_DST ||
  267. ring_type == CE_DST_STATUS)
  268. continue;
  269. if (srng_config->lmac_ring)
  270. continue;
  271. for (ring_num = 0; ring_num < srng_config->max_rings;
  272. ring_num++)
  273. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  274. }
  275. return QDF_STATUS_SUCCESS;
  276. }
  277. qdf_export_symbol(hal_construct_srng_shadow_regs);
  278. #else
  279. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  280. {
  281. return QDF_STATUS_SUCCESS;
  282. }
  283. qdf_export_symbol(hal_construct_srng_shadow_regs);
  284. QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type,
  285. int ring_num)
  286. {
  287. return QDF_STATUS_SUCCESS;
  288. }
  289. qdf_export_symbol(hal_set_one_shadow_config);
  290. #endif
  291. void hal_get_shadow_config(void *hal_soc,
  292. struct pld_shadow_reg_v2_cfg **shadow_config,
  293. int *num_shadow_registers_configured)
  294. {
  295. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  296. *shadow_config = hal->shadow_config;
  297. *num_shadow_registers_configured =
  298. hal->num_shadow_registers_configured;
  299. }
  300. qdf_export_symbol(hal_get_shadow_config);
  301. static bool hal_validate_shadow_register(struct hal_soc *hal,
  302. uint32_t *destination,
  303. uint32_t *shadow_address)
  304. {
  305. unsigned int index;
  306. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  307. int destination_ba_offset =
  308. ((char *)destination) - (char *)hal->dev_base_addr;
  309. index = shadow_address - shadow_0_offset;
  310. if (index >= MAX_SHADOW_REGISTERS) {
  311. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  312. "%s: index %x out of bounds", __func__, index);
  313. goto error;
  314. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  315. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  316. "%s: sanity check failure, expected %x, found %x",
  317. __func__, destination_ba_offset,
  318. hal->shadow_config[index].addr);
  319. goto error;
  320. }
  321. return true;
  322. error:
  323. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  324. hal->dev_base_addr, destination, shadow_address,
  325. shadow_0_offset, index);
  326. QDF_BUG(0);
  327. return false;
  328. }
  329. static void hal_target_based_configure(struct hal_soc *hal)
  330. {
  331. /**
  332. * Indicate Initialization of srngs to avoid force wake
  333. * as umac power collapse is not enabled yet
  334. */
  335. hal->init_phase = true;
  336. switch (hal->target_type) {
  337. #ifdef QCA_WIFI_QCA6290
  338. case TARGET_TYPE_QCA6290:
  339. hal->use_register_windowing = true;
  340. hal_qca6290_attach(hal);
  341. break;
  342. #endif
  343. #ifdef QCA_WIFI_QCA6390
  344. case TARGET_TYPE_QCA6390:
  345. hal->use_register_windowing = true;
  346. hal_qca6390_attach(hal);
  347. break;
  348. #endif
  349. #ifdef QCA_WIFI_QCA6490
  350. case TARGET_TYPE_QCA6490:
  351. hal->use_register_windowing = true;
  352. hal_qca6490_attach(hal);
  353. break;
  354. #endif
  355. #ifdef QCA_WIFI_QCA6750
  356. case TARGET_TYPE_QCA6750:
  357. hal->use_register_windowing = true;
  358. hal->static_window_map = true;
  359. hal_qca6750_attach(hal);
  360. break;
  361. #endif
  362. #ifdef QCA_WIFI_WCN7850
  363. case TARGET_TYPE_WCN7850:
  364. hal->use_register_windowing = true;
  365. hal_wcn7850_attach(hal);
  366. hal->init_phase = false;
  367. break;
  368. #endif
  369. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  370. case TARGET_TYPE_QCA8074:
  371. hal_qca8074_attach(hal);
  372. break;
  373. #endif
  374. #if defined(QCA_WIFI_QCA8074V2)
  375. case TARGET_TYPE_QCA8074V2:
  376. hal_qca8074v2_attach(hal);
  377. break;
  378. #endif
  379. #if defined(QCA_WIFI_QCA6018)
  380. case TARGET_TYPE_QCA6018:
  381. hal_qca8074v2_attach(hal);
  382. break;
  383. #endif
  384. #if defined(QCA_WIFI_QCA9574)
  385. case TARGET_TYPE_QCA9574:
  386. hal_qca8074v2_attach(hal);
  387. break;
  388. #endif
  389. #if defined(QCA_WIFI_QCN6122)
  390. case TARGET_TYPE_QCN6122:
  391. hal->use_register_windowing = true;
  392. /*
  393. * Static window map is enabled for qcn9000 to use 2mb bar
  394. * size and use multiple windows to write into registers.
  395. */
  396. hal->static_window_map = true;
  397. hal_qcn6122_attach(hal);
  398. break;
  399. #endif
  400. #ifdef QCA_WIFI_QCN9000
  401. case TARGET_TYPE_QCN9000:
  402. hal->use_register_windowing = true;
  403. /*
  404. * Static window map is enabled for qcn9000 to use 2mb bar
  405. * size and use multiple windows to write into registers.
  406. */
  407. hal->static_window_map = true;
  408. hal_qcn9000_attach(hal);
  409. break;
  410. #endif
  411. #ifdef QCA_WIFI_QCA5018
  412. case TARGET_TYPE_QCA5018:
  413. hal->use_register_windowing = true;
  414. hal->static_window_map = true;
  415. hal_qca5018_attach(hal);
  416. break;
  417. #endif
  418. #ifdef QCA_WIFI_QCN9224
  419. case TARGET_TYPE_QCN9224:
  420. hal->use_register_windowing = true;
  421. hal->static_window_map = true;
  422. hal_qcn9224_attach(hal);
  423. break;
  424. #endif
  425. default:
  426. break;
  427. }
  428. }
  429. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  430. {
  431. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  432. struct hif_target_info *tgt_info =
  433. hif_get_target_info_handle(hal_soc->hif_handle);
  434. return tgt_info->target_type;
  435. }
  436. qdf_export_symbol(hal_get_target_type);
  437. #if defined(FEATURE_HAL_DELAYED_REG_WRITE)
  438. /**
  439. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  440. * @hal: hal_soc pointer
  441. *
  442. * Return: true if throughput is high, else false.
  443. */
  444. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  445. {
  446. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  447. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  448. }
  449. static inline
  450. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  451. char *buf, qdf_size_t size)
  452. {
  453. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  454. srng->wstats.enqueues, srng->wstats.dequeues,
  455. srng->wstats.coalesces, srng->wstats.direct);
  456. return buf;
  457. }
  458. /* bytes for local buffer */
  459. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  460. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  461. {
  462. struct hal_srng *srng;
  463. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  464. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  465. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  466. hal_debug("SW2TCL1: %s",
  467. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  468. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  469. hal_debug("WBM2SW0: %s",
  470. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  471. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  472. hal_debug("REO2SW1: %s",
  473. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  474. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  475. hal_debug("REO2SW2: %s",
  476. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  477. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  478. hal_debug("REO2SW3: %s",
  479. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  480. }
  481. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  482. {
  483. uint32_t *hist;
  484. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  485. hist = hal->stats.wstats.sched_delay;
  486. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  487. qdf_atomic_read(&hal->stats.wstats.enqueues),
  488. hal->stats.wstats.dequeues,
  489. qdf_atomic_read(&hal->stats.wstats.coalesces),
  490. qdf_atomic_read(&hal->stats.wstats.direct),
  491. qdf_atomic_read(&hal->stats.wstats.q_depth),
  492. hal->stats.wstats.max_q_depth,
  493. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  494. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  495. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  496. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  497. }
  498. int hal_get_reg_write_pending_work(void *hal_soc)
  499. {
  500. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  501. return qdf_atomic_read(&hal->active_work_cnt);
  502. }
  503. #endif
  504. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  505. #ifdef MEMORY_DEBUG
  506. /*
  507. * Length of the queue(array) used to hold delayed register writes.
  508. * Must be a multiple of 2.
  509. */
  510. #define HAL_REG_WRITE_QUEUE_LEN 128
  511. #else
  512. #define HAL_REG_WRITE_QUEUE_LEN 32
  513. #endif
  514. /**
  515. * hal_process_reg_write_q_elem() - process a regiter write queue element
  516. * @hal: hal_soc pointer
  517. * @q_elem: pointer to hal regiter write queue element
  518. *
  519. * Return: The value which was written to the address
  520. */
  521. static uint32_t
  522. hal_process_reg_write_q_elem(struct hal_soc *hal,
  523. struct hal_reg_write_q_elem *q_elem)
  524. {
  525. struct hal_srng *srng = q_elem->srng;
  526. uint32_t write_val;
  527. SRNG_LOCK(&srng->lock);
  528. srng->reg_write_in_progress = false;
  529. srng->wstats.dequeues++;
  530. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  531. q_elem->dequeue_val = srng->u.src_ring.hp;
  532. hal_write_address_32_mb(hal,
  533. srng->u.src_ring.hp_addr,
  534. srng->u.src_ring.hp, false);
  535. write_val = srng->u.src_ring.hp;
  536. } else {
  537. q_elem->dequeue_val = srng->u.dst_ring.tp;
  538. hal_write_address_32_mb(hal,
  539. srng->u.dst_ring.tp_addr,
  540. srng->u.dst_ring.tp, false);
  541. write_val = srng->u.dst_ring.tp;
  542. }
  543. q_elem->valid = 0;
  544. srng->last_dequeue_time = q_elem->dequeue_time;
  545. SRNG_UNLOCK(&srng->lock);
  546. return write_val;
  547. }
  548. /**
  549. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  550. * @hal: hal_soc pointer
  551. * @delay: delay in us
  552. *
  553. * Return: None
  554. */
  555. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  556. uint64_t delay_us)
  557. {
  558. uint32_t *hist;
  559. hist = hal->stats.wstats.sched_delay;
  560. if (delay_us < 100)
  561. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  562. else if (delay_us < 1000)
  563. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  564. else if (delay_us < 5000)
  565. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  566. else
  567. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  568. }
  569. #ifdef SHADOW_WRITE_DELAY
  570. #define SHADOW_WRITE_MIN_DELTA_US 5
  571. #define SHADOW_WRITE_DELAY_US 50
  572. /*
  573. * Never add those srngs which are performance relate.
  574. * The delay itself will hit performance heavily.
  575. */
  576. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  577. (s)->ring_id == HAL_SRNG_CE_1_DST)
  578. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  579. {
  580. struct hal_srng *srng = elem->srng;
  581. struct hal_soc *hal;
  582. qdf_time_t now;
  583. qdf_iomem_t real_addr;
  584. if (qdf_unlikely(!srng))
  585. return false;
  586. hal = srng->hal_soc;
  587. if (qdf_unlikely(!hal))
  588. return false;
  589. /* Check if it is target srng, and valid shadow reg */
  590. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  591. return false;
  592. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  593. real_addr = SRNG_SRC_ADDR(srng, HP);
  594. else
  595. real_addr = SRNG_DST_ADDR(srng, TP);
  596. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  597. return false;
  598. /* Check the time delta from last write of same srng */
  599. now = qdf_get_log_timestamp();
  600. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  601. SHADOW_WRITE_MIN_DELTA_US)
  602. return false;
  603. /* Delay dequeue, and record */
  604. qdf_udelay(SHADOW_WRITE_DELAY_US);
  605. srng->wstats.dequeue_delay++;
  606. hal->stats.wstats.dequeue_delay++;
  607. return true;
  608. }
  609. #else
  610. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  611. {
  612. return false;
  613. }
  614. #endif
  615. /**
  616. * hal_reg_write_work() - Worker to process delayed writes
  617. * @arg: hal_soc pointer
  618. *
  619. * Return: None
  620. */
  621. static void hal_reg_write_work(void *arg)
  622. {
  623. int32_t q_depth, write_val;
  624. struct hal_soc *hal = arg;
  625. struct hal_reg_write_q_elem *q_elem;
  626. uint64_t delta_us;
  627. uint8_t ring_id;
  628. uint32_t *addr;
  629. uint32_t num_processed = 0;
  630. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  631. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  632. q_elem->cpu_id = qdf_get_cpu();
  633. /* Make sure q_elem consistent in the memory for multi-cores */
  634. qdf_rmb();
  635. if (!q_elem->valid)
  636. return;
  637. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  638. if (q_depth > hal->stats.wstats.max_q_depth)
  639. hal->stats.wstats.max_q_depth = q_depth;
  640. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  641. hal->stats.wstats.prevent_l1_fails++;
  642. return;
  643. }
  644. while (true) {
  645. qdf_rmb();
  646. if (!q_elem->valid)
  647. break;
  648. q_elem->dequeue_time = qdf_get_log_timestamp();
  649. ring_id = q_elem->srng->ring_id;
  650. addr = q_elem->addr;
  651. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  652. q_elem->enqueue_time);
  653. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  654. hal->stats.wstats.dequeues++;
  655. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  656. if (hal_reg_write_need_delay(q_elem))
  657. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  658. q_elem->srng->ring_id, q_elem->addr);
  659. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  660. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  661. hal->read_idx, ring_id, addr, write_val, delta_us);
  662. num_processed++;
  663. hal->read_idx = (hal->read_idx + 1) &
  664. (HAL_REG_WRITE_QUEUE_LEN - 1);
  665. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  666. }
  667. hif_allow_link_low_power_states(hal->hif_handle);
  668. /*
  669. * Decrement active_work_cnt by the number of elements dequeued after
  670. * hif_allow_link_low_power_states.
  671. * This makes sure that hif_try_complete_tasks will wait till we make
  672. * the bus access in hif_allow_link_low_power_states. This will avoid
  673. * race condition between delayed register worker and bus suspend
  674. * (system suspend or runtime suspend).
  675. *
  676. * The following decrement should be done at the end!
  677. */
  678. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  679. }
  680. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  681. {
  682. qdf_flush_work(&hal->reg_write_work);
  683. qdf_disable_work(&hal->reg_write_work);
  684. }
  685. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  686. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  687. }
  688. /**
  689. * hal_reg_write_enqueue() - enqueue register writes into kworker
  690. * @hal_soc: hal_soc pointer
  691. * @srng: srng pointer
  692. * @addr: iomem address of regiter
  693. * @value: value to be written to iomem address
  694. *
  695. * This function executes from within the SRNG LOCK
  696. *
  697. * Return: None
  698. */
  699. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  700. struct hal_srng *srng,
  701. void __iomem *addr,
  702. uint32_t value)
  703. {
  704. struct hal_reg_write_q_elem *q_elem;
  705. uint32_t write_idx;
  706. if (srng->reg_write_in_progress) {
  707. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  708. srng->ring_id, addr, value);
  709. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  710. srng->wstats.coalesces++;
  711. return;
  712. }
  713. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  714. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  715. q_elem = &hal_soc->reg_write_queue[write_idx];
  716. if (q_elem->valid) {
  717. hal_err("queue full");
  718. QDF_BUG(0);
  719. return;
  720. }
  721. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  722. srng->wstats.enqueues++;
  723. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  724. q_elem->srng = srng;
  725. q_elem->addr = addr;
  726. q_elem->enqueue_val = value;
  727. q_elem->enqueue_time = qdf_get_log_timestamp();
  728. /*
  729. * Before the valid flag is set to true, all the other
  730. * fields in the q_elem needs to be updated in memory.
  731. * Else there is a chance that the dequeuing worker thread
  732. * might read stale entries and process incorrect srng.
  733. */
  734. qdf_wmb();
  735. q_elem->valid = true;
  736. /*
  737. * After all other fields in the q_elem has been updated
  738. * in memory successfully, the valid flag needs to be updated
  739. * in memory in time too.
  740. * Else there is a chance that the dequeuing worker thread
  741. * might read stale valid flag and the work will be bypassed
  742. * for this round. And if there is no other work scheduled
  743. * later, this hal register writing won't be updated any more.
  744. */
  745. qdf_wmb();
  746. srng->reg_write_in_progress = true;
  747. qdf_atomic_inc(&hal_soc->active_work_cnt);
  748. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  749. write_idx, srng->ring_id, addr, value);
  750. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  751. &hal_soc->reg_write_work);
  752. }
  753. /**
  754. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  755. * @hal_soc: hal_soc pointer
  756. *
  757. * Initialize main data structures to process register writes in a delayed
  758. * workqueue.
  759. *
  760. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  761. */
  762. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  763. {
  764. hal->reg_write_wq =
  765. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  766. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  767. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  768. sizeof(*hal->reg_write_queue));
  769. if (!hal->reg_write_queue) {
  770. hal_err("unable to allocate memory");
  771. QDF_BUG(0);
  772. return QDF_STATUS_E_NOMEM;
  773. }
  774. /* Initial value of indices */
  775. hal->read_idx = 0;
  776. qdf_atomic_set(&hal->write_idx, -1);
  777. return QDF_STATUS_SUCCESS;
  778. }
  779. /**
  780. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  781. * @hal_soc: hal_soc pointer
  782. *
  783. * De-initialize main data structures to process register writes in a delayed
  784. * workqueue.
  785. *
  786. * Return: None
  787. */
  788. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  789. {
  790. __hal_flush_reg_write_work(hal);
  791. qdf_flush_workqueue(0, hal->reg_write_wq);
  792. qdf_destroy_workqueue(0, hal->reg_write_wq);
  793. qdf_mem_free(hal->reg_write_queue);
  794. }
  795. #else
  796. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  797. {
  798. return QDF_STATUS_SUCCESS;
  799. }
  800. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  801. {
  802. }
  803. #endif
  804. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  805. #ifdef QCA_WIFI_QCA6750
  806. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  807. struct hal_srng *srng,
  808. void __iomem *addr,
  809. uint32_t value)
  810. {
  811. uint8_t vote_access;
  812. switch (srng->ring_type) {
  813. case CE_SRC:
  814. case CE_DST:
  815. case CE_DST_STATUS:
  816. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  817. HIF_EP_VOTE_NONDP_ACCESS);
  818. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  819. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  820. PLD_MHI_STATE_L0 ==
  821. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  822. hal_write_address_32_mb(hal_soc, addr, value, false);
  823. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  824. srng->wstats.direct++;
  825. } else {
  826. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  827. }
  828. break;
  829. default:
  830. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  831. HIF_EP_VOTE_DP_ACCESS) ==
  832. HIF_EP_VOTE_ACCESS_DISABLE ||
  833. hal_is_reg_write_tput_level_high(hal_soc) ||
  834. PLD_MHI_STATE_L0 ==
  835. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  836. hal_write_address_32_mb(hal_soc, addr, value, false);
  837. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  838. srng->wstats.direct++;
  839. } else {
  840. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  841. }
  842. break;
  843. }
  844. }
  845. #else
  846. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  847. struct hal_srng *srng,
  848. void __iomem *addr,
  849. uint32_t value)
  850. {
  851. if (hal_is_reg_write_tput_level_high(hal_soc) ||
  852. pld_is_device_awake(hal_soc->qdf_dev->dev)) {
  853. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  854. srng->wstats.direct++;
  855. hal_write_address_32_mb(hal_soc, addr, value, false);
  856. } else {
  857. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  858. }
  859. }
  860. #endif
  861. #endif
  862. /**
  863. * hal_attach - Initialize HAL layer
  864. * @hif_handle: Opaque HIF handle
  865. * @qdf_dev: QDF device
  866. *
  867. * Return: Opaque HAL SOC handle
  868. * NULL on failure (if given ring is not available)
  869. *
  870. * This function should be called as part of HIF initialization (for accessing
  871. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  872. *
  873. */
  874. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  875. {
  876. struct hal_soc *hal;
  877. int i;
  878. hal = qdf_mem_malloc(sizeof(*hal));
  879. if (!hal) {
  880. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  881. "%s: hal_soc allocation failed", __func__);
  882. goto fail0;
  883. }
  884. hal->hif_handle = hif_handle;
  885. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  886. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  887. hal->qdf_dev = qdf_dev;
  888. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  889. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  890. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  891. if (!hal->shadow_rdptr_mem_paddr) {
  892. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  893. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  894. __func__);
  895. goto fail1;
  896. }
  897. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  898. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  899. hal->shadow_wrptr_mem_vaddr =
  900. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  901. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  902. &(hal->shadow_wrptr_mem_paddr));
  903. if (!hal->shadow_wrptr_mem_vaddr) {
  904. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  905. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  906. __func__);
  907. goto fail2;
  908. }
  909. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  910. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  911. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  912. hal->srng_list[i].initialized = 0;
  913. hal->srng_list[i].ring_id = i;
  914. }
  915. qdf_spinlock_create(&hal->register_access_lock);
  916. hal->register_window = 0;
  917. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  918. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  919. if (!hal->ops) {
  920. hal_err("unable to allocable memory for HAL ops");
  921. goto fail3;
  922. }
  923. hal_target_based_configure(hal);
  924. hal_reg_write_fail_history_init(hal);
  925. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  926. qdf_atomic_init(&hal->active_work_cnt);
  927. hal_delayed_reg_write_init(hal);
  928. return (void *)hal;
  929. fail3:
  930. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  931. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  932. HAL_MAX_LMAC_RINGS,
  933. hal->shadow_wrptr_mem_vaddr,
  934. hal->shadow_wrptr_mem_paddr, 0);
  935. fail2:
  936. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  937. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  938. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  939. fail1:
  940. qdf_mem_free(hal);
  941. fail0:
  942. return NULL;
  943. }
  944. qdf_export_symbol(hal_attach);
  945. /**
  946. * hal_mem_info - Retrieve hal memory base address
  947. *
  948. * @hal_soc: Opaque HAL SOC handle
  949. * @mem: pointer to structure to be updated with hal mem info
  950. */
  951. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  952. {
  953. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  954. mem->dev_base_addr = (void *)hal->dev_base_addr;
  955. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  956. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  957. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  958. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  959. hif_read_phy_mem_base((void *)hal->hif_handle,
  960. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  961. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  962. return;
  963. }
  964. qdf_export_symbol(hal_get_meminfo);
  965. /**
  966. * hal_detach - Detach HAL layer
  967. * @hal_soc: HAL SOC handle
  968. *
  969. * Return: Opaque HAL SOC handle
  970. * NULL on failure (if given ring is not available)
  971. *
  972. * This function should be called as part of HIF initialization (for accessing
  973. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  974. *
  975. */
  976. extern void hal_detach(void *hal_soc)
  977. {
  978. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  979. hal_delayed_reg_write_deinit(hal);
  980. qdf_mem_free(hal->ops);
  981. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  982. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  983. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  984. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  985. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  986. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  987. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  988. qdf_mem_free(hal);
  989. return;
  990. }
  991. qdf_export_symbol(hal_detach);
  992. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  993. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  994. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  995. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  996. /**
  997. * hal_ce_dst_setup - Initialize CE destination ring registers
  998. * @hal_soc: HAL SOC handle
  999. * @srng: SRNG ring pointer
  1000. */
  1001. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1002. int ring_num)
  1003. {
  1004. uint32_t reg_val = 0;
  1005. uint32_t reg_addr;
  1006. struct hal_hw_srng_config *ring_config =
  1007. HAL_SRNG_CONFIG(hal, CE_DST);
  1008. /* set DEST_MAX_LENGTH according to ce assignment */
  1009. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1010. ring_config->reg_start[R0_INDEX] +
  1011. (ring_num * ring_config->reg_size[R0_INDEX]));
  1012. reg_val = HAL_REG_READ(hal, reg_addr);
  1013. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1014. reg_val |= srng->u.dst_ring.max_buffer_length &
  1015. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1016. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1017. if (srng->prefetch_timer) {
  1018. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1019. ring_config->reg_start[R0_INDEX] +
  1020. (ring_num * ring_config->reg_size[R0_INDEX]));
  1021. reg_val = HAL_REG_READ(hal, reg_addr);
  1022. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1023. reg_val |= srng->prefetch_timer;
  1024. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1025. reg_val = HAL_REG_READ(hal, reg_addr);
  1026. }
  1027. }
  1028. /**
  1029. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1030. * @hal: HAL SOC handle
  1031. * @read: boolean value to indicate if read or write
  1032. * @ix0: pointer to store IX0 reg value
  1033. * @ix1: pointer to store IX1 reg value
  1034. * @ix2: pointer to store IX2 reg value
  1035. * @ix3: pointer to store IX3 reg value
  1036. */
  1037. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1038. uint32_t *ix0, uint32_t *ix1,
  1039. uint32_t *ix2, uint32_t *ix3)
  1040. {
  1041. uint32_t reg_offset;
  1042. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1043. uint32_t reo_reg_base;
  1044. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1045. if (read) {
  1046. if (ix0) {
  1047. reg_offset =
  1048. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1049. reo_reg_base);
  1050. *ix0 = HAL_REG_READ(hal, reg_offset);
  1051. }
  1052. if (ix1) {
  1053. reg_offset =
  1054. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1055. reo_reg_base);
  1056. *ix1 = HAL_REG_READ(hal, reg_offset);
  1057. }
  1058. if (ix2) {
  1059. reg_offset =
  1060. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1061. reo_reg_base);
  1062. *ix2 = HAL_REG_READ(hal, reg_offset);
  1063. }
  1064. if (ix3) {
  1065. reg_offset =
  1066. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1067. reo_reg_base);
  1068. *ix3 = HAL_REG_READ(hal, reg_offset);
  1069. }
  1070. } else {
  1071. if (ix0) {
  1072. reg_offset =
  1073. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1074. reo_reg_base);
  1075. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1076. *ix0, true);
  1077. }
  1078. if (ix1) {
  1079. reg_offset =
  1080. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1081. reo_reg_base);
  1082. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1083. *ix1, true);
  1084. }
  1085. if (ix2) {
  1086. reg_offset =
  1087. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1088. reo_reg_base);
  1089. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1090. *ix2, true);
  1091. }
  1092. if (ix3) {
  1093. reg_offset =
  1094. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1095. reo_reg_base);
  1096. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1097. *ix3, true);
  1098. }
  1099. }
  1100. }
  1101. qdf_export_symbol(hal_reo_read_write_ctrl_ix);
  1102. /**
  1103. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1104. * pointer and confirm that write went through by reading back the value
  1105. * @srng: sring pointer
  1106. * @paddr: physical address
  1107. *
  1108. * Return: None
  1109. */
  1110. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1111. {
  1112. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1113. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1114. }
  1115. qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm);
  1116. /**
  1117. * hal_srng_dst_init_hp() - Initialize destination ring head
  1118. * pointer
  1119. * @hal_soc: hal_soc handle
  1120. * @srng: sring pointer
  1121. * @vaddr: virtual address
  1122. */
  1123. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1124. struct hal_srng *srng,
  1125. uint32_t *vaddr)
  1126. {
  1127. uint32_t reg_offset;
  1128. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1129. if (!srng)
  1130. return;
  1131. srng->u.dst_ring.hp_addr = vaddr;
  1132. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1133. HAL_REG_WRITE_CONFIRM_RETRY(
  1134. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1135. if (vaddr) {
  1136. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1137. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1138. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1139. (void *)srng->u.dst_ring.hp_addr,
  1140. srng->u.dst_ring.cached_hp,
  1141. *srng->u.dst_ring.hp_addr);
  1142. }
  1143. }
  1144. qdf_export_symbol(hal_srng_dst_init_hp);
  1145. /**
  1146. * hal_srng_hw_init - Private function to initialize SRNG HW
  1147. * @hal_soc: HAL SOC handle
  1148. * @srng: SRNG ring pointer
  1149. */
  1150. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1151. struct hal_srng *srng)
  1152. {
  1153. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1154. hal_srng_src_hw_init(hal, srng);
  1155. else
  1156. hal_srng_dst_hw_init(hal, srng);
  1157. }
  1158. #ifdef CONFIG_SHADOW_V2
  1159. #define ignore_shadow false
  1160. #define CHECK_SHADOW_REGISTERS true
  1161. #else
  1162. #define ignore_shadow true
  1163. #define CHECK_SHADOW_REGISTERS false
  1164. #endif
  1165. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  1166. /**
  1167. * hal_srng_is_near_full_irq_supported() - Check if near full irq is
  1168. * supported on this SRNG
  1169. * @hal_soc: HAL SoC handle
  1170. * @ring_type: SRNG type
  1171. * @ring_num: ring number
  1172. *
  1173. * Return: true, if near full irq is supported for this SRNG
  1174. * false, if near full irq is not supported for this SRNG
  1175. */
  1176. bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc,
  1177. int ring_type, int ring_num)
  1178. {
  1179. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1180. struct hal_hw_srng_config *ring_config =
  1181. HAL_SRNG_CONFIG(hal, ring_type);
  1182. return ring_config->nf_irq_support;
  1183. }
  1184. /**
  1185. * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from
  1186. * ring params
  1187. * @srng: SRNG handle
  1188. * @ring_params: ring params for this SRNG
  1189. *
  1190. * Return: None
  1191. */
  1192. static inline void
  1193. hal_srng_set_msi2_params(struct hal_srng *srng,
  1194. struct hal_srng_params *ring_params)
  1195. {
  1196. srng->msi2_addr = ring_params->msi2_addr;
  1197. srng->msi2_data = ring_params->msi2_data;
  1198. }
  1199. /**
  1200. * hal_srng_get_nf_params() - Get the near full MSI2 params from srng
  1201. * @srng: SRNG handle
  1202. * @ring_params: ring params for this SRNG
  1203. *
  1204. * Return: None
  1205. */
  1206. static inline void
  1207. hal_srng_get_nf_params(struct hal_srng *srng,
  1208. struct hal_srng_params *ring_params)
  1209. {
  1210. ring_params->msi2_addr = srng->msi2_addr;
  1211. ring_params->msi2_data = srng->msi2_data;
  1212. }
  1213. /**
  1214. * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG
  1215. * @srng: SRNG handle where the params are to be set
  1216. * @ring_params: ring params, from where threshold is to be fetched
  1217. *
  1218. * Return: None
  1219. */
  1220. static inline void
  1221. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1222. struct hal_srng_params *ring_params)
  1223. {
  1224. srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support;
  1225. srng->u.dst_ring.high_thresh = ring_params->high_thresh;
  1226. }
  1227. #else
  1228. static inline void
  1229. hal_srng_set_msi2_params(struct hal_srng *srng,
  1230. struct hal_srng_params *ring_params)
  1231. {
  1232. }
  1233. static inline void
  1234. hal_srng_get_nf_params(struct hal_srng *srng,
  1235. struct hal_srng_params *ring_params)
  1236. {
  1237. }
  1238. static inline void
  1239. hal_srng_set_nf_thresholds(struct hal_srng *srng,
  1240. struct hal_srng_params *ring_params)
  1241. {
  1242. }
  1243. #endif
  1244. #if defined(CLEAR_SW2TCL_CONSUMED_DESC)
  1245. /**
  1246. * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr
  1247. *
  1248. * @srng: Source ring pointer
  1249. *
  1250. * Return: None
  1251. */
  1252. static inline
  1253. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1254. {
  1255. srng->last_desc_cleared = srng->ring_size - srng->entry_size;
  1256. }
  1257. #else
  1258. static inline
  1259. void hal_srng_last_desc_cleared_init(struct hal_srng *srng)
  1260. {
  1261. }
  1262. #endif /* CLEAR_SW2TCL_CONSUMED_DESC */
  1263. /**
  1264. * hal_srng_setup - Initialize HW SRNG ring.
  1265. * @hal_soc: Opaque HAL SOC handle
  1266. * @ring_type: one of the types from hal_ring_type
  1267. * @ring_num: Ring number if there are multiple rings of same type (staring
  1268. * from 0)
  1269. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1270. * @ring_params: SRNG ring params in hal_srng_params structure.
  1271. * Callers are expected to allocate contiguous ring memory of size
  1272. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1273. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1274. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1275. * and size of each ring entry should be queried using the API
  1276. * hal_srng_get_entrysize
  1277. *
  1278. * Return: Opaque pointer to ring on success
  1279. * NULL on failure (if given ring is not available)
  1280. */
  1281. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1282. int mac_id, struct hal_srng_params *ring_params)
  1283. {
  1284. int ring_id;
  1285. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1286. struct hal_srng *srng;
  1287. struct hal_hw_srng_config *ring_config =
  1288. HAL_SRNG_CONFIG(hal, ring_type);
  1289. void *dev_base_addr;
  1290. int i;
  1291. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1292. if (ring_id < 0)
  1293. return NULL;
  1294. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1295. srng = hal_get_srng(hal_soc, ring_id);
  1296. if (srng->initialized) {
  1297. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1298. return NULL;
  1299. }
  1300. dev_base_addr = hal->dev_base_addr;
  1301. srng->ring_id = ring_id;
  1302. srng->ring_type = ring_type;
  1303. srng->ring_dir = ring_config->ring_dir;
  1304. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1305. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1306. srng->entry_size = ring_config->entry_size;
  1307. srng->num_entries = ring_params->num_entries;
  1308. srng->ring_size = srng->num_entries * srng->entry_size;
  1309. srng->ring_size_mask = srng->ring_size - 1;
  1310. srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size;
  1311. srng->msi_addr = ring_params->msi_addr;
  1312. srng->msi_data = ring_params->msi_data;
  1313. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1314. srng->intr_batch_cntr_thres_entries =
  1315. ring_params->intr_batch_cntr_thres_entries;
  1316. srng->prefetch_timer = ring_params->prefetch_timer;
  1317. srng->hal_soc = hal_soc;
  1318. hal_srng_set_msi2_params(srng, ring_params);
  1319. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1320. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1321. + (ring_num * ring_config->reg_size[i]);
  1322. }
  1323. /* Zero out the entire ring memory */
  1324. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1325. srng->num_entries) << 2);
  1326. srng->flags = ring_params->flags;
  1327. #ifdef BIG_ENDIAN_HOST
  1328. /* TODO: See if we should we get these flags from caller */
  1329. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1330. srng->flags |= HAL_SRNG_MSI_SWAP;
  1331. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1332. #endif
  1333. hal_srng_last_desc_cleared_init(srng);
  1334. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1335. srng->u.src_ring.hp = 0;
  1336. srng->u.src_ring.reap_hp = srng->ring_size -
  1337. srng->entry_size;
  1338. srng->u.src_ring.tp_addr =
  1339. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1340. srng->u.src_ring.low_threshold =
  1341. ring_params->low_threshold * srng->entry_size;
  1342. if (ring_config->lmac_ring) {
  1343. /* For LMAC rings, head pointer updates will be done
  1344. * through FW by writing to a shared memory location
  1345. */
  1346. srng->u.src_ring.hp_addr =
  1347. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1348. HAL_SRNG_LMAC1_ID_START]);
  1349. srng->flags |= HAL_SRNG_LMAC_RING;
  1350. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1351. srng->u.src_ring.hp_addr =
  1352. hal_get_window_address(hal,
  1353. SRNG_SRC_ADDR(srng, HP));
  1354. if (CHECK_SHADOW_REGISTERS) {
  1355. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1356. QDF_TRACE_LEVEL_ERROR,
  1357. "%s: Ring (%d, %d) missing shadow config",
  1358. __func__, ring_type, ring_num);
  1359. }
  1360. } else {
  1361. hal_validate_shadow_register(hal,
  1362. SRNG_SRC_ADDR(srng, HP),
  1363. srng->u.src_ring.hp_addr);
  1364. }
  1365. } else {
  1366. /* During initialization loop count in all the descriptors
  1367. * will be set to zero, and HW will set it to 1 on completing
  1368. * descriptor update in first loop, and increments it by 1 on
  1369. * subsequent loops (loop count wraps around after reaching
  1370. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1371. * loop count in descriptors updated by HW (to be processed
  1372. * by SW).
  1373. */
  1374. hal_srng_set_nf_thresholds(srng, ring_params);
  1375. srng->u.dst_ring.loop_cnt = 1;
  1376. srng->u.dst_ring.tp = 0;
  1377. srng->u.dst_ring.hp_addr =
  1378. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1379. if (ring_config->lmac_ring) {
  1380. /* For LMAC rings, tail pointer updates will be done
  1381. * through FW by writing to a shared memory location
  1382. */
  1383. srng->u.dst_ring.tp_addr =
  1384. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1385. HAL_SRNG_LMAC1_ID_START]);
  1386. srng->flags |= HAL_SRNG_LMAC_RING;
  1387. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1388. srng->u.dst_ring.tp_addr =
  1389. hal_get_window_address(hal,
  1390. SRNG_DST_ADDR(srng, TP));
  1391. if (CHECK_SHADOW_REGISTERS) {
  1392. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1393. QDF_TRACE_LEVEL_ERROR,
  1394. "%s: Ring (%d, %d) missing shadow config",
  1395. __func__, ring_type, ring_num);
  1396. }
  1397. } else {
  1398. hal_validate_shadow_register(hal,
  1399. SRNG_DST_ADDR(srng, TP),
  1400. srng->u.dst_ring.tp_addr);
  1401. }
  1402. }
  1403. if (!(ring_config->lmac_ring)) {
  1404. hal_srng_hw_init(hal, srng);
  1405. if (ring_type == CE_DST) {
  1406. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1407. hal_ce_dst_setup(hal, srng, ring_num);
  1408. }
  1409. }
  1410. SRNG_LOCK_INIT(&srng->lock);
  1411. srng->srng_event = 0;
  1412. srng->initialized = true;
  1413. return (void *)srng;
  1414. }
  1415. qdf_export_symbol(hal_srng_setup);
  1416. /**
  1417. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1418. * @hal_soc: Opaque HAL SOC handle
  1419. * @hal_srng: Opaque HAL SRNG pointer
  1420. */
  1421. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1422. {
  1423. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1424. SRNG_LOCK_DESTROY(&srng->lock);
  1425. srng->initialized = 0;
  1426. }
  1427. qdf_export_symbol(hal_srng_cleanup);
  1428. /**
  1429. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1430. * @hal_soc: Opaque HAL SOC handle
  1431. * @ring_type: one of the types from hal_ring_type
  1432. *
  1433. */
  1434. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1435. {
  1436. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1437. struct hal_hw_srng_config *ring_config =
  1438. HAL_SRNG_CONFIG(hal, ring_type);
  1439. return ring_config->entry_size << 2;
  1440. }
  1441. qdf_export_symbol(hal_srng_get_entrysize);
  1442. /**
  1443. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1444. * @hal_soc: Opaque HAL SOC handle
  1445. * @ring_type: one of the types from hal_ring_type
  1446. *
  1447. * Return: Maximum number of entries for the given ring_type
  1448. */
  1449. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1450. {
  1451. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1452. struct hal_hw_srng_config *ring_config =
  1453. HAL_SRNG_CONFIG(hal, ring_type);
  1454. return ring_config->max_size / ring_config->entry_size;
  1455. }
  1456. qdf_export_symbol(hal_srng_max_entries);
  1457. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1458. {
  1459. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1460. struct hal_hw_srng_config *ring_config =
  1461. HAL_SRNG_CONFIG(hal, ring_type);
  1462. return ring_config->ring_dir;
  1463. }
  1464. /**
  1465. * hal_srng_dump - Dump ring status
  1466. * @srng: hal srng pointer
  1467. */
  1468. void hal_srng_dump(struct hal_srng *srng)
  1469. {
  1470. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1471. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1472. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1473. srng->u.src_ring.hp,
  1474. srng->u.src_ring.reap_hp,
  1475. *srng->u.src_ring.tp_addr,
  1476. srng->u.src_ring.cached_tp);
  1477. } else {
  1478. hal_debug("=== DST RING %d ===", srng->ring_id);
  1479. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1480. srng->u.dst_ring.tp,
  1481. *srng->u.dst_ring.hp_addr,
  1482. srng->u.dst_ring.cached_hp,
  1483. srng->u.dst_ring.loop_cnt);
  1484. }
  1485. }
  1486. /**
  1487. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1488. *
  1489. * @hal_soc: Opaque HAL SOC handle
  1490. * @hal_ring: Ring pointer (Source or Destination ring)
  1491. * @ring_params: SRNG parameters will be returned through this structure
  1492. */
  1493. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1494. hal_ring_handle_t hal_ring_hdl,
  1495. struct hal_srng_params *ring_params)
  1496. {
  1497. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1498. int i =0;
  1499. ring_params->ring_id = srng->ring_id;
  1500. ring_params->ring_dir = srng->ring_dir;
  1501. ring_params->entry_size = srng->entry_size;
  1502. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1503. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1504. ring_params->num_entries = srng->num_entries;
  1505. ring_params->msi_addr = srng->msi_addr;
  1506. ring_params->msi_data = srng->msi_data;
  1507. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1508. ring_params->intr_batch_cntr_thres_entries =
  1509. srng->intr_batch_cntr_thres_entries;
  1510. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1511. ring_params->flags = srng->flags;
  1512. ring_params->ring_id = srng->ring_id;
  1513. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1514. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1515. hal_srng_get_nf_params(srng, ring_params);
  1516. }
  1517. qdf_export_symbol(hal_get_srng_params);
  1518. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1519. uint32_t low_threshold)
  1520. {
  1521. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1522. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1523. }
  1524. qdf_export_symbol(hal_set_low_threshold);
  1525. #ifdef FORCE_WAKE
  1526. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1527. {
  1528. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1529. hal_soc->init_phase = init_phase;
  1530. }
  1531. #endif /* FORCE_WAKE */