dp_rx_defrag.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  21. #ifndef DP_BE_WAR
  22. #include "li/hal_li_rx.h"
  23. #endif
  24. #endif
  25. #include "dp_types.h"
  26. #include "dp_rx.h"
  27. #include "dp_peer.h"
  28. #include "hal_api.h"
  29. #include "qdf_trace.h"
  30. #include "qdf_nbuf.h"
  31. #include "dp_internal.h"
  32. #include "dp_rx_defrag.h"
  33. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  34. #include "dp_rx_defrag.h"
  35. #include "dp_ipa.h"
  36. #include "dp_rx_buffer_pool.h"
  37. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  38. "AES-CCM",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_MICLEN,
  41. 0,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_tkip = {
  44. "TKIP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. IEEE80211_WEP_MICLEN,
  48. };
  49. const struct dp_rx_defrag_cipher dp_f_wep = {
  50. "WEP",
  51. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  52. IEEE80211_WEP_CRCLEN,
  53. 0,
  54. };
  55. /*
  56. * The header and mic length are same for both
  57. * GCMP-128 and GCMP-256.
  58. */
  59. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  60. "AES-GCMP",
  61. WLAN_IEEE80211_GCMP_HEADERLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. WLAN_IEEE80211_GCMP_MICLEN,
  64. };
  65. /**
  66. * dp_rx_defrag_frames_free() - Free fragment chain
  67. * @frames: Fragment chain
  68. *
  69. * Iterates through the fragment chain and frees them
  70. * Return: None
  71. */
  72. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  73. {
  74. qdf_nbuf_t next, frag = frames;
  75. while (frag) {
  76. next = qdf_nbuf_next(frag);
  77. dp_rx_nbuf_free(frag);
  78. frag = next;
  79. }
  80. }
  81. #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */
  82. /**
  83. * dp_rx_clear_saved_desc_info() - Clears descriptor info
  84. * @txrx_peer: Pointer to the peer data structure
  85. * @tid: Transmit ID (TID)
  86. *
  87. * Saves MPDU descriptor info and MSDU link pointer from REO
  88. * ring descriptor. The cache is created per peer, per TID
  89. *
  90. * Return: None
  91. */
  92. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  93. unsigned int tid)
  94. {
  95. if (txrx_peer->rx_tid[tid].dst_ring_desc)
  96. qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc);
  97. txrx_peer->rx_tid[tid].dst_ring_desc = NULL;
  98. txrx_peer->rx_tid[tid].head_frag_desc = NULL;
  99. }
  100. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  101. unsigned int tid)
  102. {
  103. struct dp_soc *soc;
  104. struct dp_pdev *pdev;
  105. struct dp_srng *dp_rxdma_srng;
  106. struct rx_desc_pool *rx_desc_pool;
  107. union dp_rx_desc_list_elem_t *head = NULL;
  108. union dp_rx_desc_list_elem_t *tail = NULL;
  109. uint8_t pool_id;
  110. pdev = txrx_peer->vdev->pdev;
  111. soc = pdev->soc;
  112. if (txrx_peer->rx_tid[tid].head_frag_desc) {
  113. pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id;
  114. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  115. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  116. dp_rx_add_to_free_desc_list(&head, &tail,
  117. txrx_peer->rx_tid[tid].head_frag_desc);
  118. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  119. 1, &head, &tail, false);
  120. }
  121. if (txrx_peer->rx_tid[tid].dst_ring_desc) {
  122. if (dp_rx_link_desc_return(soc,
  123. txrx_peer->rx_tid[tid].dst_ring_desc,
  124. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  125. QDF_STATUS_SUCCESS)
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: Failed to return link desc", __func__);
  128. }
  129. }
  130. #else
  131. static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer,
  132. unsigned int tid)
  133. {
  134. }
  135. static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer,
  136. unsigned int tid)
  137. {
  138. }
  139. #endif /* WLAN_SOFTUMAC_SUPPORT */
  140. void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer,
  141. unsigned int tid)
  142. {
  143. dp_info_rl("Flushing TID %d", tid);
  144. if (!txrx_peer) {
  145. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  146. "%s: NULL peer", __func__);
  147. return;
  148. }
  149. dp_rx_return_head_frag_desc(txrx_peer, tid);
  150. dp_rx_defrag_cleanup(txrx_peer, tid);
  151. }
  152. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  153. {
  154. struct dp_rx_tid_defrag *waitlist_elem = NULL;
  155. struct dp_rx_tid_defrag *tmp;
  156. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  157. TAILQ_HEAD(, dp_rx_tid_defrag) temp_list;
  158. dp_txrx_ref_handle txrx_ref_handle = NULL;
  159. TAILQ_INIT(&temp_list);
  160. dp_debug("Current time %u", now_ms);
  161. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  162. TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist,
  163. defrag_waitlist_elem, tmp) {
  164. uint32_t tid;
  165. if (waitlist_elem->defrag_timeout_ms > now_ms)
  166. break;
  167. tid = waitlist_elem->tid;
  168. if (tid >= DP_MAX_TIDS) {
  169. qdf_assert(0);
  170. continue;
  171. }
  172. TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem,
  173. defrag_waitlist_elem);
  174. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  175. /* Move to temp list and clean-up later */
  176. TAILQ_INSERT_TAIL(&temp_list, waitlist_elem,
  177. defrag_waitlist_elem);
  178. }
  179. if (waitlist_elem) {
  180. soc->rx.defrag.next_flush_ms =
  181. waitlist_elem->defrag_timeout_ms;
  182. } else {
  183. soc->rx.defrag.next_flush_ms =
  184. now_ms + soc->rx.defrag.timeout_ms;
  185. }
  186. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  187. TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list,
  188. defrag_waitlist_elem, tmp) {
  189. struct dp_txrx_peer *txrx_peer, *temp_peer = NULL;
  190. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  191. TAILQ_REMOVE(&temp_list, waitlist_elem,
  192. defrag_waitlist_elem);
  193. /* get address of current peer */
  194. txrx_peer = waitlist_elem->defrag_peer;
  195. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  196. temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  197. &txrx_ref_handle,
  198. DP_MOD_ID_RX_ERR);
  199. if (temp_peer == txrx_peer) {
  200. qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock);
  201. dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid);
  202. qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock);
  203. }
  204. if (temp_peer)
  205. dp_txrx_peer_unref_delete(txrx_ref_handle,
  206. DP_MOD_ID_RX_ERR);
  207. }
  208. }
  209. void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer,
  210. unsigned int tid)
  211. {
  212. struct dp_soc *psoc = txrx_peer->vdev->pdev->soc;
  213. struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid];
  214. dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ",
  215. tid, txrx_peer, txrx_peer->peer_id);
  216. /* TODO: use LIST macros instead of TAIL macros */
  217. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  218. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  219. psoc->rx.defrag.next_flush_ms =
  220. waitlist_elem->defrag_timeout_ms;
  221. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem,
  222. defrag_waitlist_elem);
  223. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  224. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  225. }
  226. void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer,
  227. unsigned int tid)
  228. {
  229. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  230. struct dp_soc *soc = pdev->soc;
  231. struct dp_rx_tid_defrag *waitlist_elm;
  232. struct dp_rx_tid_defrag *tmp;
  233. dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ",
  234. tid, txrx_peer, txrx_peer->peer_id);
  235. if (tid >= DP_MAX_TIDS) {
  236. dp_err("TID out of bounds: %d", tid);
  237. qdf_assert_always(0);
  238. }
  239. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  240. TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist,
  241. defrag_waitlist_elem, tmp) {
  242. struct dp_txrx_peer *peer_on_waitlist;
  243. /* get address of current peer */
  244. peer_on_waitlist = waitlist_elm->defrag_peer;
  245. /* Ensure it is TID for same peer */
  246. if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) {
  247. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  248. waitlist_elm, defrag_waitlist_elem);
  249. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  250. }
  251. }
  252. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  253. }
  254. QDF_STATUS
  255. dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  256. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr,
  257. qdf_nbuf_t frag, uint8_t *all_frag_present)
  258. {
  259. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  260. qdf_nbuf_t next;
  261. qdf_nbuf_t prev = NULL;
  262. qdf_nbuf_t cur;
  263. uint16_t head_fragno, cur_fragno, next_fragno;
  264. uint8_t last_morefrag = 1, count = 0;
  265. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  266. uint8_t *rx_desc_info;
  267. qdf_assert(frag);
  268. qdf_assert(head_addr);
  269. qdf_assert(tail_addr);
  270. *all_frag_present = 0;
  271. rx_desc_info = qdf_nbuf_data(frag);
  272. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  273. dp_debug("cur_fragno %d", cur_fragno);
  274. /* If this is the first fragment */
  275. if (!(*head_addr)) {
  276. *head_addr = *tail_addr = frag;
  277. qdf_nbuf_set_next(*tail_addr, NULL);
  278. rx_tid->curr_frag_num = cur_fragno;
  279. goto insert_done;
  280. }
  281. /* In sequence fragment */
  282. if (cur_fragno > rx_tid->curr_frag_num) {
  283. qdf_nbuf_set_next(*tail_addr, frag);
  284. *tail_addr = frag;
  285. qdf_nbuf_set_next(*tail_addr, NULL);
  286. rx_tid->curr_frag_num = cur_fragno;
  287. } else {
  288. /* Out of sequence fragment */
  289. cur = *head_addr;
  290. rx_desc_info = qdf_nbuf_data(cur);
  291. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  292. rx_desc_info);
  293. if (cur_fragno == head_fragno) {
  294. dp_rx_nbuf_free(frag);
  295. goto insert_fail;
  296. } else if (head_fragno > cur_fragno) {
  297. qdf_nbuf_set_next(frag, cur);
  298. cur = frag;
  299. *head_addr = frag; /* head pointer to be updated */
  300. } else {
  301. while ((cur_fragno > head_fragno) && cur) {
  302. prev = cur;
  303. cur = qdf_nbuf_next(cur);
  304. if (cur) {
  305. rx_desc_info = qdf_nbuf_data(cur);
  306. head_fragno =
  307. dp_rx_frag_get_mpdu_frag_number(
  308. soc,
  309. rx_desc_info);
  310. }
  311. }
  312. if (cur_fragno == head_fragno) {
  313. dp_rx_nbuf_free(frag);
  314. goto insert_fail;
  315. }
  316. qdf_nbuf_set_next(prev, frag);
  317. qdf_nbuf_set_next(frag, cur);
  318. }
  319. }
  320. next = qdf_nbuf_next(*head_addr);
  321. rx_desc_info = qdf_nbuf_data(*tail_addr);
  322. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  323. /* TODO: optimize the loop */
  324. if (!last_morefrag) {
  325. /* Check if all fragments are present */
  326. do {
  327. rx_desc_info = qdf_nbuf_data(next);
  328. next_fragno =
  329. dp_rx_frag_get_mpdu_frag_number(soc,
  330. rx_desc_info);
  331. count++;
  332. if (next_fragno != count)
  333. break;
  334. next = qdf_nbuf_next(next);
  335. } while (next);
  336. if (!next) {
  337. *all_frag_present = 1;
  338. return QDF_STATUS_SUCCESS;
  339. } else {
  340. /* revisit */
  341. }
  342. }
  343. insert_done:
  344. return QDF_STATUS_SUCCESS;
  345. insert_fail:
  346. return QDF_STATUS_E_FAILURE;
  347. }
  348. /**
  349. * dp_rx_defrag_tkip_decap() - decap tkip encrypted fragment
  350. * @soc: DP SOC
  351. * @msdu: Pointer to the fragment
  352. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  353. *
  354. * decap tkip encrypted fragment
  355. *
  356. * Return: QDF_STATUS
  357. */
  358. static QDF_STATUS
  359. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  360. qdf_nbuf_t msdu, uint16_t hdrlen)
  361. {
  362. uint8_t *ivp, *orig_hdr;
  363. int rx_desc_len = soc->rx_pkt_tlv_size;
  364. /* start of 802.11 header info */
  365. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  366. /* TKIP header is located post 802.11 header */
  367. ivp = orig_hdr + hdrlen;
  368. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  369. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  370. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  371. return QDF_STATUS_E_DEFRAG_ERROR;
  372. }
  373. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  374. return QDF_STATUS_SUCCESS;
  375. }
  376. /**
  377. * dp_rx_defrag_ccmp_demic() - Remove MIC information from CCMP fragment
  378. * @soc: DP SOC
  379. * @nbuf: Pointer to the fragment buffer
  380. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  381. *
  382. * Remove MIC information from CCMP fragment
  383. *
  384. * Return: QDF_STATUS
  385. */
  386. static QDF_STATUS
  387. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  388. {
  389. uint8_t *ivp, *orig_hdr;
  390. int rx_desc_len = soc->rx_pkt_tlv_size;
  391. /* start of the 802.11 header */
  392. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  393. /* CCMP header is located after 802.11 header */
  394. ivp = orig_hdr + hdrlen;
  395. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  396. return QDF_STATUS_E_DEFRAG_ERROR;
  397. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  398. return QDF_STATUS_SUCCESS;
  399. }
  400. /**
  401. * dp_rx_defrag_ccmp_decap() - decap CCMP encrypted fragment
  402. * @soc: DP SOC
  403. * @nbuf: Pointer to the fragment
  404. * @hdrlen: length of the header information
  405. *
  406. * decap CCMP encrypted fragment
  407. *
  408. * Return: QDF_STATUS
  409. */
  410. static QDF_STATUS
  411. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  412. {
  413. uint8_t *ivp, *origHdr;
  414. int rx_desc_len = soc->rx_pkt_tlv_size;
  415. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  416. ivp = origHdr + hdrlen;
  417. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  418. return QDF_STATUS_E_DEFRAG_ERROR;
  419. return QDF_STATUS_SUCCESS;
  420. }
  421. /**
  422. * dp_rx_defrag_wep_decap() - decap WEP encrypted fragment
  423. * @soc: DP SOC
  424. * @msdu: Pointer to the fragment
  425. * @hdrlen: length of the header information
  426. *
  427. * decap WEP encrypted fragment
  428. *
  429. * Return: QDF_STATUS
  430. */
  431. static QDF_STATUS
  432. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  433. {
  434. uint8_t *origHdr;
  435. int rx_desc_len = soc->rx_pkt_tlv_size;
  436. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  437. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  438. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  439. return QDF_STATUS_SUCCESS;
  440. }
  441. /**
  442. * dp_rx_defrag_hdrsize() - Calculate the header size of the received fragment
  443. * @soc: soc handle
  444. * @nbuf: Pointer to the fragment
  445. *
  446. * Calculate the header size of the received fragment
  447. *
  448. * Return: header size (uint16_t)
  449. */
  450. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  451. {
  452. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  453. uint16_t size = sizeof(struct ieee80211_frame);
  454. uint16_t fc = 0;
  455. uint32_t to_ds, fr_ds;
  456. uint8_t frm_ctrl_valid;
  457. uint16_t frm_ctrl_field;
  458. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  459. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  460. frm_ctrl_valid =
  461. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  462. rx_tlv_hdr);
  463. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  464. if (to_ds && fr_ds)
  465. size += QDF_MAC_ADDR_SIZE;
  466. if (frm_ctrl_valid) {
  467. fc = frm_ctrl_field;
  468. /* use 1-st byte for validation */
  469. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  470. size += sizeof(uint16_t);
  471. /* use 2-nd byte for validation */
  472. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  473. size += sizeof(struct ieee80211_htc);
  474. }
  475. }
  476. return size;
  477. }
  478. /**
  479. * dp_rx_defrag_michdr() - Calculate a pseudo MIC header
  480. * @wh0: Pointer to the wireless header of the fragment
  481. * @hdr: Array to hold the pseudo header
  482. *
  483. * Calculate a pseudo MIC header
  484. *
  485. * Return: None
  486. */
  487. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  488. uint8_t hdr[])
  489. {
  490. const struct ieee80211_frame_addr4 *wh =
  491. (const struct ieee80211_frame_addr4 *)wh0;
  492. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  493. case IEEE80211_FC1_DIR_NODS:
  494. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  495. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  496. wh->i_addr2);
  497. break;
  498. case IEEE80211_FC1_DIR_TODS:
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  501. wh->i_addr2);
  502. break;
  503. case IEEE80211_FC1_DIR_FROMDS:
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  506. wh->i_addr3);
  507. break;
  508. case IEEE80211_FC1_DIR_DSTODS:
  509. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  511. wh->i_addr4);
  512. break;
  513. }
  514. /*
  515. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  516. * it could also be set for deauth, disassoc, action, etc. for
  517. * a mgt type frame. It comes into picture for MFP.
  518. */
  519. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  520. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  521. IEEE80211_FC1_DIR_DSTODS) {
  522. const struct ieee80211_qosframe_addr4 *qwh =
  523. (const struct ieee80211_qosframe_addr4 *)wh;
  524. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  525. } else {
  526. const struct ieee80211_qosframe *qwh =
  527. (const struct ieee80211_qosframe *)wh;
  528. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  529. }
  530. } else {
  531. hdr[12] = 0;
  532. }
  533. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  534. }
  535. /**
  536. * dp_rx_defrag_mic() - Calculate MIC header
  537. * @soc: DP SOC
  538. * @key: Pointer to the key
  539. * @wbuf: fragment buffer
  540. * @off: Offset
  541. * @data_len: Data length
  542. * @mic: Array to hold MIC
  543. *
  544. * Calculate a pseudo MIC header
  545. *
  546. * Return: QDF_STATUS
  547. */
  548. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  549. qdf_nbuf_t wbuf, uint16_t off,
  550. uint16_t data_len, uint8_t mic[])
  551. {
  552. uint8_t hdr[16] = { 0, };
  553. uint32_t l, r;
  554. const uint8_t *data;
  555. uint32_t space;
  556. int rx_desc_len = soc->rx_pkt_tlv_size;
  557. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  558. + rx_desc_len), hdr);
  559. l = dp_rx_get_le32(key);
  560. r = dp_rx_get_le32(key + 4);
  561. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  562. l ^= dp_rx_get_le32(hdr);
  563. dp_rx_michael_block(l, r);
  564. l ^= dp_rx_get_le32(&hdr[4]);
  565. dp_rx_michael_block(l, r);
  566. l ^= dp_rx_get_le32(&hdr[8]);
  567. dp_rx_michael_block(l, r);
  568. l ^= dp_rx_get_le32(&hdr[12]);
  569. dp_rx_michael_block(l, r);
  570. /* first buffer has special handling */
  571. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  572. space = qdf_nbuf_len(wbuf) - off;
  573. for (;; ) {
  574. if (space > data_len)
  575. space = data_len;
  576. /* collect 32-bit blocks from current buffer */
  577. while (space >= sizeof(uint32_t)) {
  578. l ^= dp_rx_get_le32(data);
  579. dp_rx_michael_block(l, r);
  580. data += sizeof(uint32_t);
  581. space -= sizeof(uint32_t);
  582. data_len -= sizeof(uint32_t);
  583. }
  584. if (data_len < sizeof(uint32_t))
  585. break;
  586. wbuf = qdf_nbuf_next(wbuf);
  587. if (!wbuf)
  588. return QDF_STATUS_E_DEFRAG_ERROR;
  589. if (space != 0) {
  590. const uint8_t *data_next;
  591. /*
  592. * Block straddles buffers, split references.
  593. */
  594. data_next =
  595. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  596. if ((qdf_nbuf_len(wbuf)) <
  597. sizeof(uint32_t) - space) {
  598. return QDF_STATUS_E_DEFRAG_ERROR;
  599. }
  600. switch (space) {
  601. case 1:
  602. l ^= dp_rx_get_le32_split(data[0],
  603. data_next[0], data_next[1],
  604. data_next[2]);
  605. data = data_next + 3;
  606. space = (qdf_nbuf_len(wbuf) - off) - 3;
  607. break;
  608. case 2:
  609. l ^= dp_rx_get_le32_split(data[0], data[1],
  610. data_next[0], data_next[1]);
  611. data = data_next + 2;
  612. space = (qdf_nbuf_len(wbuf) - off) - 2;
  613. break;
  614. case 3:
  615. l ^= dp_rx_get_le32_split(data[0], data[1],
  616. data[2], data_next[0]);
  617. data = data_next + 1;
  618. space = (qdf_nbuf_len(wbuf) - off) - 1;
  619. break;
  620. }
  621. dp_rx_michael_block(l, r);
  622. data_len -= sizeof(uint32_t);
  623. } else {
  624. /*
  625. * Setup for next buffer.
  626. */
  627. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  628. space = qdf_nbuf_len(wbuf) - off;
  629. }
  630. }
  631. /* Last block and padding (0x5a, 4..7 x 0) */
  632. switch (data_len) {
  633. case 0:
  634. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  635. break;
  636. case 1:
  637. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  638. break;
  639. case 2:
  640. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  641. break;
  642. case 3:
  643. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  644. break;
  645. }
  646. dp_rx_michael_block(l, r);
  647. dp_rx_michael_block(l, r);
  648. dp_rx_put_le32(mic, l);
  649. dp_rx_put_le32(mic + 4, r);
  650. return QDF_STATUS_SUCCESS;
  651. }
  652. /**
  653. * dp_rx_defrag_tkip_demic() - Remove MIC header from the TKIP frame
  654. * @soc: DP SOC
  655. * @key: Pointer to the key
  656. * @msdu: fragment buffer
  657. * @hdrlen: Length of the header information
  658. *
  659. * Remove MIC information from the TKIP frame
  660. *
  661. * Return: QDF_STATUS
  662. */
  663. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  664. const uint8_t *key,
  665. qdf_nbuf_t msdu, uint16_t hdrlen)
  666. {
  667. QDF_STATUS status;
  668. uint32_t pktlen = 0, prev_data_len;
  669. uint8_t mic[IEEE80211_WEP_MICLEN];
  670. uint8_t mic0[IEEE80211_WEP_MICLEN];
  671. qdf_nbuf_t prev = NULL, prev0, next;
  672. uint8_t len0 = 0;
  673. next = msdu;
  674. prev0 = msdu;
  675. while (next) {
  676. pktlen += (qdf_nbuf_len(next) - hdrlen);
  677. prev = next;
  678. dp_debug("pktlen %u",
  679. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  680. next = qdf_nbuf_next(next);
  681. if (next && !qdf_nbuf_next(next))
  682. prev0 = prev;
  683. }
  684. if (!prev) {
  685. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  686. "%s Defrag chaining failed !\n", __func__);
  687. return QDF_STATUS_E_DEFRAG_ERROR;
  688. }
  689. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  690. if (prev_data_len < dp_f_tkip.ic_miclen) {
  691. if (prev0 == prev) {
  692. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  693. "%s Fragments don't have MIC header !\n", __func__);
  694. return QDF_STATUS_E_DEFRAG_ERROR;
  695. }
  696. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  697. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  698. (caddr_t)mic0);
  699. qdf_nbuf_trim_tail(prev0, len0);
  700. }
  701. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  702. (dp_f_tkip.ic_miclen - len0)),
  703. (dp_f_tkip.ic_miclen - len0),
  704. (caddr_t)(&mic0[len0]));
  705. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  706. pktlen -= dp_f_tkip.ic_miclen;
  707. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  708. dp_rx_nbuf_free(prev);
  709. qdf_nbuf_set_next(prev0, NULL);
  710. }
  711. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  712. pktlen, mic);
  713. if (QDF_IS_STATUS_ERROR(status))
  714. return status;
  715. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  716. return QDF_STATUS_E_DEFRAG_ERROR;
  717. return QDF_STATUS_SUCCESS;
  718. }
  719. /**
  720. * dp_rx_frag_pull_hdr() - Pulls the RXTLV & the 802.11 headers
  721. * @soc: DP SOC
  722. * @nbuf: buffer pointer
  723. * @hdrsize: size of the header to be pulled
  724. *
  725. * Pull the RXTLV & the 802.11 headers
  726. *
  727. * Return: None
  728. */
  729. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  730. qdf_nbuf_t nbuf, uint16_t hdrsize)
  731. {
  732. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  733. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  734. dp_debug("final pktlen %d .11len %d",
  735. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  736. }
  737. /**
  738. * dp_rx_defrag_pn_check() - Check the PN of current fragmented with prev PN
  739. * @soc: DP SOC
  740. * @msdu: msdu to get the current PN
  741. * @cur_pn128: PN extracted from current msdu
  742. * @prev_pn128: Prev PN
  743. *
  744. * Return: 0 on success, non zero on failure
  745. */
  746. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  747. uint64_t *cur_pn128, uint64_t *prev_pn128)
  748. {
  749. int out_of_order = 0;
  750. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  751. if (cur_pn128[1] == prev_pn128[1])
  752. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  753. else
  754. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  755. return out_of_order;
  756. }
  757. /**
  758. * dp_rx_construct_fraglist() - Construct a nbuf fraglist
  759. * @txrx_peer: Pointer to the txrx peer
  760. * @tid: Transmit ID (TID)
  761. * @head: Pointer to list of fragments
  762. * @hdrsize: Size of the header to be pulled
  763. *
  764. * Construct a nbuf fraglist
  765. *
  766. * Return: None
  767. */
  768. static int
  769. dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid,
  770. qdf_nbuf_t head,
  771. uint16_t hdrsize)
  772. {
  773. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  774. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  775. qdf_nbuf_t rx_nbuf = msdu;
  776. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  777. uint32_t len = 0;
  778. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  779. int out_of_order = 0;
  780. int index;
  781. int needs_pn_check = 0;
  782. enum cdp_sec_type sec_type;
  783. prev_pn128[0] = rx_tid->pn128[0];
  784. prev_pn128[1] = rx_tid->pn128[1];
  785. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  786. dp_sec_ucast;
  787. sec_type = txrx_peer->security[index].sec_type;
  788. if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
  789. sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
  790. needs_pn_check = 1;
  791. while (msdu) {
  792. if (qdf_likely(needs_pn_check))
  793. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  794. &cur_pn128[0],
  795. &prev_pn128[0]);
  796. if (qdf_unlikely(out_of_order)) {
  797. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  798. cur_pn128[0], cur_pn128[1],
  799. prev_pn128[0], prev_pn128[1]);
  800. return QDF_STATUS_E_FAILURE;
  801. }
  802. prev_pn128[0] = cur_pn128[0];
  803. prev_pn128[1] = cur_pn128[1];
  804. /*
  805. * Broadcast and multicast frames should never be fragmented.
  806. * Iterating through all msdus and dropping fragments if even
  807. * one of them has mcast/bcast destination address.
  808. */
  809. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  810. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  811. "Dropping multicast/broadcast fragments");
  812. return QDF_STATUS_E_FAILURE;
  813. }
  814. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  815. len += qdf_nbuf_len(msdu);
  816. msdu = qdf_nbuf_next(msdu);
  817. }
  818. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  819. qdf_nbuf_set_next(head, NULL);
  820. qdf_nbuf_set_is_frag(head, 1);
  821. dp_debug("head len %d ext len %d data len %d ",
  822. (uint32_t)qdf_nbuf_len(head),
  823. (uint32_t)qdf_nbuf_len(rx_nbuf),
  824. (uint32_t)(head->data_len));
  825. return QDF_STATUS_SUCCESS;
  826. }
  827. /**
  828. * dp_rx_defrag_err() - rx defragmentation error handler
  829. * @vdev: handle to vdev object
  830. * @nbuf: packet buffer
  831. *
  832. * This function handles rx error and send MIC error notification
  833. *
  834. * Return: None
  835. */
  836. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  837. {
  838. struct ol_if_ops *tops = NULL;
  839. struct dp_pdev *pdev = vdev->pdev;
  840. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  841. uint8_t *orig_hdr;
  842. struct ieee80211_frame *wh;
  843. struct cdp_rx_mic_err_info mic_failure_info;
  844. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  845. wh = (struct ieee80211_frame *)orig_hdr;
  846. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  847. (struct qdf_mac_addr *)&wh->i_addr1);
  848. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  849. (struct qdf_mac_addr *)&wh->i_addr2);
  850. mic_failure_info.key_id = 0;
  851. mic_failure_info.multicast =
  852. IEEE80211_IS_MULTICAST(wh->i_addr1);
  853. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  854. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  855. mic_failure_info.data = (uint8_t *)wh;
  856. mic_failure_info.vdev_id = vdev->vdev_id;
  857. tops = pdev->soc->cdp_soc.ol_ops;
  858. if (tops->rx_mic_error)
  859. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  860. &mic_failure_info);
  861. }
  862. /**
  863. * dp_rx_defrag_nwifi_to_8023() - Transcap 802.11 to 802.3
  864. * @soc: dp soc handle
  865. * @txrx_peer: txrx_peer handle
  866. * @tid: Transmit ID (TID)
  867. * @nbuf: Pointer to the fragment buffer
  868. * @hdrsize: Size of headers
  869. *
  870. * Transcap the fragment from 802.11 to 802.3
  871. *
  872. * Return: None
  873. */
  874. static void
  875. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer,
  876. int tid, qdf_nbuf_t nbuf, uint16_t hdrsize)
  877. {
  878. struct llc_snap_hdr_t *llchdr;
  879. struct ethernet_hdr_t *eth_hdr;
  880. uint8_t ether_type[2];
  881. uint16_t fc = 0;
  882. union dp_align_mac_addr mac_addr;
  883. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  884. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  885. struct ieee80211_frame_addr4 wh = {0};
  886. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  887. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  888. if (!rx_desc_info) {
  889. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  890. "%s: Memory alloc failed ! ", __func__);
  891. QDF_ASSERT(0);
  892. return;
  893. }
  894. qdf_mem_zero(&wh, sizeof(struct ieee80211_frame_addr4));
  895. if (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc, qdf_nbuf_data(nbuf)))
  896. qdf_mem_copy(&wh, qdf_nbuf_data(nbuf) + soc->rx_pkt_tlv_size,
  897. hdrsize);
  898. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  899. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  900. soc->rx_pkt_tlv_size + hdrsize);
  901. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  902. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  903. sizeof(struct llc_snap_hdr_t) -
  904. sizeof(struct ethernet_hdr_t)));
  905. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  906. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  907. rx_desc_info))
  908. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  909. dp_debug("Frame control type: 0x%x", fc);
  910. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  911. case IEEE80211_FC1_DIR_NODS:
  912. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  913. &mac_addr.raw[0]);
  914. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  915. QDF_MAC_ADDR_SIZE);
  916. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  917. &mac_addr.raw[0]);
  918. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  919. QDF_MAC_ADDR_SIZE);
  920. break;
  921. case IEEE80211_FC1_DIR_TODS:
  922. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  923. &mac_addr.raw[0]);
  924. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  925. QDF_MAC_ADDR_SIZE);
  926. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  927. &mac_addr.raw[0]);
  928. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  929. QDF_MAC_ADDR_SIZE);
  930. break;
  931. case IEEE80211_FC1_DIR_FROMDS:
  932. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  933. &mac_addr.raw[0]);
  934. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  935. QDF_MAC_ADDR_SIZE);
  936. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  937. &mac_addr.raw[0]);
  938. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  939. QDF_MAC_ADDR_SIZE);
  940. break;
  941. case IEEE80211_FC1_DIR_DSTODS:
  942. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  943. &mac_addr.raw[0]);
  944. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  945. QDF_MAC_ADDR_SIZE);
  946. qdf_mem_copy(eth_hdr->src_addr, &wh.i_addr4[0],
  947. QDF_MAC_ADDR_SIZE);
  948. break;
  949. default:
  950. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  951. "%s: Unknown frame control type: 0x%x", __func__, fc);
  952. }
  953. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  954. sizeof(ether_type));
  955. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  956. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  957. qdf_mem_free(rx_desc_info);
  958. }
  959. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  960. /**
  961. * dp_rx_defrag_deliver() - Deliver defrag packet to stack
  962. * @txrx_peer: Pointer to the peer
  963. * @tid: Transmit Identifier
  964. * @head: Nbuf to be delivered
  965. *
  966. * Return: None
  967. */
  968. static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer,
  969. unsigned int tid,
  970. qdf_nbuf_t head)
  971. {
  972. struct dp_vdev *vdev = txrx_peer->vdev;
  973. struct dp_soc *soc = vdev->pdev->soc;
  974. qdf_nbuf_t deliver_list_head = NULL;
  975. qdf_nbuf_t deliver_list_tail = NULL;
  976. uint8_t *rx_tlv_hdr;
  977. rx_tlv_hdr = qdf_nbuf_data(head);
  978. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  979. qdf_nbuf_set_tid_val(head, tid);
  980. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  981. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  982. head);
  983. dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head,
  984. deliver_list_tail);
  985. }
  986. /**
  987. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  988. * @txrx_peer: Pointer to the peer
  989. * @tid: Transmit Identifier
  990. * @head: Buffer to be reinjected back
  991. *
  992. * Reinject the fragment chain back into REO
  993. *
  994. * Return: QDF_STATUS
  995. */
  996. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  997. unsigned int tid, qdf_nbuf_t head)
  998. {
  999. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1000. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1001. dp_rx_defrag_deliver(txrx_peer, tid, head);
  1002. rx_reorder_array_elem->head = NULL;
  1003. rx_reorder_array_elem->tail = NULL;
  1004. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1005. return QDF_STATUS_SUCCESS;
  1006. }
  1007. #else
  1008. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1009. /**
  1010. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1011. * @soc: Datapath soc structure
  1012. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1013. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1014. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1015. *
  1016. * Return: None
  1017. */
  1018. static inline void
  1019. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1020. uint32_t sw_cookie, uint8_t rbm)
  1021. {
  1022. struct dp_buf_info_record *record;
  1023. uint32_t idx;
  1024. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1025. return;
  1026. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1027. DP_RX_REINJECT_HIST_MAX);
  1028. /* No NULL check needed for record since its an array */
  1029. record = &soc->rx_reinject_ring_history->entry[idx];
  1030. record->timestamp = qdf_get_log_timestamp();
  1031. record->hbi.paddr = paddr;
  1032. record->hbi.sw_cookie = sw_cookie;
  1033. record->hbi.rbm = rbm;
  1034. }
  1035. #else
  1036. static inline void
  1037. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1038. uint32_t sw_cookie, uint8_t rbm)
  1039. {
  1040. }
  1041. #endif
  1042. /**
  1043. * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO
  1044. * @txrx_peer: Pointer to the txrx_peer
  1045. * @tid: Transmit Identifier
  1046. * @head: Buffer to be reinjected back
  1047. *
  1048. * Reinject the fragment chain back into REO
  1049. *
  1050. * Return: QDF_STATUS
  1051. */
  1052. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer,
  1053. unsigned int tid, qdf_nbuf_t head)
  1054. {
  1055. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  1056. struct dp_soc *soc = pdev->soc;
  1057. struct hal_buf_info buf_info;
  1058. struct hal_buf_info temp_buf_info;
  1059. void *link_desc_va;
  1060. void *msdu0, *msdu_desc_info;
  1061. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1062. void *dst_mpdu_desc_info;
  1063. uint64_t dst_qdesc_addr;
  1064. qdf_dma_addr_t paddr;
  1065. uint32_t nbuf_len, seq_no, dst_ind;
  1066. uint32_t ret, cookie;
  1067. hal_ring_desc_t dst_ring_desc =
  1068. txrx_peer->rx_tid[tid].dst_ring_desc;
  1069. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1070. struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc;
  1071. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1072. txrx_peer->rx_tid[tid].array;
  1073. qdf_nbuf_t nbuf_head;
  1074. struct rx_desc_pool *rx_desc_pool = NULL;
  1075. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1076. uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
  1077. /* do duplicate link desc address check */
  1078. dp_rx_link_desc_refill_duplicate_check(
  1079. soc,
  1080. &soc->last_op_info.reo_reinject_link_desc,
  1081. buf_addr_info);
  1082. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1083. if (qdf_unlikely(!nbuf_head)) {
  1084. dp_err_rl("IPA RX REO reinject failed");
  1085. return QDF_STATUS_E_FAILURE;
  1086. }
  1087. /* update new allocated skb in case IPA is enabled */
  1088. if (nbuf_head != head) {
  1089. head = nbuf_head;
  1090. rx_desc->nbuf = head;
  1091. rx_reorder_array_elem->head = head;
  1092. }
  1093. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1094. if (!ent_ring_desc) {
  1095. dp_err_rl("HAL src ring next entry NULL");
  1096. return QDF_STATUS_E_FAILURE;
  1097. }
  1098. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1099. /* buffer_addr_info is the first element of ring_desc */
  1100. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1101. &buf_info);
  1102. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1103. qdf_assert_always(link_desc_va);
  1104. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1105. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1106. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1107. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1108. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1109. /* msdu reconfig */
  1110. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1111. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1112. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1113. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1114. /* change RX TLV's */
  1115. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1116. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1117. &temp_buf_info);
  1118. cookie = temp_buf_info.sw_cookie;
  1119. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1120. /* map the nbuf before reinject it into HW */
  1121. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1122. QDF_DMA_FROM_DEVICE,
  1123. rx_desc_pool->buf_size);
  1124. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1125. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1126. "%s: nbuf map failed !", __func__);
  1127. return QDF_STATUS_E_FAILURE;
  1128. }
  1129. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1130. rx_desc_pool->buf_size, true,
  1131. __func__, __LINE__);
  1132. dp_audio_smmu_map(soc->osdev,
  1133. qdf_mem_paddr_from_dmaaddr(soc->osdev,
  1134. QDF_NBUF_CB_PADDR(head)),
  1135. QDF_NBUF_CB_PADDR(head), rx_desc_pool->buf_size);
  1136. /*
  1137. * As part of rx frag handler buffer was unmapped and rx desc
  1138. * unmapped is set to 1. So again for defrag reinject frame reset
  1139. * it back to 0.
  1140. */
  1141. rx_desc->unmapped = 0;
  1142. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1143. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1144. if (ret == QDF_STATUS_E_FAILURE) {
  1145. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1146. "%s: x86 check failed !", __func__);
  1147. return QDF_STATUS_E_FAILURE;
  1148. }
  1149. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1150. rx_defrag_rbm_id);
  1151. /* Lets fill entrance ring now !!! */
  1152. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1153. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1154. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1155. hal_srng);
  1156. return QDF_STATUS_E_FAILURE;
  1157. }
  1158. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1159. rx_defrag_rbm_id);
  1160. paddr = (uint64_t)buf_info.paddr;
  1161. /* buf addr */
  1162. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1163. buf_info.sw_cookie,
  1164. soc->idle_link_bm_id);
  1165. /* mpdu desc info */
  1166. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1167. ent_ring_desc);
  1168. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1169. dst_ring_desc);
  1170. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1171. sizeof(struct rx_mpdu_desc_info));
  1172. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1173. seq_no = hal_rx_get_rx_sequence(soc->hal_soc, rx_desc->rx_buf_start);
  1174. hal_mpdu_desc_info_set(soc->hal_soc, ent_ring_desc, ent_mpdu_desc_info,
  1175. seq_no);
  1176. /* qdesc addr */
  1177. ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
  1178. (uint8_t *)ent_ring_desc);
  1179. dst_qdesc_addr = soc->arch_ops.get_reo_qdesc_addr(
  1180. soc->hal_soc,
  1181. (uint8_t *)dst_ring_desc,
  1182. qdf_nbuf_data(head),
  1183. txrx_peer, tid);
  1184. qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5);
  1185. hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
  1186. (uint8_t *)ent_ring_desc, dst_ind);
  1187. hal_srng_access_end(soc->hal_soc, hal_srng);
  1188. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1189. dp_debug("reinjection done !");
  1190. return QDF_STATUS_SUCCESS;
  1191. }
  1192. #endif
  1193. /**
  1194. * dp_rx_defrag_gcmp_demic() - Remove MIC information from GCMP fragment
  1195. * @soc: Datapath soc structure
  1196. * @nbuf: Pointer to the fragment buffer
  1197. * @hdrlen: 802.11 header length
  1198. *
  1199. * Remove MIC information from GCMP fragment
  1200. *
  1201. * Return: QDF_STATUS
  1202. */
  1203. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1204. uint16_t hdrlen)
  1205. {
  1206. uint8_t *ivp, *orig_hdr;
  1207. int rx_desc_len = soc->rx_pkt_tlv_size;
  1208. /* start of the 802.11 header */
  1209. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1210. /*
  1211. * GCMP header is located after 802.11 header and EXTIV
  1212. * field should always be set to 1 for GCMP protocol.
  1213. */
  1214. ivp = orig_hdr + hdrlen;
  1215. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1216. return QDF_STATUS_E_DEFRAG_ERROR;
  1217. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1218. return QDF_STATUS_SUCCESS;
  1219. }
  1220. QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid,
  1221. qdf_nbuf_t frag_list_head,
  1222. qdf_nbuf_t frag_list_tail)
  1223. {
  1224. qdf_nbuf_t tmp_next;
  1225. qdf_nbuf_t cur = frag_list_head, msdu;
  1226. uint32_t index, tkip_demic = 0;
  1227. uint16_t hdr_space;
  1228. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1229. struct dp_vdev *vdev = txrx_peer->vdev;
  1230. struct dp_soc *soc = vdev->pdev->soc;
  1231. uint8_t status = 0;
  1232. if (!cur)
  1233. return QDF_STATUS_E_DEFRAG_ERROR;
  1234. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1235. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1236. dp_sec_mcast : dp_sec_ucast;
  1237. /* Remove FCS from all fragments */
  1238. while (cur) {
  1239. tmp_next = qdf_nbuf_next(cur);
  1240. qdf_nbuf_set_next(cur, NULL);
  1241. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1242. qdf_nbuf_set_next(cur, tmp_next);
  1243. cur = tmp_next;
  1244. }
  1245. cur = frag_list_head;
  1246. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1247. "%s: index %d Security type: %d", __func__,
  1248. index, txrx_peer->security[index].sec_type);
  1249. switch (txrx_peer->security[index].sec_type) {
  1250. case cdp_sec_type_tkip:
  1251. tkip_demic = 1;
  1252. fallthrough;
  1253. case cdp_sec_type_tkip_nomic:
  1254. while (cur) {
  1255. tmp_next = qdf_nbuf_next(cur);
  1256. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1257. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1258. QDF_TRACE_LEVEL_ERROR,
  1259. "dp_rx_defrag: TKIP decap failed");
  1260. return QDF_STATUS_E_DEFRAG_ERROR;
  1261. }
  1262. cur = tmp_next;
  1263. }
  1264. /* If success, increment header to be stripped later */
  1265. hdr_space += dp_f_tkip.ic_header;
  1266. break;
  1267. case cdp_sec_type_aes_ccmp:
  1268. while (cur) {
  1269. tmp_next = qdf_nbuf_next(cur);
  1270. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1271. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1272. QDF_TRACE_LEVEL_ERROR,
  1273. "dp_rx_defrag: CCMP demic failed");
  1274. return QDF_STATUS_E_DEFRAG_ERROR;
  1275. }
  1276. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1277. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1278. QDF_TRACE_LEVEL_ERROR,
  1279. "dp_rx_defrag: CCMP decap failed");
  1280. return QDF_STATUS_E_DEFRAG_ERROR;
  1281. }
  1282. cur = tmp_next;
  1283. }
  1284. break;
  1285. case cdp_sec_type_wep40:
  1286. case cdp_sec_type_wep104:
  1287. case cdp_sec_type_wep128:
  1288. while (cur) {
  1289. tmp_next = qdf_nbuf_next(cur);
  1290. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1291. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1292. QDF_TRACE_LEVEL_ERROR,
  1293. "dp_rx_defrag: WEP decap failed");
  1294. return QDF_STATUS_E_DEFRAG_ERROR;
  1295. }
  1296. cur = tmp_next;
  1297. }
  1298. break;
  1299. case cdp_sec_type_aes_gcmp:
  1300. case cdp_sec_type_aes_gcmp_256:
  1301. while (cur) {
  1302. tmp_next = qdf_nbuf_next(cur);
  1303. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1304. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1305. QDF_TRACE_LEVEL_ERROR,
  1306. "dp_rx_defrag: GCMP demic failed");
  1307. return QDF_STATUS_E_DEFRAG_ERROR;
  1308. }
  1309. cur = tmp_next;
  1310. }
  1311. break;
  1312. default:
  1313. break;
  1314. }
  1315. if (tkip_demic) {
  1316. msdu = frag_list_head;
  1317. qdf_mem_copy(key,
  1318. &txrx_peer->security[index].michael_key[0],
  1319. IEEE80211_WEP_MICLEN);
  1320. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1321. soc->rx_pkt_tlv_size +
  1322. hdr_space);
  1323. if (status) {
  1324. dp_rx_defrag_err(vdev, frag_list_head);
  1325. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1326. QDF_TRACE_LEVEL_ERROR,
  1327. "%s: TKIP demic failed status %d",
  1328. __func__, status);
  1329. return QDF_STATUS_E_DEFRAG_ERROR;
  1330. }
  1331. }
  1332. /* Convert the header to 802.3 header */
  1333. dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head,
  1334. hdr_space);
  1335. if (qdf_nbuf_next(frag_list_head)) {
  1336. if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head,
  1337. hdr_space))
  1338. return QDF_STATUS_E_DEFRAG_ERROR;
  1339. }
  1340. return QDF_STATUS_SUCCESS;
  1341. }
  1342. void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid)
  1343. {
  1344. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1345. txrx_peer->rx_tid[tid].array;
  1346. if (rx_reorder_array_elem) {
  1347. /* Free up nbufs */
  1348. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1349. rx_reorder_array_elem->head = NULL;
  1350. rx_reorder_array_elem->tail = NULL;
  1351. } else {
  1352. dp_info("Cleanup self peer %pK and TID %u",
  1353. txrx_peer, tid);
  1354. }
  1355. /* Free up saved ring descriptors */
  1356. dp_rx_clear_saved_desc_info(txrx_peer, tid);
  1357. txrx_peer->rx_tid[tid].defrag_timeout_ms = 0;
  1358. txrx_peer->rx_tid[tid].curr_frag_num = 0;
  1359. txrx_peer->rx_tid[tid].curr_seq_num = 0;
  1360. }
  1361. #ifdef DP_RX_DEFRAG_ADDR1_CHECK_WAR
  1362. #ifdef WLAN_FEATURE_11BE_MLO
  1363. /**
  1364. * dp_rx_defrag_vdev_mac_addr_cmp() - function to check whether mac address
  1365. * matches VDEV mac
  1366. * @vdev: dp_vdev object of the VDEV on which this data packet is received
  1367. * @mac_addr: Address to compare
  1368. *
  1369. * Return: 1 if the mac matching,
  1370. * 0 if this frame is not correctly destined to this VDEV/MLD
  1371. */
  1372. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1373. uint8_t *mac_addr)
  1374. {
  1375. return ((qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1376. QDF_MAC_ADDR_SIZE) == 0) ||
  1377. (qdf_mem_cmp(mac_addr, &vdev->mld_mac_addr.raw[0],
  1378. QDF_MAC_ADDR_SIZE) == 0));
  1379. }
  1380. #else
  1381. static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev,
  1382. uint8_t *mac_addr)
  1383. {
  1384. return (qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0],
  1385. QDF_MAC_ADDR_SIZE) == 0);
  1386. }
  1387. #endif
  1388. static bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1389. struct dp_vdev *vdev,
  1390. uint8_t *rx_tlv_hdr)
  1391. {
  1392. union dp_align_mac_addr mac_addr;
  1393. /* If address1 is not valid discard the fragment */
  1394. if (hal_rx_mpdu_get_addr1(soc->hal_soc, rx_tlv_hdr,
  1395. &mac_addr.raw[0]) != QDF_STATUS_SUCCESS) {
  1396. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1397. return false;
  1398. }
  1399. /* WAR suggested by HW team to avoid crashing incase of packet
  1400. * corruption issue
  1401. *
  1402. * recipe is to compare VDEV mac or MLD mac address with ADDR1
  1403. * in case of mismatch consider it as corrupted packet and do
  1404. * not process further
  1405. */
  1406. if (!dp_rx_defrag_vdev_mac_addr_cmp(vdev,
  1407. &mac_addr.raw[0])) {
  1408. DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1);
  1409. return false;
  1410. }
  1411. return true;
  1412. }
  1413. #else
  1414. static inline bool dp_rx_defrag_addr1_check(struct dp_soc *soc,
  1415. struct dp_vdev *vdev,
  1416. uint8_t *rx_tlv_hdr)
  1417. {
  1418. return true;
  1419. }
  1420. #endif
  1421. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1422. struct dp_txrx_peer *txrx_peer,
  1423. uint16_t tid,
  1424. uint16_t rxseq, qdf_nbuf_t nbuf)
  1425. {
  1426. struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid];
  1427. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1428. uint8_t all_frag_present;
  1429. uint32_t msdu_len;
  1430. QDF_STATUS status;
  1431. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1432. /*
  1433. * HW may fill in unexpected peer_id in RX PKT TLV,
  1434. * if this peer_id related peer is valid by coincidence,
  1435. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1436. * self peer), then invalid access to rx_reorder_array_elem happened.
  1437. */
  1438. if (!rx_reorder_array_elem) {
  1439. dp_verbose_debug(
  1440. "peer id:%d drop rx frame!",
  1441. txrx_peer->peer_id);
  1442. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1443. dp_rx_nbuf_free(nbuf);
  1444. goto fail;
  1445. }
  1446. if (rx_reorder_array_elem->head &&
  1447. rxseq != rx_tid->curr_seq_num) {
  1448. /* Drop stored fragments if out of sequence
  1449. * fragment is received
  1450. */
  1451. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1452. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1453. "%s: No list found for TID %d Seq# %d",
  1454. __func__, tid, rxseq);
  1455. dp_rx_nbuf_free(nbuf);
  1456. goto fail;
  1457. }
  1458. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1459. qdf_nbuf_data(nbuf));
  1460. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1461. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1462. &rx_reorder_array_elem->head,
  1463. &rx_reorder_array_elem->tail, nbuf,
  1464. &all_frag_present);
  1465. if (QDF_IS_STATUS_ERROR(status)) {
  1466. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1467. "%s Fragment insert failed", __func__);
  1468. goto fail;
  1469. }
  1470. if (soc->rx.flags.defrag_timeout_check)
  1471. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1472. if (!all_frag_present) {
  1473. uint32_t now_ms =
  1474. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1475. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1476. now_ms + soc->rx.defrag.timeout_ms;
  1477. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1478. return QDF_STATUS_SUCCESS;
  1479. }
  1480. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1481. rx_reorder_array_elem->tail);
  1482. if (QDF_IS_STATUS_ERROR(status)) {
  1483. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1484. "%s Fragment processing failed", __func__);
  1485. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1486. dp_rx_defrag_cleanup(txrx_peer, tid);
  1487. goto fail;
  1488. }
  1489. /* Re-inject the fragments back to REO for further processing */
  1490. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1491. rx_reorder_array_elem->head);
  1492. if (QDF_IS_STATUS_SUCCESS(status)) {
  1493. rx_reorder_array_elem->head = NULL;
  1494. rx_reorder_array_elem->tail = NULL;
  1495. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1496. "%s: Frag seq successfully reinjected",
  1497. __func__);
  1498. } else {
  1499. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1500. "%s: Frag seq reinjection failed", __func__);
  1501. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1502. }
  1503. dp_rx_defrag_cleanup(txrx_peer, tid);
  1504. return QDF_STATUS_SUCCESS;
  1505. fail:
  1506. return QDF_STATUS_E_DEFRAG_ERROR;
  1507. }
  1508. #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */
  1509. /**
  1510. * dp_rx_defrag_save_info_from_ring_desc() - Save info from REO ring descriptor
  1511. * @soc: Pointer to the SOC data structure
  1512. * @ring_desc: Pointer to the dst ring descriptor
  1513. * @rx_desc: Pointer to rx descriptor
  1514. * @txrx_peer: Pointer to the peer
  1515. * @tid: Transmit Identifier
  1516. *
  1517. * Return: None
  1518. */
  1519. static QDF_STATUS
  1520. dp_rx_defrag_save_info_from_ring_desc(struct dp_soc *soc,
  1521. hal_ring_desc_t ring_desc,
  1522. struct dp_rx_desc *rx_desc,
  1523. struct dp_txrx_peer *txrx_peer,
  1524. unsigned int tid)
  1525. {
  1526. void *dst_ring_desc;
  1527. dst_ring_desc = qdf_mem_malloc(hal_srng_get_entrysize(soc->hal_soc,
  1528. REO_DST));
  1529. if (!dst_ring_desc) {
  1530. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1531. "%s: Memory alloc failed !", __func__);
  1532. QDF_ASSERT(0);
  1533. return QDF_STATUS_E_NOMEM;
  1534. }
  1535. qdf_mem_copy(dst_ring_desc, ring_desc,
  1536. hal_srng_get_entrysize(soc->hal_soc, REO_DST));
  1537. txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1538. txrx_peer->rx_tid[tid].head_frag_desc = rx_desc;
  1539. return QDF_STATUS_SUCCESS;
  1540. }
  1541. /**
  1542. * dp_rx_defrag_store_fragment() - Store incoming fragments
  1543. * @soc: Pointer to the SOC data structure
  1544. * @ring_desc: Pointer to the ring descriptor
  1545. * @head:
  1546. * @tail:
  1547. * @mpdu_desc_info: MPDU descriptor info
  1548. * @tid: Traffic Identifier
  1549. * @rx_desc: Pointer to rx descriptor
  1550. * @rx_bfs: Number of bfs consumed
  1551. *
  1552. * Return: QDF_STATUS
  1553. */
  1554. static QDF_STATUS
  1555. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1556. hal_ring_desc_t ring_desc,
  1557. union dp_rx_desc_list_elem_t **head,
  1558. union dp_rx_desc_list_elem_t **tail,
  1559. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1560. unsigned int tid, struct dp_rx_desc *rx_desc,
  1561. uint32_t *rx_bfs)
  1562. {
  1563. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1564. struct dp_pdev *pdev;
  1565. struct dp_txrx_peer *txrx_peer = NULL;
  1566. dp_txrx_ref_handle txrx_ref_handle = NULL;
  1567. uint16_t peer_id;
  1568. uint8_t fragno, more_frag, all_frag_present = 0;
  1569. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1570. QDF_STATUS status;
  1571. struct dp_rx_tid_defrag *rx_tid;
  1572. uint8_t mpdu_sequence_control_valid;
  1573. uint8_t mpdu_frame_control_valid;
  1574. qdf_nbuf_t frag = rx_desc->nbuf;
  1575. uint32_t msdu_len;
  1576. if (qdf_nbuf_len(frag) > 0) {
  1577. dp_info("Dropping unexpected packet with skb_len: %d "
  1578. "data len: %d cookie: %d",
  1579. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1580. rx_desc->cookie);
  1581. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1582. goto discard_frag;
  1583. }
  1584. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1585. /* fragment queued back to the pool, free the link desc */
  1586. goto err_free_desc;
  1587. }
  1588. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1589. rx_desc->rx_buf_start);
  1590. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1591. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1592. /* Check if the packet is from a valid peer */
  1593. peer_id = dp_rx_peer_metadata_peer_id_get(soc,
  1594. mpdu_desc_info->peer_meta_data);
  1595. txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle,
  1596. DP_MOD_ID_RX_ERR);
  1597. if (!txrx_peer) {
  1598. /* We should not receive anything from unknown peer
  1599. * however, that might happen while we are in the monitor mode.
  1600. * We don't need to handle that here
  1601. */
  1602. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1603. peer_id);
  1604. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1605. goto discard_frag;
  1606. }
  1607. if (tid >= DP_MAX_TIDS) {
  1608. dp_info("TID out of bounds: %d", tid);
  1609. qdf_assert_always(0);
  1610. goto discard_frag;
  1611. }
  1612. if (!dp_rx_defrag_addr1_check(soc, txrx_peer->vdev,
  1613. rx_desc->rx_buf_start)) {
  1614. dp_info("Invalid address 1");
  1615. goto discard_frag;
  1616. }
  1617. mpdu_sequence_control_valid =
  1618. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1619. rx_desc->rx_buf_start);
  1620. /* Invalid MPDU sequence control field, MPDU is of no use */
  1621. if (!mpdu_sequence_control_valid) {
  1622. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1623. "Invalid MPDU seq control field, dropping MPDU");
  1624. qdf_assert(0);
  1625. goto discard_frag;
  1626. }
  1627. mpdu_frame_control_valid =
  1628. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1629. rx_desc->rx_buf_start);
  1630. /* Invalid frame control field */
  1631. if (!mpdu_frame_control_valid) {
  1632. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1633. "Invalid frame control field, dropping MPDU");
  1634. qdf_assert(0);
  1635. goto discard_frag;
  1636. }
  1637. /* Current mpdu sequence */
  1638. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1639. /* HW does not populate the fragment number as of now
  1640. * need to get from the 802.11 header
  1641. */
  1642. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1643. pdev = txrx_peer->vdev->pdev;
  1644. rx_tid = &txrx_peer->rx_tid[tid];
  1645. dp_rx_err_send_pktlog(soc, pdev, mpdu_desc_info, frag,
  1646. QDF_TX_RX_STATUS_OK, false);
  1647. qdf_spin_lock_bh(&rx_tid->defrag_tid_lock);
  1648. rx_reorder_array_elem = txrx_peer->rx_tid[tid].array;
  1649. if (!rx_reorder_array_elem) {
  1650. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1651. txrx_peer);
  1652. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1653. goto discard_frag;
  1654. }
  1655. /*
  1656. * !more_frag: no more fragments to be delivered
  1657. * !frag_no: packet is not fragmented
  1658. * !rx_reorder_array_elem->head: no saved fragments so far
  1659. */
  1660. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1661. /* We should not get into this situation here.
  1662. * It means an unfragmented packet with fragment flag
  1663. * is delivered over the REO exception ring.
  1664. * Typically it follows normal rx path.
  1665. */
  1666. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1667. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1668. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1669. qdf_assert(0);
  1670. goto discard_frag;
  1671. }
  1672. /* Check if the fragment is for the same sequence or a different one */
  1673. dp_debug("rx_tid %d", tid);
  1674. if (rx_reorder_array_elem->head) {
  1675. dp_debug("rxseq %d", rxseq);
  1676. if (rxseq != rx_tid->curr_seq_num) {
  1677. dp_debug("mismatch cur_seq %d rxseq %d",
  1678. rx_tid->curr_seq_num, rxseq);
  1679. /* Drop stored fragments if out of sequence
  1680. * fragment is received
  1681. */
  1682. dp_rx_reorder_flush_frag(txrx_peer, tid);
  1683. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1684. dp_debug("cur rxseq %d", rxseq);
  1685. /*
  1686. * The sequence number for this fragment becomes the
  1687. * new sequence number to be processed
  1688. */
  1689. rx_tid->curr_seq_num = rxseq;
  1690. }
  1691. } else {
  1692. /* Check if we are processing first fragment if it is
  1693. * not first fragment discard fragment.
  1694. */
  1695. if (fragno) {
  1696. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1697. goto discard_frag;
  1698. }
  1699. dp_debug("cur rxseq %d", rxseq);
  1700. /* Start of a new sequence */
  1701. dp_rx_defrag_cleanup(txrx_peer, tid);
  1702. rx_tid->curr_seq_num = rxseq;
  1703. /* store PN number also */
  1704. }
  1705. /*
  1706. * If the earlier sequence was dropped, this will be the fresh start.
  1707. * Else, continue with next fragment in a given sequence
  1708. */
  1709. status = dp_rx_defrag_fraglist_insert(txrx_peer, tid,
  1710. &rx_reorder_array_elem->head,
  1711. &rx_reorder_array_elem->tail,
  1712. frag, &all_frag_present);
  1713. /*
  1714. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1715. * packet sequence has more than 6 MSDUs for some reason, we will
  1716. * have to use the next MSDU link descriptor and chain them together
  1717. * before reinjection.
  1718. * ring_desc is validated in dp_rx_err_process.
  1719. */
  1720. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1721. (rx_reorder_array_elem->head == frag)) {
  1722. status = dp_rx_defrag_save_info_from_ring_desc(soc, ring_desc,
  1723. rx_desc,
  1724. txrx_peer, tid);
  1725. if (status != QDF_STATUS_SUCCESS) {
  1726. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1727. "%s: Unable to store ring desc !", __func__);
  1728. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1729. goto discard_frag;
  1730. }
  1731. } else {
  1732. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1733. (*rx_bfs)++;
  1734. /* Return the non-head link desc */
  1735. if (dp_rx_link_desc_return(soc, ring_desc,
  1736. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1737. QDF_STATUS_SUCCESS)
  1738. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1739. "%s: Failed to return link desc", __func__);
  1740. }
  1741. if (pdev->soc->rx.flags.defrag_timeout_check)
  1742. dp_rx_defrag_waitlist_remove(txrx_peer, tid);
  1743. /* Yet to receive more fragments for this sequence number */
  1744. if (!all_frag_present) {
  1745. uint32_t now_ms =
  1746. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1747. txrx_peer->rx_tid[tid].defrag_timeout_ms =
  1748. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1749. dp_rx_defrag_waitlist_add(txrx_peer, tid);
  1750. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1751. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1752. return QDF_STATUS_SUCCESS;
  1753. }
  1754. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1755. "All fragments received for sequence: %d", rxseq);
  1756. /* Process the fragments */
  1757. status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head,
  1758. rx_reorder_array_elem->tail);
  1759. if (QDF_IS_STATUS_ERROR(status)) {
  1760. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1761. "Fragment processing failed");
  1762. dp_rx_add_to_free_desc_list(head, tail,
  1763. txrx_peer->rx_tid[tid].head_frag_desc);
  1764. (*rx_bfs)++;
  1765. if (dp_rx_link_desc_return(soc,
  1766. txrx_peer->rx_tid[tid].dst_ring_desc,
  1767. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1768. QDF_STATUS_SUCCESS)
  1769. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1770. "%s: Failed to return link desc",
  1771. __func__);
  1772. dp_rx_defrag_cleanup(txrx_peer, tid);
  1773. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1774. goto end;
  1775. }
  1776. /* Re-inject the fragments back to REO for further processing */
  1777. status = dp_rx_defrag_reo_reinject(txrx_peer, tid,
  1778. rx_reorder_array_elem->head);
  1779. if (QDF_IS_STATUS_SUCCESS(status)) {
  1780. rx_reorder_array_elem->head = NULL;
  1781. rx_reorder_array_elem->tail = NULL;
  1782. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1783. "Fragmented sequence successfully reinjected");
  1784. } else {
  1785. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1786. "Fragmented sequence reinjection failed");
  1787. dp_rx_return_head_frag_desc(txrx_peer, tid);
  1788. }
  1789. dp_rx_defrag_cleanup(txrx_peer, tid);
  1790. qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock);
  1791. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1792. return QDF_STATUS_SUCCESS;
  1793. discard_frag:
  1794. dp_rx_nbuf_free(frag);
  1795. err_free_desc:
  1796. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1797. if (dp_rx_link_desc_return(soc, ring_desc,
  1798. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1799. QDF_STATUS_SUCCESS)
  1800. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1801. "%s: Failed to return link desc", __func__);
  1802. (*rx_bfs)++;
  1803. end:
  1804. if (txrx_peer)
  1805. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR);
  1806. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1807. return QDF_STATUS_E_DEFRAG_ERROR;
  1808. }
  1809. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1810. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1811. struct dp_rx_desc *rx_desc,
  1812. uint8_t *mac_id,
  1813. uint32_t quota)
  1814. {
  1815. uint32_t rx_bufs_used = 0;
  1816. qdf_nbuf_t msdu = NULL;
  1817. uint32_t tid;
  1818. uint32_t rx_bfs = 0;
  1819. struct dp_pdev *pdev;
  1820. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1821. struct rx_desc_pool *rx_desc_pool;
  1822. qdf_assert(soc);
  1823. qdf_assert(mpdu_desc_info);
  1824. qdf_assert(rx_desc);
  1825. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1826. mpdu_desc_info->msdu_count);
  1827. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1828. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1829. "Not sufficient MSDUs to process");
  1830. return rx_bufs_used;
  1831. }
  1832. /* all buffers in MSDU link belong to same pdev */
  1833. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1834. if (!pdev) {
  1835. dp_nofl_debug("pdev is null for pool_id = %d",
  1836. rx_desc->pool_id);
  1837. return rx_bufs_used;
  1838. }
  1839. *mac_id = rx_desc->pool_id;
  1840. msdu = rx_desc->nbuf;
  1841. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1842. if (rx_desc->unmapped)
  1843. return rx_bufs_used;
  1844. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1845. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf);
  1846. rx_desc->unmapped = 1;
  1847. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1848. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1849. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1850. /* Process fragment-by-fragment */
  1851. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1852. &pdev->free_list_head,
  1853. &pdev->free_list_tail,
  1854. mpdu_desc_info,
  1855. tid, rx_desc, &rx_bfs);
  1856. if (rx_bfs)
  1857. rx_bufs_used += rx_bfs;
  1858. if (!QDF_IS_STATUS_SUCCESS(status))
  1859. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1860. mpdu_desc_info->mpdu_seq,
  1861. mpdu_desc_info->msdu_count,
  1862. mpdu_desc_info->mpdu_flags);
  1863. return rx_bufs_used;
  1864. }
  1865. #endif /* WLAN_SOFTUMAC_SUPPORT */