msm_cvp_clocks.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include "msm_cvp_common.h"
  6. #include "cvp_hfi_api.h"
  7. #include "msm_cvp_debug.h"
  8. #include "msm_cvp_clocks.h"
  9. int msm_cvp_mmrm_notifier_cb(
  10. struct mmrm_client_notifier_data *notifier_data)
  11. {
  12. if (!notifier_data) {
  13. dprintk(CVP_WARN, "%s Invalid notifier data: %pK\n",
  14. __func__, notifier_data);
  15. return -EINVAL;
  16. }
  17. if (notifier_data->cb_type == MMRM_CLIENT_RESOURCE_VALUE_CHANGE) {
  18. struct iris_hfi_device *dev = notifier_data->pvt_data;
  19. dprintk(CVP_PWR,
  20. "%s: Clock %s throttled from %ld to %ld \n",
  21. __func__, dev->mmrm_desc.client_info.desc.name,
  22. notifier_data->cb_data.val_chng.old_val,
  23. notifier_data->cb_data.val_chng.new_val);
  24. /*TODO: if need further handling to notify eva client */
  25. } else {
  26. dprintk(CVP_WARN, "%s Invalid cb type: %d\n",
  27. __func__, notifier_data->cb_type);
  28. return -EINVAL;
  29. }
  30. return 0;
  31. }
  32. int msm_cvp_set_clocks(struct msm_cvp_core *core)
  33. {
  34. struct cvp_hfi_device *hdev;
  35. int rc;
  36. if (!core || !core->device) {
  37. dprintk(CVP_ERR, "%s Invalid args: %pK\n", __func__, core);
  38. return -EINVAL;
  39. }
  40. hdev = core->device;
  41. rc = call_hfi_op(hdev, scale_clocks,
  42. hdev->hfi_device_data, core->curr_freq);
  43. return rc;
  44. }
  45. int msm_cvp_mmrm_register(struct iris_hfi_device *device)
  46. {
  47. int rc = 0;
  48. struct clock_info *cl = NULL;
  49. char *name;
  50. if (!device) {
  51. dprintk(CVP_ERR, "%s invalid device\n", __func__);
  52. return -EINVAL;
  53. }
  54. name = (char *)device->mmrm_desc.client_info.desc.name;
  55. device->mmrm_cvp=NULL;
  56. device->mmrm_desc.client_type=MMRM_CLIENT_CLOCK;
  57. device->mmrm_desc.priority=MMRM_CLIENT_PRIOR_LOW;
  58. device->mmrm_desc.pvt_data = device;
  59. device->mmrm_desc.notifier_callback_fn = msm_cvp_mmrm_notifier_cb;
  60. device->mmrm_desc.client_info.desc.client_domain=MMRM_CLIENT_DOMAIN_CVP;
  61. iris_hfi_for_each_clock(device, cl) {
  62. if (cl->has_scaling) { /* only clk source enabled in dtsi */
  63. device->mmrm_desc.client_info.desc.clk=cl->clk;
  64. device->mmrm_desc.client_info.desc.client_id=cl->clk_id;
  65. strlcpy(name, cl->name,
  66. sizeof(device->mmrm_desc.client_info.desc.name));
  67. }
  68. }
  69. dprintk(CVP_PWR,
  70. "%s: Register for %s, clk_id %d\n",
  71. __func__, device->mmrm_desc.client_info.desc.name,
  72. device->mmrm_desc.client_info.desc.client_id);
  73. device->mmrm_cvp = mmrm_client_register(&(device->mmrm_desc));
  74. if (device->mmrm_cvp == NULL) {
  75. dprintk(CVP_ERR,
  76. "%s: Failed mmrm_client_register with mmrm_cvp: %pK\n",
  77. __func__, device->mmrm_cvp);
  78. rc = -ENOENT;
  79. } else {
  80. dprintk(CVP_PWR,
  81. "%s: mmrm_client_register done: %pK, type:%d, uid:%ld\n",
  82. __func__, device->mmrm_cvp,
  83. device->mmrm_cvp->client_type,
  84. device->mmrm_cvp->client_uid);
  85. }
  86. return rc;
  87. }
  88. int msm_cvp_mmrm_deregister(struct iris_hfi_device *device)
  89. {
  90. int rc = 0;
  91. struct clock_info *cl = NULL;
  92. if (!device || !device->mmrm_cvp) {
  93. dprintk(CVP_ERR,
  94. "%s invalid args: device %pK, or device->mmrm_cvp \n",
  95. __func__, device);
  96. return -EINVAL;
  97. }
  98. /* set clk value to 0 before deregister */
  99. iris_hfi_for_each_clock(device, cl) {
  100. if (cl->has_scaling) {
  101. // set min freq and cur freq to 0;
  102. rc = msm_cvp_mmrm_set_value_in_range(device,
  103. 0, 0);
  104. if (rc) {
  105. dprintk(CVP_ERR,
  106. "%s Failed set clock %s: %d\n",
  107. __func__, cl->name, rc);
  108. }
  109. }
  110. }
  111. rc = mmrm_client_deregister(device->mmrm_cvp);
  112. if (rc) {
  113. dprintk(CVP_ERR,
  114. "%s: Failed mmrm_client_deregister with rc: %d\n",
  115. __func__, rc);
  116. }
  117. else {
  118. dprintk(CVP_PWR,
  119. "%s: mmrm_client_deregister done:%pK,type:%d,uid:%ld\n",
  120. __func__, device->mmrm_cvp,
  121. device->mmrm_cvp->client_type,
  122. device->mmrm_cvp->client_uid);
  123. device->mmrm_cvp = NULL;
  124. }
  125. return rc;
  126. }
  127. int msm_cvp_mmrm_set_value_in_range(struct iris_hfi_device *device,
  128. u32 freq_min, u32 freq_cur)
  129. {
  130. int rc = 0;
  131. struct mmrm_client_res_value val;
  132. struct mmrm_client_data data;
  133. if (!device) {
  134. dprintk(CVP_ERR, "%s invalid device\n", __func__);
  135. return -EINVAL;
  136. }
  137. dprintk(CVP_PWR,
  138. "%s: set clock rate for mmrm_cvp: %pK, type :%d, uid: %ld\n",
  139. __func__, device->mmrm_cvp,
  140. device->mmrm_cvp->client_type, device->mmrm_cvp->client_uid);
  141. val.min = freq_min;
  142. val.cur = freq_cur;
  143. data.num_hw_blocks = 1;
  144. data.flags = 0; /* Not MMRM_CLIENT_DATA_FLAG_RESERVE_ONLY */
  145. dprintk(CVP_PWR,
  146. "%s: set clock rate to min %u cur %u: %d\n",
  147. __func__, val.min, val.cur, rc);
  148. rc = mmrm_client_set_value_in_range(device->mmrm_cvp, &data, &val);
  149. if (rc) {
  150. dprintk(CVP_ERR,
  151. "%s: Failed to set clock rate to min %u cur %u: %d\n",
  152. __func__, val.min, val.cur, rc);
  153. }
  154. return rc;
  155. }
  156. int msm_cvp_set_clocks_impl(struct iris_hfi_device *device, u32 freq)
  157. {
  158. struct clock_info *cl;
  159. int rc = 0;
  160. int fsrc2clk = 3;
  161. // ratio factor for clock source : clk
  162. u32 freq_min = device->res->allowed_clks_tbl[0].clock_rate * fsrc2clk;
  163. dprintk(CVP_PWR, "%s: entering with freq : %ld\n", __func__, freq);
  164. iris_hfi_for_each_clock(device, cl) {
  165. if (cl->has_scaling) {/* has_scaling */
  166. device->clk_freq = freq;
  167. if (msm_cvp_clock_voting)
  168. freq = msm_cvp_clock_voting;
  169. freq = freq * fsrc2clk;
  170. dprintk(CVP_PWR,
  171. "%s: clock source rate set to: %ld\n",
  172. __func__, freq);
  173. if (device->mmrm_cvp != NULL) {
  174. /* min freq : 1st element value in the table */
  175. rc = msm_cvp_mmrm_set_value_in_range(device,
  176. freq_min, freq);
  177. if (rc) {
  178. dprintk(CVP_ERR,
  179. "Failed set clock %s: %d\n",
  180. cl->name, rc);
  181. return rc;
  182. }
  183. }
  184. else {
  185. dprintk(CVP_PWR,
  186. "%s: set clock with clk_set_rate\n",
  187. __func__);
  188. rc = clk_set_rate(cl->clk, freq);
  189. if (rc) {
  190. dprintk(CVP_ERR,
  191. "Failed set clock %u %s: %d\n",
  192. freq, cl->name, rc);
  193. return rc;
  194. }
  195. dprintk(CVP_PWR, "Scaling clock %s to %u\n",
  196. cl->name, freq);
  197. }
  198. }
  199. }
  200. return 0;
  201. }
  202. int msm_cvp_scale_clocks(struct iris_hfi_device *device)
  203. {
  204. int rc = 0;
  205. struct allowed_clock_rates_table *allowed_clks_tbl = NULL;
  206. u32 rate = 0;
  207. allowed_clks_tbl = device->res->allowed_clks_tbl;
  208. rate = device->clk_freq ? device->clk_freq :
  209. allowed_clks_tbl[0].clock_rate;
  210. dprintk(CVP_PWR, "%s: scale clock rate %d\n", __func__, rate);
  211. rc = msm_cvp_set_clocks_impl(device, rate);
  212. return rc;
  213. }
  214. int msm_cvp_prepare_enable_clk(struct iris_hfi_device *device,
  215. const char *name)
  216. {
  217. struct clock_info *cl = NULL;
  218. int rc = 0;
  219. if (!device) {
  220. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  221. return -EINVAL;
  222. }
  223. iris_hfi_for_each_clock(device, cl) {
  224. if (strcmp(cl->name, name))
  225. continue;
  226. /*
  227. * For the clocks we control, set the rate prior to preparing
  228. * them. Since we don't really have a load at this point,
  229. * scale it to the lowest frequency possible
  230. */
  231. if (cl->has_scaling) {
  232. if (device->mmrm_cvp != NULL) {
  233. // set min freq and cur freq to 0;
  234. rc = msm_cvp_mmrm_set_value_in_range(device,
  235. 0, 0);
  236. if (rc)
  237. dprintk(CVP_ERR,
  238. "%s Failed set clock %s: %d\n",
  239. __func__, cl->name, rc);
  240. }
  241. else {
  242. dprintk(CVP_PWR,
  243. "%s: set clock with clk_set_rate\n",
  244. __func__);
  245. clk_set_rate(cl->clk,
  246. clk_round_rate(cl->clk, 0));
  247. }
  248. }
  249. rc = clk_prepare_enable(cl->clk);
  250. if (rc) {
  251. dprintk(CVP_ERR, "Failed to enable clock %s\n",
  252. cl->name);
  253. return rc;
  254. }
  255. if (!__clk_is_enabled(cl->clk)) {
  256. dprintk(CVP_ERR, "%s: clock %s not enabled\n",
  257. __func__, cl->name);
  258. clk_disable_unprepare(cl->clk);
  259. return -EINVAL;
  260. }
  261. dprintk(CVP_PWR, "Clock: %s prepared and enabled\n",
  262. cl->name);
  263. return 0;
  264. }
  265. dprintk(CVP_ERR, "%s clock %s not found\n", __func__, name);
  266. return -EINVAL;
  267. }
  268. int msm_cvp_disable_unprepare_clk(struct iris_hfi_device *device,
  269. const char *name)
  270. {
  271. struct clock_info *cl;
  272. if (!device) {
  273. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  274. return -EINVAL;
  275. }
  276. iris_hfi_for_each_clock_reverse(device, cl) {
  277. if (strcmp(cl->name, name))
  278. continue;
  279. clk_disable_unprepare(cl->clk);
  280. dprintk(CVP_PWR, "Clock: %s disable and unprepare\n",
  281. cl->name);
  282. return 0;
  283. }
  284. dprintk(CVP_ERR, "%s clock %s not found\n", __func__, name);
  285. return -EINVAL;
  286. }
  287. int msm_cvp_init_clocks(struct iris_hfi_device *device)
  288. {
  289. int rc = 0;
  290. struct clock_info *cl = NULL;
  291. if (!device) {
  292. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  293. return -EINVAL;
  294. }
  295. iris_hfi_for_each_clock(device, cl) {
  296. dprintk(CVP_PWR, "%s: scalable? %d, count %d\n",
  297. cl->name, cl->has_scaling, cl->count);
  298. }
  299. iris_hfi_for_each_clock(device, cl) {
  300. if (!cl->clk) {
  301. cl->clk = clk_get(&device->res->pdev->dev, cl->name);
  302. if (IS_ERR_OR_NULL(cl->clk)) {
  303. dprintk(CVP_ERR,
  304. "Failed to get clock: %s\n", cl->name);
  305. rc = PTR_ERR(cl->clk) ? : -EINVAL;
  306. cl->clk = NULL;
  307. goto err_clk_get;
  308. }
  309. }
  310. }
  311. device->clk_freq = 0;
  312. return 0;
  313. err_clk_get:
  314. msm_cvp_deinit_clocks(device);
  315. return rc;
  316. }
  317. void msm_cvp_deinit_clocks(struct iris_hfi_device *device)
  318. {
  319. struct clock_info *cl;
  320. device->clk_freq = 0;
  321. iris_hfi_for_each_clock_reverse(device, cl) {
  322. if (cl->clk) {
  323. clk_put(cl->clk);
  324. cl->clk = NULL;
  325. }
  326. }
  327. }