dp_rx_defrag.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790
  1. /*
  2. * Copyright (c) 2017-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  30. "AES-CCM",
  31. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  32. IEEE80211_WEP_MICLEN,
  33. 0,
  34. };
  35. const struct dp_rx_defrag_cipher dp_f_tkip = {
  36. "TKIP",
  37. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  38. IEEE80211_WEP_CRCLEN,
  39. IEEE80211_WEP_MICLEN,
  40. };
  41. const struct dp_rx_defrag_cipher dp_f_wep = {
  42. "WEP",
  43. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  44. IEEE80211_WEP_CRCLEN,
  45. 0,
  46. };
  47. /*
  48. * dp_rx_defrag_frames_free(): Free fragment chain
  49. * @frames: Fragment chain
  50. *
  51. * Iterates through the fragment chain and frees them
  52. * Returns: None
  53. */
  54. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  55. {
  56. qdf_nbuf_t next, frag = frames;
  57. while (frag) {
  58. next = qdf_nbuf_next(frag);
  59. qdf_nbuf_free(frag);
  60. frag = next;
  61. }
  62. }
  63. /*
  64. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  65. * @peer: Pointer to the peer data structure
  66. * @tid: Transmit ID (TID)
  67. *
  68. * Saves MPDU descriptor info and MSDU link pointer from REO
  69. * ring descriptor. The cache is created per peer, per TID
  70. *
  71. * Returns: None
  72. */
  73. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  74. {
  75. if (peer->rx_tid[tid].dst_ring_desc)
  76. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  77. peer->rx_tid[tid].dst_ring_desc = NULL;
  78. }
  79. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  80. unsigned int tid)
  81. {
  82. struct dp_soc *soc;
  83. struct dp_pdev *pdev;
  84. struct dp_srng *dp_rxdma_srng;
  85. struct rx_desc_pool *rx_desc_pool;
  86. union dp_rx_desc_list_elem_t *head = NULL;
  87. union dp_rx_desc_list_elem_t *tail = NULL;
  88. pdev = peer->vdev->pdev;
  89. soc = pdev->soc;
  90. if (peer->rx_tid[tid].head_frag_desc) {
  91. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  92. rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
  93. dp_rx_add_to_free_desc_list(&head, &tail,
  94. peer->rx_tid[tid].head_frag_desc);
  95. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  96. 1, &head, &tail);
  97. }
  98. if (peer->rx_tid[tid].dst_ring_desc) {
  99. if (dp_rx_link_desc_return(soc,
  100. peer->rx_tid[tid].dst_ring_desc,
  101. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  102. QDF_STATUS_SUCCESS)
  103. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  104. "%s: Failed to return link desc", __func__);
  105. }
  106. }
  107. /*
  108. * dp_rx_reorder_flush_frag(): Flush the frag list
  109. * @peer: Pointer to the peer data structure
  110. * @tid: Transmit ID (TID)
  111. *
  112. * Flush the per-TID frag list
  113. *
  114. * Returns: None
  115. */
  116. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  117. unsigned int tid)
  118. {
  119. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  120. FL("Flushing TID %d"), tid);
  121. if (!peer) {
  122. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  123. "%s: NULL peer", __func__);
  124. return;
  125. }
  126. dp_rx_return_head_frag_desc(peer, tid);
  127. dp_rx_defrag_cleanup(peer, tid);
  128. }
  129. /*
  130. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  131. * @soc: DP SOC
  132. *
  133. * Flush fragments of all waitlisted TID's
  134. *
  135. * Returns: None
  136. */
  137. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  138. {
  139. struct dp_rx_tid *rx_reorder = NULL;
  140. struct dp_rx_tid *tmp;
  141. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  142. TAILQ_HEAD(, dp_rx_tid) temp_list;
  143. TAILQ_INIT(&temp_list);
  144. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  145. FL("Current time %u"), now_ms);
  146. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  147. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  148. defrag_waitlist_elem, tmp) {
  149. uint32_t tid;
  150. if (rx_reorder->defrag_timeout_ms > now_ms)
  151. break;
  152. tid = rx_reorder->tid;
  153. if (tid >= DP_MAX_TIDS) {
  154. qdf_assert(0);
  155. continue;
  156. }
  157. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  158. defrag_waitlist_elem);
  159. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  160. /* Move to temp list and clean-up later */
  161. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  162. defrag_waitlist_elem);
  163. }
  164. if (rx_reorder) {
  165. soc->rx.defrag.next_flush_ms =
  166. rx_reorder->defrag_timeout_ms;
  167. } else {
  168. soc->rx.defrag.next_flush_ms =
  169. now_ms + soc->rx.defrag.timeout_ms;
  170. }
  171. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  172. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  173. defrag_waitlist_elem, tmp) {
  174. struct dp_peer *peer, *temp_peer = NULL;
  175. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  176. TAILQ_REMOVE(&temp_list, rx_reorder,
  177. defrag_waitlist_elem);
  178. /* get address of current peer */
  179. peer =
  180. container_of(rx_reorder, struct dp_peer,
  181. rx_tid[rx_reorder->tid]);
  182. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  183. temp_peer = dp_peer_find_by_id(soc, peer->peer_ids[0]);
  184. if (temp_peer == peer) {
  185. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  186. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  187. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  188. }
  189. if (temp_peer)
  190. dp_peer_unref_del_find_by_id(temp_peer);
  191. }
  192. }
  193. /*
  194. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  195. * @peer: Pointer to the peer data structure
  196. * @tid: Transmit ID (TID)
  197. *
  198. * Appends per-tid fragments to global fragment wait list
  199. *
  200. * Returns: None
  201. */
  202. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  203. {
  204. struct dp_soc *psoc = peer->vdev->pdev->soc;
  205. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  206. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  207. FL("Adding TID %u to waitlist for peer %pK"),
  208. tid, peer);
  209. /* TODO: use LIST macros instead of TAIL macros */
  210. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  211. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  212. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  213. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  214. defrag_waitlist_elem);
  215. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  216. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  217. }
  218. /*
  219. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  220. * @peer: Pointer to the peer data structure
  221. * @tid: Transmit ID (TID)
  222. *
  223. * Remove fragments from waitlist
  224. *
  225. * Returns: None
  226. */
  227. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  228. {
  229. struct dp_pdev *pdev = peer->vdev->pdev;
  230. struct dp_soc *soc = pdev->soc;
  231. struct dp_rx_tid *rx_reorder;
  232. struct dp_rx_tid *tmp;
  233. if (tid > DP_MAX_TIDS) {
  234. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  235. "TID out of bounds: %d", tid);
  236. qdf_assert(0);
  237. return;
  238. }
  239. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  240. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  241. defrag_waitlist_elem, tmp) {
  242. struct dp_peer *peer_on_waitlist;
  243. /* get address of current peer */
  244. peer_on_waitlist =
  245. container_of(rx_reorder, struct dp_peer,
  246. rx_tid[rx_reorder->tid]);
  247. /* Ensure it is TID for same peer */
  248. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  249. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  250. rx_reorder, defrag_waitlist_elem);
  251. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  252. }
  253. }
  254. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  255. }
  256. /*
  257. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  258. * @peer: Pointer to the peer data structure
  259. * @tid: Transmit ID (TID)
  260. * @head_addr: Pointer to head list
  261. * @tail_addr: Pointer to tail list
  262. * @frag: Incoming fragment
  263. * @all_frag_present: Flag to indicate whether all fragments are received
  264. *
  265. * Build a per-tid, per-sequence fragment list.
  266. *
  267. * Returns: Success, if inserted
  268. */
  269. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  270. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  271. uint8_t *all_frag_present)
  272. {
  273. qdf_nbuf_t next;
  274. qdf_nbuf_t prev = NULL;
  275. qdf_nbuf_t cur;
  276. uint16_t head_fragno, cur_fragno, next_fragno;
  277. uint8_t last_morefrag = 1, count = 0;
  278. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  279. uint8_t *rx_desc_info;
  280. qdf_assert(frag);
  281. qdf_assert(head_addr);
  282. qdf_assert(tail_addr);
  283. *all_frag_present = 0;
  284. rx_desc_info = qdf_nbuf_data(frag);
  285. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  286. /* If this is the first fragment */
  287. if (!(*head_addr)) {
  288. *head_addr = *tail_addr = frag;
  289. qdf_nbuf_set_next(*tail_addr, NULL);
  290. rx_tid->curr_frag_num = cur_fragno;
  291. goto insert_done;
  292. }
  293. /* In sequence fragment */
  294. if (cur_fragno > rx_tid->curr_frag_num) {
  295. qdf_nbuf_set_next(*tail_addr, frag);
  296. *tail_addr = frag;
  297. qdf_nbuf_set_next(*tail_addr, NULL);
  298. rx_tid->curr_frag_num = cur_fragno;
  299. } else {
  300. /* Out of sequence fragment */
  301. cur = *head_addr;
  302. rx_desc_info = qdf_nbuf_data(cur);
  303. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  304. if (cur_fragno == head_fragno) {
  305. qdf_nbuf_free(frag);
  306. goto insert_fail;
  307. } else if (head_fragno > cur_fragno) {
  308. qdf_nbuf_set_next(frag, cur);
  309. cur = frag;
  310. *head_addr = frag; /* head pointer to be updated */
  311. } else {
  312. while ((cur_fragno > head_fragno) && cur) {
  313. prev = cur;
  314. cur = qdf_nbuf_next(cur);
  315. rx_desc_info = qdf_nbuf_data(cur);
  316. head_fragno =
  317. dp_rx_frag_get_mpdu_frag_number(
  318. rx_desc_info);
  319. }
  320. if (cur_fragno == head_fragno) {
  321. qdf_nbuf_free(frag);
  322. goto insert_fail;
  323. }
  324. qdf_nbuf_set_next(prev, frag);
  325. qdf_nbuf_set_next(frag, cur);
  326. }
  327. }
  328. next = qdf_nbuf_next(*head_addr);
  329. rx_desc_info = qdf_nbuf_data(*tail_addr);
  330. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  331. /* TODO: optimize the loop */
  332. if (!last_morefrag) {
  333. /* Check if all fragments are present */
  334. do {
  335. rx_desc_info = qdf_nbuf_data(next);
  336. next_fragno =
  337. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  338. count++;
  339. if (next_fragno != count)
  340. break;
  341. next = qdf_nbuf_next(next);
  342. } while (next);
  343. if (!next) {
  344. *all_frag_present = 1;
  345. return QDF_STATUS_SUCCESS;
  346. }
  347. }
  348. insert_done:
  349. return QDF_STATUS_SUCCESS;
  350. insert_fail:
  351. return QDF_STATUS_E_FAILURE;
  352. }
  353. /*
  354. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  355. * @msdu: Pointer to the fragment
  356. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  357. *
  358. * decap tkip encrypted fragment
  359. *
  360. * Returns: QDF_STATUS
  361. */
  362. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  363. {
  364. uint8_t *ivp, *orig_hdr;
  365. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  366. /* start of 802.11 header info */
  367. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  368. /* TKIP header is located post 802.11 header */
  369. ivp = orig_hdr + hdrlen;
  370. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  371. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  372. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  373. return QDF_STATUS_E_DEFRAG_ERROR;
  374. }
  375. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  376. return QDF_STATUS_SUCCESS;
  377. }
  378. /*
  379. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  380. * @nbuf: Pointer to the fragment buffer
  381. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  382. *
  383. * Remove MIC information from CCMP fragment
  384. *
  385. * Returns: QDF_STATUS
  386. */
  387. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  388. {
  389. uint8_t *ivp, *orig_hdr;
  390. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  391. /* start of the 802.11 header */
  392. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  393. /* CCMP header is located after 802.11 header */
  394. ivp = orig_hdr + hdrlen;
  395. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  396. return QDF_STATUS_E_DEFRAG_ERROR;
  397. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  398. return QDF_STATUS_SUCCESS;
  399. }
  400. /*
  401. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  402. * @nbuf: Pointer to the fragment
  403. * @hdrlen: length of the header information
  404. *
  405. * decap CCMP encrypted fragment
  406. *
  407. * Returns: QDF_STATUS
  408. */
  409. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  410. {
  411. uint8_t *ivp, *origHdr;
  412. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  413. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  414. ivp = origHdr + hdrlen;
  415. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  416. return QDF_STATUS_E_DEFRAG_ERROR;
  417. /* Let's pull the header later */
  418. return QDF_STATUS_SUCCESS;
  419. }
  420. /*
  421. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  422. * @msdu: Pointer to the fragment
  423. * @hdrlen: length of the header information
  424. *
  425. * decap WEP encrypted fragment
  426. *
  427. * Returns: QDF_STATUS
  428. */
  429. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  430. {
  431. uint8_t *origHdr;
  432. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  433. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  434. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  435. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  436. return QDF_STATUS_SUCCESS;
  437. }
  438. /*
  439. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  440. * @nbuf: Pointer to the fragment
  441. *
  442. * Calculate the header size of the received fragment
  443. *
  444. * Returns: header size (uint16_t)
  445. */
  446. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  447. {
  448. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  449. uint16_t size = sizeof(struct ieee80211_frame);
  450. uint16_t fc = 0;
  451. uint32_t to_ds, fr_ds;
  452. uint8_t frm_ctrl_valid;
  453. uint16_t frm_ctrl_field;
  454. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  455. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  456. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  457. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  458. if (to_ds && fr_ds)
  459. size += QDF_MAC_ADDR_SIZE;
  460. if (frm_ctrl_valid) {
  461. fc = frm_ctrl_field;
  462. /* use 1-st byte for validation */
  463. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  464. size += sizeof(uint16_t);
  465. /* use 2-nd byte for validation */
  466. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  467. size += sizeof(struct ieee80211_htc);
  468. }
  469. }
  470. return size;
  471. }
  472. /*
  473. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  474. * @wh0: Pointer to the wireless header of the fragment
  475. * @hdr: Array to hold the pseudo header
  476. *
  477. * Calculate a pseudo MIC header
  478. *
  479. * Returns: None
  480. */
  481. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  482. uint8_t hdr[])
  483. {
  484. const struct ieee80211_frame_addr4 *wh =
  485. (const struct ieee80211_frame_addr4 *)wh0;
  486. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  487. case IEEE80211_FC1_DIR_NODS:
  488. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  489. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  490. wh->i_addr2);
  491. break;
  492. case IEEE80211_FC1_DIR_TODS:
  493. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  494. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  495. wh->i_addr2);
  496. break;
  497. case IEEE80211_FC1_DIR_FROMDS:
  498. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  500. wh->i_addr3);
  501. break;
  502. case IEEE80211_FC1_DIR_DSTODS:
  503. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  505. wh->i_addr4);
  506. break;
  507. }
  508. /*
  509. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  510. * it could also be set for deauth, disassoc, action, etc. for
  511. * a mgt type frame. It comes into picture for MFP.
  512. */
  513. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  514. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  515. IEEE80211_FC1_DIR_DSTODS) {
  516. const struct ieee80211_qosframe_addr4 *qwh =
  517. (const struct ieee80211_qosframe_addr4 *)wh;
  518. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  519. } else {
  520. const struct ieee80211_qosframe *qwh =
  521. (const struct ieee80211_qosframe *)wh;
  522. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  523. }
  524. } else {
  525. hdr[12] = 0;
  526. }
  527. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  528. }
  529. /*
  530. * dp_rx_defrag_mic(): Calculate MIC header
  531. * @key: Pointer to the key
  532. * @wbuf: fragment buffer
  533. * @off: Offset
  534. * @data_len: Data length
  535. * @mic: Array to hold MIC
  536. *
  537. * Calculate a pseudo MIC header
  538. *
  539. * Returns: QDF_STATUS
  540. */
  541. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  542. uint16_t off, uint16_t data_len, uint8_t mic[])
  543. {
  544. uint8_t hdr[16] = { 0, };
  545. uint32_t l, r;
  546. const uint8_t *data;
  547. uint32_t space;
  548. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  549. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  550. + rx_desc_len), hdr);
  551. l = dp_rx_get_le32(key);
  552. r = dp_rx_get_le32(key + 4);
  553. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  554. l ^= dp_rx_get_le32(hdr);
  555. dp_rx_michael_block(l, r);
  556. l ^= dp_rx_get_le32(&hdr[4]);
  557. dp_rx_michael_block(l, r);
  558. l ^= dp_rx_get_le32(&hdr[8]);
  559. dp_rx_michael_block(l, r);
  560. l ^= dp_rx_get_le32(&hdr[12]);
  561. dp_rx_michael_block(l, r);
  562. /* first buffer has special handling */
  563. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  564. space = qdf_nbuf_len(wbuf) - off;
  565. for (;; ) {
  566. if (space > data_len)
  567. space = data_len;
  568. /* collect 32-bit blocks from current buffer */
  569. while (space >= sizeof(uint32_t)) {
  570. l ^= dp_rx_get_le32(data);
  571. dp_rx_michael_block(l, r);
  572. data += sizeof(uint32_t);
  573. space -= sizeof(uint32_t);
  574. data_len -= sizeof(uint32_t);
  575. }
  576. if (data_len < sizeof(uint32_t))
  577. break;
  578. wbuf = qdf_nbuf_next(wbuf);
  579. if (!wbuf)
  580. return QDF_STATUS_E_DEFRAG_ERROR;
  581. if (space != 0) {
  582. const uint8_t *data_next;
  583. /*
  584. * Block straddles buffers, split references.
  585. */
  586. data_next =
  587. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  588. if ((qdf_nbuf_len(wbuf)) <
  589. sizeof(uint32_t) - space) {
  590. return QDF_STATUS_E_DEFRAG_ERROR;
  591. }
  592. switch (space) {
  593. case 1:
  594. l ^= dp_rx_get_le32_split(data[0],
  595. data_next[0], data_next[1],
  596. data_next[2]);
  597. data = data_next + 3;
  598. space = (qdf_nbuf_len(wbuf) - off) - 3;
  599. break;
  600. case 2:
  601. l ^= dp_rx_get_le32_split(data[0], data[1],
  602. data_next[0], data_next[1]);
  603. data = data_next + 2;
  604. space = (qdf_nbuf_len(wbuf) - off) - 2;
  605. break;
  606. case 3:
  607. l ^= dp_rx_get_le32_split(data[0], data[1],
  608. data[2], data_next[0]);
  609. data = data_next + 1;
  610. space = (qdf_nbuf_len(wbuf) - off) - 1;
  611. break;
  612. }
  613. dp_rx_michael_block(l, r);
  614. data_len -= sizeof(uint32_t);
  615. } else {
  616. /*
  617. * Setup for next buffer.
  618. */
  619. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  620. space = qdf_nbuf_len(wbuf) - off;
  621. }
  622. }
  623. /* Last block and padding (0x5a, 4..7 x 0) */
  624. switch (data_len) {
  625. case 0:
  626. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  627. break;
  628. case 1:
  629. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  630. break;
  631. case 2:
  632. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  633. break;
  634. case 3:
  635. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  636. break;
  637. }
  638. dp_rx_michael_block(l, r);
  639. dp_rx_michael_block(l, r);
  640. dp_rx_put_le32(mic, l);
  641. dp_rx_put_le32(mic + 4, r);
  642. return QDF_STATUS_SUCCESS;
  643. }
  644. /*
  645. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  646. * @key: Pointer to the key
  647. * @msdu: fragment buffer
  648. * @hdrlen: Length of the header information
  649. *
  650. * Remove MIC information from the TKIP frame
  651. *
  652. * Returns: QDF_STATUS
  653. */
  654. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  655. qdf_nbuf_t msdu, uint16_t hdrlen)
  656. {
  657. QDF_STATUS status;
  658. uint32_t pktlen = 0;
  659. uint8_t mic[IEEE80211_WEP_MICLEN];
  660. uint8_t mic0[IEEE80211_WEP_MICLEN];
  661. qdf_nbuf_t prev = NULL, next;
  662. next = msdu;
  663. while (next) {
  664. pktlen += (qdf_nbuf_len(next) - hdrlen);
  665. prev = next;
  666. dp_debug("%s pktlen %u", __func__,
  667. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  668. next = qdf_nbuf_next(next);
  669. }
  670. if (!prev) {
  671. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  672. "%s Defrag chaining failed !\n", __func__);
  673. return QDF_STATUS_E_DEFRAG_ERROR;
  674. }
  675. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  676. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  677. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  678. pktlen -= dp_f_tkip.ic_miclen;
  679. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  680. pktlen, mic);
  681. if (QDF_IS_STATUS_ERROR(status))
  682. return status;
  683. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  684. return QDF_STATUS_E_DEFRAG_ERROR;
  685. return QDF_STATUS_SUCCESS;
  686. }
  687. /*
  688. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  689. * @nbuf: buffer pointer
  690. * @hdrsize: size of the header to be pulled
  691. *
  692. * Pull the RXTLV & the 802.11 headers
  693. *
  694. * Returns: None
  695. */
  696. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  697. {
  698. qdf_nbuf_pull_head(nbuf,
  699. RX_PKT_TLVS_LEN + hdrsize);
  700. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  701. "%s: final pktlen %d .11len %d",
  702. __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  703. }
  704. /*
  705. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  706. * @peer: Pointer to the peer
  707. * @head: Pointer to list of fragments
  708. * @hdrsize: Size of the header to be pulled
  709. *
  710. * Construct a nbuf fraglist
  711. *
  712. * Returns: None
  713. */
  714. static void
  715. dp_rx_construct_fraglist(struct dp_peer *peer,
  716. qdf_nbuf_t head, uint16_t hdrsize)
  717. {
  718. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  719. qdf_nbuf_t rx_nbuf = msdu;
  720. uint32_t len = 0;
  721. while (msdu) {
  722. dp_rx_frag_pull_hdr(msdu, hdrsize);
  723. len += qdf_nbuf_len(msdu);
  724. msdu = qdf_nbuf_next(msdu);
  725. }
  726. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  727. qdf_nbuf_set_next(head, NULL);
  728. qdf_nbuf_set_is_frag(head, 1);
  729. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  730. "%s: head len %d ext len %d data len %d ",
  731. __func__,
  732. (uint32_t)qdf_nbuf_len(head),
  733. (uint32_t)qdf_nbuf_len(rx_nbuf),
  734. (uint32_t)(head->data_len));
  735. }
  736. /**
  737. * dp_rx_defrag_err() - rx err handler
  738. * @pdev: handle to pdev object
  739. * @vdev_id: vdev id
  740. * @peer_mac_addr: peer mac address
  741. * @tid: TID
  742. * @tsf32: TSF
  743. * @err_type: error type
  744. * @rx_frame: rx frame
  745. * @pn: PN Number
  746. * @key_id: key id
  747. *
  748. * This function handles rx error and send MIC error notification
  749. *
  750. * Return: None
  751. */
  752. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  753. {
  754. struct ol_if_ops *tops = NULL;
  755. struct dp_pdev *pdev = vdev->pdev;
  756. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  757. uint8_t *orig_hdr;
  758. struct ieee80211_frame *wh;
  759. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  760. wh = (struct ieee80211_frame *)orig_hdr;
  761. tops = pdev->soc->cdp_soc.ol_ops;
  762. if (tops->rx_mic_error)
  763. tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
  764. }
  765. /*
  766. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  767. * @nbuf: Pointer to the fragment buffer
  768. * @hdrsize: Size of headers
  769. *
  770. * Transcap the fragment from 802.11 to 802.3
  771. *
  772. * Returns: None
  773. */
  774. static void
  775. dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
  776. {
  777. struct llc_snap_hdr_t *llchdr;
  778. struct ethernet_hdr_t *eth_hdr;
  779. uint8_t ether_type[2];
  780. uint16_t fc = 0;
  781. union dp_align_mac_addr mac_addr;
  782. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  783. if (!rx_desc_info) {
  784. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  785. "%s: Memory alloc failed ! ", __func__);
  786. QDF_ASSERT(0);
  787. return;
  788. }
  789. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  790. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  791. RX_PKT_TLVS_LEN + hdrsize);
  792. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  793. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  794. sizeof(struct llc_snap_hdr_t) -
  795. sizeof(struct ethernet_hdr_t)));
  796. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  797. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  798. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  799. dp_debug("%s: frame control type: 0x%x", __func__, fc);
  800. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  801. case IEEE80211_FC1_DIR_NODS:
  802. hal_rx_mpdu_get_addr1(rx_desc_info,
  803. &mac_addr.raw[0]);
  804. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  805. QDF_MAC_ADDR_SIZE);
  806. hal_rx_mpdu_get_addr2(rx_desc_info,
  807. &mac_addr.raw[0]);
  808. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  809. QDF_MAC_ADDR_SIZE);
  810. break;
  811. case IEEE80211_FC1_DIR_TODS:
  812. hal_rx_mpdu_get_addr3(rx_desc_info,
  813. &mac_addr.raw[0]);
  814. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  815. QDF_MAC_ADDR_SIZE);
  816. hal_rx_mpdu_get_addr2(rx_desc_info,
  817. &mac_addr.raw[0]);
  818. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  819. QDF_MAC_ADDR_SIZE);
  820. break;
  821. case IEEE80211_FC1_DIR_FROMDS:
  822. hal_rx_mpdu_get_addr1(rx_desc_info,
  823. &mac_addr.raw[0]);
  824. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  825. QDF_MAC_ADDR_SIZE);
  826. hal_rx_mpdu_get_addr3(rx_desc_info,
  827. &mac_addr.raw[0]);
  828. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  829. QDF_MAC_ADDR_SIZE);
  830. break;
  831. case IEEE80211_FC1_DIR_DSTODS:
  832. hal_rx_mpdu_get_addr3(rx_desc_info,
  833. &mac_addr.raw[0]);
  834. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  835. QDF_MAC_ADDR_SIZE);
  836. hal_rx_mpdu_get_addr4(rx_desc_info,
  837. &mac_addr.raw[0]);
  838. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  839. QDF_MAC_ADDR_SIZE);
  840. break;
  841. default:
  842. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  843. "%s: Unknown frame control type: 0x%x", __func__, fc);
  844. }
  845. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  846. sizeof(ether_type));
  847. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  848. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  849. qdf_mem_free(rx_desc_info);
  850. }
  851. /*
  852. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  853. * @peer: Pointer to the peer
  854. * @tid: Transmit Identifier
  855. * @head: Buffer to be reinjected back
  856. *
  857. * Reinject the fragment chain back into REO
  858. *
  859. * Returns: QDF_STATUS
  860. */
  861. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  862. unsigned tid, qdf_nbuf_t head)
  863. {
  864. struct dp_pdev *pdev = peer->vdev->pdev;
  865. struct dp_soc *soc = pdev->soc;
  866. struct hal_buf_info buf_info;
  867. void *link_desc_va;
  868. void *msdu0, *msdu_desc_info;
  869. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  870. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  871. qdf_dma_addr_t paddr;
  872. uint32_t nbuf_len, seq_no, dst_ind;
  873. uint32_t *mpdu_wrd;
  874. uint32_t ret, cookie;
  875. void *dst_ring_desc =
  876. peer->rx_tid[tid].dst_ring_desc;
  877. void *hal_srng = soc->reo_reinject_ring.hal_srng;
  878. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  879. if (!ent_ring_desc) {
  880. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  881. "HAL src ring next entry NULL");
  882. return QDF_STATUS_E_FAILURE;
  883. }
  884. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  885. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  886. qdf_assert(link_desc_va);
  887. msdu0 = (uint8_t *)link_desc_va +
  888. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  889. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  890. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  891. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  892. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  893. /* msdu reconfig */
  894. msdu_desc_info = (uint8_t *)msdu0 +
  895. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  896. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  897. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  898. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  899. FIRST_MSDU_IN_MPDU_FLAG, 1);
  900. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  901. LAST_MSDU_IN_MPDU_FLAG, 1);
  902. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  903. MSDU_CONTINUATION, 0x0);
  904. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  905. REO_DESTINATION_INDICATION, dst_ind);
  906. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  907. MSDU_LENGTH, nbuf_len);
  908. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  909. SA_IS_VALID, 1);
  910. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  911. DA_IS_VALID, 1);
  912. /* change RX TLV's */
  913. hal_rx_msdu_start_msdu_len_set(
  914. qdf_nbuf_data(head), nbuf_len);
  915. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  916. /* map the nbuf before reinject it into HW */
  917. ret = qdf_nbuf_map_single(soc->osdev, head,
  918. QDF_DMA_FROM_DEVICE);
  919. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  920. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  921. "%s: nbuf map failed !", __func__);
  922. return QDF_STATUS_E_FAILURE;
  923. }
  924. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  925. ret = check_x86_paddr(soc, &head, &paddr, pdev);
  926. if (ret == QDF_STATUS_E_FAILURE) {
  927. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  928. "%s: x86 check failed !", __func__);
  929. return QDF_STATUS_E_FAILURE;
  930. }
  931. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
  932. /* Lets fill entrance ring now !!! */
  933. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  934. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  935. "HAL RING Access For REO entrance SRNG Failed: %pK",
  936. hal_srng);
  937. return QDF_STATUS_E_FAILURE;
  938. }
  939. paddr = (uint64_t)buf_info.paddr;
  940. /* buf addr */
  941. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  942. buf_info.sw_cookie,
  943. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  944. /* mpdu desc info */
  945. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  946. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  947. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  948. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  949. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  950. sizeof(struct rx_mpdu_desc_info));
  951. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  952. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  953. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  954. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  955. MSDU_COUNT, 0x1);
  956. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  957. MPDU_SEQUENCE_NUMBER, seq_no);
  958. /* unset frag bit */
  959. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  960. FRAGMENT_FLAG, 0x0);
  961. /* set sa/da valid bits */
  962. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  963. SA_IS_VALID, 0x1);
  964. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  965. DA_IS_VALID, 0x1);
  966. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  967. RAW_MPDU, 0x0);
  968. /* qdesc addr */
  969. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  970. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  971. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  972. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  973. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  974. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  975. REO_DESTINATION_INDICATION, dst_ind);
  976. hal_srng_access_end(soc->hal_soc, hal_srng);
  977. DP_STATS_INC(soc, rx.reo_reinject, 1);
  978. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  979. "%s: reinjection done !", __func__);
  980. return QDF_STATUS_SUCCESS;
  981. }
  982. /*
  983. * dp_rx_defrag(): Defragment the fragment chain
  984. * @peer: Pointer to the peer
  985. * @tid: Transmit Identifier
  986. * @frag_list_head: Pointer to head list
  987. * @frag_list_tail: Pointer to tail list
  988. *
  989. * Defragment the fragment chain
  990. *
  991. * Returns: QDF_STATUS
  992. */
  993. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  994. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  995. {
  996. qdf_nbuf_t tmp_next, prev;
  997. qdf_nbuf_t cur = frag_list_head, msdu;
  998. uint32_t index, tkip_demic = 0;
  999. uint16_t hdr_space;
  1000. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1001. struct dp_vdev *vdev = peer->vdev;
  1002. struct dp_soc *soc = vdev->pdev->soc;
  1003. uint8_t status = 0;
  1004. hdr_space = dp_rx_defrag_hdrsize(cur);
  1005. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1006. dp_sec_mcast : dp_sec_ucast;
  1007. /* Remove FCS from all fragments */
  1008. while (cur) {
  1009. tmp_next = qdf_nbuf_next(cur);
  1010. qdf_nbuf_set_next(cur, NULL);
  1011. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1012. prev = cur;
  1013. qdf_nbuf_set_next(cur, tmp_next);
  1014. cur = tmp_next;
  1015. }
  1016. cur = frag_list_head;
  1017. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1018. "%s: index %d Security type: %d", __func__,
  1019. index, peer->security[index].sec_type);
  1020. switch (peer->security[index].sec_type) {
  1021. case cdp_sec_type_tkip:
  1022. tkip_demic = 1;
  1023. case cdp_sec_type_tkip_nomic:
  1024. while (cur) {
  1025. tmp_next = qdf_nbuf_next(cur);
  1026. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1027. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1028. QDF_TRACE_LEVEL_ERROR,
  1029. "dp_rx_defrag: TKIP decap failed");
  1030. return QDF_STATUS_E_DEFRAG_ERROR;
  1031. }
  1032. cur = tmp_next;
  1033. }
  1034. /* If success, increment header to be stripped later */
  1035. hdr_space += dp_f_tkip.ic_header;
  1036. break;
  1037. case cdp_sec_type_aes_ccmp:
  1038. while (cur) {
  1039. tmp_next = qdf_nbuf_next(cur);
  1040. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1041. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1042. QDF_TRACE_LEVEL_ERROR,
  1043. "dp_rx_defrag: CCMP demic failed");
  1044. return QDF_STATUS_E_DEFRAG_ERROR;
  1045. }
  1046. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1047. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1048. QDF_TRACE_LEVEL_ERROR,
  1049. "dp_rx_defrag: CCMP decap failed");
  1050. return QDF_STATUS_E_DEFRAG_ERROR;
  1051. }
  1052. cur = tmp_next;
  1053. }
  1054. /* If success, increment header to be stripped later */
  1055. hdr_space += dp_f_ccmp.ic_header;
  1056. break;
  1057. case cdp_sec_type_wep40:
  1058. case cdp_sec_type_wep104:
  1059. case cdp_sec_type_wep128:
  1060. while (cur) {
  1061. tmp_next = qdf_nbuf_next(cur);
  1062. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1063. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1064. QDF_TRACE_LEVEL_ERROR,
  1065. "dp_rx_defrag: WEP decap failed");
  1066. return QDF_STATUS_E_DEFRAG_ERROR;
  1067. }
  1068. cur = tmp_next;
  1069. }
  1070. /* If success, increment header to be stripped later */
  1071. hdr_space += dp_f_wep.ic_header;
  1072. break;
  1073. default:
  1074. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1075. QDF_TRACE_LEVEL_ERROR,
  1076. "dp_rx_defrag: Did not match any security type");
  1077. break;
  1078. }
  1079. if (tkip_demic) {
  1080. msdu = frag_list_head;
  1081. if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
  1082. status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
  1083. (void *)peer->ctrl_peer, msdu, hdr_space);
  1084. } else {
  1085. qdf_mem_copy(key,
  1086. &peer->security[index].michael_key[0],
  1087. IEEE80211_WEP_MICLEN);
  1088. status = dp_rx_defrag_tkip_demic(key, msdu,
  1089. RX_PKT_TLVS_LEN +
  1090. hdr_space);
  1091. if (status) {
  1092. dp_rx_defrag_err(vdev, frag_list_head);
  1093. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1094. QDF_TRACE_LEVEL_ERROR,
  1095. "%s: TKIP demic failed status %d",
  1096. __func__, status);
  1097. return QDF_STATUS_E_DEFRAG_ERROR;
  1098. }
  1099. }
  1100. }
  1101. /* Convert the header to 802.3 header */
  1102. dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
  1103. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1104. return QDF_STATUS_SUCCESS;
  1105. }
  1106. /*
  1107. * dp_rx_defrag_cleanup(): Clean up activities
  1108. * @peer: Pointer to the peer
  1109. * @tid: Transmit Identifier
  1110. *
  1111. * Returns: None
  1112. */
  1113. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1114. {
  1115. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1116. peer->rx_tid[tid].array;
  1117. if (!rx_reorder_array_elem) {
  1118. /*
  1119. * if this condition is hit then somebody
  1120. * must have reset this pointer to NULL.
  1121. * array pointer usually points to base variable
  1122. * of TID queue structure: "struct dp_rx_tid"
  1123. */
  1124. QDF_ASSERT(0);
  1125. return;
  1126. }
  1127. /* Free up nbufs */
  1128. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1129. /* Free up saved ring descriptors */
  1130. dp_rx_clear_saved_desc_info(peer, tid);
  1131. rx_reorder_array_elem->head = NULL;
  1132. rx_reorder_array_elem->tail = NULL;
  1133. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1134. peer->rx_tid[tid].curr_frag_num = 0;
  1135. peer->rx_tid[tid].curr_seq_num = 0;
  1136. peer->rx_tid[tid].head_frag_desc = NULL;
  1137. }
  1138. /*
  1139. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1140. * @ring_desc: Pointer to the dst ring descriptor
  1141. * @peer: Pointer to the peer
  1142. * @tid: Transmit Identifier
  1143. *
  1144. * Returns: None
  1145. */
  1146. static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
  1147. struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
  1148. {
  1149. void *dst_ring_desc = qdf_mem_malloc(
  1150. sizeof(struct reo_destination_ring));
  1151. if (!dst_ring_desc) {
  1152. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1153. "%s: Memory alloc failed !", __func__);
  1154. QDF_ASSERT(0);
  1155. return QDF_STATUS_E_NOMEM;
  1156. }
  1157. qdf_mem_copy(dst_ring_desc, ring_desc,
  1158. sizeof(struct reo_destination_ring));
  1159. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1160. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1161. return QDF_STATUS_SUCCESS;
  1162. }
  1163. /*
  1164. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1165. * @soc: Pointer to the SOC data structure
  1166. * @ring_desc: Pointer to the ring descriptor
  1167. * @mpdu_desc_info: MPDU descriptor info
  1168. * @tid: Traffic Identifier
  1169. * @rx_desc: Pointer to rx descriptor
  1170. * @rx_bfs: Number of bfs consumed
  1171. *
  1172. * Returns: QDF_STATUS
  1173. */
  1174. static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1175. void *ring_desc,
  1176. union dp_rx_desc_list_elem_t **head,
  1177. union dp_rx_desc_list_elem_t **tail,
  1178. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1179. unsigned tid, struct dp_rx_desc *rx_desc,
  1180. uint32_t *rx_bfs)
  1181. {
  1182. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1183. struct dp_pdev *pdev;
  1184. struct dp_peer *peer;
  1185. uint16_t peer_id;
  1186. uint8_t fragno, more_frag, all_frag_present = 0;
  1187. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1188. QDF_STATUS status;
  1189. struct dp_rx_tid *rx_tid;
  1190. uint8_t mpdu_sequence_control_valid;
  1191. uint8_t mpdu_frame_control_valid;
  1192. qdf_nbuf_t frag = rx_desc->nbuf;
  1193. /* Check if the packet is from a valid peer */
  1194. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1195. mpdu_desc_info->peer_meta_data);
  1196. peer = dp_peer_find_by_id(soc, peer_id);
  1197. if (!peer) {
  1198. /* We should not receive anything from unknown peer
  1199. * however, that might happen while we are in the monitor mode.
  1200. * We don't need to handle that here
  1201. */
  1202. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1203. "Unknown peer, dropping the fragment");
  1204. goto discard_frag;
  1205. }
  1206. pdev = peer->vdev->pdev;
  1207. rx_tid = &peer->rx_tid[tid];
  1208. mpdu_sequence_control_valid =
  1209. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1210. /* Invalid MPDU sequence control field, MPDU is of no use */
  1211. if (!mpdu_sequence_control_valid) {
  1212. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1213. "Invalid MPDU seq control field, dropping MPDU");
  1214. qdf_assert(0);
  1215. goto discard_frag;
  1216. }
  1217. mpdu_frame_control_valid =
  1218. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1219. /* Invalid frame control field */
  1220. if (!mpdu_frame_control_valid) {
  1221. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1222. "Invalid frame control field, dropping MPDU");
  1223. qdf_assert(0);
  1224. goto discard_frag;
  1225. }
  1226. /* Current mpdu sequence */
  1227. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1228. /* HW does not populate the fragment number as of now
  1229. * need to get from the 802.11 header
  1230. */
  1231. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1232. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1233. if (!rx_reorder_array_elem) {
  1234. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1235. "Rcvd Fragmented pkt before peer_tid is setup");
  1236. goto discard_frag;
  1237. }
  1238. /*
  1239. * !more_frag: no more fragments to be delivered
  1240. * !frag_no: packet is not fragmented
  1241. * !rx_reorder_array_elem->head: no saved fragments so far
  1242. */
  1243. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1244. /* We should not get into this situation here.
  1245. * It means an unfragmented packet with fragment flag
  1246. * is delivered over the REO exception ring.
  1247. * Typically it follows normal rx path.
  1248. */
  1249. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1250. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1251. qdf_assert(0);
  1252. goto discard_frag;
  1253. }
  1254. /* Check if the fragment is for the same sequence or a different one */
  1255. if (rx_reorder_array_elem->head) {
  1256. if (rxseq != rx_tid->curr_seq_num) {
  1257. /* Drop stored fragments if out of sequence
  1258. * fragment is received
  1259. */
  1260. dp_rx_reorder_flush_frag(peer, tid);
  1261. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1262. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1263. "%s mismatch, dropping earlier sequence ",
  1264. (rxseq == rx_tid->curr_seq_num)
  1265. ? "address"
  1266. : "seq number");
  1267. /*
  1268. * The sequence number for this fragment becomes the
  1269. * new sequence number to be processed
  1270. */
  1271. rx_tid->curr_seq_num = rxseq;
  1272. }
  1273. } else {
  1274. /* Start of a new sequence */
  1275. dp_rx_defrag_cleanup(peer, tid);
  1276. rx_tid->curr_seq_num = rxseq;
  1277. }
  1278. /*
  1279. * If the earlier sequence was dropped, this will be the fresh start.
  1280. * Else, continue with next fragment in a given sequence
  1281. */
  1282. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1283. &rx_reorder_array_elem->tail, frag,
  1284. &all_frag_present);
  1285. /*
  1286. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1287. * packet sequence has more than 6 MSDUs for some reason, we will
  1288. * have to use the next MSDU link descriptor and chain them together
  1289. * before reinjection
  1290. */
  1291. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1292. (rx_reorder_array_elem->head == frag)) {
  1293. qdf_assert_always(ring_desc);
  1294. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1295. rx_desc, peer, tid);
  1296. if (status != QDF_STATUS_SUCCESS) {
  1297. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1298. "%s: Unable to store ring desc !", __func__);
  1299. goto discard_frag;
  1300. }
  1301. } else {
  1302. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1303. *rx_bfs = 1;
  1304. /* Return the non-head link desc */
  1305. if (ring_desc &&
  1306. dp_rx_link_desc_return(soc, ring_desc,
  1307. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1308. QDF_STATUS_SUCCESS)
  1309. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1310. "%s: Failed to return link desc", __func__);
  1311. }
  1312. if (pdev->soc->rx.flags.defrag_timeout_check)
  1313. dp_rx_defrag_waitlist_remove(peer, tid);
  1314. /* Yet to receive more fragments for this sequence number */
  1315. if (!all_frag_present) {
  1316. uint32_t now_ms =
  1317. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1318. peer->rx_tid[tid].defrag_timeout_ms =
  1319. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1320. dp_rx_defrag_waitlist_add(peer, tid);
  1321. dp_peer_unref_del_find_by_id(peer);
  1322. return QDF_STATUS_SUCCESS;
  1323. }
  1324. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1325. "All fragments received for sequence: %d", rxseq);
  1326. /* Process the fragments */
  1327. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1328. rx_reorder_array_elem->tail);
  1329. if (QDF_IS_STATUS_ERROR(status)) {
  1330. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1331. "Fragment processing failed");
  1332. dp_rx_add_to_free_desc_list(head, tail,
  1333. peer->rx_tid[tid].head_frag_desc);
  1334. *rx_bfs = 1;
  1335. if (dp_rx_link_desc_return(soc,
  1336. peer->rx_tid[tid].dst_ring_desc,
  1337. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1338. QDF_STATUS_SUCCESS)
  1339. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1340. "%s: Failed to return link desc",
  1341. __func__);
  1342. dp_rx_defrag_cleanup(peer, tid);
  1343. goto end;
  1344. }
  1345. /* Re-inject the fragments back to REO for further processing */
  1346. status = dp_rx_defrag_reo_reinject(peer, tid,
  1347. rx_reorder_array_elem->head);
  1348. if (QDF_IS_STATUS_SUCCESS(status)) {
  1349. rx_reorder_array_elem->head = NULL;
  1350. rx_reorder_array_elem->tail = NULL;
  1351. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1352. "Fragmented sequence successfully reinjected");
  1353. } else {
  1354. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1355. "Fragmented sequence reinjection failed");
  1356. dp_rx_return_head_frag_desc(peer, tid);
  1357. }
  1358. dp_rx_defrag_cleanup(peer, tid);
  1359. dp_peer_unref_del_find_by_id(peer);
  1360. return QDF_STATUS_SUCCESS;
  1361. discard_frag:
  1362. qdf_nbuf_free(frag);
  1363. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1364. if (dp_rx_link_desc_return(soc, ring_desc,
  1365. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1366. QDF_STATUS_SUCCESS)
  1367. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1368. "%s: Failed to return link desc", __func__);
  1369. *rx_bfs = 1;
  1370. end:
  1371. if (peer)
  1372. dp_peer_unref_del_find_by_id(peer);
  1373. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1374. return QDF_STATUS_E_DEFRAG_ERROR;
  1375. }
  1376. /**
  1377. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1378. *
  1379. * @soc: core txrx main context
  1380. * @ring_desc: opaque pointer to the REO error ring descriptor
  1381. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1382. * @head: head of the local descriptor free-list
  1383. * @tail: tail of the local descriptor free-list
  1384. * @quota: No. of units (packets) that can be serviced in one shot.
  1385. *
  1386. * This function implements RX 802.11 fragmentation handling
  1387. * The handling is mostly same as legacy fragmentation handling.
  1388. * If required, this function can re-inject the frames back to
  1389. * REO ring (with proper setting to by-pass fragmentation check
  1390. * but use duplicate detection / re-ordering and routing these frames
  1391. * to a different core.
  1392. *
  1393. * Return: uint32_t: No. of elements processed
  1394. */
  1395. uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
  1396. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1397. struct dp_rx_desc *rx_desc,
  1398. uint8_t *mac_id,
  1399. uint32_t quota)
  1400. {
  1401. uint32_t rx_bufs_used = 0;
  1402. qdf_nbuf_t msdu = NULL;
  1403. uint32_t tid, msdu_len;
  1404. int rx_bfs = 0;
  1405. struct dp_pdev *pdev;
  1406. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1407. qdf_assert(soc);
  1408. qdf_assert(mpdu_desc_info);
  1409. qdf_assert(rx_desc);
  1410. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1411. "Number of MSDUs to process, num_msdus: %d",
  1412. mpdu_desc_info->msdu_count);
  1413. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1414. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1415. "Not sufficient MSDUs to process");
  1416. return rx_bufs_used;
  1417. }
  1418. /* all buffers in MSDU link belong to same pdev */
  1419. pdev = soc->pdev_list[rx_desc->pool_id];
  1420. *mac_id = rx_desc->pool_id;
  1421. msdu = rx_desc->nbuf;
  1422. qdf_nbuf_unmap_single(soc->osdev, msdu, QDF_DMA_FROM_DEVICE);
  1423. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1424. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1425. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1426. qdf_nbuf_append_ext_list(msdu, NULL, 0);
  1427. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1428. /* Process fragment-by-fragment */
  1429. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1430. &pdev->free_list_head,
  1431. &pdev->free_list_tail,
  1432. mpdu_desc_info,
  1433. tid, rx_desc, &rx_bfs);
  1434. if (rx_bfs)
  1435. rx_bufs_used++;
  1436. if (!QDF_IS_STATUS_SUCCESS(status))
  1437. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1438. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1439. mpdu_desc_info->mpdu_seq,
  1440. mpdu_desc_info->msdu_count,
  1441. mpdu_desc_info->mpdu_flags);
  1442. return rx_bufs_used;
  1443. }
  1444. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1445. struct dp_peer *peer, uint16_t tid,
  1446. uint16_t rxseq, qdf_nbuf_t nbuf)
  1447. {
  1448. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1449. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1450. uint8_t all_frag_present;
  1451. uint32_t msdu_len;
  1452. QDF_STATUS status;
  1453. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1454. if (rx_reorder_array_elem->head &&
  1455. rxseq != rx_tid->curr_seq_num) {
  1456. /* Drop stored fragments if out of sequence
  1457. * fragment is received
  1458. */
  1459. dp_rx_reorder_flush_frag(peer, tid);
  1460. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1461. "%s: No list found for TID %d Seq# %d",
  1462. __func__, tid, rxseq);
  1463. qdf_nbuf_free(nbuf);
  1464. goto fail;
  1465. }
  1466. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1467. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1468. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1469. &rx_reorder_array_elem->head,
  1470. &rx_reorder_array_elem->tail, nbuf,
  1471. &all_frag_present);
  1472. if (QDF_IS_STATUS_ERROR(status)) {
  1473. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1474. "%s Fragment insert failed", __func__);
  1475. goto fail;
  1476. }
  1477. if (soc->rx.flags.defrag_timeout_check)
  1478. dp_rx_defrag_waitlist_remove(peer, tid);
  1479. if (!all_frag_present) {
  1480. uint32_t now_ms =
  1481. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1482. peer->rx_tid[tid].defrag_timeout_ms =
  1483. now_ms + soc->rx.defrag.timeout_ms;
  1484. dp_rx_defrag_waitlist_add(peer, tid);
  1485. return QDF_STATUS_SUCCESS;
  1486. }
  1487. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1488. rx_reorder_array_elem->tail);
  1489. if (QDF_IS_STATUS_ERROR(status)) {
  1490. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1491. "%s Fragment processing failed", __func__);
  1492. dp_rx_return_head_frag_desc(peer, tid);
  1493. dp_rx_defrag_cleanup(peer, tid);
  1494. goto fail;
  1495. }
  1496. /* Re-inject the fragments back to REO for further processing */
  1497. status = dp_rx_defrag_reo_reinject(peer, tid,
  1498. rx_reorder_array_elem->head);
  1499. if (QDF_IS_STATUS_SUCCESS(status)) {
  1500. rx_reorder_array_elem->head = NULL;
  1501. rx_reorder_array_elem->tail = NULL;
  1502. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1503. "%s: Frag seq successfully reinjected",
  1504. __func__);
  1505. } else {
  1506. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1507. "%s: Frag seq reinjection failed", __func__);
  1508. dp_rx_return_head_frag_desc(peer, tid);
  1509. }
  1510. dp_rx_defrag_cleanup(peer, tid);
  1511. return QDF_STATUS_SUCCESS;
  1512. fail:
  1513. return QDF_STATUS_E_DEFRAG_ERROR;
  1514. }