dp_rx_defrag.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157
  1. /*
  2. * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #ifndef RX_DEFRAG_DO_NOT_REINJECT
  20. #ifndef DP_BE_WAR
  21. #include "li/hal_li_rx.h"
  22. #endif
  23. #endif
  24. #include "dp_types.h"
  25. #include "dp_rx.h"
  26. #include "dp_peer.h"
  27. #include "hal_api.h"
  28. #include "qdf_trace.h"
  29. #include "qdf_nbuf.h"
  30. #include "dp_internal.h"
  31. #include "dp_rx_defrag.h"
  32. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  33. #include "dp_rx_defrag.h"
  34. #include "dp_ipa.h"
  35. #include "dp_rx_buffer_pool.h"
  36. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  37. "AES-CCM",
  38. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  39. IEEE80211_WEP_MICLEN,
  40. 0,
  41. };
  42. const struct dp_rx_defrag_cipher dp_f_tkip = {
  43. "TKIP",
  44. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  45. IEEE80211_WEP_CRCLEN,
  46. IEEE80211_WEP_MICLEN,
  47. };
  48. const struct dp_rx_defrag_cipher dp_f_wep = {
  49. "WEP",
  50. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  51. IEEE80211_WEP_CRCLEN,
  52. 0,
  53. };
  54. /*
  55. * The header and mic length are same for both
  56. * GCMP-128 and GCMP-256.
  57. */
  58. const struct dp_rx_defrag_cipher dp_f_gcmp = {
  59. "AES-GCMP",
  60. WLAN_IEEE80211_GCMP_HEADERLEN,
  61. WLAN_IEEE80211_GCMP_MICLEN,
  62. WLAN_IEEE80211_GCMP_MICLEN,
  63. };
  64. /*
  65. * dp_rx_defrag_frames_free(): Free fragment chain
  66. * @frames: Fragment chain
  67. *
  68. * Iterates through the fragment chain and frees them
  69. * Returns: None
  70. */
  71. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  72. {
  73. qdf_nbuf_t next, frag = frames;
  74. while (frag) {
  75. next = qdf_nbuf_next(frag);
  76. qdf_nbuf_free(frag);
  77. frag = next;
  78. }
  79. }
  80. /*
  81. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  82. * @peer: Pointer to the peer data structure
  83. * @tid: Transmit ID (TID)
  84. *
  85. * Saves MPDU descriptor info and MSDU link pointer from REO
  86. * ring descriptor. The cache is created per peer, per TID
  87. *
  88. * Returns: None
  89. */
  90. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  91. {
  92. if (peer->rx_tid[tid].dst_ring_desc)
  93. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  94. peer->rx_tid[tid].dst_ring_desc = NULL;
  95. peer->rx_tid[tid].head_frag_desc = NULL;
  96. }
  97. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  98. unsigned int tid)
  99. {
  100. struct dp_soc *soc;
  101. struct dp_pdev *pdev;
  102. struct dp_srng *dp_rxdma_srng;
  103. struct rx_desc_pool *rx_desc_pool;
  104. union dp_rx_desc_list_elem_t *head = NULL;
  105. union dp_rx_desc_list_elem_t *tail = NULL;
  106. uint8_t pool_id;
  107. pdev = peer->vdev->pdev;
  108. soc = pdev->soc;
  109. if (peer->rx_tid[tid].head_frag_desc) {
  110. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  111. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  112. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  113. dp_rx_add_to_free_desc_list(&head, &tail,
  114. peer->rx_tid[tid].head_frag_desc);
  115. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  116. 1, &head, &tail);
  117. }
  118. if (peer->rx_tid[tid].dst_ring_desc) {
  119. if (dp_rx_link_desc_return(soc,
  120. peer->rx_tid[tid].dst_ring_desc,
  121. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  122. QDF_STATUS_SUCCESS)
  123. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  124. "%s: Failed to return link desc", __func__);
  125. }
  126. }
  127. /*
  128. * dp_rx_reorder_flush_frag(): Flush the frag list
  129. * @peer: Pointer to the peer data structure
  130. * @tid: Transmit ID (TID)
  131. *
  132. * Flush the per-TID frag list
  133. *
  134. * Returns: None
  135. */
  136. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  137. unsigned int tid)
  138. {
  139. dp_info_rl("Flushing TID %d", tid);
  140. if (!peer) {
  141. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  142. "%s: NULL peer", __func__);
  143. return;
  144. }
  145. dp_rx_return_head_frag_desc(peer, tid);
  146. dp_rx_defrag_cleanup(peer, tid);
  147. }
  148. /*
  149. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  150. * @soc: DP SOC
  151. *
  152. * Flush fragments of all waitlisted TID's
  153. *
  154. * Returns: None
  155. */
  156. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  157. {
  158. struct dp_rx_tid *rx_reorder = NULL;
  159. struct dp_rx_tid *tmp;
  160. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  161. TAILQ_HEAD(, dp_rx_tid) temp_list;
  162. TAILQ_INIT(&temp_list);
  163. dp_debug("Current time %u", now_ms);
  164. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  165. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  166. defrag_waitlist_elem, tmp) {
  167. uint32_t tid;
  168. if (rx_reorder->defrag_timeout_ms > now_ms)
  169. break;
  170. tid = rx_reorder->tid;
  171. if (tid >= DP_MAX_TIDS) {
  172. qdf_assert(0);
  173. continue;
  174. }
  175. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  176. defrag_waitlist_elem);
  177. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  178. /* Move to temp list and clean-up later */
  179. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  180. defrag_waitlist_elem);
  181. }
  182. if (rx_reorder) {
  183. soc->rx.defrag.next_flush_ms =
  184. rx_reorder->defrag_timeout_ms;
  185. } else {
  186. soc->rx.defrag.next_flush_ms =
  187. now_ms + soc->rx.defrag.timeout_ms;
  188. }
  189. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  190. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  191. defrag_waitlist_elem, tmp) {
  192. struct dp_peer *peer, *temp_peer = NULL;
  193. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  194. TAILQ_REMOVE(&temp_list, rx_reorder,
  195. defrag_waitlist_elem);
  196. /* get address of current peer */
  197. peer = rx_reorder->defrag_peer;
  198. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  199. temp_peer = dp_peer_get_ref_by_id(soc, peer->peer_id,
  200. DP_MOD_ID_RX_ERR);
  201. if (temp_peer == peer) {
  202. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  203. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  204. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  205. }
  206. if (temp_peer)
  207. dp_peer_unref_delete(temp_peer, DP_MOD_ID_RX_ERR);
  208. }
  209. }
  210. /*
  211. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  212. * @peer: Pointer to the peer data structure
  213. * @tid: Transmit ID (TID)
  214. *
  215. * Appends per-tid fragments to global fragment wait list
  216. *
  217. * Returns: None
  218. */
  219. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  220. {
  221. struct dp_soc *psoc = peer->vdev->pdev->soc;
  222. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  223. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  224. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  225. /* TODO: use LIST macros instead of TAIL macros */
  226. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  227. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  228. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  229. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  230. defrag_waitlist_elem);
  231. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  232. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  233. }
  234. /*
  235. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  236. * @peer: Pointer to the peer data structure
  237. * @tid: Transmit ID (TID)
  238. *
  239. * Remove fragments from waitlist
  240. *
  241. * Returns: None
  242. */
  243. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  244. {
  245. struct dp_pdev *pdev = peer->vdev->pdev;
  246. struct dp_soc *soc = pdev->soc;
  247. struct dp_rx_tid *rx_reorder;
  248. struct dp_rx_tid *tmp;
  249. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address "QDF_MAC_ADDR_FMT,
  250. tid, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  251. if (tid >= DP_MAX_TIDS) {
  252. dp_err("TID out of bounds: %d", tid);
  253. qdf_assert_always(0);
  254. }
  255. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  256. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  257. defrag_waitlist_elem, tmp) {
  258. struct dp_peer *peer_on_waitlist;
  259. /* get address of current peer */
  260. peer_on_waitlist = rx_reorder->defrag_peer;
  261. /* Ensure it is TID for same peer */
  262. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  263. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  264. rx_reorder, defrag_waitlist_elem);
  265. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  266. }
  267. }
  268. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  269. }
  270. /*
  271. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  272. * @peer: Pointer to the peer data structure
  273. * @tid: Transmit ID (TID)
  274. * @head_addr: Pointer to head list
  275. * @tail_addr: Pointer to tail list
  276. * @frag: Incoming fragment
  277. * @all_frag_present: Flag to indicate whether all fragments are received
  278. *
  279. * Build a per-tid, per-sequence fragment list.
  280. *
  281. * Returns: Success, if inserted
  282. */
  283. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  284. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  285. uint8_t *all_frag_present)
  286. {
  287. struct dp_soc *soc = peer->vdev->pdev->soc;
  288. qdf_nbuf_t next;
  289. qdf_nbuf_t prev = NULL;
  290. qdf_nbuf_t cur;
  291. uint16_t head_fragno, cur_fragno, next_fragno;
  292. uint8_t last_morefrag = 1, count = 0;
  293. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  294. uint8_t *rx_desc_info;
  295. qdf_assert(frag);
  296. qdf_assert(head_addr);
  297. qdf_assert(tail_addr);
  298. *all_frag_present = 0;
  299. rx_desc_info = qdf_nbuf_data(frag);
  300. cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info);
  301. dp_debug("cur_fragno %d\n", cur_fragno);
  302. /* If this is the first fragment */
  303. if (!(*head_addr)) {
  304. *head_addr = *tail_addr = frag;
  305. qdf_nbuf_set_next(*tail_addr, NULL);
  306. rx_tid->curr_frag_num = cur_fragno;
  307. goto insert_done;
  308. }
  309. /* In sequence fragment */
  310. if (cur_fragno > rx_tid->curr_frag_num) {
  311. qdf_nbuf_set_next(*tail_addr, frag);
  312. *tail_addr = frag;
  313. qdf_nbuf_set_next(*tail_addr, NULL);
  314. rx_tid->curr_frag_num = cur_fragno;
  315. } else {
  316. /* Out of sequence fragment */
  317. cur = *head_addr;
  318. rx_desc_info = qdf_nbuf_data(cur);
  319. head_fragno = dp_rx_frag_get_mpdu_frag_number(soc,
  320. rx_desc_info);
  321. if (cur_fragno == head_fragno) {
  322. qdf_nbuf_free(frag);
  323. goto insert_fail;
  324. } else if (head_fragno > cur_fragno) {
  325. qdf_nbuf_set_next(frag, cur);
  326. cur = frag;
  327. *head_addr = frag; /* head pointer to be updated */
  328. } else {
  329. while ((cur_fragno > head_fragno) && cur) {
  330. prev = cur;
  331. cur = qdf_nbuf_next(cur);
  332. if (cur) {
  333. rx_desc_info = qdf_nbuf_data(cur);
  334. head_fragno =
  335. dp_rx_frag_get_mpdu_frag_number(
  336. soc,
  337. rx_desc_info);
  338. }
  339. }
  340. if (cur_fragno == head_fragno) {
  341. qdf_nbuf_free(frag);
  342. goto insert_fail;
  343. }
  344. qdf_nbuf_set_next(prev, frag);
  345. qdf_nbuf_set_next(frag, cur);
  346. }
  347. }
  348. next = qdf_nbuf_next(*head_addr);
  349. rx_desc_info = qdf_nbuf_data(*tail_addr);
  350. last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info);
  351. /* TODO: optimize the loop */
  352. if (!last_morefrag) {
  353. /* Check if all fragments are present */
  354. do {
  355. rx_desc_info = qdf_nbuf_data(next);
  356. next_fragno =
  357. dp_rx_frag_get_mpdu_frag_number(soc,
  358. rx_desc_info);
  359. count++;
  360. if (next_fragno != count)
  361. break;
  362. next = qdf_nbuf_next(next);
  363. } while (next);
  364. if (!next) {
  365. *all_frag_present = 1;
  366. return QDF_STATUS_SUCCESS;
  367. } else {
  368. /* revisit */
  369. }
  370. }
  371. insert_done:
  372. return QDF_STATUS_SUCCESS;
  373. insert_fail:
  374. return QDF_STATUS_E_FAILURE;
  375. }
  376. /*
  377. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  378. * @msdu: Pointer to the fragment
  379. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  380. *
  381. * decap tkip encrypted fragment
  382. *
  383. * Returns: QDF_STATUS
  384. */
  385. static QDF_STATUS
  386. dp_rx_defrag_tkip_decap(struct dp_soc *soc,
  387. qdf_nbuf_t msdu, uint16_t hdrlen)
  388. {
  389. uint8_t *ivp, *orig_hdr;
  390. int rx_desc_len = soc->rx_pkt_tlv_size;
  391. /* start of 802.11 header info */
  392. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  393. /* TKIP header is located post 802.11 header */
  394. ivp = orig_hdr + hdrlen;
  395. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  396. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  397. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  398. return QDF_STATUS_E_DEFRAG_ERROR;
  399. }
  400. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  401. return QDF_STATUS_SUCCESS;
  402. }
  403. /*
  404. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  405. * @nbuf: Pointer to the fragment buffer
  406. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  407. *
  408. * Remove MIC information from CCMP fragment
  409. *
  410. * Returns: QDF_STATUS
  411. */
  412. static QDF_STATUS
  413. dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  414. {
  415. uint8_t *ivp, *orig_hdr;
  416. int rx_desc_len = soc->rx_pkt_tlv_size;
  417. /* start of the 802.11 header */
  418. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  419. /* CCMP header is located after 802.11 header */
  420. ivp = orig_hdr + hdrlen;
  421. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  422. return QDF_STATUS_E_DEFRAG_ERROR;
  423. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  424. return QDF_STATUS_SUCCESS;
  425. }
  426. /*
  427. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  428. * @nbuf: Pointer to the fragment
  429. * @hdrlen: length of the header information
  430. *
  431. * decap CCMP encrypted fragment
  432. *
  433. * Returns: QDF_STATUS
  434. */
  435. static QDF_STATUS
  436. dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen)
  437. {
  438. uint8_t *ivp, *origHdr;
  439. int rx_desc_len = soc->rx_pkt_tlv_size;
  440. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  441. ivp = origHdr + hdrlen;
  442. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  443. return QDF_STATUS_E_DEFRAG_ERROR;
  444. /* Let's pull the header later */
  445. return QDF_STATUS_SUCCESS;
  446. }
  447. /*
  448. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  449. * @msdu: Pointer to the fragment
  450. * @hdrlen: length of the header information
  451. *
  452. * decap WEP encrypted fragment
  453. *
  454. * Returns: QDF_STATUS
  455. */
  456. static QDF_STATUS
  457. dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen)
  458. {
  459. uint8_t *origHdr;
  460. int rx_desc_len = soc->rx_pkt_tlv_size;
  461. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  462. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  463. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  464. return QDF_STATUS_SUCCESS;
  465. }
  466. /*
  467. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  468. * @soc: soc handle
  469. * @nbuf: Pointer to the fragment
  470. *
  471. * Calculate the header size of the received fragment
  472. *
  473. * Returns: header size (uint16_t)
  474. */
  475. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  476. {
  477. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  478. uint16_t size = sizeof(struct ieee80211_frame);
  479. uint16_t fc = 0;
  480. uint32_t to_ds, fr_ds;
  481. uint8_t frm_ctrl_valid;
  482. uint16_t frm_ctrl_field;
  483. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  484. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  485. frm_ctrl_valid =
  486. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  487. rx_tlv_hdr);
  488. frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr);
  489. if (to_ds && fr_ds)
  490. size += QDF_MAC_ADDR_SIZE;
  491. if (frm_ctrl_valid) {
  492. fc = frm_ctrl_field;
  493. /* use 1-st byte for validation */
  494. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  495. size += sizeof(uint16_t);
  496. /* use 2-nd byte for validation */
  497. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  498. size += sizeof(struct ieee80211_htc);
  499. }
  500. }
  501. return size;
  502. }
  503. /*
  504. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  505. * @wh0: Pointer to the wireless header of the fragment
  506. * @hdr: Array to hold the pseudo header
  507. *
  508. * Calculate a pseudo MIC header
  509. *
  510. * Returns: None
  511. */
  512. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  513. uint8_t hdr[])
  514. {
  515. const struct ieee80211_frame_addr4 *wh =
  516. (const struct ieee80211_frame_addr4 *)wh0;
  517. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  518. case IEEE80211_FC1_DIR_NODS:
  519. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  520. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  521. wh->i_addr2);
  522. break;
  523. case IEEE80211_FC1_DIR_TODS:
  524. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  525. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  526. wh->i_addr2);
  527. break;
  528. case IEEE80211_FC1_DIR_FROMDS:
  529. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  530. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  531. wh->i_addr3);
  532. break;
  533. case IEEE80211_FC1_DIR_DSTODS:
  534. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  535. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  536. wh->i_addr4);
  537. break;
  538. }
  539. /*
  540. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  541. * it could also be set for deauth, disassoc, action, etc. for
  542. * a mgt type frame. It comes into picture for MFP.
  543. */
  544. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  545. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  546. IEEE80211_FC1_DIR_DSTODS) {
  547. const struct ieee80211_qosframe_addr4 *qwh =
  548. (const struct ieee80211_qosframe_addr4 *)wh;
  549. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  550. } else {
  551. const struct ieee80211_qosframe *qwh =
  552. (const struct ieee80211_qosframe *)wh;
  553. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  554. }
  555. } else {
  556. hdr[12] = 0;
  557. }
  558. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  559. }
  560. /*
  561. * dp_rx_defrag_mic(): Calculate MIC header
  562. * @key: Pointer to the key
  563. * @wbuf: fragment buffer
  564. * @off: Offset
  565. * @data_len: Data length
  566. * @mic: Array to hold MIC
  567. *
  568. * Calculate a pseudo MIC header
  569. *
  570. * Returns: QDF_STATUS
  571. */
  572. static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key,
  573. qdf_nbuf_t wbuf, uint16_t off,
  574. uint16_t data_len, uint8_t mic[])
  575. {
  576. uint8_t hdr[16] = { 0, };
  577. uint32_t l, r;
  578. const uint8_t *data;
  579. uint32_t space;
  580. int rx_desc_len = soc->rx_pkt_tlv_size;
  581. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  582. + rx_desc_len), hdr);
  583. l = dp_rx_get_le32(key);
  584. r = dp_rx_get_le32(key + 4);
  585. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  586. l ^= dp_rx_get_le32(hdr);
  587. dp_rx_michael_block(l, r);
  588. l ^= dp_rx_get_le32(&hdr[4]);
  589. dp_rx_michael_block(l, r);
  590. l ^= dp_rx_get_le32(&hdr[8]);
  591. dp_rx_michael_block(l, r);
  592. l ^= dp_rx_get_le32(&hdr[12]);
  593. dp_rx_michael_block(l, r);
  594. /* first buffer has special handling */
  595. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  596. space = qdf_nbuf_len(wbuf) - off;
  597. for (;; ) {
  598. if (space > data_len)
  599. space = data_len;
  600. /* collect 32-bit blocks from current buffer */
  601. while (space >= sizeof(uint32_t)) {
  602. l ^= dp_rx_get_le32(data);
  603. dp_rx_michael_block(l, r);
  604. data += sizeof(uint32_t);
  605. space -= sizeof(uint32_t);
  606. data_len -= sizeof(uint32_t);
  607. }
  608. if (data_len < sizeof(uint32_t))
  609. break;
  610. wbuf = qdf_nbuf_next(wbuf);
  611. if (!wbuf)
  612. return QDF_STATUS_E_DEFRAG_ERROR;
  613. if (space != 0) {
  614. const uint8_t *data_next;
  615. /*
  616. * Block straddles buffers, split references.
  617. */
  618. data_next =
  619. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  620. if ((qdf_nbuf_len(wbuf)) <
  621. sizeof(uint32_t) - space) {
  622. return QDF_STATUS_E_DEFRAG_ERROR;
  623. }
  624. switch (space) {
  625. case 1:
  626. l ^= dp_rx_get_le32_split(data[0],
  627. data_next[0], data_next[1],
  628. data_next[2]);
  629. data = data_next + 3;
  630. space = (qdf_nbuf_len(wbuf) - off) - 3;
  631. break;
  632. case 2:
  633. l ^= dp_rx_get_le32_split(data[0], data[1],
  634. data_next[0], data_next[1]);
  635. data = data_next + 2;
  636. space = (qdf_nbuf_len(wbuf) - off) - 2;
  637. break;
  638. case 3:
  639. l ^= dp_rx_get_le32_split(data[0], data[1],
  640. data[2], data_next[0]);
  641. data = data_next + 1;
  642. space = (qdf_nbuf_len(wbuf) - off) - 1;
  643. break;
  644. }
  645. dp_rx_michael_block(l, r);
  646. data_len -= sizeof(uint32_t);
  647. } else {
  648. /*
  649. * Setup for next buffer.
  650. */
  651. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  652. space = qdf_nbuf_len(wbuf) - off;
  653. }
  654. }
  655. /* Last block and padding (0x5a, 4..7 x 0) */
  656. switch (data_len) {
  657. case 0:
  658. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  659. break;
  660. case 1:
  661. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  662. break;
  663. case 2:
  664. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  665. break;
  666. case 3:
  667. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  668. break;
  669. }
  670. dp_rx_michael_block(l, r);
  671. dp_rx_michael_block(l, r);
  672. dp_rx_put_le32(mic, l);
  673. dp_rx_put_le32(mic + 4, r);
  674. return QDF_STATUS_SUCCESS;
  675. }
  676. /*
  677. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  678. * @key: Pointer to the key
  679. * @msdu: fragment buffer
  680. * @hdrlen: Length of the header information
  681. *
  682. * Remove MIC information from the TKIP frame
  683. *
  684. * Returns: QDF_STATUS
  685. */
  686. static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc,
  687. const uint8_t *key,
  688. qdf_nbuf_t msdu, uint16_t hdrlen)
  689. {
  690. QDF_STATUS status;
  691. uint32_t pktlen = 0, prev_data_len;
  692. uint8_t mic[IEEE80211_WEP_MICLEN];
  693. uint8_t mic0[IEEE80211_WEP_MICLEN];
  694. qdf_nbuf_t prev = NULL, prev0, next;
  695. uint8_t len0 = 0;
  696. next = msdu;
  697. prev0 = msdu;
  698. while (next) {
  699. pktlen += (qdf_nbuf_len(next) - hdrlen);
  700. prev = next;
  701. dp_debug("pktlen %u",
  702. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  703. next = qdf_nbuf_next(next);
  704. if (next && !qdf_nbuf_next(next))
  705. prev0 = prev;
  706. }
  707. if (!prev) {
  708. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  709. "%s Defrag chaining failed !\n", __func__);
  710. return QDF_STATUS_E_DEFRAG_ERROR;
  711. }
  712. prev_data_len = qdf_nbuf_len(prev) - hdrlen;
  713. if (prev_data_len < dp_f_tkip.ic_miclen) {
  714. if (prev0 == prev) {
  715. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  716. "%s Fragments don't have MIC header !\n", __func__);
  717. return QDF_STATUS_E_DEFRAG_ERROR;
  718. }
  719. len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len;
  720. qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0,
  721. (caddr_t)mic0);
  722. qdf_nbuf_trim_tail(prev0, len0);
  723. }
  724. qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) -
  725. (dp_f_tkip.ic_miclen - len0)),
  726. (dp_f_tkip.ic_miclen - len0),
  727. (caddr_t)(&mic0[len0]));
  728. qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0));
  729. pktlen -= dp_f_tkip.ic_miclen;
  730. if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) {
  731. qdf_nbuf_free(prev);
  732. qdf_nbuf_set_next(prev0, NULL);
  733. }
  734. status = dp_rx_defrag_mic(soc, key, msdu, hdrlen,
  735. pktlen, mic);
  736. if (QDF_IS_STATUS_ERROR(status))
  737. return status;
  738. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  739. return QDF_STATUS_E_DEFRAG_ERROR;
  740. return QDF_STATUS_SUCCESS;
  741. }
  742. /*
  743. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  744. * @nbuf: buffer pointer
  745. * @hdrsize: size of the header to be pulled
  746. *
  747. * Pull the RXTLV & the 802.11 headers
  748. *
  749. * Returns: None
  750. */
  751. static void dp_rx_frag_pull_hdr(struct dp_soc *soc,
  752. qdf_nbuf_t nbuf, uint16_t hdrsize)
  753. {
  754. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  755. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize);
  756. dp_debug("final pktlen %d .11len %d",
  757. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  758. }
  759. /*
  760. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  761. * @msdu: msdu to get the current PN
  762. * @cur_pn128: PN extracted from current msdu
  763. * @prev_pn128: Prev PN
  764. *
  765. * Returns: 0 on success, non zero on failure
  766. */
  767. static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu,
  768. uint64_t *cur_pn128, uint64_t *prev_pn128)
  769. {
  770. int out_of_order = 0;
  771. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128);
  772. if (cur_pn128[1] == prev_pn128[1])
  773. out_of_order = (cur_pn128[0] - prev_pn128[0] != 1);
  774. else
  775. out_of_order = (cur_pn128[1] - prev_pn128[1] != 1);
  776. return out_of_order;
  777. }
  778. /*
  779. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  780. * @peer: Pointer to the peer
  781. * @head: Pointer to list of fragments
  782. * @hdrsize: Size of the header to be pulled
  783. *
  784. * Construct a nbuf fraglist
  785. *
  786. * Returns: None
  787. */
  788. static int
  789. dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
  790. uint16_t hdrsize)
  791. {
  792. struct dp_soc *soc = peer->vdev->pdev->soc;
  793. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  794. qdf_nbuf_t rx_nbuf = msdu;
  795. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  796. uint32_t len = 0;
  797. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  798. int out_of_order = 0;
  799. int index;
  800. int needs_pn_check = 0;
  801. enum cdp_sec_type sec_type;
  802. prev_pn128[0] = rx_tid->pn128[0];
  803. prev_pn128[1] = rx_tid->pn128[1];
  804. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast :
  805. dp_sec_ucast;
  806. sec_type = peer->security[index].sec_type;
  807. if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 ||
  808. sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40))
  809. needs_pn_check = 1;
  810. while (msdu) {
  811. if (qdf_likely(needs_pn_check))
  812. out_of_order = dp_rx_defrag_pn_check(soc, msdu,
  813. &cur_pn128[0],
  814. &prev_pn128[0]);
  815. if (qdf_unlikely(out_of_order)) {
  816. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  817. cur_pn128[0], cur_pn128[1],
  818. prev_pn128[0], prev_pn128[1]);
  819. return QDF_STATUS_E_FAILURE;
  820. }
  821. prev_pn128[0] = cur_pn128[0];
  822. prev_pn128[1] = cur_pn128[1];
  823. /*
  824. * Broadcast and multicast frames should never be fragmented.
  825. * Iterating through all msdus and dropping fragments if even
  826. * one of them has mcast/bcast destination address.
  827. */
  828. if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) {
  829. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  830. "Dropping multicast/broadcast fragments");
  831. return QDF_STATUS_E_FAILURE;
  832. }
  833. dp_rx_frag_pull_hdr(soc, msdu, hdrsize);
  834. len += qdf_nbuf_len(msdu);
  835. msdu = qdf_nbuf_next(msdu);
  836. }
  837. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  838. qdf_nbuf_set_next(head, NULL);
  839. qdf_nbuf_set_is_frag(head, 1);
  840. dp_debug("head len %d ext len %d data len %d ",
  841. (uint32_t)qdf_nbuf_len(head),
  842. (uint32_t)qdf_nbuf_len(rx_nbuf),
  843. (uint32_t)(head->data_len));
  844. return QDF_STATUS_SUCCESS;
  845. }
  846. /**
  847. * dp_rx_defrag_err() - rx err handler
  848. * @pdev: handle to pdev object
  849. * @vdev_id: vdev id
  850. * @peer_mac_addr: peer mac address
  851. * @tid: TID
  852. * @tsf32: TSF
  853. * @err_type: error type
  854. * @rx_frame: rx frame
  855. * @pn: PN Number
  856. * @key_id: key id
  857. *
  858. * This function handles rx error and send MIC error notification
  859. *
  860. * Return: None
  861. */
  862. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  863. {
  864. struct ol_if_ops *tops = NULL;
  865. struct dp_pdev *pdev = vdev->pdev;
  866. int rx_desc_len = pdev->soc->rx_pkt_tlv_size;
  867. uint8_t *orig_hdr;
  868. struct ieee80211_frame *wh;
  869. struct cdp_rx_mic_err_info mic_failure_info;
  870. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  871. wh = (struct ieee80211_frame *)orig_hdr;
  872. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  873. (struct qdf_mac_addr *)&wh->i_addr1);
  874. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  875. (struct qdf_mac_addr *)&wh->i_addr2);
  876. mic_failure_info.key_id = 0;
  877. mic_failure_info.multicast =
  878. IEEE80211_IS_MULTICAST(wh->i_addr1);
  879. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  880. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  881. mic_failure_info.data = (uint8_t *)wh;
  882. mic_failure_info.vdev_id = vdev->vdev_id;
  883. tops = pdev->soc->cdp_soc.ol_ops;
  884. if (tops->rx_mic_error)
  885. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  886. &mic_failure_info);
  887. }
  888. /*
  889. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  890. * @soc: dp soc handle
  891. * @nbuf: Pointer to the fragment buffer
  892. * @hdrsize: Size of headers
  893. *
  894. * Transcap the fragment from 802.11 to 802.3
  895. *
  896. * Returns: None
  897. */
  898. static void
  899. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
  900. qdf_nbuf_t nbuf, uint16_t hdrsize)
  901. {
  902. struct llc_snap_hdr_t *llchdr;
  903. struct ethernet_hdr_t *eth_hdr;
  904. uint8_t ether_type[2];
  905. uint16_t fc = 0;
  906. union dp_align_mac_addr mac_addr;
  907. uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size);
  908. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  909. hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128);
  910. hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf));
  911. if (!rx_desc_info) {
  912. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  913. "%s: Memory alloc failed ! ", __func__);
  914. QDF_ASSERT(0);
  915. return;
  916. }
  917. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size);
  918. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  919. soc->rx_pkt_tlv_size + hdrsize);
  920. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  921. qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize +
  922. sizeof(struct llc_snap_hdr_t) -
  923. sizeof(struct ethernet_hdr_t)));
  924. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  925. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  926. rx_desc_info))
  927. fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info);
  928. dp_debug("Frame control type: 0x%x", fc);
  929. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  930. case IEEE80211_FC1_DIR_NODS:
  931. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  932. &mac_addr.raw[0]);
  933. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  934. QDF_MAC_ADDR_SIZE);
  935. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  936. &mac_addr.raw[0]);
  937. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  938. QDF_MAC_ADDR_SIZE);
  939. break;
  940. case IEEE80211_FC1_DIR_TODS:
  941. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  942. &mac_addr.raw[0]);
  943. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  944. QDF_MAC_ADDR_SIZE);
  945. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  946. &mac_addr.raw[0]);
  947. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  948. QDF_MAC_ADDR_SIZE);
  949. break;
  950. case IEEE80211_FC1_DIR_FROMDS:
  951. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  952. &mac_addr.raw[0]);
  953. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  954. QDF_MAC_ADDR_SIZE);
  955. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  956. &mac_addr.raw[0]);
  957. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  958. QDF_MAC_ADDR_SIZE);
  959. break;
  960. case IEEE80211_FC1_DIR_DSTODS:
  961. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  962. &mac_addr.raw[0]);
  963. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  964. QDF_MAC_ADDR_SIZE);
  965. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  966. &mac_addr.raw[0]);
  967. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  968. QDF_MAC_ADDR_SIZE);
  969. break;
  970. default:
  971. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  972. "%s: Unknown frame control type: 0x%x", __func__, fc);
  973. }
  974. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  975. sizeof(ether_type));
  976. qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size);
  977. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size);
  978. qdf_mem_free(rx_desc_info);
  979. }
  980. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  981. /*
  982. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  983. * @peer: Pointer to the peer
  984. * @tid: Transmit Identifier
  985. * @head: Nbuf to be delivered
  986. *
  987. * Returns: None
  988. */
  989. static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
  990. unsigned int tid,
  991. qdf_nbuf_t head)
  992. {
  993. struct dp_vdev *vdev = peer->vdev;
  994. struct dp_soc *soc = vdev->pdev->soc;
  995. qdf_nbuf_t deliver_list_head = NULL;
  996. qdf_nbuf_t deliver_list_tail = NULL;
  997. uint8_t *rx_tlv_hdr;
  998. rx_tlv_hdr = qdf_nbuf_data(head);
  999. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  1000. qdf_nbuf_set_tid_val(head, tid);
  1001. qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size);
  1002. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  1003. head);
  1004. dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
  1005. deliver_list_tail);
  1006. }
  1007. /*
  1008. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1009. * @peer: Pointer to the peer
  1010. * @tid: Transmit Identifier
  1011. * @head: Buffer to be reinjected back
  1012. *
  1013. * Reinject the fragment chain back into REO
  1014. *
  1015. * Returns: QDF_STATUS
  1016. */
  1017. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1018. unsigned int tid, qdf_nbuf_t head)
  1019. {
  1020. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1021. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1022. dp_rx_defrag_deliver(peer, tid, head);
  1023. rx_reorder_array_elem->head = NULL;
  1024. rx_reorder_array_elem->tail = NULL;
  1025. dp_rx_return_head_frag_desc(peer, tid);
  1026. return QDF_STATUS_SUCCESS;
  1027. }
  1028. #else
  1029. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1030. /**
  1031. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1032. * @soc: Datapath soc structure
  1033. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1034. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1035. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1036. *
  1037. * Returns: None
  1038. */
  1039. static inline void
  1040. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1041. uint32_t sw_cookie, uint8_t rbm)
  1042. {
  1043. struct dp_buf_info_record *record;
  1044. uint32_t idx;
  1045. if (qdf_unlikely(!soc->rx_reinject_ring_history))
  1046. return;
  1047. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1048. DP_RX_REINJECT_HIST_MAX);
  1049. /* No NULL check needed for record since its an array */
  1050. record = &soc->rx_reinject_ring_history->entry[idx];
  1051. record->timestamp = qdf_get_log_timestamp();
  1052. record->hbi.paddr = paddr;
  1053. record->hbi.sw_cookie = sw_cookie;
  1054. record->hbi.rbm = rbm;
  1055. }
  1056. #else
  1057. static inline void
  1058. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1059. uint32_t sw_cookie, uint8_t rbm)
  1060. {
  1061. }
  1062. #endif
  1063. /*
  1064. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1065. * @peer: Pointer to the peer
  1066. * @tid: Transmit Identifier
  1067. * @head: Buffer to be reinjected back
  1068. *
  1069. * Reinject the fragment chain back into REO
  1070. *
  1071. * Returns: QDF_STATUS
  1072. */
  1073. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1074. unsigned int tid, qdf_nbuf_t head)
  1075. {
  1076. struct dp_pdev *pdev = peer->vdev->pdev;
  1077. struct dp_soc *soc = pdev->soc;
  1078. struct hal_buf_info buf_info;
  1079. struct hal_buf_info temp_buf_info;
  1080. void *link_desc_va;
  1081. void *msdu0, *msdu_desc_info;
  1082. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1083. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  1084. qdf_dma_addr_t paddr;
  1085. uint32_t nbuf_len, seq_no, dst_ind;
  1086. uint32_t *mpdu_wrd;
  1087. uint32_t ret, cookie;
  1088. hal_ring_desc_t dst_ring_desc =
  1089. peer->rx_tid[tid].dst_ring_desc;
  1090. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1091. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  1092. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1093. peer->rx_tid[tid].array;
  1094. qdf_nbuf_t nbuf_head;
  1095. struct rx_desc_pool *rx_desc_pool = NULL;
  1096. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1097. uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc);
  1098. /* do duplicate link desc address check */
  1099. dp_rx_link_desc_refill_duplicate_check(
  1100. soc,
  1101. &soc->last_op_info.reo_reinject_link_desc,
  1102. buf_addr_info);
  1103. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1104. if (qdf_unlikely(!nbuf_head)) {
  1105. dp_err_rl("IPA RX REO reinject failed");
  1106. return QDF_STATUS_E_FAILURE;
  1107. }
  1108. /* update new allocated skb in case IPA is enabled */
  1109. if (nbuf_head != head) {
  1110. head = nbuf_head;
  1111. rx_desc->nbuf = head;
  1112. rx_reorder_array_elem->head = head;
  1113. }
  1114. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1115. if (!ent_ring_desc) {
  1116. dp_err_rl("HAL src ring next entry NULL");
  1117. return QDF_STATUS_E_FAILURE;
  1118. }
  1119. hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info);
  1120. /* buffer_addr_info is the first element of ring_desc */
  1121. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc,
  1122. &buf_info);
  1123. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1124. qdf_assert_always(link_desc_va);
  1125. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1126. nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size;
  1127. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1128. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1129. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1130. /* msdu reconfig */
  1131. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1132. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1133. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1134. hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len);
  1135. /* change RX TLV's */
  1136. hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len);
  1137. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0,
  1138. &temp_buf_info);
  1139. cookie = temp_buf_info.sw_cookie;
  1140. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1141. /* map the nbuf before reinject it into HW */
  1142. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1143. QDF_DMA_FROM_DEVICE,
  1144. rx_desc_pool->buf_size);
  1145. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1146. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1147. "%s: nbuf map failed !", __func__);
  1148. return QDF_STATUS_E_FAILURE;
  1149. }
  1150. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1151. rx_desc_pool->buf_size,
  1152. true);
  1153. /*
  1154. * As part of rx frag handler bufffer was unmapped and rx desc
  1155. * unmapped is set to 1. So again for defrag reinject frame reset
  1156. * it back to 0.
  1157. */
  1158. rx_desc->unmapped = 0;
  1159. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1160. ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool);
  1161. if (ret == QDF_STATUS_E_FAILURE) {
  1162. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1163. "%s: x86 check failed !", __func__);
  1164. return QDF_STATUS_E_FAILURE;
  1165. }
  1166. hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie,
  1167. rx_defrag_rbm_id);
  1168. /* Lets fill entrance ring now !!! */
  1169. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1170. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1171. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1172. hal_srng);
  1173. return QDF_STATUS_E_FAILURE;
  1174. }
  1175. dp_rx_reinject_ring_record_entry(soc, paddr, cookie,
  1176. rx_defrag_rbm_id);
  1177. paddr = (uint64_t)buf_info.paddr;
  1178. /* buf addr */
  1179. hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr,
  1180. buf_info.sw_cookie,
  1181. HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST);
  1182. /* mpdu desc info */
  1183. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1184. ent_ring_desc);
  1185. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1186. dst_ring_desc);
  1187. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1188. sizeof(struct rx_mpdu_desc_info));
  1189. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1190. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1191. seq_no = hal_rx_get_rx_sequence(soc->hal_soc, qdf_nbuf_data(head));
  1192. hal_mpdu_desc_info_set(soc->hal_soc, ent_mpdu_desc_info, seq_no);
  1193. /* qdesc addr */
  1194. ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc,
  1195. (uint8_t *)ent_ring_desc);
  1196. dst_qdesc_addr = hal_rx_get_qdesc_addr(soc->hal_soc,
  1197. (uint8_t *)dst_ring_desc,
  1198. qdf_nbuf_data(head));
  1199. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 5);
  1200. hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc,
  1201. (uint8_t *)ent_ring_desc, dst_ind);
  1202. hal_srng_access_end(soc->hal_soc, hal_srng);
  1203. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1204. dp_debug("reinjection done !");
  1205. return QDF_STATUS_SUCCESS;
  1206. }
  1207. #endif
  1208. /*
  1209. * dp_rx_defrag_gcmp_demic(): Remove MIC information from GCMP fragment
  1210. * @soc: Datapath soc structure
  1211. * @nbuf: Pointer to the fragment buffer
  1212. * @hdrlen: 802.11 header length
  1213. *
  1214. * Remove MIC information from GCMP fragment
  1215. *
  1216. * Returns: QDF_STATUS
  1217. */
  1218. static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1219. uint16_t hdrlen)
  1220. {
  1221. uint8_t *ivp, *orig_hdr;
  1222. int rx_desc_len = soc->rx_pkt_tlv_size;
  1223. /* start of the 802.11 header */
  1224. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  1225. /*
  1226. * GCMP header is located after 802.11 header and EXTIV
  1227. * field should always be set to 1 for GCMP protocol.
  1228. */
  1229. ivp = orig_hdr + hdrlen;
  1230. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  1231. return QDF_STATUS_E_DEFRAG_ERROR;
  1232. qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer);
  1233. return QDF_STATUS_SUCCESS;
  1234. }
  1235. /*
  1236. * dp_rx_defrag(): Defragment the fragment chain
  1237. * @peer: Pointer to the peer
  1238. * @tid: Transmit Identifier
  1239. * @frag_list_head: Pointer to head list
  1240. * @frag_list_tail: Pointer to tail list
  1241. *
  1242. * Defragment the fragment chain
  1243. *
  1244. * Returns: QDF_STATUS
  1245. */
  1246. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1247. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1248. {
  1249. qdf_nbuf_t tmp_next, prev;
  1250. qdf_nbuf_t cur = frag_list_head, msdu;
  1251. uint32_t index, tkip_demic = 0;
  1252. uint16_t hdr_space;
  1253. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1254. struct dp_vdev *vdev = peer->vdev;
  1255. struct dp_soc *soc = vdev->pdev->soc;
  1256. uint8_t status = 0;
  1257. if (!cur)
  1258. return QDF_STATUS_E_DEFRAG_ERROR;
  1259. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1260. index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ?
  1261. dp_sec_mcast : dp_sec_ucast;
  1262. /* Remove FCS from all fragments */
  1263. while (cur) {
  1264. tmp_next = qdf_nbuf_next(cur);
  1265. qdf_nbuf_set_next(cur, NULL);
  1266. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1267. prev = cur;
  1268. qdf_nbuf_set_next(cur, tmp_next);
  1269. cur = tmp_next;
  1270. }
  1271. cur = frag_list_head;
  1272. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1273. "%s: index %d Security type: %d", __func__,
  1274. index, peer->security[index].sec_type);
  1275. switch (peer->security[index].sec_type) {
  1276. case cdp_sec_type_tkip:
  1277. tkip_demic = 1;
  1278. case cdp_sec_type_tkip_nomic:
  1279. while (cur) {
  1280. tmp_next = qdf_nbuf_next(cur);
  1281. if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) {
  1282. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1283. QDF_TRACE_LEVEL_ERROR,
  1284. "dp_rx_defrag: TKIP decap failed");
  1285. return QDF_STATUS_E_DEFRAG_ERROR;
  1286. }
  1287. cur = tmp_next;
  1288. }
  1289. /* If success, increment header to be stripped later */
  1290. hdr_space += dp_f_tkip.ic_header;
  1291. break;
  1292. case cdp_sec_type_aes_ccmp:
  1293. while (cur) {
  1294. tmp_next = qdf_nbuf_next(cur);
  1295. if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) {
  1296. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1297. QDF_TRACE_LEVEL_ERROR,
  1298. "dp_rx_defrag: CCMP demic failed");
  1299. return QDF_STATUS_E_DEFRAG_ERROR;
  1300. }
  1301. if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) {
  1302. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1303. QDF_TRACE_LEVEL_ERROR,
  1304. "dp_rx_defrag: CCMP decap failed");
  1305. return QDF_STATUS_E_DEFRAG_ERROR;
  1306. }
  1307. cur = tmp_next;
  1308. }
  1309. /* If success, increment header to be stripped later */
  1310. hdr_space += dp_f_ccmp.ic_header;
  1311. break;
  1312. case cdp_sec_type_wep40:
  1313. case cdp_sec_type_wep104:
  1314. case cdp_sec_type_wep128:
  1315. while (cur) {
  1316. tmp_next = qdf_nbuf_next(cur);
  1317. if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) {
  1318. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1319. QDF_TRACE_LEVEL_ERROR,
  1320. "dp_rx_defrag: WEP decap failed");
  1321. return QDF_STATUS_E_DEFRAG_ERROR;
  1322. }
  1323. cur = tmp_next;
  1324. }
  1325. /* If success, increment header to be stripped later */
  1326. hdr_space += dp_f_wep.ic_header;
  1327. break;
  1328. case cdp_sec_type_aes_gcmp:
  1329. case cdp_sec_type_aes_gcmp_256:
  1330. while (cur) {
  1331. tmp_next = qdf_nbuf_next(cur);
  1332. if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) {
  1333. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1334. QDF_TRACE_LEVEL_ERROR,
  1335. "dp_rx_defrag: GCMP demic failed");
  1336. return QDF_STATUS_E_DEFRAG_ERROR;
  1337. }
  1338. cur = tmp_next;
  1339. }
  1340. hdr_space += dp_f_gcmp.ic_header;
  1341. break;
  1342. default:
  1343. break;
  1344. }
  1345. if (tkip_demic) {
  1346. msdu = frag_list_head;
  1347. qdf_mem_copy(key,
  1348. &peer->security[index].michael_key[0],
  1349. IEEE80211_WEP_MICLEN);
  1350. status = dp_rx_defrag_tkip_demic(soc, key, msdu,
  1351. soc->rx_pkt_tlv_size +
  1352. hdr_space);
  1353. if (status) {
  1354. dp_rx_defrag_err(vdev, frag_list_head);
  1355. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1356. QDF_TRACE_LEVEL_ERROR,
  1357. "%s: TKIP demic failed status %d",
  1358. __func__, status);
  1359. return QDF_STATUS_E_DEFRAG_ERROR;
  1360. }
  1361. }
  1362. /* Convert the header to 802.3 header */
  1363. dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
  1364. if (qdf_nbuf_next(frag_list_head)) {
  1365. if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
  1366. return QDF_STATUS_E_DEFRAG_ERROR;
  1367. }
  1368. return QDF_STATUS_SUCCESS;
  1369. }
  1370. /*
  1371. * dp_rx_defrag_cleanup(): Clean up activities
  1372. * @peer: Pointer to the peer
  1373. * @tid: Transmit Identifier
  1374. *
  1375. * Returns: None
  1376. */
  1377. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1378. {
  1379. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1380. peer->rx_tid[tid].array;
  1381. if (rx_reorder_array_elem) {
  1382. /* Free up nbufs */
  1383. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1384. rx_reorder_array_elem->head = NULL;
  1385. rx_reorder_array_elem->tail = NULL;
  1386. } else {
  1387. dp_info("Cleanup self peer %pK and TID %u at MAC address "QDF_MAC_ADDR_FMT,
  1388. peer, tid, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1389. }
  1390. /* Free up saved ring descriptors */
  1391. dp_rx_clear_saved_desc_info(peer, tid);
  1392. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1393. peer->rx_tid[tid].curr_frag_num = 0;
  1394. peer->rx_tid[tid].curr_seq_num = 0;
  1395. }
  1396. /*
  1397. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1398. * @ring_desc: Pointer to the dst ring descriptor
  1399. * @peer: Pointer to the peer
  1400. * @tid: Transmit Identifier
  1401. *
  1402. * Returns: None
  1403. */
  1404. static QDF_STATUS
  1405. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1406. struct dp_rx_desc *rx_desc,
  1407. struct dp_peer *peer,
  1408. unsigned int tid)
  1409. {
  1410. void *dst_ring_desc = qdf_mem_malloc(
  1411. sizeof(struct reo_destination_ring));
  1412. if (!dst_ring_desc) {
  1413. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1414. "%s: Memory alloc failed !", __func__);
  1415. QDF_ASSERT(0);
  1416. return QDF_STATUS_E_NOMEM;
  1417. }
  1418. qdf_mem_copy(dst_ring_desc, ring_desc,
  1419. sizeof(struct reo_destination_ring));
  1420. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1421. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1422. return QDF_STATUS_SUCCESS;
  1423. }
  1424. /*
  1425. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1426. * @soc: Pointer to the SOC data structure
  1427. * @ring_desc: Pointer to the ring descriptor
  1428. * @mpdu_desc_info: MPDU descriptor info
  1429. * @tid: Traffic Identifier
  1430. * @rx_desc: Pointer to rx descriptor
  1431. * @rx_bfs: Number of bfs consumed
  1432. *
  1433. * Returns: QDF_STATUS
  1434. */
  1435. static QDF_STATUS
  1436. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1437. hal_ring_desc_t ring_desc,
  1438. union dp_rx_desc_list_elem_t **head,
  1439. union dp_rx_desc_list_elem_t **tail,
  1440. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1441. unsigned int tid, struct dp_rx_desc *rx_desc,
  1442. uint32_t *rx_bfs)
  1443. {
  1444. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1445. struct dp_pdev *pdev;
  1446. struct dp_peer *peer = NULL;
  1447. uint16_t peer_id;
  1448. uint8_t fragno, more_frag, all_frag_present = 0;
  1449. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1450. QDF_STATUS status;
  1451. struct dp_rx_tid *rx_tid;
  1452. uint8_t mpdu_sequence_control_valid;
  1453. uint8_t mpdu_frame_control_valid;
  1454. qdf_nbuf_t frag = rx_desc->nbuf;
  1455. uint32_t msdu_len;
  1456. if (qdf_nbuf_len(frag) > 0) {
  1457. dp_info("Dropping unexpected packet with skb_len: %d,"
  1458. "data len: %d, cookie: %d",
  1459. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1460. rx_desc->cookie);
  1461. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1462. goto discard_frag;
  1463. }
  1464. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1465. /* fragment queued back to the pool, free the link desc */
  1466. goto err_free_desc;
  1467. }
  1468. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1469. rx_desc->rx_buf_start);
  1470. qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size));
  1471. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1472. /* Check if the packet is from a valid peer */
  1473. peer_id = dp_rx_peer_metadata_peer_id_get(soc,
  1474. mpdu_desc_info->peer_meta_data);
  1475. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_RX_ERR);
  1476. if (!peer) {
  1477. /* We should not receive anything from unknown peer
  1478. * however, that might happen while we are in the monitor mode.
  1479. * We don't need to handle that here
  1480. */
  1481. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1482. peer_id);
  1483. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1484. goto discard_frag;
  1485. }
  1486. if (tid >= DP_MAX_TIDS) {
  1487. dp_info("TID out of bounds: %d", tid);
  1488. qdf_assert_always(0);
  1489. goto discard_frag;
  1490. }
  1491. pdev = peer->vdev->pdev;
  1492. rx_tid = &peer->rx_tid[tid];
  1493. mpdu_sequence_control_valid =
  1494. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1495. rx_desc->rx_buf_start);
  1496. /* Invalid MPDU sequence control field, MPDU is of no use */
  1497. if (!mpdu_sequence_control_valid) {
  1498. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1499. "Invalid MPDU seq control field, dropping MPDU");
  1500. qdf_assert(0);
  1501. goto discard_frag;
  1502. }
  1503. mpdu_frame_control_valid =
  1504. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1505. rx_desc->rx_buf_start);
  1506. /* Invalid frame control field */
  1507. if (!mpdu_frame_control_valid) {
  1508. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1509. "Invalid frame control field, dropping MPDU");
  1510. qdf_assert(0);
  1511. goto discard_frag;
  1512. }
  1513. /* Current mpdu sequence */
  1514. more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start);
  1515. /* HW does not populate the fragment number as of now
  1516. * need to get from the 802.11 header
  1517. */
  1518. fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start);
  1519. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1520. if (!rx_reorder_array_elem) {
  1521. dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK",
  1522. peer);
  1523. goto discard_frag;
  1524. }
  1525. /*
  1526. * !more_frag: no more fragments to be delivered
  1527. * !frag_no: packet is not fragmented
  1528. * !rx_reorder_array_elem->head: no saved fragments so far
  1529. */
  1530. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1531. /* We should not get into this situation here.
  1532. * It means an unfragmented packet with fragment flag
  1533. * is delivered over the REO exception ring.
  1534. * Typically it follows normal rx path.
  1535. */
  1536. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1537. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1538. qdf_assert(0);
  1539. goto discard_frag;
  1540. }
  1541. /* Check if the fragment is for the same sequence or a different one */
  1542. dp_debug("rx_tid %d", tid);
  1543. if (rx_reorder_array_elem->head) {
  1544. dp_debug("rxseq %d\n", rxseq);
  1545. if (rxseq != rx_tid->curr_seq_num) {
  1546. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1547. rx_tid->curr_seq_num, rxseq);
  1548. /* Drop stored fragments if out of sequence
  1549. * fragment is received
  1550. */
  1551. dp_rx_reorder_flush_frag(peer, tid);
  1552. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1553. dp_debug("cur rxseq %d\n", rxseq);
  1554. /*
  1555. * The sequence number for this fragment becomes the
  1556. * new sequence number to be processed
  1557. */
  1558. rx_tid->curr_seq_num = rxseq;
  1559. }
  1560. } else {
  1561. dp_debug("cur rxseq %d\n", rxseq);
  1562. /* Start of a new sequence */
  1563. dp_rx_defrag_cleanup(peer, tid);
  1564. rx_tid->curr_seq_num = rxseq;
  1565. /* store PN number also */
  1566. }
  1567. /*
  1568. * If the earlier sequence was dropped, this will be the fresh start.
  1569. * Else, continue with next fragment in a given sequence
  1570. */
  1571. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1572. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1573. &rx_reorder_array_elem->tail, frag,
  1574. &all_frag_present);
  1575. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1576. /*
  1577. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1578. * packet sequence has more than 6 MSDUs for some reason, we will
  1579. * have to use the next MSDU link descriptor and chain them together
  1580. * before reinjection.
  1581. * ring_desc is validated in dp_rx_err_process.
  1582. */
  1583. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1584. (rx_reorder_array_elem->head == frag)) {
  1585. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1586. rx_desc, peer, tid);
  1587. if (status != QDF_STATUS_SUCCESS) {
  1588. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1589. "%s: Unable to store ring desc !", __func__);
  1590. goto discard_frag;
  1591. }
  1592. } else {
  1593. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1594. (*rx_bfs)++;
  1595. /* Return the non-head link desc */
  1596. if (dp_rx_link_desc_return(soc, ring_desc,
  1597. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1598. QDF_STATUS_SUCCESS)
  1599. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1600. "%s: Failed to return link desc", __func__);
  1601. }
  1602. if (pdev->soc->rx.flags.defrag_timeout_check)
  1603. dp_rx_defrag_waitlist_remove(peer, tid);
  1604. /* Yet to receive more fragments for this sequence number */
  1605. if (!all_frag_present) {
  1606. uint32_t now_ms =
  1607. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1608. peer->rx_tid[tid].defrag_timeout_ms =
  1609. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1610. dp_rx_defrag_waitlist_add(peer, tid);
  1611. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1612. return QDF_STATUS_SUCCESS;
  1613. }
  1614. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1615. "All fragments received for sequence: %d", rxseq);
  1616. /* Process the fragments */
  1617. qdf_spin_lock_bh(&rx_tid->tid_lock);
  1618. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1619. rx_reorder_array_elem->tail);
  1620. if (QDF_IS_STATUS_ERROR(status)) {
  1621. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1622. "Fragment processing failed");
  1623. dp_rx_add_to_free_desc_list(head, tail,
  1624. peer->rx_tid[tid].head_frag_desc);
  1625. (*rx_bfs)++;
  1626. if (dp_rx_link_desc_return(soc,
  1627. peer->rx_tid[tid].dst_ring_desc,
  1628. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1629. QDF_STATUS_SUCCESS)
  1630. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1631. "%s: Failed to return link desc",
  1632. __func__);
  1633. dp_rx_defrag_cleanup(peer, tid);
  1634. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1635. goto end;
  1636. }
  1637. /* Re-inject the fragments back to REO for further processing */
  1638. status = dp_rx_defrag_reo_reinject(peer, tid,
  1639. rx_reorder_array_elem->head);
  1640. qdf_spin_unlock_bh(&rx_tid->tid_lock);
  1641. if (QDF_IS_STATUS_SUCCESS(status)) {
  1642. rx_reorder_array_elem->head = NULL;
  1643. rx_reorder_array_elem->tail = NULL;
  1644. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1645. "Fragmented sequence successfully reinjected");
  1646. } else {
  1647. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1648. "Fragmented sequence reinjection failed");
  1649. dp_rx_return_head_frag_desc(peer, tid);
  1650. }
  1651. dp_rx_defrag_cleanup(peer, tid);
  1652. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1653. return QDF_STATUS_SUCCESS;
  1654. discard_frag:
  1655. qdf_nbuf_free(frag);
  1656. err_free_desc:
  1657. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1658. if (dp_rx_link_desc_return(soc, ring_desc,
  1659. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1660. QDF_STATUS_SUCCESS)
  1661. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1662. "%s: Failed to return link desc", __func__);
  1663. (*rx_bfs)++;
  1664. end:
  1665. if (peer)
  1666. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1667. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1668. return QDF_STATUS_E_DEFRAG_ERROR;
  1669. }
  1670. /**
  1671. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1672. *
  1673. * @soc: core txrx main context
  1674. * @ring_desc: opaque pointer to the REO error ring descriptor
  1675. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1676. * @head: head of the local descriptor free-list
  1677. * @tail: tail of the local descriptor free-list
  1678. * @quota: No. of units (packets) that can be serviced in one shot.
  1679. *
  1680. * This function implements RX 802.11 fragmentation handling
  1681. * The handling is mostly same as legacy fragmentation handling.
  1682. * If required, this function can re-inject the frames back to
  1683. * REO ring (with proper setting to by-pass fragmentation check
  1684. * but use duplicate detection / re-ordering and routing these frames
  1685. * to a different core.
  1686. *
  1687. * Return: uint32_t: No. of elements processed
  1688. */
  1689. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1690. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1691. struct dp_rx_desc *rx_desc,
  1692. uint8_t *mac_id,
  1693. uint32_t quota)
  1694. {
  1695. uint32_t rx_bufs_used = 0;
  1696. qdf_nbuf_t msdu = NULL;
  1697. uint32_t tid;
  1698. uint32_t rx_bfs = 0;
  1699. struct dp_pdev *pdev;
  1700. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1701. struct rx_desc_pool *rx_desc_pool;
  1702. qdf_assert(soc);
  1703. qdf_assert(mpdu_desc_info);
  1704. qdf_assert(rx_desc);
  1705. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1706. mpdu_desc_info->msdu_count);
  1707. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1708. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1709. "Not sufficient MSDUs to process");
  1710. return rx_bufs_used;
  1711. }
  1712. /* all buffers in MSDU link belong to same pdev */
  1713. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1714. if (!pdev) {
  1715. dp_nofl_debug("pdev is null for pool_id = %d",
  1716. rx_desc->pool_id);
  1717. return rx_bufs_used;
  1718. }
  1719. *mac_id = rx_desc->pool_id;
  1720. msdu = rx_desc->nbuf;
  1721. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1722. if (rx_desc->unmapped)
  1723. return rx_bufs_used;
  1724. dp_ipa_rx_buf_smmu_mapping_lock(soc);
  1725. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1726. rx_desc_pool->buf_size,
  1727. false);
  1728. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1729. QDF_DMA_FROM_DEVICE,
  1730. rx_desc_pool->buf_size);
  1731. rx_desc->unmapped = 1;
  1732. dp_ipa_rx_buf_smmu_mapping_unlock(soc);
  1733. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1734. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1735. /* Process fragment-by-fragment */
  1736. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1737. &pdev->free_list_head,
  1738. &pdev->free_list_tail,
  1739. mpdu_desc_info,
  1740. tid, rx_desc, &rx_bfs);
  1741. if (rx_bfs)
  1742. rx_bufs_used += rx_bfs;
  1743. if (!QDF_IS_STATUS_SUCCESS(status))
  1744. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1745. mpdu_desc_info->mpdu_seq,
  1746. mpdu_desc_info->msdu_count,
  1747. mpdu_desc_info->mpdu_flags);
  1748. return rx_bufs_used;
  1749. }
  1750. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1751. struct dp_peer *peer, uint16_t tid,
  1752. uint16_t rxseq, qdf_nbuf_t nbuf)
  1753. {
  1754. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1755. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1756. uint8_t all_frag_present;
  1757. uint32_t msdu_len;
  1758. QDF_STATUS status;
  1759. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1760. /*
  1761. * HW may fill in unexpected peer_id in RX PKT TLV,
  1762. * if this peer_id related peer is valid by coincidence,
  1763. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1764. * self peer), then invalid access to rx_reorder_array_elem happened.
  1765. */
  1766. if (!rx_reorder_array_elem) {
  1767. dp_verbose_debug(
  1768. "peer id:%d mac: "QDF_MAC_ADDR_FMT" drop rx frame!",
  1769. peer->peer_id,
  1770. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1771. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1772. qdf_nbuf_free(nbuf);
  1773. goto fail;
  1774. }
  1775. if (rx_reorder_array_elem->head &&
  1776. rxseq != rx_tid->curr_seq_num) {
  1777. /* Drop stored fragments if out of sequence
  1778. * fragment is received
  1779. */
  1780. dp_rx_reorder_flush_frag(peer, tid);
  1781. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1782. "%s: No list found for TID %d Seq# %d",
  1783. __func__, tid, rxseq);
  1784. qdf_nbuf_free(nbuf);
  1785. goto fail;
  1786. }
  1787. msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
  1788. qdf_nbuf_data(nbuf));
  1789. qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size));
  1790. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1791. &rx_reorder_array_elem->head,
  1792. &rx_reorder_array_elem->tail, nbuf,
  1793. &all_frag_present);
  1794. if (QDF_IS_STATUS_ERROR(status)) {
  1795. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1796. "%s Fragment insert failed", __func__);
  1797. goto fail;
  1798. }
  1799. if (soc->rx.flags.defrag_timeout_check)
  1800. dp_rx_defrag_waitlist_remove(peer, tid);
  1801. if (!all_frag_present) {
  1802. uint32_t now_ms =
  1803. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1804. peer->rx_tid[tid].defrag_timeout_ms =
  1805. now_ms + soc->rx.defrag.timeout_ms;
  1806. dp_rx_defrag_waitlist_add(peer, tid);
  1807. return QDF_STATUS_SUCCESS;
  1808. }
  1809. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1810. rx_reorder_array_elem->tail);
  1811. if (QDF_IS_STATUS_ERROR(status)) {
  1812. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1813. "%s Fragment processing failed", __func__);
  1814. dp_rx_return_head_frag_desc(peer, tid);
  1815. dp_rx_defrag_cleanup(peer, tid);
  1816. goto fail;
  1817. }
  1818. /* Re-inject the fragments back to REO for further processing */
  1819. status = dp_rx_defrag_reo_reinject(peer, tid,
  1820. rx_reorder_array_elem->head);
  1821. if (QDF_IS_STATUS_SUCCESS(status)) {
  1822. rx_reorder_array_elem->head = NULL;
  1823. rx_reorder_array_elem->tail = NULL;
  1824. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1825. "%s: Frag seq successfully reinjected",
  1826. __func__);
  1827. } else {
  1828. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1829. "%s: Frag seq reinjection failed", __func__);
  1830. dp_rx_return_head_frag_desc(peer, tid);
  1831. }
  1832. dp_rx_defrag_cleanup(peer, tid);
  1833. return QDF_STATUS_SUCCESS;
  1834. fail:
  1835. return QDF_STATUS_E_DEFRAG_ERROR;
  1836. }