dp_rx.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_tx.h"
  22. #include "dp_peer.h"
  23. #include "hal_rx.h"
  24. #include "hal_api.h"
  25. #include "qdf_nbuf.h"
  26. #ifdef MESH_MODE_SUPPORT
  27. #include "if_meta_hdr.h"
  28. #endif
  29. #include "dp_internal.h"
  30. #include "dp_ipa.h"
  31. #include "dp_hist.h"
  32. #include "dp_rx_buffer_pool.h"
  33. #ifdef WIFI_MONITOR_SUPPORT
  34. #include "dp_htt.h"
  35. #include <dp_mon.h>
  36. #endif
  37. #ifdef FEATURE_WDS
  38. #include "dp_txrx_wds.h"
  39. #endif
  40. #ifdef DUP_RX_DESC_WAR
  41. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  42. hal_ring_handle_t hal_ring,
  43. hal_ring_desc_t ring_desc,
  44. struct dp_rx_desc *rx_desc)
  45. {
  46. void *hal_soc = soc->hal_soc;
  47. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  48. dp_rx_desc_dump(rx_desc);
  49. }
  50. #else
  51. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  52. hal_ring_handle_t hal_ring_hdl,
  53. hal_ring_desc_t ring_desc,
  54. struct dp_rx_desc *rx_desc)
  55. {
  56. hal_soc_handle_t hal_soc = soc->hal_soc;
  57. dp_rx_desc_dump(rx_desc);
  58. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  59. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  60. qdf_assert_always(0);
  61. }
  62. #endif
  63. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  64. #ifdef RX_DESC_SANITY_WAR
  65. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  66. hal_ring_handle_t hal_ring_hdl,
  67. hal_ring_desc_t ring_desc,
  68. struct dp_rx_desc *rx_desc)
  69. {
  70. uint8_t return_buffer_manager;
  71. if (qdf_unlikely(!rx_desc)) {
  72. /*
  73. * This is an unlikely case where the cookie obtained
  74. * from the ring_desc is invalid and hence we are not
  75. * able to find the corresponding rx_desc
  76. */
  77. goto fail;
  78. }
  79. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  80. if (qdf_unlikely(!(return_buffer_manager ==
  81. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  82. return_buffer_manager ==
  83. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  84. goto fail;
  85. }
  86. return QDF_STATUS_SUCCESS;
  87. fail:
  88. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  89. dp_err("Ring Desc:");
  90. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  91. ring_desc);
  92. return QDF_STATUS_E_NULL_VALUE;
  93. }
  94. #endif
  95. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  96. /**
  97. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  98. *
  99. * @dp_soc: struct dp_soc *
  100. * @nbuf_frag_info_t: nbuf frag info
  101. * @dp_pdev: struct dp_pdev *
  102. * @rx_desc_pool: Rx desc pool
  103. *
  104. * Return: QDF_STATUS
  105. */
  106. #ifdef DP_RX_MON_MEM_FRAG
  107. static inline QDF_STATUS
  108. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  109. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  110. struct dp_pdev *dp_pdev,
  111. struct rx_desc_pool *rx_desc_pool)
  112. {
  113. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  114. (nbuf_frag_info_t->virt_addr).vaddr =
  115. qdf_frag_alloc(rx_desc_pool->buf_size);
  116. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  117. dp_err("Frag alloc failed");
  118. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  119. return QDF_STATUS_E_NOMEM;
  120. }
  121. ret = qdf_mem_map_page(dp_soc->osdev,
  122. (nbuf_frag_info_t->virt_addr).vaddr,
  123. QDF_DMA_FROM_DEVICE,
  124. rx_desc_pool->buf_size,
  125. &nbuf_frag_info_t->paddr);
  126. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  127. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  128. dp_err("Frag map failed");
  129. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  130. return QDF_STATUS_E_FAULT;
  131. }
  132. return QDF_STATUS_SUCCESS;
  133. }
  134. #else
  135. static inline QDF_STATUS
  136. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  137. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  138. struct dp_pdev *dp_pdev,
  139. struct rx_desc_pool *rx_desc_pool)
  140. {
  141. return QDF_STATUS_SUCCESS;
  142. }
  143. #endif /* DP_RX_MON_MEM_FRAG */
  144. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  145. /**
  146. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  147. * @soc: Datapath soc structure
  148. * @ring_num: Refill ring number
  149. * @num_req: number of buffers requested for refill
  150. * @num_refill: number of buffers refilled
  151. *
  152. * Returns: None
  153. */
  154. static inline void
  155. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  156. hal_ring_handle_t hal_ring_hdl,
  157. uint32_t num_req, uint32_t num_refill)
  158. {
  159. struct dp_refill_info_record *record;
  160. uint32_t idx;
  161. uint32_t tp;
  162. uint32_t hp;
  163. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  164. !soc->rx_refill_ring_history[ring_num]))
  165. return;
  166. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  167. DP_RX_REFILL_HIST_MAX);
  168. /* No NULL check needed for record since its an array */
  169. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  170. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  171. record->timestamp = qdf_get_log_timestamp();
  172. record->num_req = num_req;
  173. record->num_refill = num_refill;
  174. record->hp = hp;
  175. record->tp = tp;
  176. }
  177. #else
  178. static inline void
  179. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  180. hal_ring_handle_t hal_ring_hdl,
  181. uint32_t num_req, uint32_t num_refill)
  182. {
  183. }
  184. #endif
  185. /**
  186. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  187. *
  188. * @dp_soc: struct dp_soc *
  189. * @mac_id: Mac id
  190. * @num_entries_avail: num_entries_avail
  191. * @nbuf_frag_info_t: nbuf frag info
  192. * @dp_pdev: struct dp_pdev *
  193. * @rx_desc_pool: Rx desc pool
  194. *
  195. * Return: QDF_STATUS
  196. */
  197. static inline QDF_STATUS
  198. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  199. uint32_t mac_id,
  200. uint32_t num_entries_avail,
  201. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  202. struct dp_pdev *dp_pdev,
  203. struct rx_desc_pool *rx_desc_pool)
  204. {
  205. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  206. (nbuf_frag_info_t->virt_addr).nbuf =
  207. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  208. mac_id,
  209. rx_desc_pool,
  210. num_entries_avail);
  211. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  212. dp_err("nbuf alloc failed");
  213. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  214. return QDF_STATUS_E_NOMEM;
  215. }
  216. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  217. nbuf_frag_info_t);
  218. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  219. dp_rx_buffer_pool_nbuf_free(dp_soc,
  220. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  221. dp_err("nbuf map failed");
  222. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  223. return QDF_STATUS_E_FAULT;
  224. }
  225. nbuf_frag_info_t->paddr =
  226. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  227. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  228. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  229. rx_desc_pool->buf_size,
  230. true);
  231. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  232. &nbuf_frag_info_t->paddr,
  233. rx_desc_pool);
  234. if (ret == QDF_STATUS_E_FAILURE) {
  235. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  236. return QDF_STATUS_E_ADDRNOTAVAIL;
  237. }
  238. return QDF_STATUS_SUCCESS;
  239. }
  240. /*
  241. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  242. * called during dp rx initialization
  243. * and at the end of dp_rx_process.
  244. *
  245. * @soc: core txrx main context
  246. * @mac_id: mac_id which is one of 3 mac_ids
  247. * @dp_rxdma_srng: dp rxdma circular ring
  248. * @rx_desc_pool: Pointer to free Rx descriptor pool
  249. * @num_req_buffers: number of buffer to be replenished
  250. * @desc_list: list of descs if called from dp_rx_process
  251. * or NULL during dp rx initialization or out of buffer
  252. * interrupt.
  253. * @tail: tail of descs list
  254. * @func_name: name of the caller function
  255. * Return: return success or failure
  256. */
  257. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  258. struct dp_srng *dp_rxdma_srng,
  259. struct rx_desc_pool *rx_desc_pool,
  260. uint32_t num_req_buffers,
  261. union dp_rx_desc_list_elem_t **desc_list,
  262. union dp_rx_desc_list_elem_t **tail,
  263. const char *func_name)
  264. {
  265. uint32_t num_alloc_desc;
  266. uint16_t num_desc_to_free = 0;
  267. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  268. uint32_t num_entries_avail;
  269. uint32_t count;
  270. int sync_hw_ptr = 1;
  271. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  272. void *rxdma_ring_entry;
  273. union dp_rx_desc_list_elem_t *next;
  274. QDF_STATUS ret;
  275. void *rxdma_srng;
  276. rxdma_srng = dp_rxdma_srng->hal_srng;
  277. if (qdf_unlikely(!dp_pdev)) {
  278. dp_rx_err("%pK: pdev is null for mac_id = %d",
  279. dp_soc, mac_id);
  280. return QDF_STATUS_E_FAILURE;
  281. }
  282. if (qdf_unlikely(!rxdma_srng)) {
  283. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  284. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  285. return QDF_STATUS_E_FAILURE;
  286. }
  287. dp_rx_debug("%pK: requested %d buffers for replenish",
  288. dp_soc, num_req_buffers);
  289. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  290. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  291. rxdma_srng,
  292. sync_hw_ptr);
  293. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  294. dp_soc, num_entries_avail);
  295. if (!(*desc_list) && (num_entries_avail >
  296. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  297. num_req_buffers = num_entries_avail;
  298. } else if (num_entries_avail < num_req_buffers) {
  299. num_desc_to_free = num_req_buffers - num_entries_avail;
  300. num_req_buffers = num_entries_avail;
  301. }
  302. if (qdf_unlikely(!num_req_buffers)) {
  303. num_desc_to_free = num_req_buffers;
  304. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  305. goto free_descs;
  306. }
  307. /*
  308. * if desc_list is NULL, allocate the descs from freelist
  309. */
  310. if (!(*desc_list)) {
  311. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  312. rx_desc_pool,
  313. num_req_buffers,
  314. desc_list,
  315. tail);
  316. if (!num_alloc_desc) {
  317. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  318. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  319. num_req_buffers);
  320. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  321. return QDF_STATUS_E_NOMEM;
  322. }
  323. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  324. num_req_buffers = num_alloc_desc;
  325. }
  326. count = 0;
  327. while (count < num_req_buffers) {
  328. /* Flag is set while pdev rx_desc_pool initialization */
  329. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  330. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  331. &nbuf_frag_info,
  332. dp_pdev,
  333. rx_desc_pool);
  334. else
  335. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  336. mac_id,
  337. num_entries_avail, &nbuf_frag_info,
  338. dp_pdev, rx_desc_pool);
  339. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  340. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  341. continue;
  342. break;
  343. }
  344. count++;
  345. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  346. rxdma_srng);
  347. qdf_assert_always(rxdma_ring_entry);
  348. next = (*desc_list)->next;
  349. /* Flag is set while pdev rx_desc_pool initialization */
  350. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  351. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  352. &nbuf_frag_info);
  353. else
  354. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  355. &nbuf_frag_info);
  356. /* rx_desc.in_use should be zero at this time*/
  357. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  358. (*desc_list)->rx_desc.in_use = 1;
  359. (*desc_list)->rx_desc.in_err_state = 0;
  360. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  361. func_name, RX_DESC_REPLENISHED);
  362. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  363. nbuf_frag_info.virt_addr.nbuf,
  364. (unsigned long long)(nbuf_frag_info.paddr),
  365. (*desc_list)->rx_desc.cookie);
  366. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  367. nbuf_frag_info.paddr,
  368. (*desc_list)->rx_desc.cookie,
  369. rx_desc_pool->owner);
  370. *desc_list = next;
  371. }
  372. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  373. num_req_buffers, count);
  374. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  375. dp_rx_schedule_refill_thread(dp_soc);
  376. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  377. count, num_desc_to_free);
  378. /* No need to count the number of bytes received during replenish.
  379. * Therefore set replenish.pkts.bytes as 0.
  380. */
  381. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  382. free_descs:
  383. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  384. /*
  385. * add any available free desc back to the free list
  386. */
  387. if (*desc_list)
  388. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  389. mac_id, rx_desc_pool);
  390. return QDF_STATUS_SUCCESS;
  391. }
  392. qdf_export_symbol(__dp_rx_buffers_replenish);
  393. /*
  394. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  395. * pkts to RAW mode simulation to
  396. * decapsulate the pkt.
  397. *
  398. * @vdev: vdev on which RAW mode is enabled
  399. * @nbuf_list: list of RAW pkts to process
  400. * @peer: peer object from which the pkt is rx
  401. *
  402. * Return: void
  403. */
  404. void
  405. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  406. struct dp_peer *peer)
  407. {
  408. qdf_nbuf_t deliver_list_head = NULL;
  409. qdf_nbuf_t deliver_list_tail = NULL;
  410. qdf_nbuf_t nbuf;
  411. nbuf = nbuf_list;
  412. while (nbuf) {
  413. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  414. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  415. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  416. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  417. /*
  418. * reset the chfrag_start and chfrag_end bits in nbuf cb
  419. * as this is a non-amsdu pkt and RAW mode simulation expects
  420. * these bit s to be 0 for non-amsdu pkt.
  421. */
  422. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  423. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  424. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  425. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  426. }
  427. nbuf = next;
  428. }
  429. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  430. &deliver_list_tail, peer->mac_addr.raw);
  431. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  432. }
  433. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  434. #ifndef FEATURE_WDS
  435. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  436. struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  437. {
  438. }
  439. #endif
  440. /*
  441. * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
  442. *
  443. * @soc: core txrx main context
  444. * @ta_peer : source peer entry
  445. * @rx_tlv_hdr : start address of rx tlvs
  446. * @nbuf : nbuf that has to be intrabss forwarded
  447. * @tid_stats : tid stats pointer
  448. *
  449. * Return: bool: true if it is forwarded else false
  450. */
  451. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  452. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  453. struct cdp_tid_rx_stats *tid_stats)
  454. {
  455. uint16_t len;
  456. qdf_nbuf_t nbuf_copy;
  457. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  458. nbuf))
  459. return true;
  460. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  461. return false;
  462. /* If the source peer in the isolation list
  463. * then dont forward instead push to bridge stack
  464. */
  465. if (dp_get_peer_isolation(ta_peer))
  466. return false;
  467. nbuf_copy = qdf_nbuf_copy(nbuf);
  468. if (!nbuf_copy)
  469. return false;
  470. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  471. if (dp_tx_send((struct cdp_soc_t *)soc,
  472. ta_peer->vdev->vdev_id, nbuf_copy)) {
  473. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  474. tid_stats->fail_cnt[INTRABSS_DROP]++;
  475. qdf_nbuf_free(nbuf_copy);
  476. } else {
  477. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  478. tid_stats->intrabss_cnt++;
  479. }
  480. return false;
  481. }
  482. /*
  483. * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
  484. *
  485. * @soc: core txrx main context
  486. * @ta_peer : source peer entry
  487. * @rx_tlv_hdr : start address of rx tlvs
  488. * @nbuf : nbuf that has to be intrabss forwarded
  489. * @tid_stats : tid stats pointer
  490. *
  491. * Return: bool: true if it is forwarded else false
  492. */
  493. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_peer *ta_peer,
  494. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  495. struct cdp_tid_rx_stats *tid_stats)
  496. {
  497. uint16_t len;
  498. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  499. nbuf))
  500. return true;
  501. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  502. /* linearize the nbuf just before we send to
  503. * dp_tx_send()
  504. */
  505. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  506. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  507. return false;
  508. nbuf = qdf_nbuf_unshare(nbuf);
  509. if (!nbuf) {
  510. DP_STATS_INC_PKT(ta_peer,
  511. rx.intra_bss.fail, 1, len);
  512. /* return true even though the pkt is
  513. * not forwarded. Basically skb_unshare
  514. * failed and we want to continue with
  515. * next nbuf.
  516. */
  517. tid_stats->fail_cnt[INTRABSS_DROP]++;
  518. return false;
  519. }
  520. }
  521. if (!dp_tx_send((struct cdp_soc_t *)soc,
  522. ta_peer->vdev->vdev_id, nbuf)) {
  523. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  524. len);
  525. } else {
  526. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  527. len);
  528. tid_stats->fail_cnt[INTRABSS_DROP]++;
  529. return false;
  530. }
  531. return true;
  532. }
  533. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  534. #ifdef MESH_MODE_SUPPORT
  535. /**
  536. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  537. *
  538. * @vdev: DP Virtual device handle
  539. * @nbuf: Buffer pointer
  540. * @rx_tlv_hdr: start of rx tlv header
  541. * @peer: pointer to peer
  542. *
  543. * This function allocated memory for mesh receive stats and fill the
  544. * required stats. Stores the memory address in skb cb.
  545. *
  546. * Return: void
  547. */
  548. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  549. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  550. {
  551. struct mesh_recv_hdr_s *rx_info = NULL;
  552. uint32_t pkt_type;
  553. uint32_t nss;
  554. uint32_t rate_mcs;
  555. uint32_t bw;
  556. uint8_t primary_chan_num;
  557. uint32_t center_chan_freq;
  558. struct dp_soc *soc = vdev->pdev->soc;
  559. /* fill recv mesh stats */
  560. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  561. /* upper layers are resposible to free this memory */
  562. if (!rx_info) {
  563. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  564. vdev->pdev->soc);
  565. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  566. return;
  567. }
  568. rx_info->rs_flags = MESH_RXHDR_VER1;
  569. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  570. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  571. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  572. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  573. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  574. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  575. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  576. rx_tlv_hdr);
  577. if (vdev->osif_get_key)
  578. vdev->osif_get_key(vdev->osif_vdev,
  579. &rx_info->rs_decryptkey[0],
  580. &peer->mac_addr.raw[0],
  581. rx_info->rs_keyix);
  582. }
  583. rx_info->rs_snr = peer->stats.rx.snr;
  584. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  585. soc = vdev->pdev->soc;
  586. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  587. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  588. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  589. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  590. soc->ctrl_psoc,
  591. vdev->pdev->pdev_id,
  592. center_chan_freq);
  593. }
  594. rx_info->rs_channel = primary_chan_num;
  595. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  596. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  597. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  598. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  599. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  600. (bw << 24);
  601. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  602. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  603. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  604. rx_info->rs_flags,
  605. rx_info->rs_rssi,
  606. rx_info->rs_channel,
  607. rx_info->rs_ratephy1,
  608. rx_info->rs_keyix,
  609. rx_info->rs_snr);
  610. }
  611. /**
  612. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  613. *
  614. * @vdev: DP Virtual device handle
  615. * @nbuf: Buffer pointer
  616. * @rx_tlv_hdr: start of rx tlv header
  617. *
  618. * This checks if the received packet is matching any filter out
  619. * catogery and and drop the packet if it matches.
  620. *
  621. * Return: status(0 indicates drop, 1 indicate to no drop)
  622. */
  623. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  624. uint8_t *rx_tlv_hdr)
  625. {
  626. union dp_align_mac_addr mac_addr;
  627. struct dp_soc *soc = vdev->pdev->soc;
  628. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  629. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  630. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  631. rx_tlv_hdr))
  632. return QDF_STATUS_SUCCESS;
  633. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  634. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  635. rx_tlv_hdr))
  636. return QDF_STATUS_SUCCESS;
  637. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  638. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  639. rx_tlv_hdr) &&
  640. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  641. rx_tlv_hdr))
  642. return QDF_STATUS_SUCCESS;
  643. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  644. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  645. rx_tlv_hdr,
  646. &mac_addr.raw[0]))
  647. return QDF_STATUS_E_FAILURE;
  648. if (!qdf_mem_cmp(&mac_addr.raw[0],
  649. &vdev->mac_addr.raw[0],
  650. QDF_MAC_ADDR_SIZE))
  651. return QDF_STATUS_SUCCESS;
  652. }
  653. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  654. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  655. rx_tlv_hdr,
  656. &mac_addr.raw[0]))
  657. return QDF_STATUS_E_FAILURE;
  658. if (!qdf_mem_cmp(&mac_addr.raw[0],
  659. &vdev->mac_addr.raw[0],
  660. QDF_MAC_ADDR_SIZE))
  661. return QDF_STATUS_SUCCESS;
  662. }
  663. }
  664. return QDF_STATUS_E_FAILURE;
  665. }
  666. #else
  667. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  668. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  669. {
  670. }
  671. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  672. uint8_t *rx_tlv_hdr)
  673. {
  674. return QDF_STATUS_E_FAILURE;
  675. }
  676. #endif
  677. #ifdef FEATURE_NAC_RSSI
  678. /**
  679. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  680. * @soc: DP SOC handle
  681. * @mpdu: mpdu for which peer is invalid
  682. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  683. * pool_id has same mapping)
  684. *
  685. * return: integer type
  686. */
  687. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  688. uint8_t mac_id)
  689. {
  690. struct dp_invalid_peer_msg msg;
  691. struct dp_vdev *vdev = NULL;
  692. struct dp_pdev *pdev = NULL;
  693. struct ieee80211_frame *wh;
  694. qdf_nbuf_t curr_nbuf, next_nbuf;
  695. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  696. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  697. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  698. dp_rx_debug("%pK: Drop decapped frames", soc);
  699. goto free;
  700. }
  701. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  702. if (!DP_FRAME_IS_DATA(wh)) {
  703. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  704. goto free;
  705. }
  706. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  707. dp_rx_err("%pK: Invalid nbuf length", soc);
  708. goto free;
  709. }
  710. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  711. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  712. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  713. goto free;
  714. }
  715. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  716. QDF_STATUS_SUCCESS)
  717. return 0;
  718. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  719. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  720. QDF_MAC_ADDR_SIZE) == 0) {
  721. goto out;
  722. }
  723. }
  724. if (!vdev) {
  725. dp_rx_err("%pK: VDEV not found", soc);
  726. goto free;
  727. }
  728. out:
  729. msg.wh = wh;
  730. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  731. msg.nbuf = mpdu;
  732. msg.vdev_id = vdev->vdev_id;
  733. /*
  734. * NOTE: Only valid for HKv1.
  735. * If smart monitor mode is enabled on RE, we are getting invalid
  736. * peer frames with RA as STA mac of RE and the TA not matching
  737. * with any NAC list or the the BSSID.Such frames need to dropped
  738. * in order to avoid HM_WDS false addition.
  739. */
  740. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  741. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  742. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  743. soc, wh->i_addr1);
  744. goto free;
  745. }
  746. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  747. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  748. pdev->pdev_id, &msg);
  749. }
  750. free:
  751. /* Drop and free packet */
  752. curr_nbuf = mpdu;
  753. while (curr_nbuf) {
  754. next_nbuf = qdf_nbuf_next(curr_nbuf);
  755. qdf_nbuf_free(curr_nbuf);
  756. curr_nbuf = next_nbuf;
  757. }
  758. return 0;
  759. }
  760. /**
  761. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  762. * @soc: DP SOC handle
  763. * @mpdu: mpdu for which peer is invalid
  764. * @mpdu_done: if an mpdu is completed
  765. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  766. * pool_id has same mapping)
  767. *
  768. * return: integer type
  769. */
  770. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  771. qdf_nbuf_t mpdu, bool mpdu_done,
  772. uint8_t mac_id)
  773. {
  774. /* Only trigger the process when mpdu is completed */
  775. if (mpdu_done)
  776. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  777. }
  778. #else
  779. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  780. uint8_t mac_id)
  781. {
  782. qdf_nbuf_t curr_nbuf, next_nbuf;
  783. struct dp_pdev *pdev;
  784. struct dp_vdev *vdev = NULL;
  785. struct ieee80211_frame *wh;
  786. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  787. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  788. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  789. if (!DP_FRAME_IS_DATA(wh)) {
  790. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  791. "only for data frames");
  792. goto free;
  793. }
  794. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  795. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  796. goto free;
  797. }
  798. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  799. if (!pdev) {
  800. dp_rx_info_rl("%pK: PDEV not found", soc);
  801. goto free;
  802. }
  803. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  804. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  805. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  806. QDF_MAC_ADDR_SIZE) == 0) {
  807. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  808. goto out;
  809. }
  810. }
  811. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  812. if (!vdev) {
  813. dp_rx_info_rl("%pK: VDEV not found", soc);
  814. goto free;
  815. }
  816. out:
  817. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  818. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  819. free:
  820. /* reset the head and tail pointers */
  821. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  822. if (pdev) {
  823. pdev->invalid_peer_head_msdu = NULL;
  824. pdev->invalid_peer_tail_msdu = NULL;
  825. }
  826. /* Drop and free packet */
  827. curr_nbuf = mpdu;
  828. while (curr_nbuf) {
  829. next_nbuf = qdf_nbuf_next(curr_nbuf);
  830. qdf_nbuf_free(curr_nbuf);
  831. curr_nbuf = next_nbuf;
  832. }
  833. /* Reset the head and tail pointers */
  834. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  835. if (pdev) {
  836. pdev->invalid_peer_head_msdu = NULL;
  837. pdev->invalid_peer_tail_msdu = NULL;
  838. }
  839. return 0;
  840. }
  841. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  842. qdf_nbuf_t mpdu, bool mpdu_done,
  843. uint8_t mac_id)
  844. {
  845. /* Process the nbuf */
  846. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  847. }
  848. #endif
  849. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  850. #ifdef RECEIVE_OFFLOAD
  851. /**
  852. * dp_rx_print_offload_info() - Print offload info from RX TLV
  853. * @soc: dp soc handle
  854. * @msdu: MSDU for which the offload info is to be printed
  855. *
  856. * Return: None
  857. */
  858. static void dp_rx_print_offload_info(struct dp_soc *soc,
  859. qdf_nbuf_t msdu)
  860. {
  861. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  862. dp_verbose_debug("lro_eligible 0x%x",
  863. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  864. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  865. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  866. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  867. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  868. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  869. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  870. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  871. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  872. dp_verbose_debug("---------------------------------------------------------");
  873. }
  874. /**
  875. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  876. * @soc: DP SOC handle
  877. * @rx_tlv: RX TLV received for the msdu
  878. * @msdu: msdu for which GRO info needs to be filled
  879. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  880. *
  881. * Return: None
  882. */
  883. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  884. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  885. {
  886. struct hal_offload_info offload_info;
  887. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  888. return;
  889. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  890. return;
  891. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  892. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  893. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  894. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  895. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  896. rx_tlv);
  897. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  898. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  899. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  900. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  901. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  902. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  903. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  904. dp_rx_print_offload_info(soc, msdu);
  905. }
  906. #endif /* RECEIVE_OFFLOAD */
  907. /**
  908. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  909. *
  910. * @soc: DP soc handle
  911. * @nbuf: pointer to msdu.
  912. * @mpdu_len: mpdu length
  913. * @l3_pad_len: L3 padding length by HW
  914. *
  915. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  916. */
  917. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  918. qdf_nbuf_t nbuf,
  919. uint16_t *mpdu_len,
  920. uint32_t l3_pad_len)
  921. {
  922. bool last_nbuf;
  923. uint32_t pkt_hdr_size;
  924. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  925. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  926. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  927. last_nbuf = false;
  928. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  929. } else {
  930. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  931. last_nbuf = true;
  932. *mpdu_len = 0;
  933. }
  934. return last_nbuf;
  935. }
  936. /**
  937. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  938. *
  939. * @soc: DP soc handle
  940. * @nbuf: pointer to msdu.
  941. *
  942. * Return: returns padding length in bytes.
  943. */
  944. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  945. qdf_nbuf_t nbuf)
  946. {
  947. uint32_t l3_hdr_pad = 0;
  948. uint8_t *rx_tlv_hdr;
  949. struct hal_rx_msdu_metadata msdu_metadata;
  950. while (nbuf) {
  951. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  952. /* scattered msdu end with continuation is 0 */
  953. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  954. hal_rx_msdu_metadata_get(soc->hal_soc,
  955. rx_tlv_hdr,
  956. &msdu_metadata);
  957. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  958. break;
  959. }
  960. nbuf = nbuf->next;
  961. }
  962. return l3_hdr_pad;
  963. }
  964. /**
  965. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  966. * multiple nbufs.
  967. * @soc: DP SOC handle
  968. * @nbuf: pointer to the first msdu of an amsdu.
  969. *
  970. * This function implements the creation of RX frag_list for cases
  971. * where an MSDU is spread across multiple nbufs.
  972. *
  973. * Return: returns the head nbuf which contains complete frag_list.
  974. */
  975. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  976. {
  977. qdf_nbuf_t parent, frag_list, next = NULL;
  978. uint16_t frag_list_len = 0;
  979. uint16_t mpdu_len;
  980. bool last_nbuf;
  981. uint32_t l3_hdr_pad_offset = 0;
  982. /*
  983. * Use msdu len got from REO entry descriptor instead since
  984. * there is case the RX PKT TLV is corrupted while msdu_len
  985. * from REO descriptor is right for non-raw RX scatter msdu.
  986. */
  987. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  988. /*
  989. * this is a case where the complete msdu fits in one single nbuf.
  990. * in this case HW sets both start and end bit and we only need to
  991. * reset these bits for RAW mode simulator to decap the pkt
  992. */
  993. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  994. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  995. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  996. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  997. return nbuf;
  998. }
  999. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1000. /*
  1001. * This is a case where we have multiple msdus (A-MSDU) spread across
  1002. * multiple nbufs. here we create a fraglist out of these nbufs.
  1003. *
  1004. * the moment we encounter a nbuf with continuation bit set we
  1005. * know for sure we have an MSDU which is spread across multiple
  1006. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1007. */
  1008. parent = nbuf;
  1009. frag_list = nbuf->next;
  1010. nbuf = nbuf->next;
  1011. /*
  1012. * set the start bit in the first nbuf we encounter with continuation
  1013. * bit set. This has the proper mpdu length set as it is the first
  1014. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1015. * nbufs will form the frag_list of the parent nbuf.
  1016. */
  1017. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1018. /*
  1019. * L3 header padding is only needed for the 1st buffer
  1020. * in a scattered msdu
  1021. */
  1022. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1023. l3_hdr_pad_offset);
  1024. /*
  1025. * MSDU cont bit is set but reported MPDU length can fit
  1026. * in to single buffer
  1027. *
  1028. * Increment error stats and avoid SG list creation
  1029. */
  1030. if (last_nbuf) {
  1031. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1032. qdf_nbuf_pull_head(parent,
  1033. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1034. return parent;
  1035. }
  1036. /*
  1037. * this is where we set the length of the fragments which are
  1038. * associated to the parent nbuf. We iterate through the frag_list
  1039. * till we hit the last_nbuf of the list.
  1040. */
  1041. do {
  1042. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1043. qdf_nbuf_pull_head(nbuf,
  1044. soc->rx_pkt_tlv_size);
  1045. frag_list_len += qdf_nbuf_len(nbuf);
  1046. if (last_nbuf) {
  1047. next = nbuf->next;
  1048. nbuf->next = NULL;
  1049. break;
  1050. }
  1051. nbuf = nbuf->next;
  1052. } while (!last_nbuf);
  1053. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1054. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1055. parent->next = next;
  1056. qdf_nbuf_pull_head(parent,
  1057. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1058. return parent;
  1059. }
  1060. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1061. #ifdef QCA_PEER_EXT_STATS
  1062. /*
  1063. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1064. * @peer: DP soc context
  1065. * @nbuf: NBuffer
  1066. *
  1067. * Return: Void
  1068. */
  1069. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1070. qdf_nbuf_t nbuf)
  1071. {
  1072. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1073. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1074. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1075. }
  1076. #endif /* QCA_PEER_EXT_STATS */
  1077. /**
  1078. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1079. * to pass in correct fields
  1080. *
  1081. * @vdev: pdev handle
  1082. * @tx_desc: tx descriptor
  1083. * @tid: tid value
  1084. * Return: none
  1085. */
  1086. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1087. {
  1088. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1089. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1090. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1091. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1092. uint32_t interframe_delay =
  1093. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1094. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1095. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1096. /*
  1097. * Update interframe delay stats calculated at deliver_data_ol point.
  1098. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1099. * interframe delay will not be calculate correctly for 1st frame.
  1100. * On the other side, this will help in avoiding extra per packet check
  1101. * of vdev->prev_rx_deliver_tstamp.
  1102. */
  1103. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1104. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1105. vdev->prev_rx_deliver_tstamp = current_ts;
  1106. }
  1107. /**
  1108. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1109. * @pdev: dp pdev reference
  1110. * @buf_list: buffer list to be dropepd
  1111. *
  1112. * Return: int (number of bufs dropped)
  1113. */
  1114. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1115. qdf_nbuf_t buf_list)
  1116. {
  1117. struct cdp_tid_rx_stats *stats = NULL;
  1118. uint8_t tid = 0, ring_id = 0;
  1119. int num_dropped = 0;
  1120. qdf_nbuf_t buf, next_buf;
  1121. buf = buf_list;
  1122. while (buf) {
  1123. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1124. next_buf = qdf_nbuf_queue_next(buf);
  1125. tid = qdf_nbuf_get_tid_val(buf);
  1126. if (qdf_likely(pdev)) {
  1127. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1128. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1129. stats->delivered_to_stack--;
  1130. }
  1131. qdf_nbuf_free(buf);
  1132. buf = next_buf;
  1133. num_dropped++;
  1134. }
  1135. return num_dropped;
  1136. }
  1137. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1138. /**
  1139. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1140. * @soc: core txrx main context
  1141. * @vdev: vdev
  1142. * @peer: peer
  1143. * @nbuf_head: skb list head
  1144. *
  1145. * Return: true if packet is delivered to netdev per STA.
  1146. */
  1147. static inline bool
  1148. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1149. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1150. {
  1151. /*
  1152. * When extended WDS is disabled, frames are sent to AP netdevice.
  1153. */
  1154. if (qdf_likely(!vdev->wds_ext_enabled))
  1155. return false;
  1156. /*
  1157. * There can be 2 cases:
  1158. * 1. Send frame to parent netdev if its not for netdev per STA
  1159. * 2. If frame is meant for netdev per STA:
  1160. * a. Send frame to appropriate netdev using registered fp.
  1161. * b. If fp is NULL, drop the frames.
  1162. */
  1163. if (!peer->wds_ext.init)
  1164. return false;
  1165. if (peer->osif_rx)
  1166. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1167. else
  1168. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1169. return true;
  1170. }
  1171. #else
  1172. static inline bool
  1173. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1174. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1175. {
  1176. return false;
  1177. }
  1178. #endif
  1179. #ifdef PEER_CACHE_RX_PKTS
  1180. /**
  1181. * dp_rx_flush_rx_cached() - flush cached rx frames
  1182. * @peer: peer
  1183. * @drop: flag to drop frames or forward to net stack
  1184. *
  1185. * Return: None
  1186. */
  1187. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1188. {
  1189. struct dp_peer_cached_bufq *bufqi;
  1190. struct dp_rx_cached_buf *cache_buf = NULL;
  1191. ol_txrx_rx_fp data_rx = NULL;
  1192. int num_buff_elem;
  1193. QDF_STATUS status;
  1194. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1195. qdf_atomic_dec(&peer->flush_in_progress);
  1196. return;
  1197. }
  1198. qdf_spin_lock_bh(&peer->peer_info_lock);
  1199. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1200. data_rx = peer->vdev->osif_rx;
  1201. else
  1202. drop = true;
  1203. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1204. bufqi = &peer->bufq_info;
  1205. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1206. qdf_list_remove_front(&bufqi->cached_bufq,
  1207. (qdf_list_node_t **)&cache_buf);
  1208. while (cache_buf) {
  1209. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1210. cache_buf->buf);
  1211. bufqi->entries -= num_buff_elem;
  1212. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1213. if (drop) {
  1214. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1215. cache_buf->buf);
  1216. } else {
  1217. /* Flush the cached frames to OSIF DEV */
  1218. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1219. if (status != QDF_STATUS_SUCCESS)
  1220. bufqi->dropped = dp_rx_drop_nbuf_list(
  1221. peer->vdev->pdev,
  1222. cache_buf->buf);
  1223. }
  1224. qdf_mem_free(cache_buf);
  1225. cache_buf = NULL;
  1226. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1227. qdf_list_remove_front(&bufqi->cached_bufq,
  1228. (qdf_list_node_t **)&cache_buf);
  1229. }
  1230. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1231. qdf_atomic_dec(&peer->flush_in_progress);
  1232. }
  1233. /**
  1234. * dp_rx_enqueue_rx() - cache rx frames
  1235. * @peer: peer
  1236. * @rx_buf_list: cache buffer list
  1237. *
  1238. * Return: None
  1239. */
  1240. static QDF_STATUS
  1241. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1242. {
  1243. struct dp_rx_cached_buf *cache_buf;
  1244. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1245. int num_buff_elem;
  1246. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1247. bufqi->dropped);
  1248. if (!peer->valid) {
  1249. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1250. rx_buf_list);
  1251. return QDF_STATUS_E_INVAL;
  1252. }
  1253. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1254. if (bufqi->entries >= bufqi->thresh) {
  1255. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1256. rx_buf_list);
  1257. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1258. return QDF_STATUS_E_RESOURCES;
  1259. }
  1260. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1261. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1262. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1263. if (!cache_buf) {
  1264. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1265. "Failed to allocate buf to cache rx frames");
  1266. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1267. rx_buf_list);
  1268. return QDF_STATUS_E_NOMEM;
  1269. }
  1270. cache_buf->buf = rx_buf_list;
  1271. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1272. qdf_list_insert_back(&bufqi->cached_bufq,
  1273. &cache_buf->node);
  1274. bufqi->entries += num_buff_elem;
  1275. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1276. return QDF_STATUS_SUCCESS;
  1277. }
  1278. static inline
  1279. bool dp_rx_is_peer_cache_bufq_supported(void)
  1280. {
  1281. return true;
  1282. }
  1283. #else
  1284. static inline
  1285. bool dp_rx_is_peer_cache_bufq_supported(void)
  1286. {
  1287. return false;
  1288. }
  1289. static inline QDF_STATUS
  1290. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1291. {
  1292. return QDF_STATUS_SUCCESS;
  1293. }
  1294. #endif
  1295. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1296. /**
  1297. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1298. * using the appropriate call back functions.
  1299. * @soc: soc
  1300. * @vdev: vdev
  1301. * @peer: peer
  1302. * @nbuf_head: skb list head
  1303. * @nbuf_tail: skb list tail
  1304. *
  1305. * Return: None
  1306. */
  1307. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1308. struct dp_vdev *vdev,
  1309. struct dp_peer *peer,
  1310. qdf_nbuf_t nbuf_head)
  1311. {
  1312. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1313. peer, nbuf_head)))
  1314. return;
  1315. /* Function pointer initialized only when FISA is enabled */
  1316. if (vdev->osif_fisa_rx)
  1317. /* on failure send it via regular path */
  1318. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1319. else
  1320. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1321. }
  1322. #else
  1323. /**
  1324. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1325. * using the appropriate call back functions.
  1326. * @soc: soc
  1327. * @vdev: vdev
  1328. * @peer: peer
  1329. * @nbuf_head: skb list head
  1330. * @nbuf_tail: skb list tail
  1331. *
  1332. * Check the return status of the call back function and drop
  1333. * the packets if the return status indicates a failure.
  1334. *
  1335. * Return: None
  1336. */
  1337. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1338. struct dp_vdev *vdev,
  1339. struct dp_peer *peer,
  1340. qdf_nbuf_t nbuf_head)
  1341. {
  1342. int num_nbuf = 0;
  1343. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1344. /* Function pointer initialized only when FISA is enabled */
  1345. if (vdev->osif_fisa_rx)
  1346. /* on failure send it via regular path */
  1347. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1348. else if (vdev->osif_rx)
  1349. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1350. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1351. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1352. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1353. if (peer)
  1354. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1355. }
  1356. }
  1357. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1358. /*
  1359. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1360. * @soc DP soc
  1361. * @vdev: DP vdev handle
  1362. * @peer: pointer to the peer object
  1363. * nbuf_head: skb list head
  1364. *
  1365. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1366. * QDF_STATUS_E_FAILURE
  1367. */
  1368. static inline QDF_STATUS
  1369. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1370. struct dp_vdev *vdev,
  1371. struct dp_peer *peer,
  1372. qdf_nbuf_t nbuf_head)
  1373. {
  1374. int num_nbuf;
  1375. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1376. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1377. /*
  1378. * This is a special case where vdev is invalid,
  1379. * so we cannot know the pdev to which this packet
  1380. * belonged. Hence we update the soc rx error stats.
  1381. */
  1382. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1383. return QDF_STATUS_E_FAILURE;
  1384. }
  1385. /*
  1386. * highly unlikely to have a vdev without a registered rx
  1387. * callback function. if so let us free the nbuf_list.
  1388. */
  1389. if (qdf_unlikely(!vdev->osif_rx)) {
  1390. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1391. dp_rx_enqueue_rx(peer, nbuf_head);
  1392. } else {
  1393. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1394. nbuf_head);
  1395. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1396. }
  1397. return QDF_STATUS_E_FAILURE;
  1398. }
  1399. return QDF_STATUS_SUCCESS;
  1400. }
  1401. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  1402. struct dp_vdev *vdev,
  1403. struct dp_peer *peer,
  1404. qdf_nbuf_t nbuf_head,
  1405. qdf_nbuf_t nbuf_tail)
  1406. {
  1407. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1408. QDF_STATUS_SUCCESS)
  1409. return QDF_STATUS_E_FAILURE;
  1410. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1411. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1412. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1413. &nbuf_tail, peer->mac_addr.raw);
  1414. }
  1415. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1416. return QDF_STATUS_SUCCESS;
  1417. }
  1418. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  1419. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  1420. struct dp_vdev *vdev,
  1421. struct dp_peer *peer,
  1422. qdf_nbuf_t nbuf_head,
  1423. qdf_nbuf_t nbuf_tail)
  1424. {
  1425. if (dp_rx_validate_rx_callbacks(soc, vdev, peer, nbuf_head) !=
  1426. QDF_STATUS_SUCCESS)
  1427. return QDF_STATUS_E_FAILURE;
  1428. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  1429. return QDF_STATUS_SUCCESS;
  1430. }
  1431. #endif
  1432. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1433. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1434. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1435. { \
  1436. qdf_nbuf_t nbuf_local; \
  1437. struct dp_peer *peer_local; \
  1438. struct dp_vdev *vdev_local = vdev_hdl; \
  1439. do { \
  1440. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1441. break; \
  1442. nbuf_local = nbuf; \
  1443. peer_local = peer; \
  1444. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1445. break; \
  1446. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1447. break; \
  1448. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1449. (nbuf_local), \
  1450. (peer_local), 0, 1); \
  1451. } while (0); \
  1452. }
  1453. #else
  1454. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1455. #endif
  1456. /**
  1457. * dp_rx_msdu_stats_update() - update per msdu stats.
  1458. * @soc: core txrx main context
  1459. * @nbuf: pointer to the first msdu of an amsdu.
  1460. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1461. * @peer: pointer to the peer object.
  1462. * @ring_id: reo dest ring number on which pkt is reaped.
  1463. * @tid_stats: per tid rx stats.
  1464. *
  1465. * update all the per msdu stats for that nbuf.
  1466. * Return: void
  1467. */
  1468. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1469. uint8_t *rx_tlv_hdr, struct dp_peer *peer,
  1470. uint8_t ring_id,
  1471. struct cdp_tid_rx_stats *tid_stats)
  1472. {
  1473. bool is_ampdu, is_not_amsdu;
  1474. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1475. struct dp_vdev *vdev = peer->vdev;
  1476. qdf_ether_header_t *eh;
  1477. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1478. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1479. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1480. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1481. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1482. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1483. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1484. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1485. tid_stats->msdu_cnt++;
  1486. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1487. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1488. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1489. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1490. tid_stats->mcast_msdu_cnt++;
  1491. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1492. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1493. tid_stats->bcast_msdu_cnt++;
  1494. }
  1495. }
  1496. /*
  1497. * currently we can return from here as we have similar stats
  1498. * updated at per ppdu level instead of msdu level
  1499. */
  1500. if (!soc->process_rx_status)
  1501. return;
  1502. peer->stats.rx.last_rx_ts = qdf_system_ticks();
  1503. /*
  1504. * TODO - For WCN7850 this field is present in ring_desc
  1505. * Try to use ring desc instead of tlv.
  1506. */
  1507. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  1508. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1509. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1510. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  1511. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1512. tid = qdf_nbuf_get_tid_val(nbuf);
  1513. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1514. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1515. rx_tlv_hdr);
  1516. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1517. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1518. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1519. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1520. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1521. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1522. DP_STATS_INC(peer, rx.bw[bw], 1);
  1523. /*
  1524. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1525. * then increase index [nss - 1] in array counter.
  1526. */
  1527. if (nss > 0 && (pkt_type == DOT11_N ||
  1528. pkt_type == DOT11_AC ||
  1529. pkt_type == DOT11_AX))
  1530. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1531. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1532. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1533. hal_rx_tlv_mic_err_get(soc->hal_soc, rx_tlv_hdr));
  1534. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1535. hal_rx_tlv_decrypt_err_get(soc->hal_soc, rx_tlv_hdr));
  1536. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1537. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1538. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1539. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1540. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1541. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1542. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1543. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1544. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1545. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1546. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1547. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1548. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1549. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1550. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1551. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1552. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1553. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1554. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1555. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1556. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1557. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1558. }
  1559. #ifndef WDS_VENDOR_EXTENSION
  1560. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1561. struct dp_vdev *vdev,
  1562. struct dp_peer *peer)
  1563. {
  1564. return 1;
  1565. }
  1566. #endif
  1567. #ifdef RX_DESC_DEBUG_CHECK
  1568. /**
  1569. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1570. * corruption
  1571. *
  1572. * @ring_desc: REO ring descriptor
  1573. * @rx_desc: Rx descriptor
  1574. *
  1575. * Return: NONE
  1576. */
  1577. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  1578. hal_ring_desc_t ring_desc,
  1579. struct dp_rx_desc *rx_desc)
  1580. {
  1581. struct hal_buf_info hbi;
  1582. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1583. /* Sanity check for possible buffer paddr corruption */
  1584. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1585. return QDF_STATUS_SUCCESS;
  1586. return QDF_STATUS_E_FAILURE;
  1587. }
  1588. /**
  1589. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  1590. * out of bound access from H.W
  1591. *
  1592. * @soc: DP soc
  1593. * @pkt_len: Packet length received from H.W
  1594. *
  1595. * Return: NONE
  1596. */
  1597. static inline void
  1598. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  1599. uint32_t pkt_len)
  1600. {
  1601. struct rx_desc_pool *rx_desc_pool;
  1602. rx_desc_pool = &soc->rx_desc_buf[0];
  1603. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  1604. }
  1605. #else
  1606. static inline void
  1607. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  1608. #endif
  1609. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1610. /**
  1611. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1612. * no corresbonding peer found
  1613. * @soc: core txrx main context
  1614. * @nbuf: pkt skb pointer
  1615. *
  1616. * This function will try to deliver some RX special frames to stack
  1617. * even there is no peer matched found. for instance, LFR case, some
  1618. * eapol data will be sent to host before peer_map done.
  1619. *
  1620. * Return: None
  1621. */
  1622. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1623. {
  1624. uint16_t peer_id;
  1625. uint8_t vdev_id;
  1626. struct dp_vdev *vdev = NULL;
  1627. uint32_t l2_hdr_offset = 0;
  1628. uint16_t msdu_len = 0;
  1629. uint32_t pkt_len = 0;
  1630. uint8_t *rx_tlv_hdr;
  1631. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1632. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1633. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1634. if (peer_id > soc->max_peers)
  1635. goto deliver_fail;
  1636. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1637. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1638. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1639. goto deliver_fail;
  1640. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1641. goto deliver_fail;
  1642. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1643. l2_hdr_offset =
  1644. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1645. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1646. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  1647. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1648. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1649. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  1650. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1651. qdf_nbuf_set_exc_frame(nbuf, 1);
  1652. if (QDF_STATUS_SUCCESS !=
  1653. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1654. goto deliver_fail;
  1655. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1656. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1657. return;
  1658. }
  1659. deliver_fail:
  1660. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1661. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1662. qdf_nbuf_free(nbuf);
  1663. if (vdev)
  1664. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1665. }
  1666. #else
  1667. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1668. {
  1669. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1670. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1671. qdf_nbuf_free(nbuf);
  1672. }
  1673. #endif
  1674. /**
  1675. * dp_rx_srng_get_num_pending() - get number of pending entries
  1676. * @hal_soc: hal soc opaque pointer
  1677. * @hal_ring: opaque pointer to the HAL Rx Ring
  1678. * @num_entries: number of entries in the hal_ring.
  1679. * @near_full: pointer to a boolean. This is set if ring is near full.
  1680. *
  1681. * The function returns the number of entries in a destination ring which are
  1682. * yet to be reaped. The function also checks if the ring is near full.
  1683. * If more than half of the ring needs to be reaped, the ring is considered
  1684. * approaching full.
  1685. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1686. * entries. It should not be called within a SRNG lock. HW pointer value is
  1687. * synced into cached_hp.
  1688. *
  1689. * Return: Number of pending entries if any
  1690. */
  1691. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1692. hal_ring_handle_t hal_ring_hdl,
  1693. uint32_t num_entries,
  1694. bool *near_full)
  1695. {
  1696. uint32_t num_pending = 0;
  1697. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1698. hal_ring_hdl,
  1699. true);
  1700. if (num_entries && (num_pending >= num_entries >> 1))
  1701. *near_full = true;
  1702. else
  1703. *near_full = false;
  1704. return num_pending;
  1705. }
  1706. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1707. #ifdef WLAN_SUPPORT_RX_FISA
  1708. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1709. {
  1710. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1711. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1712. }
  1713. /**
  1714. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1715. * @nbuf: pkt skb pointer
  1716. * @l3_padding: l3 padding
  1717. *
  1718. * Return: None
  1719. */
  1720. static inline
  1721. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1722. {
  1723. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1724. }
  1725. #else
  1726. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  1727. {
  1728. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  1729. }
  1730. static inline
  1731. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1732. {
  1733. }
  1734. #endif
  1735. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1736. #ifdef DP_RX_DROP_RAW_FRM
  1737. /**
  1738. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1739. * @nbuf: pkt skb pointer
  1740. *
  1741. * Return: true - raw frame, dropped
  1742. * false - not raw frame, do nothing
  1743. */
  1744. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1745. {
  1746. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1747. qdf_nbuf_free(nbuf);
  1748. return true;
  1749. }
  1750. return false;
  1751. }
  1752. #endif
  1753. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1754. /**
  1755. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1756. * @soc: Datapath soc structure
  1757. * @ring_num: REO ring number
  1758. * @ring_desc: REO ring descriptor
  1759. *
  1760. * Returns: None
  1761. */
  1762. void
  1763. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1764. hal_ring_desc_t ring_desc)
  1765. {
  1766. struct dp_buf_info_record *record;
  1767. struct hal_buf_info hbi;
  1768. uint32_t idx;
  1769. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1770. return;
  1771. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  1772. /* buffer_addr_info is the first element of ring_desc */
  1773. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  1774. &hbi);
  1775. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1776. DP_RX_HIST_MAX);
  1777. /* No NULL check needed for record since its an array */
  1778. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1779. record->timestamp = qdf_get_log_timestamp();
  1780. record->hbi.paddr = hbi.paddr;
  1781. record->hbi.sw_cookie = hbi.sw_cookie;
  1782. record->hbi.rbm = hbi.rbm;
  1783. }
  1784. #endif
  1785. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1786. /**
  1787. * dp_rx_update_stats() - Update soc level rx packet count
  1788. * @soc: DP soc handle
  1789. * @nbuf: nbuf received
  1790. *
  1791. * Returns: none
  1792. */
  1793. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1794. {
  1795. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1796. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1797. }
  1798. #endif
  1799. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  1800. /**
  1801. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1802. * @soc : dp_soc handle
  1803. * @pdev: dp_pdev handle
  1804. * @peer_id: peer_id of the peer for which completion came
  1805. * @ppdu_id: ppdu_id
  1806. * @netbuf: Buffer pointer
  1807. *
  1808. * This function is used to deliver rx packet to packet capture
  1809. */
  1810. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1811. uint16_t peer_id, uint32_t is_offload,
  1812. qdf_nbuf_t netbuf)
  1813. {
  1814. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  1815. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1816. peer_id, is_offload, pdev->pdev_id);
  1817. }
  1818. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1819. uint32_t is_offload)
  1820. {
  1821. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  1822. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  1823. soc, nbuf, HTT_INVALID_VDEV,
  1824. is_offload, 0);
  1825. }
  1826. #endif
  1827. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1828. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  1829. {
  1830. QDF_STATUS ret;
  1831. if (vdev->osif_rx_flush) {
  1832. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  1833. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  1834. dp_err("Failed to flush rx pkts for vdev %d\n",
  1835. vdev->vdev_id);
  1836. return ret;
  1837. }
  1838. }
  1839. return QDF_STATUS_SUCCESS;
  1840. }
  1841. static QDF_STATUS
  1842. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  1843. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  1844. struct dp_pdev *dp_pdev,
  1845. struct rx_desc_pool *rx_desc_pool)
  1846. {
  1847. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  1848. (nbuf_frag_info_t->virt_addr).nbuf =
  1849. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  1850. RX_BUFFER_RESERVATION,
  1851. rx_desc_pool->buf_alignment, FALSE);
  1852. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  1853. dp_err("nbuf alloc failed");
  1854. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  1855. return ret;
  1856. }
  1857. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  1858. (nbuf_frag_info_t->virt_addr).nbuf,
  1859. QDF_DMA_FROM_DEVICE,
  1860. rx_desc_pool->buf_size);
  1861. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1862. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  1863. dp_err("nbuf map failed");
  1864. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  1865. return ret;
  1866. }
  1867. nbuf_frag_info_t->paddr =
  1868. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  1869. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  1870. &nbuf_frag_info_t->paddr,
  1871. rx_desc_pool);
  1872. if (ret == QDF_STATUS_E_FAILURE) {
  1873. dp_err("nbuf check x86 failed");
  1874. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  1875. return ret;
  1876. }
  1877. return QDF_STATUS_SUCCESS;
  1878. }
  1879. QDF_STATUS
  1880. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  1881. struct dp_srng *dp_rxdma_srng,
  1882. struct rx_desc_pool *rx_desc_pool,
  1883. uint32_t num_req_buffers)
  1884. {
  1885. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  1886. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  1887. union dp_rx_desc_list_elem_t *next;
  1888. void *rxdma_ring_entry;
  1889. qdf_dma_addr_t paddr;
  1890. struct dp_rx_nbuf_frag_info *nf_info;
  1891. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  1892. uint32_t buffer_index, nbuf_ptrs_per_page;
  1893. qdf_nbuf_t nbuf;
  1894. QDF_STATUS ret;
  1895. int page_idx, total_pages;
  1896. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1897. union dp_rx_desc_list_elem_t *tail = NULL;
  1898. int sync_hw_ptr = 1;
  1899. uint32_t num_entries_avail;
  1900. if (qdf_unlikely(!dp_pdev)) {
  1901. dp_rx_err("%pK: pdev is null for mac_id = %d",
  1902. dp_soc, mac_id);
  1903. return QDF_STATUS_E_FAILURE;
  1904. }
  1905. if (qdf_unlikely(!rxdma_srng)) {
  1906. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1907. return QDF_STATUS_E_FAILURE;
  1908. }
  1909. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  1910. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1911. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  1912. rxdma_srng,
  1913. sync_hw_ptr);
  1914. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  1915. if (!num_entries_avail) {
  1916. dp_err("Num of available entries is zero, nothing to do");
  1917. return QDF_STATUS_E_NOMEM;
  1918. }
  1919. if (num_entries_avail < num_req_buffers)
  1920. num_req_buffers = num_entries_avail;
  1921. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  1922. num_req_buffers, &desc_list, &tail);
  1923. if (!nr_descs) {
  1924. dp_err("no free rx_descs in freelist");
  1925. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  1926. return QDF_STATUS_E_NOMEM;
  1927. }
  1928. dp_debug("got %u RX descs for driver attach", nr_descs);
  1929. /*
  1930. * Try to allocate pointers to the nbuf one page at a time.
  1931. * Take pointers that can fit in one page of memory and
  1932. * iterate through the total descriptors that need to be
  1933. * allocated in order of pages. Reuse the pointers that
  1934. * have been allocated to fit in one page across each
  1935. * iteration to index into the nbuf.
  1936. */
  1937. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  1938. /*
  1939. * Add an extra page to store the remainder if any
  1940. */
  1941. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  1942. total_pages++;
  1943. nf_info = qdf_mem_malloc(PAGE_SIZE);
  1944. if (!nf_info) {
  1945. dp_err("failed to allocate nbuf array");
  1946. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1947. QDF_BUG(0);
  1948. return QDF_STATUS_E_NOMEM;
  1949. }
  1950. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  1951. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  1952. qdf_mem_zero(nf_info, PAGE_SIZE);
  1953. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  1954. /*
  1955. * The last page of buffer pointers may not be required
  1956. * completely based on the number of descriptors. Below
  1957. * check will ensure we are allocating only the
  1958. * required number of descriptors.
  1959. */
  1960. if (nr_nbuf_total >= nr_descs)
  1961. break;
  1962. /* Flag is set while pdev rx_desc_pool initialization */
  1963. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  1964. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  1965. &nf_info[nr_nbuf], dp_pdev,
  1966. rx_desc_pool);
  1967. else
  1968. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  1969. &nf_info[nr_nbuf], dp_pdev,
  1970. rx_desc_pool);
  1971. if (QDF_IS_STATUS_ERROR(ret))
  1972. break;
  1973. nr_nbuf_total++;
  1974. }
  1975. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1976. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  1977. rxdma_ring_entry =
  1978. hal_srng_src_get_next(dp_soc->hal_soc,
  1979. rxdma_srng);
  1980. qdf_assert_always(rxdma_ring_entry);
  1981. next = desc_list->next;
  1982. paddr = nf_info[buffer_index].paddr;
  1983. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  1984. /* Flag is set while pdev rx_desc_pool initialization */
  1985. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  1986. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  1987. &nf_info[buffer_index]);
  1988. else
  1989. dp_rx_desc_prep(&desc_list->rx_desc,
  1990. &nf_info[buffer_index]);
  1991. desc_list->rx_desc.in_use = 1;
  1992. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  1993. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  1994. __func__,
  1995. RX_DESC_REPLENISHED);
  1996. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  1997. desc_list->rx_desc.cookie,
  1998. rx_desc_pool->owner);
  1999. dp_ipa_handle_rx_buf_smmu_mapping(
  2000. dp_soc, nbuf,
  2001. rx_desc_pool->buf_size,
  2002. true);
  2003. desc_list = next;
  2004. }
  2005. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2006. rxdma_srng, nr_nbuf, nr_nbuf);
  2007. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2008. }
  2009. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2010. qdf_mem_free(nf_info);
  2011. if (!nr_nbuf_total) {
  2012. dp_err("No nbuf's allocated");
  2013. QDF_BUG(0);
  2014. return QDF_STATUS_E_RESOURCES;
  2015. }
  2016. /* No need to count the number of bytes received during replenish.
  2017. * Therefore set replenish.pkts.bytes as 0.
  2018. */
  2019. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2020. return QDF_STATUS_SUCCESS;
  2021. }
  2022. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2023. /**
  2024. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2025. * monitor destination ring via frag.
  2026. *
  2027. * Enable this flag only for monitor destination buffer processing
  2028. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2029. * If flag is set then frag based function will be called for alloc,
  2030. * map, prep desc and free ops for desc buffer else normal nbuf based
  2031. * function will be called.
  2032. *
  2033. * @rx_desc_pool: Rx desc pool
  2034. * @is_mon_dest_desc: Is it for monitor dest buffer
  2035. *
  2036. * Return: None
  2037. */
  2038. #ifdef DP_RX_MON_MEM_FRAG
  2039. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2040. bool is_mon_dest_desc)
  2041. {
  2042. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2043. if (is_mon_dest_desc)
  2044. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2045. }
  2046. #else
  2047. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2048. bool is_mon_dest_desc)
  2049. {
  2050. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2051. if (is_mon_dest_desc)
  2052. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2053. }
  2054. #endif
  2055. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2056. /*
  2057. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2058. * pool
  2059. *
  2060. * @pdev: core txrx pdev context
  2061. *
  2062. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2063. * QDF_STATUS_E_NOMEM
  2064. */
  2065. QDF_STATUS
  2066. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2067. {
  2068. struct dp_soc *soc = pdev->soc;
  2069. uint32_t rxdma_entries;
  2070. uint32_t rx_sw_desc_num;
  2071. struct dp_srng *dp_rxdma_srng;
  2072. struct rx_desc_pool *rx_desc_pool;
  2073. uint32_t status = QDF_STATUS_SUCCESS;
  2074. int mac_for_pdev;
  2075. mac_for_pdev = pdev->lmac_id;
  2076. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2077. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2078. soc, mac_for_pdev);
  2079. return status;
  2080. }
  2081. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2082. rxdma_entries = dp_rxdma_srng->num_entries;
  2083. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2084. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2085. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2086. status = dp_rx_desc_pool_alloc(soc,
  2087. rx_sw_desc_num,
  2088. rx_desc_pool);
  2089. if (status != QDF_STATUS_SUCCESS)
  2090. return status;
  2091. return status;
  2092. }
  2093. /*
  2094. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2095. *
  2096. * @pdev: core txrx pdev context
  2097. */
  2098. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2099. {
  2100. int mac_for_pdev = pdev->lmac_id;
  2101. struct dp_soc *soc = pdev->soc;
  2102. struct rx_desc_pool *rx_desc_pool;
  2103. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2104. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2105. }
  2106. /*
  2107. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2108. *
  2109. * @pdev: core txrx pdev context
  2110. *
  2111. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2112. * QDF_STATUS_E_NOMEM
  2113. */
  2114. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2115. {
  2116. int mac_for_pdev = pdev->lmac_id;
  2117. struct dp_soc *soc = pdev->soc;
  2118. uint32_t rxdma_entries;
  2119. uint32_t rx_sw_desc_num;
  2120. struct dp_srng *dp_rxdma_srng;
  2121. struct rx_desc_pool *rx_desc_pool;
  2122. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2123. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2124. /**
  2125. * If NSS is enabled, rx_desc_pool is already filled.
  2126. * Hence, just disable desc_pool frag flag.
  2127. */
  2128. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2129. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2130. soc, mac_for_pdev);
  2131. return QDF_STATUS_SUCCESS;
  2132. }
  2133. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2134. return QDF_STATUS_E_NOMEM;
  2135. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2136. rxdma_entries = dp_rxdma_srng->num_entries;
  2137. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2138. rx_sw_desc_num =
  2139. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2140. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2141. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2142. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2143. /* Disable monitor dest processing via frag */
  2144. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2145. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2146. rx_sw_desc_num, rx_desc_pool);
  2147. return QDF_STATUS_SUCCESS;
  2148. }
  2149. /*
  2150. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2151. * @pdev: core txrx pdev context
  2152. *
  2153. * This function resets the freelist of rx descriptors and destroys locks
  2154. * associated with this list of descriptors.
  2155. */
  2156. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2157. {
  2158. int mac_for_pdev = pdev->lmac_id;
  2159. struct dp_soc *soc = pdev->soc;
  2160. struct rx_desc_pool *rx_desc_pool;
  2161. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2162. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2163. }
  2164. /*
  2165. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2166. *
  2167. * @pdev: core txrx pdev context
  2168. *
  2169. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2170. * QDF_STATUS_E_NOMEM
  2171. */
  2172. QDF_STATUS
  2173. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2174. {
  2175. int mac_for_pdev = pdev->lmac_id;
  2176. struct dp_soc *soc = pdev->soc;
  2177. struct dp_srng *dp_rxdma_srng;
  2178. struct rx_desc_pool *rx_desc_pool;
  2179. uint32_t rxdma_entries;
  2180. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2181. rxdma_entries = dp_rxdma_srng->num_entries;
  2182. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2183. /* Initialize RX buffer pool which will be
  2184. * used during low memory conditions
  2185. */
  2186. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2187. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2188. rx_desc_pool, rxdma_entries - 1);
  2189. }
  2190. /*
  2191. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2192. *
  2193. * @pdev: core txrx pdev context
  2194. */
  2195. void
  2196. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2197. {
  2198. int mac_for_pdev = pdev->lmac_id;
  2199. struct dp_soc *soc = pdev->soc;
  2200. struct rx_desc_pool *rx_desc_pool;
  2201. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2202. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2203. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2204. }
  2205. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2206. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2207. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2208. uint8_t *rx_tlv_hdr)
  2209. {
  2210. uint32_t l2_hdr_offset = 0;
  2211. uint16_t msdu_len = 0;
  2212. uint32_t skip_len;
  2213. l2_hdr_offset =
  2214. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2215. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2216. skip_len = l2_hdr_offset;
  2217. } else {
  2218. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2219. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2220. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2221. }
  2222. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2223. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2224. qdf_nbuf_pull_head(nbuf, skip_len);
  2225. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2226. dp_info("special frame, mpdu sn 0x%x",
  2227. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2228. qdf_nbuf_set_exc_frame(nbuf, 1);
  2229. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2230. nbuf, NULL);
  2231. return true;
  2232. }
  2233. return false;
  2234. }
  2235. #endif