hal_srng.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6750
  42. void hal_qca6750_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA5018
  45. void hal_qca5018_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef ENABLE_VERBOSE_DEBUG
  48. bool is_hal_verbose_debug_enabled;
  49. #endif
  50. #ifdef ENABLE_HAL_REG_WR_HISTORY
  51. struct hal_reg_write_fail_history hal_reg_wr_hist;
  52. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  53. uint32_t offset,
  54. uint32_t wr_val, uint32_t rd_val)
  55. {
  56. struct hal_reg_write_fail_entry *record;
  57. int idx;
  58. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  59. HAL_REG_WRITE_HIST_SIZE);
  60. record = &hal_soc->reg_wr_fail_hist->record[idx];
  61. record->timestamp = qdf_get_log_timestamp();
  62. record->reg_offset = offset;
  63. record->write_val = wr_val;
  64. record->read_val = rd_val;
  65. }
  66. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  67. {
  68. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  69. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  70. }
  71. #else
  72. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  73. {
  74. }
  75. #endif
  76. /**
  77. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  78. * @hal: hal_soc data structure
  79. * @ring_type: type enum describing the ring
  80. * @ring_num: which ring of the ring type
  81. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  82. *
  83. * Return: the ring id or -EINVAL if the ring does not exist.
  84. */
  85. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  86. int ring_num, int mac_id)
  87. {
  88. struct hal_hw_srng_config *ring_config =
  89. HAL_SRNG_CONFIG(hal, ring_type);
  90. int ring_id;
  91. if (ring_num >= ring_config->max_rings) {
  92. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  93. "%s: ring_num exceeded maximum no. of supported rings",
  94. __func__);
  95. /* TODO: This is a programming error. Assert if this happens */
  96. return -EINVAL;
  97. }
  98. if (ring_config->lmac_ring) {
  99. ring_id = ring_config->start_ring_id + ring_num +
  100. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  101. } else {
  102. ring_id = ring_config->start_ring_id + ring_num;
  103. }
  104. return ring_id;
  105. }
  106. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  107. {
  108. /* TODO: Should we allocate srng structures dynamically? */
  109. return &(hal->srng_list[ring_id]);
  110. }
  111. #define HP_OFFSET_IN_REG_START 1
  112. #define OFFSET_FROM_HP_TO_TP 4
  113. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  114. int shadow_config_index,
  115. int ring_type,
  116. int ring_num)
  117. {
  118. struct hal_srng *srng;
  119. int ring_id;
  120. struct hal_hw_srng_config *ring_config =
  121. HAL_SRNG_CONFIG(hal_soc, ring_type);
  122. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  123. if (ring_id < 0)
  124. return;
  125. srng = hal_get_srng(hal_soc, ring_id);
  126. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  127. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  128. + hal_soc->dev_base_addr;
  129. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  130. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  131. shadow_config_index);
  132. } else {
  133. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  134. + hal_soc->dev_base_addr;
  135. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  136. srng->u.src_ring.hp_addr,
  137. hal_soc->dev_base_addr, shadow_config_index);
  138. }
  139. }
  140. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  141. int ring_type,
  142. int ring_num)
  143. {
  144. uint32_t target_register;
  145. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  146. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  147. int shadow_config_index = hal->num_shadow_registers_configured;
  148. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  149. QDF_ASSERT(0);
  150. return QDF_STATUS_E_RESOURCES;
  151. }
  152. hal->num_shadow_registers_configured++;
  153. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  154. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  155. *ring_num);
  156. /* if the ring is a dst ring, we need to shadow the tail pointer */
  157. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  158. target_register += OFFSET_FROM_HP_TO_TP;
  159. hal->shadow_config[shadow_config_index].addr = target_register;
  160. /* update hp/tp addr in the hal_soc structure*/
  161. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  162. ring_num);
  163. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  164. target_register,
  165. SHADOW_REGISTER(shadow_config_index),
  166. shadow_config_index,
  167. ring_type, ring_num);
  168. return QDF_STATUS_SUCCESS;
  169. }
  170. qdf_export_symbol(hal_set_one_shadow_config);
  171. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  172. {
  173. int ring_type, ring_num;
  174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  175. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  176. struct hal_hw_srng_config *srng_config =
  177. &hal->hw_srng_table[ring_type];
  178. if (ring_type == CE_SRC ||
  179. ring_type == CE_DST ||
  180. ring_type == CE_DST_STATUS)
  181. continue;
  182. if (srng_config->lmac_ring)
  183. continue;
  184. for (ring_num = 0; ring_num < srng_config->max_rings;
  185. ring_num++)
  186. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  187. }
  188. return QDF_STATUS_SUCCESS;
  189. }
  190. qdf_export_symbol(hal_construct_shadow_config);
  191. void hal_get_shadow_config(void *hal_soc,
  192. struct pld_shadow_reg_v2_cfg **shadow_config,
  193. int *num_shadow_registers_configured)
  194. {
  195. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  196. *shadow_config = hal->shadow_config;
  197. *num_shadow_registers_configured =
  198. hal->num_shadow_registers_configured;
  199. }
  200. qdf_export_symbol(hal_get_shadow_config);
  201. static void hal_validate_shadow_register(struct hal_soc *hal,
  202. uint32_t *destination,
  203. uint32_t *shadow_address)
  204. {
  205. unsigned int index;
  206. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  207. int destination_ba_offset =
  208. ((char *)destination) - (char *)hal->dev_base_addr;
  209. index = shadow_address - shadow_0_offset;
  210. if (index >= MAX_SHADOW_REGISTERS) {
  211. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  212. "%s: index %x out of bounds", __func__, index);
  213. goto error;
  214. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  215. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  216. "%s: sanity check failure, expected %x, found %x",
  217. __func__, destination_ba_offset,
  218. hal->shadow_config[index].addr);
  219. goto error;
  220. }
  221. return;
  222. error:
  223. qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  224. __func__, hal->dev_base_addr, destination, shadow_address,
  225. shadow_0_offset, index);
  226. QDF_BUG(0);
  227. return;
  228. }
  229. static void hal_target_based_configure(struct hal_soc *hal)
  230. {
  231. /**
  232. * Indicate Initialization of srngs to avoid force wake
  233. * as umac power collapse is not enabled yet
  234. */
  235. hal->init_phase = true;
  236. switch (hal->target_type) {
  237. #ifdef QCA_WIFI_QCA6290
  238. case TARGET_TYPE_QCA6290:
  239. hal->use_register_windowing = true;
  240. hal_qca6290_attach(hal);
  241. break;
  242. #endif
  243. #ifdef QCA_WIFI_QCA6390
  244. case TARGET_TYPE_QCA6390:
  245. hal->use_register_windowing = true;
  246. hal_qca6390_attach(hal);
  247. break;
  248. #endif
  249. #ifdef QCA_WIFI_QCA6490
  250. case TARGET_TYPE_QCA6490:
  251. hal->use_register_windowing = true;
  252. hal_qca6490_attach(hal);
  253. hal->init_phase = false;
  254. break;
  255. #endif
  256. #ifdef QCA_WIFI_QCA6750
  257. case TARGET_TYPE_QCA6750:
  258. hal->use_register_windowing = true;
  259. hal->static_window_map = true;
  260. hal_qca6750_attach(hal);
  261. break;
  262. #endif
  263. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  264. case TARGET_TYPE_QCA8074:
  265. hal_qca8074_attach(hal);
  266. break;
  267. #endif
  268. #if defined(QCA_WIFI_QCA8074V2)
  269. case TARGET_TYPE_QCA8074V2:
  270. hal_qca8074v2_attach(hal);
  271. break;
  272. #endif
  273. #if defined(QCA_WIFI_QCA6018)
  274. case TARGET_TYPE_QCA6018:
  275. hal_qca8074v2_attach(hal);
  276. break;
  277. #endif
  278. #ifdef QCA_WIFI_QCN9000
  279. case TARGET_TYPE_QCN9000:
  280. hal->use_register_windowing = true;
  281. /*
  282. * Static window map is enabled for qcn9000 to use 2mb bar
  283. * size and use multiple windows to write into registers.
  284. */
  285. hal->static_window_map = true;
  286. hal_qcn9000_attach(hal);
  287. break;
  288. #endif
  289. #ifdef QCA_WIFI_QCA5018
  290. case TARGET_TYPE_QCA5018:
  291. hal->use_register_windowing = true;
  292. hal->static_window_map = true;
  293. hal_qca5018_attach(hal);
  294. break;
  295. #endif
  296. default:
  297. break;
  298. }
  299. }
  300. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  301. {
  302. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  303. struct hif_target_info *tgt_info =
  304. hif_get_target_info_handle(hal_soc->hif_handle);
  305. return tgt_info->target_type;
  306. }
  307. qdf_export_symbol(hal_get_target_type);
  308. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  309. #ifdef MEMORY_DEBUG
  310. /*
  311. * Length of the queue(array) used to hold delayed register writes.
  312. * Must be a multiple of 2.
  313. */
  314. #define HAL_REG_WRITE_QUEUE_LEN 128
  315. #else
  316. #define HAL_REG_WRITE_QUEUE_LEN 32
  317. #endif
  318. /**
  319. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  320. * @hal: hal_soc pointer
  321. *
  322. * Return: true if throughput is high, else false.
  323. */
  324. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  325. {
  326. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  327. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  328. }
  329. /**
  330. * hal_process_reg_write_q_elem() - process a regiter write queue element
  331. * @hal: hal_soc pointer
  332. * @q_elem: pointer to hal regiter write queue element
  333. *
  334. * Return: The value which was written to the address
  335. */
  336. static uint32_t
  337. hal_process_reg_write_q_elem(struct hal_soc *hal,
  338. struct hal_reg_write_q_elem *q_elem)
  339. {
  340. struct hal_srng *srng = q_elem->srng;
  341. uint32_t write_val;
  342. SRNG_LOCK(&srng->lock);
  343. srng->reg_write_in_progress = false;
  344. srng->wstats.dequeues++;
  345. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  346. q_elem->dequeue_val = srng->u.src_ring.hp;
  347. hal_write_address_32_mb(hal,
  348. srng->u.src_ring.hp_addr,
  349. srng->u.src_ring.hp, false);
  350. write_val = srng->u.src_ring.hp;
  351. } else {
  352. q_elem->dequeue_val = srng->u.dst_ring.tp;
  353. hal_write_address_32_mb(hal,
  354. srng->u.dst_ring.tp_addr,
  355. srng->u.dst_ring.tp, false);
  356. write_val = srng->u.dst_ring.tp;
  357. }
  358. q_elem->valid = 0;
  359. SRNG_UNLOCK(&srng->lock);
  360. return write_val;
  361. }
  362. /**
  363. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  364. * @hal: hal_soc pointer
  365. * @delay: delay in us
  366. *
  367. * Return: None
  368. */
  369. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  370. uint64_t delay_us)
  371. {
  372. uint32_t *hist;
  373. hist = hal->stats.wstats.sched_delay;
  374. if (delay_us < 100)
  375. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  376. else if (delay_us < 1000)
  377. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  378. else if (delay_us < 5000)
  379. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  380. else
  381. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  382. }
  383. /**
  384. * hal_reg_write_work() - Worker to process delayed writes
  385. * @arg: hal_soc pointer
  386. *
  387. * Return: None
  388. */
  389. static void hal_reg_write_work(void *arg)
  390. {
  391. int32_t q_depth, write_val;
  392. struct hal_soc *hal = arg;
  393. struct hal_reg_write_q_elem *q_elem;
  394. uint64_t delta_us;
  395. uint8_t ring_id;
  396. uint32_t *addr;
  397. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  398. if (!q_elem->valid)
  399. return;
  400. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  401. if (q_depth > hal->stats.wstats.max_q_depth)
  402. hal->stats.wstats.max_q_depth = q_depth;
  403. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  404. hal->stats.wstats.prevent_l1_fails++;
  405. return;
  406. }
  407. while (q_elem->valid) {
  408. q_elem->dequeue_time = qdf_get_log_timestamp();
  409. ring_id = q_elem->srng->ring_id;
  410. addr = q_elem->addr;
  411. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  412. q_elem->enqueue_time);
  413. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  414. hal->stats.wstats.dequeues++;
  415. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  416. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  417. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  418. hal->read_idx, ring_id, addr, write_val, delta_us);
  419. qdf_atomic_dec(&hal->active_work_cnt);
  420. hal->read_idx = (hal->read_idx + 1) &
  421. (HAL_REG_WRITE_QUEUE_LEN - 1);
  422. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  423. }
  424. hif_allow_link_low_power_states(hal->hif_handle);
  425. }
  426. /**
  427. * hal_flush_reg_write_work() - flush all writes from regiter write queue
  428. * @arg: hal_soc pointer
  429. *
  430. * Return: None
  431. */
  432. static inline void hal_flush_reg_write_work(struct hal_soc *hal)
  433. {
  434. qdf_cancel_work(&hal->reg_write_work);
  435. qdf_flush_work(&hal->reg_write_work);
  436. qdf_flush_workqueue(0, hal->reg_write_wq);
  437. }
  438. /**
  439. * hal_reg_write_enqueue() - enqueue register writes into kworker
  440. * @hal_soc: hal_soc pointer
  441. * @srng: srng pointer
  442. * @addr: iomem address of regiter
  443. * @value: value to be written to iomem address
  444. *
  445. * This function executes from within the SRNG LOCK
  446. *
  447. * Return: None
  448. */
  449. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  450. struct hal_srng *srng,
  451. void __iomem *addr,
  452. uint32_t value)
  453. {
  454. struct hal_reg_write_q_elem *q_elem;
  455. uint32_t write_idx;
  456. if (srng->reg_write_in_progress) {
  457. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  458. srng->ring_id, addr, value);
  459. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  460. srng->wstats.coalesces++;
  461. return;
  462. }
  463. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  464. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  465. q_elem = &hal_soc->reg_write_queue[write_idx];
  466. if (q_elem->valid) {
  467. hal_err("queue full");
  468. QDF_BUG(0);
  469. return;
  470. }
  471. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  472. srng->wstats.enqueues++;
  473. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  474. q_elem->srng = srng;
  475. q_elem->addr = addr;
  476. q_elem->enqueue_val = value;
  477. q_elem->enqueue_time = qdf_get_log_timestamp();
  478. /*
  479. * Before the valid flag is set to true, all the other
  480. * fields in the q_elem needs to be updated in memory.
  481. * Else there is a chance that the dequeuing worker thread
  482. * might read stale entries and process incorrect srng.
  483. */
  484. qdf_wmb();
  485. q_elem->valid = true;
  486. srng->reg_write_in_progress = true;
  487. qdf_atomic_inc(&hal_soc->active_work_cnt);
  488. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  489. write_idx, srng->ring_id, addr, value);
  490. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  491. &hal_soc->reg_write_work);
  492. }
  493. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  494. struct hal_srng *srng,
  495. void __iomem *addr,
  496. uint32_t value)
  497. {
  498. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  499. hal_is_reg_write_tput_level_high(hal_soc)) {
  500. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  501. srng->wstats.direct++;
  502. hal_write_address_32_mb(hal_soc, addr, value, false);
  503. } else {
  504. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  505. }
  506. }
  507. /**
  508. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  509. * @hal_soc: hal_soc pointer
  510. *
  511. * Initialize main data structures to process register writes in a delayed
  512. * workqueue.
  513. *
  514. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  515. */
  516. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  517. {
  518. hal->reg_write_wq =
  519. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  520. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  521. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  522. sizeof(*hal->reg_write_queue));
  523. if (!hal->reg_write_queue) {
  524. hal_err("unable to allocate memory");
  525. QDF_BUG(0);
  526. return QDF_STATUS_E_NOMEM;
  527. }
  528. /* Initial value of indices */
  529. hal->read_idx = 0;
  530. qdf_atomic_set(&hal->write_idx, -1);
  531. return QDF_STATUS_SUCCESS;
  532. }
  533. /**
  534. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  535. * @hal_soc: hal_soc pointer
  536. *
  537. * De-initialize main data structures to process register writes in a delayed
  538. * workqueue.
  539. *
  540. * Return: None
  541. */
  542. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  543. {
  544. hal_flush_reg_write_work(hal);
  545. qdf_destroy_workqueue(0, hal->reg_write_wq);
  546. qdf_mem_free(hal->reg_write_queue);
  547. }
  548. static inline
  549. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  550. char *buf, qdf_size_t size)
  551. {
  552. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  553. srng->wstats.enqueues, srng->wstats.dequeues,
  554. srng->wstats.coalesces, srng->wstats.direct);
  555. return buf;
  556. }
  557. /* bytes for local buffer */
  558. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  559. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  560. {
  561. struct hal_srng *srng;
  562. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  563. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  564. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  565. hal_debug("SW2TCL1: %s",
  566. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  567. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  568. hal_debug("WBM2SW0: %s",
  569. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  570. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  571. hal_debug("REO2SW1: %s",
  572. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  573. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  574. hal_debug("REO2SW2: %s",
  575. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  576. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  577. hal_debug("REO2SW3: %s",
  578. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  579. }
  580. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  581. {
  582. uint32_t *hist;
  583. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  584. hist = hal->stats.wstats.sched_delay;
  585. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  586. qdf_atomic_read(&hal->stats.wstats.enqueues),
  587. hal->stats.wstats.dequeues,
  588. qdf_atomic_read(&hal->stats.wstats.coalesces),
  589. qdf_atomic_read(&hal->stats.wstats.direct),
  590. qdf_atomic_read(&hal->stats.wstats.q_depth),
  591. hal->stats.wstats.max_q_depth,
  592. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  593. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  594. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  595. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  596. }
  597. int hal_get_reg_write_pending_work(void *hal_soc)
  598. {
  599. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  600. return qdf_atomic_read(&hal->active_work_cnt);
  601. }
  602. #else
  603. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  604. {
  605. return QDF_STATUS_SUCCESS;
  606. }
  607. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  608. {
  609. }
  610. #endif
  611. /**
  612. * hal_attach - Initialize HAL layer
  613. * @hif_handle: Opaque HIF handle
  614. * @qdf_dev: QDF device
  615. *
  616. * Return: Opaque HAL SOC handle
  617. * NULL on failure (if given ring is not available)
  618. *
  619. * This function should be called as part of HIF initialization (for accessing
  620. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  621. *
  622. */
  623. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  624. {
  625. struct hal_soc *hal;
  626. int i;
  627. hal = qdf_mem_malloc(sizeof(*hal));
  628. if (!hal) {
  629. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  630. "%s: hal_soc allocation failed", __func__);
  631. goto fail0;
  632. }
  633. hal->hif_handle = hif_handle;
  634. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  635. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  636. hal->qdf_dev = qdf_dev;
  637. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  638. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  639. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  640. if (!hal->shadow_rdptr_mem_paddr) {
  641. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  642. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  643. __func__);
  644. goto fail1;
  645. }
  646. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  647. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  648. hal->shadow_wrptr_mem_vaddr =
  649. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  650. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  651. &(hal->shadow_wrptr_mem_paddr));
  652. if (!hal->shadow_wrptr_mem_vaddr) {
  653. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  654. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  655. __func__);
  656. goto fail2;
  657. }
  658. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  659. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  660. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  661. hal->srng_list[i].initialized = 0;
  662. hal->srng_list[i].ring_id = i;
  663. }
  664. qdf_spinlock_create(&hal->register_access_lock);
  665. hal->register_window = 0;
  666. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  667. hal_target_based_configure(hal);
  668. hal_reg_write_fail_history_init(hal);
  669. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  670. qdf_atomic_init(&hal->active_work_cnt);
  671. hal_delayed_reg_write_init(hal);
  672. return (void *)hal;
  673. fail2:
  674. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  675. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  676. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  677. fail1:
  678. qdf_mem_free(hal);
  679. fail0:
  680. return NULL;
  681. }
  682. qdf_export_symbol(hal_attach);
  683. /**
  684. * hal_mem_info - Retrieve hal memory base address
  685. *
  686. * @hal_soc: Opaque HAL SOC handle
  687. * @mem: pointer to structure to be updated with hal mem info
  688. */
  689. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  690. {
  691. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  692. mem->dev_base_addr = (void *)hal->dev_base_addr;
  693. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  694. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  695. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  696. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  697. hif_read_phy_mem_base((void *)hal->hif_handle,
  698. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  699. return;
  700. }
  701. qdf_export_symbol(hal_get_meminfo);
  702. /**
  703. * hal_detach - Detach HAL layer
  704. * @hal_soc: HAL SOC handle
  705. *
  706. * Return: Opaque HAL SOC handle
  707. * NULL on failure (if given ring is not available)
  708. *
  709. * This function should be called as part of HIF initialization (for accessing
  710. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  711. *
  712. */
  713. extern void hal_detach(void *hal_soc)
  714. {
  715. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  716. hal_delayed_reg_write_deinit(hal);
  717. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  718. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  719. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  720. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  721. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  722. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  723. qdf_minidump_remove(hal);
  724. qdf_mem_free(hal);
  725. return;
  726. }
  727. qdf_export_symbol(hal_detach);
  728. /**
  729. * hal_ce_dst_setup - Initialize CE destination ring registers
  730. * @hal_soc: HAL SOC handle
  731. * @srng: SRNG ring pointer
  732. */
  733. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  734. int ring_num)
  735. {
  736. uint32_t reg_val = 0;
  737. uint32_t reg_addr;
  738. struct hal_hw_srng_config *ring_config =
  739. HAL_SRNG_CONFIG(hal, CE_DST);
  740. /* set DEST_MAX_LENGTH according to ce assignment */
  741. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  742. ring_config->reg_start[R0_INDEX] +
  743. (ring_num * ring_config->reg_size[R0_INDEX]));
  744. reg_val = HAL_REG_READ(hal, reg_addr);
  745. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  746. reg_val |= srng->u.dst_ring.max_buffer_length &
  747. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  748. HAL_REG_WRITE(hal, reg_addr, reg_val);
  749. if (srng->prefetch_timer) {
  750. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  751. ring_config->reg_start[R0_INDEX] +
  752. (ring_num * ring_config->reg_size[R0_INDEX]));
  753. reg_val = HAL_REG_READ(hal, reg_addr);
  754. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  755. reg_val |= srng->prefetch_timer;
  756. HAL_REG_WRITE(hal, reg_addr, reg_val);
  757. reg_val = HAL_REG_READ(hal, reg_addr);
  758. }
  759. }
  760. /**
  761. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  762. * @hal: HAL SOC handle
  763. * @read: boolean value to indicate if read or write
  764. * @ix0: pointer to store IX0 reg value
  765. * @ix1: pointer to store IX1 reg value
  766. * @ix2: pointer to store IX2 reg value
  767. * @ix3: pointer to store IX3 reg value
  768. */
  769. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  770. uint32_t *ix0, uint32_t *ix1,
  771. uint32_t *ix2, uint32_t *ix3)
  772. {
  773. uint32_t reg_offset;
  774. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  775. if (read) {
  776. if (ix0) {
  777. reg_offset =
  778. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  779. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  780. *ix0 = HAL_REG_READ(hal, reg_offset);
  781. }
  782. if (ix1) {
  783. reg_offset =
  784. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  785. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  786. *ix1 = HAL_REG_READ(hal, reg_offset);
  787. }
  788. if (ix2) {
  789. reg_offset =
  790. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  791. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  792. *ix2 = HAL_REG_READ(hal, reg_offset);
  793. }
  794. if (ix3) {
  795. reg_offset =
  796. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  797. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  798. *ix3 = HAL_REG_READ(hal, reg_offset);
  799. }
  800. } else {
  801. if (ix0) {
  802. reg_offset =
  803. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  804. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  805. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
  806. }
  807. if (ix1) {
  808. reg_offset =
  809. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  810. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  811. HAL_REG_WRITE(hal, reg_offset, *ix1);
  812. }
  813. if (ix2) {
  814. reg_offset =
  815. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  816. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  817. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
  818. }
  819. if (ix3) {
  820. reg_offset =
  821. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  822. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  823. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
  824. }
  825. }
  826. }
  827. /**
  828. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  829. * @srng: sring pointer
  830. * @paddr: physical address
  831. */
  832. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  833. uint64_t paddr)
  834. {
  835. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  836. paddr & 0xffffffff);
  837. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  838. paddr >> 32);
  839. }
  840. /**
  841. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  842. * @srng: sring pointer
  843. * @vaddr: virtual address
  844. */
  845. void hal_srng_dst_init_hp(struct hal_srng *srng,
  846. uint32_t *vaddr)
  847. {
  848. if (!srng)
  849. return;
  850. srng->u.dst_ring.hp_addr = vaddr;
  851. SRNG_DST_REG_WRITE_CONFIRM(srng, HP, srng->u.dst_ring.cached_hp);
  852. if (vaddr) {
  853. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  854. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  855. "hp_addr=%pK, cached_hp=%d, hp=%d",
  856. (void *)srng->u.dst_ring.hp_addr,
  857. srng->u.dst_ring.cached_hp,
  858. *srng->u.dst_ring.hp_addr);
  859. }
  860. }
  861. /**
  862. * hal_srng_hw_init - Private function to initialize SRNG HW
  863. * @hal_soc: HAL SOC handle
  864. * @srng: SRNG ring pointer
  865. */
  866. static inline void hal_srng_hw_init(struct hal_soc *hal,
  867. struct hal_srng *srng)
  868. {
  869. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  870. hal_srng_src_hw_init(hal, srng);
  871. else
  872. hal_srng_dst_hw_init(hal, srng);
  873. }
  874. #ifdef CONFIG_SHADOW_V2
  875. #define ignore_shadow false
  876. #define CHECK_SHADOW_REGISTERS true
  877. #else
  878. #define ignore_shadow true
  879. #define CHECK_SHADOW_REGISTERS false
  880. #endif
  881. /**
  882. * hal_srng_setup - Initialize HW SRNG ring.
  883. * @hal_soc: Opaque HAL SOC handle
  884. * @ring_type: one of the types from hal_ring_type
  885. * @ring_num: Ring number if there are multiple rings of same type (staring
  886. * from 0)
  887. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  888. * @ring_params: SRNG ring params in hal_srng_params structure.
  889. * Callers are expected to allocate contiguous ring memory of size
  890. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  891. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  892. * hal_srng_params structure. Ring base address should be 8 byte aligned
  893. * and size of each ring entry should be queried using the API
  894. * hal_srng_get_entrysize
  895. *
  896. * Return: Opaque pointer to ring on success
  897. * NULL on failure (if given ring is not available)
  898. */
  899. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  900. int mac_id, struct hal_srng_params *ring_params)
  901. {
  902. int ring_id;
  903. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  904. struct hal_srng *srng;
  905. struct hal_hw_srng_config *ring_config =
  906. HAL_SRNG_CONFIG(hal, ring_type);
  907. void *dev_base_addr;
  908. int i;
  909. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  910. if (ring_id < 0)
  911. return NULL;
  912. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  913. srng = hal_get_srng(hal_soc, ring_id);
  914. if (srng->initialized) {
  915. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  916. return NULL;
  917. }
  918. dev_base_addr = hal->dev_base_addr;
  919. srng->ring_id = ring_id;
  920. srng->ring_dir = ring_config->ring_dir;
  921. srng->ring_base_paddr = ring_params->ring_base_paddr;
  922. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  923. srng->entry_size = ring_config->entry_size;
  924. srng->num_entries = ring_params->num_entries;
  925. srng->ring_size = srng->num_entries * srng->entry_size;
  926. srng->ring_size_mask = srng->ring_size - 1;
  927. srng->msi_addr = ring_params->msi_addr;
  928. srng->msi_data = ring_params->msi_data;
  929. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  930. srng->intr_batch_cntr_thres_entries =
  931. ring_params->intr_batch_cntr_thres_entries;
  932. srng->prefetch_timer = ring_params->prefetch_timer;
  933. srng->hal_soc = hal_soc;
  934. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  935. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  936. + (ring_num * ring_config->reg_size[i]);
  937. }
  938. /* Zero out the entire ring memory */
  939. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  940. srng->num_entries) << 2);
  941. srng->flags = ring_params->flags;
  942. #ifdef BIG_ENDIAN_HOST
  943. /* TODO: See if we should we get these flags from caller */
  944. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  945. srng->flags |= HAL_SRNG_MSI_SWAP;
  946. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  947. #endif
  948. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  949. srng->u.src_ring.hp = 0;
  950. srng->u.src_ring.reap_hp = srng->ring_size -
  951. srng->entry_size;
  952. srng->u.src_ring.tp_addr =
  953. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  954. srng->u.src_ring.low_threshold =
  955. ring_params->low_threshold * srng->entry_size;
  956. if (ring_config->lmac_ring) {
  957. /* For LMAC rings, head pointer updates will be done
  958. * through FW by writing to a shared memory location
  959. */
  960. srng->u.src_ring.hp_addr =
  961. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  962. HAL_SRNG_LMAC1_ID_START]);
  963. srng->flags |= HAL_SRNG_LMAC_RING;
  964. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  965. srng->u.src_ring.hp_addr =
  966. hal_get_window_address(hal,
  967. SRNG_SRC_ADDR(srng, HP));
  968. if (CHECK_SHADOW_REGISTERS) {
  969. QDF_TRACE(QDF_MODULE_ID_TXRX,
  970. QDF_TRACE_LEVEL_ERROR,
  971. "%s: Ring (%d, %d) missing shadow config",
  972. __func__, ring_type, ring_num);
  973. }
  974. } else {
  975. hal_validate_shadow_register(hal,
  976. SRNG_SRC_ADDR(srng, HP),
  977. srng->u.src_ring.hp_addr);
  978. }
  979. } else {
  980. /* During initialization loop count in all the descriptors
  981. * will be set to zero, and HW will set it to 1 on completing
  982. * descriptor update in first loop, and increments it by 1 on
  983. * subsequent loops (loop count wraps around after reaching
  984. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  985. * loop count in descriptors updated by HW (to be processed
  986. * by SW).
  987. */
  988. srng->u.dst_ring.loop_cnt = 1;
  989. srng->u.dst_ring.tp = 0;
  990. srng->u.dst_ring.hp_addr =
  991. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  992. if (ring_config->lmac_ring) {
  993. /* For LMAC rings, tail pointer updates will be done
  994. * through FW by writing to a shared memory location
  995. */
  996. srng->u.dst_ring.tp_addr =
  997. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  998. HAL_SRNG_LMAC1_ID_START]);
  999. srng->flags |= HAL_SRNG_LMAC_RING;
  1000. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1001. srng->u.dst_ring.tp_addr =
  1002. hal_get_window_address(hal,
  1003. SRNG_DST_ADDR(srng, TP));
  1004. if (CHECK_SHADOW_REGISTERS) {
  1005. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1006. QDF_TRACE_LEVEL_ERROR,
  1007. "%s: Ring (%d, %d) missing shadow config",
  1008. __func__, ring_type, ring_num);
  1009. }
  1010. } else {
  1011. hal_validate_shadow_register(hal,
  1012. SRNG_DST_ADDR(srng, TP),
  1013. srng->u.dst_ring.tp_addr);
  1014. }
  1015. }
  1016. if (!(ring_config->lmac_ring)) {
  1017. hal_srng_hw_init(hal, srng);
  1018. if (ring_type == CE_DST) {
  1019. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1020. hal_ce_dst_setup(hal, srng, ring_num);
  1021. }
  1022. }
  1023. SRNG_LOCK_INIT(&srng->lock);
  1024. srng->srng_event = 0;
  1025. srng->initialized = true;
  1026. return (void *)srng;
  1027. }
  1028. qdf_export_symbol(hal_srng_setup);
  1029. /**
  1030. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1031. * @hal_soc: Opaque HAL SOC handle
  1032. * @hal_srng: Opaque HAL SRNG pointer
  1033. */
  1034. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1035. {
  1036. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1037. SRNG_LOCK_DESTROY(&srng->lock);
  1038. srng->initialized = 0;
  1039. }
  1040. qdf_export_symbol(hal_srng_cleanup);
  1041. /**
  1042. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1043. * @hal_soc: Opaque HAL SOC handle
  1044. * @ring_type: one of the types from hal_ring_type
  1045. *
  1046. */
  1047. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1048. {
  1049. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1050. struct hal_hw_srng_config *ring_config =
  1051. HAL_SRNG_CONFIG(hal, ring_type);
  1052. return ring_config->entry_size << 2;
  1053. }
  1054. qdf_export_symbol(hal_srng_get_entrysize);
  1055. /**
  1056. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1057. * @hal_soc: Opaque HAL SOC handle
  1058. * @ring_type: one of the types from hal_ring_type
  1059. *
  1060. * Return: Maximum number of entries for the given ring_type
  1061. */
  1062. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1063. {
  1064. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1065. struct hal_hw_srng_config *ring_config =
  1066. HAL_SRNG_CONFIG(hal, ring_type);
  1067. return ring_config->max_size / ring_config->entry_size;
  1068. }
  1069. qdf_export_symbol(hal_srng_max_entries);
  1070. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1071. {
  1072. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1073. struct hal_hw_srng_config *ring_config =
  1074. HAL_SRNG_CONFIG(hal, ring_type);
  1075. return ring_config->ring_dir;
  1076. }
  1077. /**
  1078. * hal_srng_dump - Dump ring status
  1079. * @srng: hal srng pointer
  1080. */
  1081. void hal_srng_dump(struct hal_srng *srng)
  1082. {
  1083. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1084. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1085. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1086. srng->u.src_ring.hp,
  1087. srng->u.src_ring.reap_hp,
  1088. *srng->u.src_ring.tp_addr,
  1089. srng->u.src_ring.cached_tp);
  1090. } else {
  1091. hal_debug("=== DST RING %d ===", srng->ring_id);
  1092. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1093. srng->u.dst_ring.tp,
  1094. *srng->u.dst_ring.hp_addr,
  1095. srng->u.dst_ring.cached_hp,
  1096. srng->u.dst_ring.loop_cnt);
  1097. }
  1098. }
  1099. /**
  1100. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1101. *
  1102. * @hal_soc: Opaque HAL SOC handle
  1103. * @hal_ring: Ring pointer (Source or Destination ring)
  1104. * @ring_params: SRNG parameters will be returned through this structure
  1105. */
  1106. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1107. hal_ring_handle_t hal_ring_hdl,
  1108. struct hal_srng_params *ring_params)
  1109. {
  1110. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1111. int i =0;
  1112. ring_params->ring_id = srng->ring_id;
  1113. ring_params->ring_dir = srng->ring_dir;
  1114. ring_params->entry_size = srng->entry_size;
  1115. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1116. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1117. ring_params->num_entries = srng->num_entries;
  1118. ring_params->msi_addr = srng->msi_addr;
  1119. ring_params->msi_data = srng->msi_data;
  1120. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1121. ring_params->intr_batch_cntr_thres_entries =
  1122. srng->intr_batch_cntr_thres_entries;
  1123. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1124. ring_params->flags = srng->flags;
  1125. ring_params->ring_id = srng->ring_id;
  1126. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1127. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1128. }
  1129. qdf_export_symbol(hal_get_srng_params);
  1130. #ifdef FORCE_WAKE
  1131. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1132. {
  1133. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1134. hal_soc->init_phase = init_phase;
  1135. }
  1136. #endif /* FORCE_WAKE */