Files
android_kernel_samsung_sm86…/hif/src/ce/ce_tasklet.c
Yu Wang bfebabf7bd qcacmn: extend hif tasklet latency detection
Extend the feature to detect tasklet latency for all CEs.
And also introduce a build flag
DETECTION_LATENCY_TASKLET_MASK to control the enablement
of each, set bit-X to enable detection for CE-X, the
default value is 0x84(BIT(2) | BIT(7)).

Change-Id: I2874d1d50fc5febbf028ebb48ba64e11977c8c34
CRs-Fixed: 3474314
2023-05-24 03:28:48 -07:00

1093 linhas
28 KiB
C

/*
* Copyright (c) 2015-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/if_arp.h>
#include "qdf_lock.h"
#include "qdf_types.h"
#include "qdf_status.h"
#include "regtable.h"
#include "hif.h"
#include "hif_io32.h"
#include "ce_main.h"
#include "ce_api.h"
#include "ce_reg.h"
#include "ce_internal.h"
#include "ce_tasklet.h"
#include "pld_common.h"
#include "hif_debug.h"
#include "hif_napi.h"
/**
* struct tasklet_work
*
* @id: ce_id
* @data: data
* @reg_work: work
*/
struct tasklet_work {
enum ce_id_type id;
void *data;
qdf_work_t reg_work;
};
/**
* ce_tasklet_schedule() - schedule CE tasklet
* @tasklet_entry: ce tasklet entry
*
* Return: None
*/
static inline void ce_tasklet_schedule(struct ce_tasklet_entry *tasklet_entry)
{
if (tasklet_entry->hi_tasklet_ce)
tasklet_hi_schedule(&tasklet_entry->intr_tq);
else
tasklet_schedule(&tasklet_entry->intr_tq);
}
/**
* reschedule_ce_tasklet_work_handler() - reschedule work
* @work: struct work_struct
*
* Return: N/A
*/
static void reschedule_ce_tasklet_work_handler(struct work_struct *work)
{
qdf_work_t *reg_work = qdf_container_of(work, qdf_work_t, work);
struct tasklet_work *ce_work = qdf_container_of(reg_work,
struct tasklet_work,
reg_work);
struct hif_softc *scn = ce_work->data;
struct HIF_CE_state *hif_ce_state;
if (!scn) {
hif_err("tasklet scn is null");
return;
}
hif_ce_state = HIF_GET_CE_STATE(scn);
if (scn->hif_init_done == false) {
hif_err("wlan driver is unloaded");
return;
}
if (hif_ce_state->tasklets[ce_work->id].inited)
ce_tasklet_schedule(&hif_ce_state->tasklets[ce_work->id]);
}
static struct tasklet_work tasklet_workers[CE_ID_MAX];
/**
* init_tasklet_work() - init_tasklet_work
* @work: struct work_struct
* @work_handler: work_handler
*
* Return: N/A
*/
static void init_tasklet_work(struct work_struct *work,
work_func_t work_handler)
{
INIT_WORK(work, work_handler);
}
/**
* init_tasklet_worker_by_ceid() - init_tasklet_workers
* @scn: HIF Context
* @ce_id: copy engine ID
*
* Return: N/A
*/
void init_tasklet_worker_by_ceid(struct hif_opaque_softc *scn, int ce_id)
{
tasklet_workers[ce_id].id = ce_id;
tasklet_workers[ce_id].data = scn;
init_tasklet_work(&tasklet_workers[ce_id].reg_work.work,
reschedule_ce_tasklet_work_handler);
}
/**
* deinit_tasklet_workers() - deinit_tasklet_workers
* @scn: HIF Context
*
* Return: N/A
*/
void deinit_tasklet_workers(struct hif_opaque_softc *scn)
{
u32 id;
for (id = 0; id < CE_ID_MAX; id++)
qdf_cancel_work(&tasklet_workers[id].reg_work);
}
#ifdef CE_TASKLET_DEBUG_ENABLE
/**
* hif_record_tasklet_exec_entry_ts() - Record ce tasklet execution
* entry time
* @scn: hif_softc
* @ce_id: ce_id
*
* Return: None
*/
static inline void
hif_record_tasklet_exec_entry_ts(struct hif_softc *scn, uint8_t ce_id)
{
struct HIF_CE_state *hif_ce_state = HIF_GET_CE_STATE(scn);
hif_ce_state->stats.tasklet_exec_entry_ts[ce_id] =
qdf_get_log_timestamp_usecs();
}
/**
* hif_record_tasklet_sched_entry_ts() - Record ce tasklet scheduled
* entry time
* @scn: hif_softc
* @ce_id: ce_id
*
* Return: None
*/
static inline void
hif_record_tasklet_sched_entry_ts(struct hif_softc *scn, uint8_t ce_id)
{
struct HIF_CE_state *hif_ce_state = HIF_GET_CE_STATE(scn);
hif_ce_state->stats.tasklet_sched_entry_ts[ce_id] =
qdf_get_log_timestamp_usecs();
}
/**
* hif_ce_latency_stats() - Display ce latency information
* @hif_ctx: hif_softc struct
*
* Return: None
*/
static void
hif_ce_latency_stats(struct hif_softc *hif_ctx)
{
uint8_t i, j;
uint32_t index, start_index;
uint64_t secs, usecs;
static const char * const buck_str[] = {"0 - 0.5", "0.5 - 1", "1 - 2",
"2 - 5", "5 - 10", " > 10"};
struct HIF_CE_state *hif_ce_state = HIF_GET_CE_STATE(hif_ctx);
struct ce_stats *stats = &hif_ce_state->stats;
hif_err("\tCE TASKLET ARRIVAL AND EXECUTION STATS");
for (i = 0; i < CE_COUNT_MAX; i++) {
hif_nofl_err("\n\t\tCE Ring %d Tasklet Execution Bucket", i);
for (j = 0; j < CE_BUCKET_MAX; j++) {
qdf_log_timestamp_to_secs(
stats->ce_tasklet_exec_last_update[i][j],
&secs, &usecs);
hif_nofl_err("\t Bucket %sms :%llu\t last update:% 8lld.%06lld",
buck_str[j],
stats->ce_tasklet_exec_bucket[i][j],
secs, usecs);
}
hif_nofl_err("\n\t\tCE Ring %d Tasklet Scheduled Bucket", i);
for (j = 0; j < CE_BUCKET_MAX; j++) {
qdf_log_timestamp_to_secs(
stats->ce_tasklet_sched_last_update[i][j],
&secs, &usecs);
hif_nofl_err("\t Bucket %sms :%llu\t last update :% 8lld.%06lld",
buck_str[j],
stats->ce_tasklet_sched_bucket[i][j],
secs, usecs);
}
hif_nofl_err("\n\t\t CE RING %d Last %d time records",
i, HIF_REQUESTED_EVENTS);
index = stats->record_index[i];
start_index = stats->record_index[i];
for (j = 0; j < HIF_REQUESTED_EVENTS; j++) {
hif_nofl_err("\tExecution time: %lluus Total Scheduled time: %lluus",
stats->tasklet_exec_time_record[i][index],
stats->
tasklet_sched_time_record[i][index]);
if (index)
index = (index - 1) % HIF_REQUESTED_EVENTS;
else
index = HIF_REQUESTED_EVENTS - 1;
if (index == start_index)
break;
}
}
}
/**
* ce_tasklet_update_bucket() - update ce execution and scehduled time latency
* in corresponding time buckets
* @hif_ce_state: HIF CE state
* @ce_id: ce_id_type
*
* Return: N/A
*/
static void ce_tasklet_update_bucket(struct HIF_CE_state *hif_ce_state,
uint8_t ce_id)
{
uint32_t index;
uint64_t exec_time, exec_ms;
uint64_t sched_time, sched_ms;
uint64_t curr_time = qdf_get_log_timestamp_usecs();
struct ce_stats *stats = &hif_ce_state->stats;
exec_time = curr_time - (stats->tasklet_exec_entry_ts[ce_id]);
sched_time = (stats->tasklet_exec_entry_ts[ce_id]) -
(stats->tasklet_sched_entry_ts[ce_id]);
index = stats->record_index[ce_id];
index = (index + 1) % HIF_REQUESTED_EVENTS;
stats->tasklet_exec_time_record[ce_id][index] = exec_time;
stats->tasklet_sched_time_record[ce_id][index] = sched_time;
stats->record_index[ce_id] = index;
exec_ms = qdf_do_div(exec_time, 1000);
sched_ms = qdf_do_div(sched_time, 1000);
if (exec_ms > 10) {
stats->ce_tasklet_exec_bucket[ce_id][CE_BUCKET_BEYOND]++;
stats->ce_tasklet_exec_last_update[ce_id][CE_BUCKET_BEYOND]
= curr_time;
} else if (exec_ms > 5) {
stats->ce_tasklet_exec_bucket[ce_id][CE_BUCKET_10_MS]++;
stats->ce_tasklet_exec_last_update[ce_id][CE_BUCKET_10_MS]
= curr_time;
} else if (exec_ms > 2) {
stats->ce_tasklet_exec_bucket[ce_id][CE_BUCKET_5_MS]++;
stats->ce_tasklet_exec_last_update[ce_id][CE_BUCKET_5_MS]
= curr_time;
} else if (exec_ms > 1) {
stats->ce_tasklet_exec_bucket[ce_id][CE_BUCKET_2_MS]++;
stats->ce_tasklet_exec_last_update[ce_id][CE_BUCKET_2_MS]
= curr_time;
} else if (exec_time > 500) {
stats->ce_tasklet_exec_bucket[ce_id][CE_BUCKET_1_MS]++;
stats->ce_tasklet_exec_last_update[ce_id][CE_BUCKET_1_MS]
= curr_time;
} else {
stats->ce_tasklet_exec_bucket[ce_id][CE_BUCKET_500_US]++;
stats->ce_tasklet_exec_last_update[ce_id][CE_BUCKET_500_US]
= curr_time;
}
if (sched_ms > 10) {
stats->ce_tasklet_sched_bucket[ce_id][CE_BUCKET_BEYOND]++;
stats->ce_tasklet_sched_last_update[ce_id][CE_BUCKET_BEYOND]
= curr_time;
} else if (sched_ms > 5) {
stats->ce_tasklet_sched_bucket[ce_id][CE_BUCKET_10_MS]++;
stats->ce_tasklet_sched_last_update[ce_id][CE_BUCKET_10_MS]
= curr_time;
} else if (sched_ms > 2) {
stats->ce_tasklet_sched_bucket[ce_id][CE_BUCKET_5_MS]++;
stats->ce_tasklet_sched_last_update[ce_id][CE_BUCKET_5_MS]
= curr_time;
} else if (sched_ms > 1) {
stats->ce_tasklet_sched_bucket[ce_id][CE_BUCKET_2_MS]++;
stats->ce_tasklet_sched_last_update[ce_id][CE_BUCKET_2_MS]
= curr_time;
} else if (sched_time > 500) {
stats->ce_tasklet_sched_bucket[ce_id][CE_BUCKET_1_MS]++;
stats->ce_tasklet_sched_last_update[ce_id][CE_BUCKET_1_MS]
= curr_time;
} else {
stats->ce_tasklet_sched_bucket[ce_id][CE_BUCKET_500_US]++;
stats->ce_tasklet_sched_last_update[ce_id][CE_BUCKET_500_US]
= curr_time;
}
}
#else
static inline void
hif_record_tasklet_exec_entry_ts(struct hif_softc *scn, uint8_t ce_id)
{
}
static void ce_tasklet_update_bucket(struct HIF_CE_state *hif_ce_state,
uint8_t ce_id)
{
}
static inline void
hif_record_tasklet_sched_entry_ts(struct hif_softc *scn, uint8_t ce_id)
{
}
static void
hif_ce_latency_stats(struct hif_softc *hif_ctx)
{
}
#endif /*CE_TASKLET_DEBUG_ENABLE*/
#if defined(CE_TASKLET_DEBUG_ENABLE) && defined(CE_TASKLET_SCHEDULE_ON_FULL)
/**
* hif_reset_ce_full_count() - Reset ce full count
* @scn: hif_softc
* @ce_id: ce_id
*
* Return: None
*/
static inline void
hif_reset_ce_full_count(struct hif_softc *scn, uint8_t ce_id)
{
struct HIF_CE_state *hif_ce_state = HIF_GET_CE_STATE(scn);
hif_ce_state->stats.ce_ring_full_count[ce_id] = 0;
}
#else
static inline void
hif_reset_ce_full_count(struct hif_softc *scn, uint8_t ce_id)
{
}
#endif
#ifdef HIF_DETECTION_LATENCY_ENABLE
static inline
void hif_latency_detect_tasklet_sched(
struct hif_softc *scn,
struct ce_tasklet_entry *tasklet_entry)
{
int idx = tasklet_entry->ce_id;
if (idx >= HIF_TASKLET_IN_MONITOR ||
!qdf_test_bit(idx, scn->latency_detect.tasklet_bmap))
return;
scn->latency_detect.tasklet_info[idx].sched_cpuid = qdf_get_cpu();
scn->latency_detect.tasklet_info[idx].sched_time = qdf_system_ticks();
}
static inline
void hif_latency_detect_tasklet_exec(
struct hif_softc *scn,
struct ce_tasklet_entry *tasklet_entry)
{
int idx = tasklet_entry->ce_id;
if (idx >= HIF_TASKLET_IN_MONITOR ||
!qdf_test_bit(idx, scn->latency_detect.tasklet_bmap))
return;
scn->latency_detect.tasklet_info[idx].exec_time = qdf_system_ticks();
hif_check_detection_latency(scn, false, BIT(HIF_DETECT_TASKLET));
}
#else
static inline
void hif_latency_detect_tasklet_sched(
struct hif_softc *scn,
struct ce_tasklet_entry *tasklet_entry)
{}
static inline
void hif_latency_detect_tasklet_exec(
struct hif_softc *scn,
struct ce_tasklet_entry *tasklet_entry)
{}
#endif
#ifdef CUSTOM_CB_SCHEDULER_SUPPORT
/**
* ce_get_custom_cb_pending() - Helper API to check whether the custom
* callback is pending
* @CE_state: Pointer to CE state
*
* return: bool
*/
static bool
ce_get_custom_cb_pending(struct CE_state *CE_state)
{
return (qdf_atomic_dec_if_positive(&CE_state->custom_cb_pending) >= 0);
}
/**
* ce_execute_custom_cb() - Helper API to execute custom callback
* @CE_state: Pointer to CE state
*
* return: void
*/
static void
ce_execute_custom_cb(struct CE_state *CE_state)
{
while (ce_get_custom_cb_pending(CE_state) && CE_state->custom_cb &&
CE_state->custom_cb_context)
CE_state->custom_cb(CE_state->custom_cb_context);
}
#else
/**
* ce_execute_custom_cb() - Helper API to execute custom callback
* @CE_state: Pointer to CE state
*
* return: void
*/
static void
ce_execute_custom_cb(struct CE_state *CE_state)
{
}
#endif /* CUSTOM_CB_SCHEDULER_SUPPORT */
/**
* ce_tasklet() - ce_tasklet
* @data: data
*
* Return: N/A
*/
static void ce_tasklet(unsigned long data)
{
struct ce_tasklet_entry *tasklet_entry =
(struct ce_tasklet_entry *)data;
struct HIF_CE_state *hif_ce_state = tasklet_entry->hif_ce_state;
struct hif_softc *scn = HIF_GET_SOFTC(hif_ce_state);
struct CE_state *CE_state = scn->ce_id_to_state[tasklet_entry->ce_id];
hif_record_ce_desc_event(scn, tasklet_entry->ce_id,
HIF_CE_TASKLET_ENTRY, NULL, NULL, -1, 0);
if (scn->ce_latency_stats)
hif_record_tasklet_exec_entry_ts(scn, tasklet_entry->ce_id);
hif_latency_detect_tasklet_exec(scn, tasklet_entry);
if (qdf_atomic_read(&scn->link_suspended)) {
hif_err("ce %d tasklet fired after link suspend",
tasklet_entry->ce_id);
QDF_BUG(0);
}
ce_execute_custom_cb(CE_state);
ce_per_engine_service(scn, tasklet_entry->ce_id);
if (ce_check_rx_pending(CE_state) && tasklet_entry->inited) {
/*
* There are frames pending, schedule tasklet to process them.
* Enable the interrupt only when there is no pending frames in
* any of the Copy Engine pipes.
*/
if (test_bit(TASKLET_STATE_SCHED,
&tasklet_entry->intr_tq.state)) {
hif_info("ce_id%d tasklet was scheduled, return",
tasklet_entry->ce_id);
qdf_atomic_dec(&scn->active_tasklet_cnt);
return;
}
hif_record_ce_desc_event(scn, tasklet_entry->ce_id,
HIF_CE_TASKLET_RESCHEDULE,
NULL, NULL, -1, 0);
ce_tasklet_schedule(tasklet_entry);
hif_latency_detect_tasklet_sched(scn, tasklet_entry);
hif_reset_ce_full_count(scn, tasklet_entry->ce_id);
if (scn->ce_latency_stats) {
ce_tasklet_update_bucket(hif_ce_state,
tasklet_entry->ce_id);
hif_record_tasklet_sched_entry_ts(scn,
tasklet_entry->ce_id);
}
return;
}
hif_record_ce_desc_event(scn, tasklet_entry->ce_id, HIF_CE_TASKLET_EXIT,
NULL, NULL, -1, 0);
if (scn->ce_latency_stats)
ce_tasklet_update_bucket(hif_ce_state, tasklet_entry->ce_id);
if ((scn->target_status != TARGET_STATUS_RESET) &&
!scn->free_irq_done)
hif_irq_enable(scn, tasklet_entry->ce_id);
qdf_atomic_dec(&scn->active_tasklet_cnt);
}
/**
* ce_tasklet_init() - ce_tasklet_init
* @hif_ce_state: hif_ce_state
* @mask: mask
*
* Return: N/A
*/
void ce_tasklet_init(struct HIF_CE_state *hif_ce_state, uint32_t mask)
{
int i;
struct CE_attr *attr;
for (i = 0; i < CE_COUNT_MAX; i++) {
if (mask & (1 << i)) {
hif_ce_state->tasklets[i].ce_id = i;
hif_ce_state->tasklets[i].inited = true;
hif_ce_state->tasklets[i].hif_ce_state = hif_ce_state;
attr = &hif_ce_state->host_ce_config[i];
if (attr->flags & CE_ATTR_HI_TASKLET)
hif_ce_state->tasklets[i].hi_tasklet_ce = true;
else
hif_ce_state->tasklets[i].hi_tasklet_ce = false;
tasklet_init(&hif_ce_state->tasklets[i].intr_tq,
ce_tasklet,
(unsigned long)&hif_ce_state->tasklets[i]);
}
}
}
/**
* ce_tasklet_kill() - ce_tasklet_kill
* @scn: HIF context
*
* Context: Non-Atomic context
* Return: N/A
*/
void ce_tasklet_kill(struct hif_softc *scn)
{
int i;
struct HIF_CE_state *hif_ce_state = HIF_GET_CE_STATE(scn);
for (i = 0; i < CE_COUNT_MAX; i++) {
if (hif_ce_state->tasklets[i].inited) {
hif_ce_state->tasklets[i].inited = false;
/*
* Cancel the tasklet work before tasklet_disable
* to avoid race between tasklet_schedule and
* tasklet_kill. Here cancel_work_sync() won't
* return before reschedule_ce_tasklet_work_handler()
* completes. Even if tasklet_schedule() happens
* tasklet_disable() will take care of that.
*/
qdf_cancel_work(&tasklet_workers[i].reg_work);
tasklet_kill(&hif_ce_state->tasklets[i].intr_tq);
}
}
qdf_atomic_set(&scn->active_tasklet_cnt, 0);
}
/**
* ce_tasklet_entry_dump() - dump tasklet entries info
* @hif_ce_state: ce state
*
* This function will dump all tasklet entries info
*
* Return: None
*/
static void ce_tasklet_entry_dump(struct HIF_CE_state *hif_ce_state)
{
struct ce_tasklet_entry *tasklet_entry;
int i;
if (hif_ce_state) {
for (i = 0; i < CE_COUNT_MAX; i++) {
tasklet_entry = &hif_ce_state->tasklets[i];
hif_info("%02d: ce_id=%d, inited=%d, hi_tasklet_ce=%d hif_ce_state=%pK",
i,
tasklet_entry->ce_id,
tasklet_entry->inited,
tasklet_entry->hi_tasklet_ce,
tasklet_entry->hif_ce_state);
}
}
}
#define HIF_CE_DRAIN_WAIT_CNT 20
/**
* hif_drain_tasklets(): wait until no tasklet is pending
* @scn: hif context
*
* Let running tasklets clear pending traffic.
*
* Return: 0 if no bottom half is in progress when it returns.
* -EFAULT if it times out.
*/
int hif_drain_tasklets(struct hif_softc *scn)
{
uint32_t ce_drain_wait_cnt = 0;
int32_t tasklet_cnt;
while ((tasklet_cnt = qdf_atomic_read(&scn->active_tasklet_cnt))) {
if (++ce_drain_wait_cnt > HIF_CE_DRAIN_WAIT_CNT) {
hif_err("CE still not done with access: %d",
tasklet_cnt);
return -EFAULT;
}
hif_info("Waiting for CE to finish access");
msleep(10);
}
return 0;
}
#ifdef WLAN_SUSPEND_RESUME_TEST
/**
* hif_interrupt_is_ut_resume(): Tests if an irq on the given copy engine should
* trigger a unit-test resume.
* @scn: The HIF context to operate on
* @ce_id: The copy engine Id from the originating interrupt
*
* Return: true if the raised irq should trigger a unit-test resume
*/
static bool hif_interrupt_is_ut_resume(struct hif_softc *scn, int ce_id)
{
int errno;
uint8_t wake_ce_id;
if (!hif_is_ut_suspended(scn))
return false;
/* ensure passed ce_id matches wake ce_id */
errno = hif_get_wake_ce_id(scn, &wake_ce_id);
if (errno) {
hif_err("Failed to get wake CE Id: %d", errno);
return false;
}
return ce_id == wake_ce_id;
}
#else
static inline bool
hif_interrupt_is_ut_resume(struct hif_softc *scn, int ce_id)
{
return false;
}
#endif /* WLAN_SUSPEND_RESUME_TEST */
/**
* hif_snoc_interrupt_handler() - hif_snoc_interrupt_handler
* @irq: irq coming from kernel
* @context: context
*
* Return: N/A
*/
static irqreturn_t hif_snoc_interrupt_handler(int irq, void *context)
{
struct ce_tasklet_entry *tasklet_entry = context;
struct hif_softc *scn = HIF_GET_SOFTC(tasklet_entry->hif_ce_state);
return ce_dispatch_interrupt(pld_get_ce_id(scn->qdf_dev->dev, irq),
tasklet_entry);
}
/**
* hif_ce_increment_interrupt_count() - update ce stats
* @hif_ce_state: ce state
* @ce_id: ce id
*
* Return: none
*/
static inline void
hif_ce_increment_interrupt_count(struct HIF_CE_state *hif_ce_state, int ce_id)
{
int cpu_id = qdf_get_cpu();
hif_ce_state->stats.ce_per_cpu[ce_id][cpu_id]++;
}
/**
* hif_display_ce_stats() - display ce stats
* @hif_ctx: HIF context
*
* Return: none
*/
void hif_display_ce_stats(struct hif_softc *hif_ctx)
{
#define STR_SIZE 128
uint8_t i, j, pos;
char str_buffer[STR_SIZE];
int size, ret;
struct HIF_CE_state *hif_ce_state = HIF_GET_CE_STATE(hif_ctx);
qdf_debug("CE interrupt statistics:");
for (i = 0; i < CE_COUNT_MAX; i++) {
size = STR_SIZE;
pos = 0;
for (j = 0; j < QDF_MAX_AVAILABLE_CPU; j++) {
ret = snprintf(str_buffer + pos, size, "[%d]:%d ",
j, hif_ce_state->stats.ce_per_cpu[i][j]);
if (ret <= 0 || ret >= size)
break;
size -= ret;
pos += ret;
}
qdf_debug("CE id[%2d] - %s", i, str_buffer);
}
if (hif_ctx->ce_latency_stats)
hif_ce_latency_stats(hif_ctx);
#undef STR_SIZE
}
/**
* hif_clear_ce_stats() - clear ce stats
* @hif_ce_state: ce state
*
* Return: none
*/
void hif_clear_ce_stats(struct HIF_CE_state *hif_ce_state)
{
qdf_mem_zero(&hif_ce_state->stats, sizeof(struct ce_stats));
}
#ifdef WLAN_TRACEPOINTS
/**
* hif_set_ce_tasklet_sched_time() - Set tasklet schedule time for
* CE with matching ce_id
* @scn: hif context
* @ce_id: CE id
*
* Return: None
*/
static inline
void hif_set_ce_tasklet_sched_time(struct hif_softc *scn, uint8_t ce_id)
{
struct CE_state *ce_state = scn->ce_id_to_state[ce_id];
ce_state->ce_tasklet_sched_time = qdf_time_sched_clock();
}
#else
static inline
void hif_set_ce_tasklet_sched_time(struct hif_softc *scn, uint8_t ce_id)
{
}
#endif
/**
* hif_tasklet_schedule() - schedule tasklet
* @hif_ctx: hif context
* @tasklet_entry: ce tasklet entry
*
* Return: false if tasklet already scheduled, otherwise true
*/
static inline bool hif_tasklet_schedule(struct hif_opaque_softc *hif_ctx,
struct ce_tasklet_entry *tasklet_entry)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
if (test_bit(TASKLET_STATE_SCHED, &tasklet_entry->intr_tq.state)) {
hif_debug("tasklet scheduled, return");
qdf_atomic_dec(&scn->active_tasklet_cnt);
return false;
}
hif_set_ce_tasklet_sched_time(scn, tasklet_entry->ce_id);
/* keep it before tasklet_schedule, this is to happy whunt.
* in whunt, tasklet may run before finished hif_tasklet_schedule.
*/
hif_latency_detect_tasklet_sched(scn, tasklet_entry);
ce_tasklet_schedule(tasklet_entry);
hif_reset_ce_full_count(scn, tasklet_entry->ce_id);
if (scn->ce_latency_stats)
hif_record_tasklet_sched_entry_ts(scn, tasklet_entry->ce_id);
return true;
}
#ifdef WLAN_FEATURE_WMI_DIAG_OVER_CE7
/**
* ce_poll_reap_by_id() - reap the available frames from CE by polling per ce_id
* @scn: hif context
* @ce_id: CE id
*
* This function needs to be called once after all the irqs are disabled
* and tasklets are drained during bus suspend.
*
* Return: 0 on success, unlikely -EBUSY if reaping goes infinite loop
*/
static int ce_poll_reap_by_id(struct hif_softc *scn, enum ce_id_type ce_id)
{
struct HIF_CE_state *hif_ce_state = (struct HIF_CE_state *)scn;
struct CE_state *CE_state = scn->ce_id_to_state[ce_id];
if (scn->ce_latency_stats)
hif_record_tasklet_exec_entry_ts(scn, ce_id);
hif_record_ce_desc_event(scn, ce_id, HIF_CE_REAP_ENTRY,
NULL, NULL, -1, 0);
ce_per_engine_service(scn, ce_id);
/*
* In an unlikely case, if frames are still pending to reap,
* could be an infinite loop, so return -EBUSY.
*/
if (ce_check_rx_pending(CE_state))
return -EBUSY;
hif_record_ce_desc_event(scn, ce_id, HIF_CE_REAP_EXIT,
NULL, NULL, -1, 0);
if (scn->ce_latency_stats)
ce_tasklet_update_bucket(hif_ce_state, ce_id);
return 0;
}
/**
* hif_drain_fw_diag_ce() - reap all the available FW diag logs from CE
* @scn: hif context
*
* This function needs to be called once after all the irqs are disabled
* and tasklets are drained during bus suspend.
*
* Return: 0 on success, unlikely -EBUSY if reaping goes infinite loop
*/
int hif_drain_fw_diag_ce(struct hif_softc *scn)
{
uint8_t ce_id;
if (hif_get_fw_diag_ce_id(scn, &ce_id))
return 0;
return ce_poll_reap_by_id(scn, ce_id);
}
#endif
#ifdef CE_TASKLET_SCHEDULE_ON_FULL
static inline int ce_check_tasklet_status(int ce_id,
struct ce_tasklet_entry *entry)
{
struct HIF_CE_state *hif_ce_state = entry->hif_ce_state;
struct hif_softc *scn = HIF_GET_SOFTC(hif_ce_state);
struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
if (hif_napi_enabled(hif_hdl, ce_id)) {
struct qca_napi_info *napi;
napi = scn->napi_data.napis[ce_id];
if (test_bit(NAPI_STATE_SCHED, &napi->napi.state))
return -EBUSY;
} else {
if (test_bit(TASKLET_STATE_SCHED,
&hif_ce_state->tasklets[ce_id].intr_tq.state))
return -EBUSY;
}
return 0;
}
static inline void ce_interrupt_lock(struct CE_state *ce_state)
{
qdf_spin_lock_irqsave(&ce_state->ce_interrupt_lock);
}
static inline void ce_interrupt_unlock(struct CE_state *ce_state)
{
qdf_spin_unlock_irqrestore(&ce_state->ce_interrupt_lock);
}
#else
static inline int ce_check_tasklet_status(int ce_id,
struct ce_tasklet_entry *entry)
{
return 0;
}
static inline void ce_interrupt_lock(struct CE_state *ce_state)
{
}
static inline void ce_interrupt_unlock(struct CE_state *ce_state)
{
}
#endif
/**
* ce_dispatch_interrupt() - dispatch an interrupt to a processing context
* @ce_id: ce_id
* @tasklet_entry: context
*
* Return: N/A
*/
irqreturn_t ce_dispatch_interrupt(int ce_id,
struct ce_tasklet_entry *tasklet_entry)
{
struct HIF_CE_state *hif_ce_state = tasklet_entry->hif_ce_state;
struct hif_softc *scn = HIF_GET_SOFTC(hif_ce_state);
struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
struct CE_state *ce_state;
if (tasklet_entry->ce_id != ce_id) {
bool rl;
rl = hif_err_rl("ce_id (expect %d, received %d) does not match, inited=%d, ce_count=%u",
tasklet_entry->ce_id, ce_id,
tasklet_entry->inited,
scn->ce_count);
if (!rl)
ce_tasklet_entry_dump(hif_ce_state);
return IRQ_NONE;
}
if (unlikely(ce_id >= CE_COUNT_MAX)) {
hif_err("ce_id=%d > CE_COUNT_MAX=%d",
tasklet_entry->ce_id, CE_COUNT_MAX);
return IRQ_NONE;
}
ce_state = scn->ce_id_to_state[ce_id];
ce_interrupt_lock(ce_state);
if (ce_check_tasklet_status(ce_id, tasklet_entry)) {
ce_interrupt_unlock(ce_state);
return IRQ_NONE;
}
hif_irq_disable(scn, ce_id);
if (!TARGET_REGISTER_ACCESS_ALLOWED(scn)) {
ce_interrupt_unlock(ce_state);
return IRQ_HANDLED;
}
hif_record_ce_desc_event(scn, ce_id, HIF_IRQ_EVENT,
NULL, NULL, 0, 0);
hif_ce_increment_interrupt_count(hif_ce_state, ce_id);
if (unlikely(hif_interrupt_is_ut_resume(scn, ce_id))) {
hif_ut_fw_resume(scn);
hif_irq_enable(scn, ce_id);
ce_interrupt_unlock(ce_state);
return IRQ_HANDLED;
}
qdf_atomic_inc(&scn->active_tasklet_cnt);
if (hif_napi_enabled(hif_hdl, ce_id))
hif_napi_schedule(hif_hdl, ce_id);
else
hif_tasklet_schedule(hif_hdl, tasklet_entry);
ce_interrupt_unlock(ce_state);
return IRQ_HANDLED;
}
const char *ce_name[CE_COUNT_MAX] = {
"WLAN_CE_0",
"WLAN_CE_1",
"WLAN_CE_2",
"WLAN_CE_3",
"WLAN_CE_4",
"WLAN_CE_5",
"WLAN_CE_6",
"WLAN_CE_7",
"WLAN_CE_8",
"WLAN_CE_9",
"WLAN_CE_10",
"WLAN_CE_11",
#ifdef QCA_WIFI_QCN9224
"WLAN_CE_12",
"WLAN_CE_13",
"WLAN_CE_14",
"WLAN_CE_15",
#endif
};
/**
* ce_unregister_irq() - ce_unregister_irq
* @hif_ce_state: hif_ce_state copy engine device handle
* @mask: which copy engines to unregister for.
*
* Unregisters copy engine irqs matching mask. If a 1 is set at bit x,
* unregister for copy engine x.
*
* Return: QDF_STATUS
*/
QDF_STATUS ce_unregister_irq(struct HIF_CE_state *hif_ce_state, uint32_t mask)
{
int id;
int ce_count;
int ret;
struct hif_softc *scn;
if (!hif_ce_state) {
hif_warn("hif_ce_state = NULL");
return QDF_STATUS_SUCCESS;
}
scn = HIF_GET_SOFTC(hif_ce_state);
ce_count = scn->ce_count;
/* we are removing interrupts, so better stop NAPI */
ret = hif_napi_event(GET_HIF_OPAQUE_HDL(scn),
NAPI_EVT_INT_STATE, (void *)0);
if (ret != 0)
hif_err("napi_event INT_STATE returned %d", ret);
/* this is not fatal, continue */
/* filter mask to free only for ce's with irq registered */
mask &= hif_ce_state->ce_register_irq_done;
for (id = 0; id < ce_count; id++) {
if ((mask & (1 << id)) && hif_ce_state->tasklets[id].inited) {
ret = pld_ce_free_irq(scn->qdf_dev->dev, id,
&hif_ce_state->tasklets[id]);
if (ret < 0)
hif_err(
"pld_unregister_irq error - ce_id = %d, ret = %d",
id, ret);
}
ce_disable_polling(scn->ce_id_to_state[id]);
}
hif_ce_state->ce_register_irq_done &= ~mask;
return QDF_STATUS_SUCCESS;
}
/**
* ce_register_irq() - ce_register_irq
* @hif_ce_state: hif_ce_state
* @mask: which copy engines to unregister for.
*
* Registers copy engine irqs matching mask. If a 1 is set at bit x,
* Register for copy engine x.
*
* Return: QDF_STATUS
*/
QDF_STATUS ce_register_irq(struct HIF_CE_state *hif_ce_state, uint32_t mask)
{
int id;
int ce_count;
int ret;
unsigned long irqflags = IRQF_TRIGGER_RISING;
uint32_t done_mask = 0;
struct hif_softc *scn = HIF_GET_SOFTC(hif_ce_state);
ce_count = scn->ce_count;
for (id = 0; id < ce_count; id++) {
if ((mask & (1 << id)) && hif_ce_state->tasklets[id].inited) {
ret = pld_ce_request_irq(scn->qdf_dev->dev, id,
hif_snoc_interrupt_handler,
irqflags, ce_name[id],
&hif_ce_state->tasklets[id]);
if (ret) {
hif_err(
"cannot register CE %d irq handler, ret = %d",
id, ret);
ce_unregister_irq(hif_ce_state, done_mask);
return QDF_STATUS_E_FAULT;
}
done_mask |= 1 << id;
}
}
hif_ce_state->ce_register_irq_done |= done_mask;
return QDF_STATUS_SUCCESS;
}