dsi_pll_util.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2012-2019, The Linux Foundation. All rights reserved.
  4. */
  5. #define pr_fmt(fmt) "%s: " fmt, __func__
  6. #include <linux/kernel.h>
  7. #include <linux/err.h>
  8. #include <linux/iopoll.h>
  9. #include <linux/delay.h>
  10. #include <linux/clk/msm-clock-generic.h>
  11. #include "pll_drv.h"
  12. #include "dsi_pll.h"
  13. #define DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG (0x0)
  14. #define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG (0x0004)
  15. #define DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG (0x0008)
  16. #define DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG (0x000C)
  17. #define DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG (0x0010)
  18. #define DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG (0x0014)
  19. #define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG (0x0024)
  20. #define DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG (0x0028)
  21. #define DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG (0x002C)
  22. #define DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG (0x0030)
  23. #define DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG (0x0034)
  24. #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0 (0x0038)
  25. #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1 (0x003C)
  26. #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2 (0x0040)
  27. #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3 (0x0044)
  28. #define DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4 (0x0048)
  29. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0 (0x006C)
  30. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG2 (0x0074)
  31. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3 (0x0078)
  32. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4 (0x007C)
  33. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG5 (0x0080)
  34. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6 (0x0084)
  35. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7 (0x0088)
  36. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8 (0x008C)
  37. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9 (0x0090)
  38. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10 (0x0094)
  39. #define DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11 (0x0098)
  40. #define DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG (0x009C)
  41. #define DSI_PHY_PLL_UNIPHY_PLL_STATUS (0x00C0)
  42. #define DSI_PLL_POLL_DELAY_US 50
  43. #define DSI_PLL_POLL_TIMEOUT_US 500
  44. int set_byte_mux_sel(struct mux_clk *clk, int sel)
  45. {
  46. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  47. pr_debug("byte mux set to %s mode\n", sel ? "indirect" : "direct");
  48. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  49. DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG, (sel << 1));
  50. return 0;
  51. }
  52. int get_byte_mux_sel(struct mux_clk *clk)
  53. {
  54. int mux_mode, rc;
  55. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  56. if (is_gdsc_disabled(dsi_pll_res))
  57. return 0;
  58. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  59. if (rc) {
  60. pr_err("Failed to enable mdss dsi pll resources\n");
  61. return rc;
  62. }
  63. mux_mode = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  64. DSI_PHY_PLL_UNIPHY_PLL_VREG_CFG) & BIT(1);
  65. pr_debug("byte mux mode = %s\n", mux_mode ? "indirect" : "direct");
  66. mdss_pll_resource_enable(dsi_pll_res, false);
  67. return !!mux_mode;
  68. }
  69. int dsi_pll_div_prepare(struct clk *c)
  70. {
  71. struct div_clk *div = to_div_clk(c);
  72. /* Restore the divider's value */
  73. return div->ops->set_div(div, div->data.div);
  74. }
  75. int dsi_pll_mux_prepare(struct clk *c)
  76. {
  77. struct mux_clk *mux = to_mux_clk(c);
  78. int i, rc, sel = 0;
  79. struct mdss_pll_resources *dsi_pll_res = mux->priv;
  80. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  81. if (rc) {
  82. pr_err("Failed to enable mdss dsi pll resources\n");
  83. return rc;
  84. }
  85. for (i = 0; i < mux->num_parents; i++)
  86. if (mux->parents[i].src == c->parent) {
  87. sel = mux->parents[i].sel;
  88. break;
  89. }
  90. if (i == mux->num_parents) {
  91. pr_err("Failed to select the parent clock\n");
  92. rc = -EINVAL;
  93. goto error;
  94. }
  95. /* Restore the mux source select value */
  96. rc = mux->ops->set_mux_sel(mux, sel);
  97. error:
  98. mdss_pll_resource_enable(dsi_pll_res, false);
  99. return rc;
  100. }
  101. int fixed_4div_set_div(struct div_clk *clk, int div)
  102. {
  103. int rc;
  104. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  105. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  106. if (rc) {
  107. pr_err("Failed to enable mdss dsi pll resources\n");
  108. return rc;
  109. }
  110. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  111. DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG, (div - 1));
  112. mdss_pll_resource_enable(dsi_pll_res, false);
  113. return rc;
  114. }
  115. int fixed_4div_get_div(struct div_clk *clk)
  116. {
  117. int div = 0, rc;
  118. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  119. if (is_gdsc_disabled(dsi_pll_res))
  120. return 0;
  121. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  122. if (rc) {
  123. pr_err("Failed to enable mdss dsi pll resources\n");
  124. return rc;
  125. }
  126. div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  127. DSI_PHY_PLL_UNIPHY_PLL_POSTDIV2_CFG);
  128. mdss_pll_resource_enable(dsi_pll_res, false);
  129. return div + 1;
  130. }
  131. int digital_set_div(struct div_clk *clk, int div)
  132. {
  133. int rc;
  134. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  135. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  136. if (rc) {
  137. pr_err("Failed to enable mdss dsi pll resources\n");
  138. return rc;
  139. }
  140. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  141. DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG, (div - 1));
  142. mdss_pll_resource_enable(dsi_pll_res, false);
  143. return rc;
  144. }
  145. int digital_get_div(struct div_clk *clk)
  146. {
  147. int div = 0, rc;
  148. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  149. if (is_gdsc_disabled(dsi_pll_res))
  150. return 0;
  151. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  152. if (rc) {
  153. pr_err("Failed to enable mdss dsi pll resources\n");
  154. return rc;
  155. }
  156. div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  157. DSI_PHY_PLL_UNIPHY_PLL_POSTDIV3_CFG);
  158. mdss_pll_resource_enable(dsi_pll_res, false);
  159. return div + 1;
  160. }
  161. int analog_set_div(struct div_clk *clk, int div)
  162. {
  163. int rc;
  164. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  165. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  166. if (rc) {
  167. pr_err("Failed to enable mdss dsi pll resources\n");
  168. return rc;
  169. }
  170. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  171. DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG, div - 1);
  172. mdss_pll_resource_enable(dsi_pll_res, false);
  173. return rc;
  174. }
  175. int analog_get_div(struct div_clk *clk)
  176. {
  177. int div = 0, rc;
  178. struct mdss_pll_resources *dsi_pll_res = clk->priv;
  179. if (is_gdsc_disabled(dsi_pll_res))
  180. return 0;
  181. rc = mdss_pll_resource_enable(clk->priv, true);
  182. if (rc) {
  183. pr_err("Failed to enable mdss dsi pll resources\n");
  184. return rc;
  185. }
  186. div = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  187. DSI_PHY_PLL_UNIPHY_PLL_POSTDIV1_CFG) + 1;
  188. mdss_pll_resource_enable(dsi_pll_res, false);
  189. return div;
  190. }
  191. int dsi_pll_lock_status(struct mdss_pll_resources *dsi_pll_res)
  192. {
  193. u32 status;
  194. int pll_locked;
  195. /* poll for PLL ready status */
  196. if (readl_poll_timeout_atomic((dsi_pll_res->pll_base +
  197. DSI_PHY_PLL_UNIPHY_PLL_STATUS),
  198. status,
  199. ((status & BIT(0)) == 1),
  200. DSI_PLL_POLL_DELAY_US,
  201. DSI_PLL_POLL_TIMEOUT_US)) {
  202. pr_debug("DSI PLL status=%x failed to Lock\n", status);
  203. pll_locked = 0;
  204. } else {
  205. pll_locked = 1;
  206. }
  207. return pll_locked;
  208. }
  209. int vco_set_rate(struct dsi_pll_vco_clk *vco, unsigned long rate)
  210. {
  211. s64 vco_clk_rate = rate;
  212. s32 rem;
  213. s64 refclk_cfg, frac_n_mode, ref_doubler_en_b;
  214. s64 ref_clk_to_pll, div_fbx1000, frac_n_value;
  215. s64 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
  216. s64 gen_vco_clk, cal_cfg10, cal_cfg11;
  217. u32 res;
  218. int i;
  219. struct mdss_pll_resources *dsi_pll_res = vco->priv;
  220. /* Configure the Loop filter resistance */
  221. for (i = 0; i < vco->lpfr_lut_size; i++)
  222. if (vco_clk_rate <= vco->lpfr_lut[i].vco_rate)
  223. break;
  224. if (i == vco->lpfr_lut_size) {
  225. pr_err("unable to get loop filter resistance. vco=%ld\n", rate);
  226. return -EINVAL;
  227. }
  228. res = vco->lpfr_lut[i].r;
  229. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  230. DSI_PHY_PLL_UNIPHY_PLL_LPFR_CFG, res);
  231. /* Loop filter capacitance values : c1 and c2 */
  232. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  233. DSI_PHY_PLL_UNIPHY_PLL_LPFC1_CFG, 0x70);
  234. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  235. DSI_PHY_PLL_UNIPHY_PLL_LPFC2_CFG, 0x15);
  236. div_s64_rem(vco_clk_rate, vco->ref_clk_rate, &rem);
  237. if (rem) {
  238. refclk_cfg = 0x1;
  239. frac_n_mode = 1;
  240. ref_doubler_en_b = 0;
  241. } else {
  242. refclk_cfg = 0x0;
  243. frac_n_mode = 0;
  244. ref_doubler_en_b = 1;
  245. }
  246. pr_debug("refclk_cfg = %lld\n", refclk_cfg);
  247. ref_clk_to_pll = ((vco->ref_clk_rate * 2 * (refclk_cfg))
  248. + (ref_doubler_en_b * vco->ref_clk_rate));
  249. div_fbx1000 = div_s64((vco_clk_rate * 1000), ref_clk_to_pll);
  250. div_s64_rem(div_fbx1000, 1000, &rem);
  251. frac_n_value = div_s64((rem * (1 << 16)), 1000);
  252. gen_vco_clk = div_s64(div_fbx1000 * ref_clk_to_pll, 1000);
  253. pr_debug("ref_clk_to_pll = %lld\n", ref_clk_to_pll);
  254. pr_debug("div_fb = %lld\n", div_fbx1000);
  255. pr_debug("frac_n_value = %lld\n", frac_n_value);
  256. pr_debug("Generated VCO Clock: %lld\n", gen_vco_clk);
  257. rem = 0;
  258. if (frac_n_mode) {
  259. sdm_cfg0 = (0x0 << 5);
  260. sdm_cfg0 |= (0x0 & 0x3f);
  261. sdm_cfg1 = (div_s64(div_fbx1000, 1000) & 0x3f) - 1;
  262. sdm_cfg3 = div_s64_rem(frac_n_value, 256, &rem);
  263. sdm_cfg2 = rem;
  264. } else {
  265. sdm_cfg0 = (0x1 << 5);
  266. sdm_cfg0 |= (div_s64(div_fbx1000, 1000) & 0x3f) - 1;
  267. sdm_cfg1 = (0x0 & 0x3f);
  268. sdm_cfg2 = 0;
  269. sdm_cfg3 = 0;
  270. }
  271. pr_debug("sdm_cfg0=%lld\n", sdm_cfg0);
  272. pr_debug("sdm_cfg1=%lld\n", sdm_cfg1);
  273. pr_debug("sdm_cfg2=%lld\n", sdm_cfg2);
  274. pr_debug("sdm_cfg3=%lld\n", sdm_cfg3);
  275. cal_cfg11 = div_s64_rem(gen_vco_clk, 256 * 1000000, &rem);
  276. cal_cfg10 = rem / 1000000;
  277. pr_debug("cal_cfg10=%lld, cal_cfg11=%lld\n", cal_cfg10, cal_cfg11);
  278. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  279. DSI_PHY_PLL_UNIPHY_PLL_CHGPUMP_CFG, 0x02);
  280. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  281. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG3, 0x2b);
  282. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  283. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG4, 0x66);
  284. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  285. DSI_PHY_PLL_UNIPHY_PLL_LKDET_CFG2, 0x0d);
  286. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  287. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1, (u32)(sdm_cfg1 & 0xff));
  288. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  289. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2, (u32)(sdm_cfg2 & 0xff));
  290. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  291. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3, (u32)(sdm_cfg3 & 0xff));
  292. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  293. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG4, 0x00);
  294. /* Add hardware recommended delay for correct PLL configuration */
  295. if (dsi_pll_res->vco_delay)
  296. udelay(dsi_pll_res->vco_delay);
  297. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  298. DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG, (u32)refclk_cfg);
  299. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  300. DSI_PHY_PLL_UNIPHY_PLL_PWRGEN_CFG, 0x00);
  301. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  302. DSI_PHY_PLL_UNIPHY_PLL_VCOLPF_CFG, 0x71);
  303. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  304. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0, (u32)sdm_cfg0);
  305. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  306. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG0, 0x12);
  307. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  308. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG6, 0x30);
  309. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  310. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG7, 0x00);
  311. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  312. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG8, 0x60);
  313. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  314. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG9, 0x00);
  315. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  316. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG10, (u32)(cal_cfg10 & 0xff));
  317. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  318. DSI_PHY_PLL_UNIPHY_PLL_CAL_CFG11, (u32)(cal_cfg11 & 0xff));
  319. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  320. DSI_PHY_PLL_UNIPHY_PLL_EFUSE_CFG, 0x20);
  321. return 0;
  322. }
  323. unsigned long vco_get_rate(struct clk *c)
  324. {
  325. u32 sdm0, doubler, sdm_byp_div;
  326. u64 vco_rate;
  327. u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
  328. struct dsi_pll_vco_clk *vco = to_vco_clk(c);
  329. u64 ref_clk = vco->ref_clk_rate;
  330. int rc;
  331. struct mdss_pll_resources *dsi_pll_res = vco->priv;
  332. if (is_gdsc_disabled(dsi_pll_res))
  333. return 0;
  334. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  335. if (rc) {
  336. pr_err("Failed to enable mdss dsi pll resources\n");
  337. return rc;
  338. }
  339. /* Check to see if the ref clk doubler is enabled */
  340. doubler = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  341. DSI_PHY_PLL_UNIPHY_PLL_REFCLK_CFG) & BIT(0);
  342. ref_clk += (doubler * vco->ref_clk_rate);
  343. /* see if it is integer mode or sdm mode */
  344. sdm0 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  345. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0);
  346. if (sdm0 & BIT(6)) {
  347. /* integer mode */
  348. sdm_byp_div = (MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  349. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG0) & 0x3f) + 1;
  350. vco_rate = ref_clk * sdm_byp_div;
  351. } else {
  352. /* sdm mode */
  353. sdm_dc_off = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  354. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG1) & 0xFF;
  355. pr_debug("sdm_dc_off = %d\n", sdm_dc_off);
  356. sdm2 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  357. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG2) & 0xFF;
  358. sdm3 = MDSS_PLL_REG_R(dsi_pll_res->pll_base,
  359. DSI_PHY_PLL_UNIPHY_PLL_SDM_CFG3) & 0xFF;
  360. sdm_freq_seed = (sdm3 << 8) | sdm2;
  361. pr_debug("sdm_freq_seed = %d\n", sdm_freq_seed);
  362. vco_rate = (ref_clk * (sdm_dc_off + 1)) +
  363. mult_frac(ref_clk, sdm_freq_seed, BIT(16));
  364. pr_debug("vco rate = %lld\n", vco_rate);
  365. }
  366. pr_debug("returning vco rate = %lu\n", (unsigned long)vco_rate);
  367. mdss_pll_resource_enable(dsi_pll_res, false);
  368. return (unsigned long)vco_rate;
  369. }
  370. static int dsi_pll_enable(struct clk *c)
  371. {
  372. int i, rc;
  373. struct dsi_pll_vco_clk *vco = to_vco_clk(c);
  374. struct mdss_pll_resources *dsi_pll_res = vco->priv;
  375. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  376. if (rc) {
  377. pr_err("Failed to enable mdss dsi pll resources\n");
  378. return rc;
  379. }
  380. /* Try all enable sequences until one succeeds */
  381. for (i = 0; i < vco->pll_en_seq_cnt; i++) {
  382. rc = vco->pll_enable_seqs[i](dsi_pll_res);
  383. pr_debug("DSI PLL %s after sequence #%d\n",
  384. rc ? "unlocked" : "locked", i + 1);
  385. if (!rc)
  386. break;
  387. }
  388. if (rc) {
  389. mdss_pll_resource_enable(dsi_pll_res, false);
  390. pr_err("DSI PLL failed to lock\n");
  391. }
  392. dsi_pll_res->pll_on = true;
  393. return rc;
  394. }
  395. static void dsi_pll_disable(struct clk *c)
  396. {
  397. struct dsi_pll_vco_clk *vco = to_vco_clk(c);
  398. struct mdss_pll_resources *dsi_pll_res = vco->priv;
  399. if (!dsi_pll_res->pll_on &&
  400. mdss_pll_resource_enable(dsi_pll_res, true)) {
  401. pr_err("Failed to enable mdss dsi pll resources\n");
  402. return;
  403. }
  404. dsi_pll_res->handoff_resources = false;
  405. MDSS_PLL_REG_W(dsi_pll_res->pll_base,
  406. DSI_PHY_PLL_UNIPHY_PLL_GLB_CFG, 0x00);
  407. mdss_pll_resource_enable(dsi_pll_res, false);
  408. dsi_pll_res->pll_on = false;
  409. pr_debug("DSI PLL Disabled\n");
  410. }
  411. long vco_round_rate(struct clk *c, unsigned long rate)
  412. {
  413. unsigned long rrate = rate;
  414. struct dsi_pll_vco_clk *vco = to_vco_clk(c);
  415. if (rate < vco->min_rate)
  416. rrate = vco->min_rate;
  417. if (rate > vco->max_rate)
  418. rrate = vco->max_rate;
  419. return rrate;
  420. }
  421. enum handoff vco_handoff(struct clk *c)
  422. {
  423. int rc;
  424. enum handoff ret = HANDOFF_DISABLED_CLK;
  425. struct dsi_pll_vco_clk *vco = to_vco_clk(c);
  426. struct mdss_pll_resources *dsi_pll_res = vco->priv;
  427. if (is_gdsc_disabled(dsi_pll_res))
  428. return HANDOFF_DISABLED_CLK;
  429. rc = mdss_pll_resource_enable(dsi_pll_res, true);
  430. if (rc) {
  431. pr_err("Failed to enable mdss dsi pll resources\n");
  432. return ret;
  433. }
  434. if (dsi_pll_lock_status(dsi_pll_res)) {
  435. dsi_pll_res->handoff_resources = true;
  436. dsi_pll_res->pll_on = true;
  437. c->rate = vco_get_rate(c);
  438. ret = HANDOFF_ENABLED_CLK;
  439. } else {
  440. mdss_pll_resource_enable(dsi_pll_res, false);
  441. }
  442. return ret;
  443. }
  444. int vco_prepare(struct clk *c)
  445. {
  446. int rc = 0;
  447. struct dsi_pll_vco_clk *vco = to_vco_clk(c);
  448. struct mdss_pll_resources *dsi_pll_res = vco->priv;
  449. if (!dsi_pll_res) {
  450. pr_err("Dsi pll resources are not available\n");
  451. return -EINVAL;
  452. }
  453. if ((dsi_pll_res->vco_cached_rate != 0)
  454. && (dsi_pll_res->vco_cached_rate == c->rate)) {
  455. rc = c->ops->set_rate(c, dsi_pll_res->vco_cached_rate);
  456. if (rc) {
  457. pr_err("vco_set_rate failed. rc=%d\n", rc);
  458. goto error;
  459. }
  460. }
  461. rc = dsi_pll_enable(c);
  462. error:
  463. return rc;
  464. }
  465. void vco_unprepare(struct clk *c)
  466. {
  467. struct dsi_pll_vco_clk *vco = to_vco_clk(c);
  468. struct mdss_pll_resources *dsi_pll_res = vco->priv;
  469. if (!dsi_pll_res) {
  470. pr_err("Dsi pll resources are not available\n");
  471. return;
  472. }
  473. dsi_pll_res->vco_cached_rate = c->rate;
  474. dsi_pll_disable(c);
  475. }