qce50.c 188 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * QTI Crypto Engine driver.
  4. *
  5. * Copyright (c) 2012-2021, The Linux Foundation. All rights reserved.
  6. */
  7. #define pr_fmt(fmt) "QCE50: %s: " fmt, __func__
  8. #include <linux/types.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/mod_devicetable.h>
  12. #include <linux/device.h>
  13. #include <linux/clk.h>
  14. #include <linux/err.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/io.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/delay.h>
  20. #include <linux/crypto.h>
  21. #include <linux/bitops.h>
  22. #include "linux/qcrypto.h"
  23. #include <crypto/hash.h>
  24. #include <crypto/sha1.h>
  25. #include <soc/qcom/socinfo.h>
  26. #include <linux/dma-iommu.h>
  27. #include <linux/iommu.h>
  28. #include "qce.h"
  29. #include "qce50.h"
  30. #include "qcryptohw_50.h"
  31. #include "qce_ota.h"
  32. #define CRYPTO_SMMU_IOVA_START 0x10000000
  33. #define CRYPTO_SMMU_IOVA_SIZE 0x40000000
  34. #define CRYPTO_CONFIG_RESET 0xE001F
  35. #define MAX_SPS_DESC_FIFO_SIZE 0xfff0
  36. #define QCE_MAX_NUM_DSCR 0x200
  37. #define QCE_SECTOR_SIZE 0x200
  38. #define CE_CLK_100MHZ 100000000
  39. #define CE_CLK_DIV 1000000
  40. #define CRYPTO_CORE_MAJOR_VER_NUM 0x05
  41. #define CRYPTO_CORE_MINOR_VER_NUM 0x03
  42. #define CRYPTO_CORE_STEP_VER_NUM 0x1
  43. #define CRYPTO_REQ_USER_PAT 0xdead0000
  44. static DEFINE_MUTEX(bam_register_lock);
  45. static DEFINE_MUTEX(qce_iomap_mutex);
  46. struct bam_registration_info {
  47. struct list_head qlist;
  48. unsigned long handle;
  49. uint32_t cnt;
  50. uint32_t bam_mem;
  51. void __iomem *bam_iobase;
  52. bool support_cmd_dscr;
  53. };
  54. static LIST_HEAD(qce50_bam_list);
  55. /* Used to determine the mode */
  56. #define MAX_BUNCH_MODE_REQ 2
  57. /* Max number of request supported */
  58. #define MAX_QCE_BAM_REQ 8
  59. /* Interrupt flag will be set for every SET_INTR_AT_REQ request */
  60. #define SET_INTR_AT_REQ (MAX_QCE_BAM_REQ / 2)
  61. /* To create extra request space to hold dummy request */
  62. #define MAX_QCE_BAM_REQ_WITH_DUMMY_REQ (MAX_QCE_BAM_REQ + 1)
  63. /* Allocate the memory for MAX_QCE_BAM_REQ + 1 (for dummy request) */
  64. #define MAX_QCE_ALLOC_BAM_REQ MAX_QCE_BAM_REQ_WITH_DUMMY_REQ
  65. /* QCE driver modes */
  66. #define IN_INTERRUPT_MODE 0
  67. #define IN_BUNCH_MODE 1
  68. /* Dummy request data length */
  69. #define DUMMY_REQ_DATA_LEN 64
  70. /* Delay timer to expire when in bunch mode */
  71. #define DELAY_IN_JIFFIES 5
  72. /* Index to point the dummy request */
  73. #define DUMMY_REQ_INDEX MAX_QCE_BAM_REQ
  74. #define TOTAL_IOVEC_SPACE_PER_PIPE (QCE_MAX_NUM_DSCR * sizeof(struct sps_iovec))
  75. #define AES_CTR_IV_CTR_SIZE 64
  76. #define STATUS1_ERR_INTR_MASK 0x10
  77. enum qce_owner {
  78. QCE_OWNER_NONE = 0,
  79. QCE_OWNER_CLIENT = 1,
  80. QCE_OWNER_TIMEOUT = 2
  81. };
  82. struct dummy_request {
  83. struct qce_sha_req sreq;
  84. struct scatterlist sg;
  85. struct ahash_request areq;
  86. };
  87. /*
  88. * CE HW device structure.
  89. * Each engine has an instance of the structure.
  90. * Each engine can only handle one crypto operation at one time. It is up to
  91. * the sw above to ensure single threading of operation on an engine.
  92. */
  93. struct qce_device {
  94. struct device *pdev; /* Handle to platform_device structure */
  95. struct bam_registration_info *pbam;
  96. unsigned char *coh_vmem; /* Allocated coherent virtual memory */
  97. dma_addr_t coh_pmem; /* Allocated coherent physical memory */
  98. int memsize; /* Memory allocated */
  99. unsigned char *iovec_vmem; /* Allocate iovec virtual memory */
  100. int iovec_memsize; /* Memory allocated */
  101. uint32_t bam_mem; /* bam physical address, from DT */
  102. uint32_t bam_mem_size; /* bam io size, from DT */
  103. int is_shared; /* CE HW is shared */
  104. bool support_cmd_dscr;
  105. bool support_hw_key;
  106. bool support_clk_mgmt_sus_res;
  107. bool support_only_core_src_clk;
  108. bool request_bw_before_clk;
  109. void __iomem *iobase; /* Virtual io base of CE HW */
  110. unsigned int phy_iobase; /* Physical io base of CE HW */
  111. struct clk *ce_core_src_clk; /* Handle to CE src clk*/
  112. struct clk *ce_core_clk; /* Handle to CE clk */
  113. struct clk *ce_clk; /* Handle to CE clk */
  114. struct clk *ce_bus_clk; /* Handle to CE AXI clk*/
  115. bool no_get_around;
  116. bool no_ccm_mac_status_get_around;
  117. unsigned int ce_opp_freq_hz;
  118. bool use_sw_aes_cbc_ecb_ctr_algo;
  119. bool use_sw_aead_algo;
  120. bool use_sw_aes_xts_algo;
  121. bool use_sw_ahash_algo;
  122. bool use_sw_hmac_algo;
  123. bool use_sw_aes_ccm_algo;
  124. uint32_t engines_avail;
  125. struct qce_ce_cfg_reg_setting reg;
  126. struct ce_bam_info ce_bam_info;
  127. struct ce_request_info ce_request_info[MAX_QCE_ALLOC_BAM_REQ];
  128. unsigned int ce_request_index;
  129. enum qce_owner owner;
  130. atomic_t no_of_queued_req;
  131. struct timer_list timer;
  132. struct dummy_request dummyreq;
  133. unsigned int mode;
  134. unsigned int intr_cadence;
  135. unsigned int dev_no;
  136. struct qce_driver_stats qce_stats;
  137. atomic_t bunch_cmd_seq;
  138. atomic_t last_intr_seq;
  139. bool cadence_flag;
  140. uint8_t *dummyreq_in_buf;
  141. struct dma_iommu_mapping *smmu_mapping;
  142. bool enable_s1_smmu;
  143. bool no_clock_support;
  144. bool kernel_pipes_support;
  145. bool offload_pipes_support;
  146. };
  147. static void print_notify_debug(struct sps_event_notify *notify);
  148. static void _sps_producer_callback(struct sps_event_notify *notify);
  149. static int qce_dummy_req(struct qce_device *pce_dev);
  150. static int _qce50_disp_stats;
  151. /* Standard initialization vector for SHA-1, source: FIPS 180-2 */
  152. static uint32_t _std_init_vector_sha1[] = {
  153. 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
  154. };
  155. /* Standard initialization vector for SHA-256, source: FIPS 180-2 */
  156. static uint32_t _std_init_vector_sha256[] = {
  157. 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
  158. 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
  159. };
  160. /*
  161. * Requests for offload operations do not require explicit dma operations
  162. * as they already have SMMU mapped source/destination buffers.
  163. */
  164. static bool is_offload_op(int op)
  165. {
  166. return (op == QCE_OFFLOAD_HLOS_HLOS || op == QCE_OFFLOAD_HLOS_CPB ||
  167. op == QCE_OFFLOAD_CPB_HLOS);
  168. }
  169. static uint32_t qce_get_config_be(struct qce_device *pce_dev,
  170. uint32_t pipe_pair)
  171. {
  172. uint32_t beats = (pce_dev->ce_bam_info.ce_burst_size >> 3) - 1;
  173. return (beats << CRYPTO_REQ_SIZE |
  174. BIT(CRYPTO_MASK_DOUT_INTR) | BIT(CRYPTO_MASK_DIN_INTR) |
  175. BIT(CRYPTO_MASK_OP_DONE_INTR) | 0 << CRYPTO_HIGH_SPD_EN_N |
  176. pipe_pair << CRYPTO_PIPE_SET_SELECT);
  177. }
  178. static void dump_status_regs(unsigned int s1, unsigned int s2,unsigned int s3,
  179. unsigned int s4, unsigned int s5,unsigned int s6)
  180. {
  181. pr_err("%s: CRYPTO_STATUS_REG = 0x%x\n", __func__, s1);
  182. pr_err("%s: CRYPTO_STATUS2_REG = 0x%x\n", __func__, s2);
  183. pr_err("%s: CRYPTO_STATUS3_REG = 0x%x\n", __func__, s3);
  184. pr_err("%s: CRYPTO_STATUS4_REG = 0x%x\n", __func__, s4);
  185. pr_err("%s: CRYPTO_STATUS5_REG = 0x%x\n", __func__, s5);
  186. pr_err("%s: CRYPTO_STATUS6_REG = 0x%x\n", __func__, s6);
  187. }
  188. void qce_get_crypto_status(void *handle, unsigned int *s1, unsigned int *s2,
  189. unsigned int *s3, unsigned int *s4,
  190. unsigned int *s5, unsigned int *s6)
  191. {
  192. struct qce_device *pce_dev = (struct qce_device *) handle;
  193. *s1 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG);
  194. *s2 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS2_REG);
  195. *s3 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS3_REG);
  196. *s4 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS4_REG);
  197. *s5 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS5_REG);
  198. *s6 = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS6_REG);
  199. #ifdef QCE_DEBUG
  200. dump_status_regs(*s1, *s2, *s3, *s4, *s5, *s6);
  201. #else
  202. if (*s1 & STATUS1_ERR_INTR_MASK)
  203. dump_status_regs(*s1, *s2, *s3, *s4, *s5, *s6);
  204. #endif
  205. return;
  206. }
  207. EXPORT_SYMBOL(qce_get_crypto_status);
  208. static void qce_set_offload_config(struct qce_device *pce_dev,
  209. struct qce_req *creq)
  210. {
  211. uint32_t config_be = pce_dev->reg.crypto_cfg_be;
  212. switch (creq->offload_op) {
  213. case QCE_OFFLOAD_HLOS_HLOS:
  214. config_be = qce_get_config_be(pce_dev,
  215. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_HLOS]);
  216. break;
  217. case QCE_OFFLOAD_HLOS_CPB:
  218. config_be = qce_get_config_be(pce_dev,
  219. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_CPB]);
  220. break;
  221. case QCE_OFFLOAD_CPB_HLOS:
  222. config_be = qce_get_config_be(pce_dev,
  223. pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_CPB_HLOS]);
  224. break;
  225. default:
  226. break;
  227. }
  228. pce_dev->reg.crypto_cfg_be = config_be;
  229. pce_dev->reg.crypto_cfg_le = (config_be |
  230. CRYPTO_LITTLE_ENDIAN_MASK);
  231. return;
  232. }
  233. /*
  234. * IV counter mask is be set based on the values sent through the offload ioctl
  235. * calls. Currently for offload operations, it is 64 bytes of mask for AES CTR,
  236. * and 128 bytes of mask for AES CBC.
  237. */
  238. static void qce_set_iv_ctr_mask(struct qce_device *pce_dev,
  239. struct qce_req *creq)
  240. {
  241. if (creq->iv_ctr_size == AES_CTR_IV_CTR_SIZE) {
  242. pce_dev->reg.encr_cntr_mask_0 = 0x0;
  243. pce_dev->reg.encr_cntr_mask_1 = 0x0;
  244. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  245. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  246. } else {
  247. pce_dev->reg.encr_cntr_mask_0 = 0xFFFFFFFF;
  248. pce_dev->reg.encr_cntr_mask_1 = 0xFFFFFFFF;
  249. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  250. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  251. }
  252. return;
  253. }
  254. static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b,
  255. unsigned int len)
  256. {
  257. unsigned int n;
  258. n = len / sizeof(uint32_t);
  259. for (; n > 0; n--) {
  260. *iv = ((*b << 24) & 0xff000000) |
  261. (((*(b+1)) << 16) & 0xff0000) |
  262. (((*(b+2)) << 8) & 0xff00) |
  263. (*(b+3) & 0xff);
  264. b += sizeof(uint32_t);
  265. iv++;
  266. }
  267. n = len % sizeof(uint32_t);
  268. if (n == 3) {
  269. *iv = ((*b << 24) & 0xff000000) |
  270. (((*(b+1)) << 16) & 0xff0000) |
  271. (((*(b+2)) << 8) & 0xff00);
  272. } else if (n == 2) {
  273. *iv = ((*b << 24) & 0xff000000) |
  274. (((*(b+1)) << 16) & 0xff0000);
  275. } else if (n == 1) {
  276. *iv = ((*b << 24) & 0xff000000);
  277. }
  278. }
  279. static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b,
  280. unsigned int len)
  281. {
  282. unsigned int i, j;
  283. unsigned char swap_iv[AES_IV_LENGTH];
  284. memset(swap_iv, 0, AES_IV_LENGTH);
  285. for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--)
  286. swap_iv[i] = b[j];
  287. _byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH);
  288. }
  289. static int count_sg(struct scatterlist *sg, int nbytes)
  290. {
  291. int i;
  292. for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
  293. nbytes -= sg->length;
  294. return i;
  295. }
  296. static int qce_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  297. enum dma_data_direction direction)
  298. {
  299. int i;
  300. for (i = 0; i < nents; ++i) {
  301. dma_map_sg(dev, sg, 1, direction);
  302. sg = sg_next(sg);
  303. }
  304. return nents;
  305. }
  306. static int qce_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  307. int nents, enum dma_data_direction direction)
  308. {
  309. int i;
  310. for (i = 0; i < nents; ++i) {
  311. dma_unmap_sg(dev, sg, 1, direction);
  312. sg = sg_next(sg);
  313. }
  314. return nents;
  315. }
  316. static int _probe_ce_engine(struct qce_device *pce_dev)
  317. {
  318. unsigned int rev;
  319. unsigned int maj_rev, min_rev, step_rev;
  320. rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG);
  321. /*
  322. * Ensure previous instructions (setting the GO register)
  323. * was completed before checking the version.
  324. */
  325. mb();
  326. maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV;
  327. min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV;
  328. step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV;
  329. if (maj_rev != CRYPTO_CORE_MAJOR_VER_NUM) {
  330. pr_err("Unsupported QTI crypto device at 0x%x, rev %d.%d.%d\n",
  331. pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
  332. return -EIO;
  333. }
  334. /*
  335. * The majority of crypto HW bugs have been fixed in 5.3.0 and
  336. * above. That allows a single sps transfer of consumer
  337. * pipe, and a single sps transfer of producer pipe
  338. * for a crypto request. no_get_around flag indicates this.
  339. *
  340. * In 5.3.1, the CCM MAC_FAILED in result dump issue is
  341. * fixed. no_ccm_mac_status_get_around flag indicates this.
  342. */
  343. pce_dev->no_get_around = (min_rev >=
  344. CRYPTO_CORE_MINOR_VER_NUM) ? true : false;
  345. if (min_rev > CRYPTO_CORE_MINOR_VER_NUM)
  346. pce_dev->no_ccm_mac_status_get_around = true;
  347. else if ((min_rev == CRYPTO_CORE_MINOR_VER_NUM) &&
  348. (step_rev >= CRYPTO_CORE_STEP_VER_NUM))
  349. pce_dev->no_ccm_mac_status_get_around = true;
  350. else
  351. pce_dev->no_ccm_mac_status_get_around = false;
  352. pce_dev->ce_bam_info.minor_version = min_rev;
  353. pce_dev->engines_avail = readl_relaxed(pce_dev->iobase +
  354. CRYPTO_ENGINES_AVAIL);
  355. dev_info(pce_dev->pdev, "QTI Crypto %d.%d.%d device found @0x%x\n",
  356. maj_rev, min_rev, step_rev, pce_dev->phy_iobase);
  357. pce_dev->ce_bam_info.ce_burst_size = MAX_CE_BAM_BURST_SIZE;
  358. dev_dbg(pce_dev->pdev, "CE device = %#x IO base, CE = %pK Consumer (IN) PIPE %d,\nProducer (OUT) PIPE %d IO base BAM = %pK\nBAM IRQ %d Engines Availability = %#x\n",
  359. pce_dev->ce_bam_info.ce_device, pce_dev->iobase,
  360. pce_dev->ce_bam_info.dest_pipe_index,
  361. pce_dev->ce_bam_info.src_pipe_index,
  362. pce_dev->ce_bam_info.bam_iobase,
  363. pce_dev->ce_bam_info.bam_irq, pce_dev->engines_avail);
  364. return 0;
  365. };
  366. static struct qce_cmdlist_info *_ce_get_hash_cmdlistinfo(
  367. struct qce_device *pce_dev,
  368. int req_info, struct qce_sha_req *sreq)
  369. {
  370. struct ce_sps_data *pce_sps_data;
  371. struct qce_cmdlistptr_ops *cmdlistptr;
  372. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  373. cmdlistptr = &pce_sps_data->cmdlistptr;
  374. switch (sreq->alg) {
  375. case QCE_HASH_SHA1:
  376. return &cmdlistptr->auth_sha1;
  377. case QCE_HASH_SHA256:
  378. return &cmdlistptr->auth_sha256;
  379. case QCE_HASH_SHA1_HMAC:
  380. return &cmdlistptr->auth_sha1_hmac;
  381. case QCE_HASH_SHA256_HMAC:
  382. return &cmdlistptr->auth_sha256_hmac;
  383. case QCE_HASH_AES_CMAC:
  384. if (sreq->authklen == AES128_KEY_SIZE)
  385. return &cmdlistptr->auth_aes_128_cmac;
  386. return &cmdlistptr->auth_aes_256_cmac;
  387. default:
  388. return NULL;
  389. }
  390. return NULL;
  391. }
  392. static int _ce_setup_hash(struct qce_device *pce_dev,
  393. struct qce_sha_req *sreq,
  394. struct qce_cmdlist_info *cmdlistinfo)
  395. {
  396. uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
  397. uint32_t diglen;
  398. int i;
  399. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
  400. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  401. bool sha1 = false;
  402. struct sps_command_element *pce = NULL;
  403. bool use_hw_key = false;
  404. bool use_pipe_key = false;
  405. uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
  406. uint32_t auth_cfg;
  407. if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
  408. (sreq->alg == QCE_HASH_SHA256_HMAC) ||
  409. (sreq->alg == QCE_HASH_AES_CMAC)) {
  410. /* no more check for null key. use flag */
  411. if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY)
  412. == QCRYPTO_CTX_USE_HW_KEY)
  413. use_hw_key = true;
  414. else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  415. QCRYPTO_CTX_USE_PIPE_KEY)
  416. use_pipe_key = true;
  417. pce = cmdlistinfo->go_proc;
  418. if (use_hw_key) {
  419. pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
  420. pce_dev->phy_iobase);
  421. } else {
  422. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
  423. pce_dev->phy_iobase);
  424. pce = cmdlistinfo->auth_key;
  425. if (!use_pipe_key) {
  426. _byte_stream_to_net_words(mackey32,
  427. sreq->authkey,
  428. sreq->authklen);
  429. for (i = 0; i < authk_size_in_word; i++, pce++)
  430. pce->data = mackey32[i];
  431. }
  432. }
  433. }
  434. if (sreq->alg == QCE_HASH_AES_CMAC)
  435. goto go_proc;
  436. /* if not the last, the size has to be on the block boundary */
  437. if (!sreq->last_blk && (sreq->size % SHA256_BLOCK_SIZE))
  438. return -EIO;
  439. switch (sreq->alg) {
  440. case QCE_HASH_SHA1:
  441. case QCE_HASH_SHA1_HMAC:
  442. diglen = SHA1_DIGEST_SIZE;
  443. sha1 = true;
  444. break;
  445. case QCE_HASH_SHA256:
  446. case QCE_HASH_SHA256_HMAC:
  447. diglen = SHA256_DIGEST_SIZE;
  448. break;
  449. default:
  450. return -EINVAL;
  451. }
  452. /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
  453. if (sreq->first_blk) {
  454. if (sha1) {
  455. for (i = 0; i < 5; i++)
  456. auth32[i] = _std_init_vector_sha1[i];
  457. } else {
  458. for (i = 0; i < 8; i++)
  459. auth32[i] = _std_init_vector_sha256[i];
  460. }
  461. } else {
  462. _byte_stream_to_net_words(auth32, sreq->digest, diglen);
  463. }
  464. pce = cmdlistinfo->auth_iv;
  465. for (i = 0; i < 5; i++, pce++)
  466. pce->data = auth32[i];
  467. if ((sreq->alg == QCE_HASH_SHA256) ||
  468. (sreq->alg == QCE_HASH_SHA256_HMAC)) {
  469. for (i = 5; i < 8; i++, pce++)
  470. pce->data = auth32[i];
  471. }
  472. /* write auth_bytecnt 0/1, start with 0 */
  473. pce = cmdlistinfo->auth_bytecount;
  474. for (i = 0; i < 2; i++, pce++)
  475. pce->data = sreq->auth_data[i];
  476. /* Set/reset last bit in CFG register */
  477. pce = cmdlistinfo->auth_seg_cfg;
  478. auth_cfg = pce->data & ~(1 << CRYPTO_LAST |
  479. 1 << CRYPTO_FIRST |
  480. 1 << CRYPTO_USE_PIPE_KEY_AUTH |
  481. 1 << CRYPTO_USE_HW_KEY_AUTH);
  482. if (sreq->last_blk)
  483. auth_cfg |= 1 << CRYPTO_LAST;
  484. if (sreq->first_blk)
  485. auth_cfg |= 1 << CRYPTO_FIRST;
  486. if (use_hw_key)
  487. auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
  488. if (use_pipe_key)
  489. auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
  490. pce->data = auth_cfg;
  491. go_proc:
  492. /* write auth seg size */
  493. pce = cmdlistinfo->auth_seg_size;
  494. pce->data = sreq->size;
  495. pce = cmdlistinfo->encr_seg_cfg;
  496. pce->data = 0;
  497. /* write auth seg size start*/
  498. pce = cmdlistinfo->auth_seg_start;
  499. pce->data = 0;
  500. /* write seg size */
  501. pce = cmdlistinfo->seg_size;
  502. /* always ensure there is input data. ZLT does not work for bam-ndp */
  503. if (sreq->size)
  504. pce->data = sreq->size;
  505. else
  506. pce->data = pce_dev->ce_bam_info.ce_burst_size;
  507. return 0;
  508. }
  509. static struct qce_cmdlist_info *_ce_get_aead_cmdlistinfo(
  510. struct qce_device *pce_dev,
  511. int req_info, struct qce_req *creq)
  512. {
  513. struct ce_sps_data *pce_sps_data;
  514. struct qce_cmdlistptr_ops *cmdlistptr;
  515. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  516. cmdlistptr = &pce_sps_data->cmdlistptr;
  517. switch (creq->alg) {
  518. case CIPHER_ALG_DES:
  519. switch (creq->mode) {
  520. case QCE_MODE_CBC:
  521. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  522. return &cmdlistptr->aead_hmac_sha1_cbc_des;
  523. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  524. return &cmdlistptr->aead_hmac_sha256_cbc_des;
  525. else
  526. return NULL;
  527. break;
  528. default:
  529. return NULL;
  530. }
  531. break;
  532. case CIPHER_ALG_3DES:
  533. switch (creq->mode) {
  534. case QCE_MODE_CBC:
  535. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  536. return &cmdlistptr->aead_hmac_sha1_cbc_3des;
  537. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  538. return &cmdlistptr->aead_hmac_sha256_cbc_3des;
  539. else
  540. return NULL;
  541. break;
  542. default:
  543. return NULL;
  544. }
  545. break;
  546. case CIPHER_ALG_AES:
  547. switch (creq->mode) {
  548. case QCE_MODE_CBC:
  549. if (creq->encklen == AES128_KEY_SIZE) {
  550. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  551. return
  552. &cmdlistptr->aead_hmac_sha1_cbc_aes_128;
  553. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  554. return
  555. &cmdlistptr->aead_hmac_sha256_cbc_aes_128;
  556. else
  557. return NULL;
  558. } else if (creq->encklen == AES256_KEY_SIZE) {
  559. if (creq->auth_alg == QCE_HASH_SHA1_HMAC)
  560. return &cmdlistptr->aead_hmac_sha1_cbc_aes_256;
  561. else if (creq->auth_alg == QCE_HASH_SHA256_HMAC)
  562. return
  563. &cmdlistptr->aead_hmac_sha256_cbc_aes_256;
  564. else
  565. return NULL;
  566. } else
  567. return NULL;
  568. break;
  569. default:
  570. return NULL;
  571. }
  572. break;
  573. default:
  574. return NULL;
  575. }
  576. return NULL;
  577. }
  578. static int _ce_setup_aead(struct qce_device *pce_dev, struct qce_req *q_req,
  579. uint32_t totallen_in, uint32_t coffset,
  580. struct qce_cmdlist_info *cmdlistinfo)
  581. {
  582. int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  583. int i;
  584. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
  585. struct sps_command_element *pce;
  586. uint32_t a_cfg;
  587. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
  588. uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
  589. uint32_t enck_size_in_word = 0;
  590. uint32_t enciv_in_word;
  591. uint32_t key_size;
  592. uint32_t encr_cfg = 0;
  593. uint32_t ivsize = q_req->ivsize;
  594. key_size = q_req->encklen;
  595. enck_size_in_word = key_size/sizeof(uint32_t);
  596. switch (q_req->alg) {
  597. case CIPHER_ALG_DES:
  598. enciv_in_word = 2;
  599. break;
  600. case CIPHER_ALG_3DES:
  601. enciv_in_word = 2;
  602. break;
  603. case CIPHER_ALG_AES:
  604. if ((key_size != AES128_KEY_SIZE) &&
  605. (key_size != AES256_KEY_SIZE))
  606. return -EINVAL;
  607. enciv_in_word = 4;
  608. break;
  609. default:
  610. return -EINVAL;
  611. }
  612. /* only support cbc mode */
  613. if (q_req->mode != QCE_MODE_CBC)
  614. return -EINVAL;
  615. _byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
  616. pce = cmdlistinfo->encr_cntr_iv;
  617. for (i = 0; i < enciv_in_word; i++, pce++)
  618. pce->data = enciv32[i];
  619. /*
  620. * write encr key
  621. * do not use hw key or pipe key
  622. */
  623. _byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
  624. pce = cmdlistinfo->encr_key;
  625. for (i = 0; i < enck_size_in_word; i++, pce++)
  626. pce->data = enckey32[i];
  627. /* write encr seg cfg */
  628. pce = cmdlistinfo->encr_seg_cfg;
  629. encr_cfg = pce->data;
  630. if (q_req->dir == QCE_ENCRYPT)
  631. encr_cfg |= (1 << CRYPTO_ENCODE);
  632. else
  633. encr_cfg &= ~(1 << CRYPTO_ENCODE);
  634. pce->data = encr_cfg;
  635. /* we only support sha1-hmac and sha256-hmac at this point */
  636. _byte_stream_to_net_words(mackey32, q_req->authkey,
  637. q_req->authklen);
  638. pce = cmdlistinfo->auth_key;
  639. for (i = 0; i < authk_size_in_word; i++, pce++)
  640. pce->data = mackey32[i];
  641. pce = cmdlistinfo->auth_iv;
  642. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
  643. for (i = 0; i < 5; i++, pce++)
  644. pce->data = _std_init_vector_sha1[i];
  645. else
  646. for (i = 0; i < 8; i++, pce++)
  647. pce->data = _std_init_vector_sha256[i];
  648. /* write auth_bytecnt 0/1, start with 0 */
  649. pce = cmdlistinfo->auth_bytecount;
  650. for (i = 0; i < 2; i++, pce++)
  651. pce->data = 0;
  652. pce = cmdlistinfo->auth_seg_cfg;
  653. a_cfg = pce->data;
  654. a_cfg &= ~(CRYPTO_AUTH_POS_MASK);
  655. if (q_req->dir == QCE_ENCRYPT)
  656. a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  657. else
  658. a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  659. pce->data = a_cfg;
  660. /* write auth seg size */
  661. pce = cmdlistinfo->auth_seg_size;
  662. pce->data = totallen_in;
  663. /* write auth seg size start*/
  664. pce = cmdlistinfo->auth_seg_start;
  665. pce->data = 0;
  666. /* write seg size */
  667. pce = cmdlistinfo->seg_size;
  668. pce->data = totallen_in;
  669. /* write encr seg size */
  670. pce = cmdlistinfo->encr_seg_size;
  671. pce->data = q_req->cryptlen;
  672. /* write encr seg start */
  673. pce = cmdlistinfo->encr_seg_start;
  674. pce->data = (coffset & 0xffff);
  675. return 0;
  676. }
  677. static struct qce_cmdlist_info *_ce_get_cipher_cmdlistinfo(
  678. struct qce_device *pce_dev,
  679. int req_info, struct qce_req *creq)
  680. {
  681. struct ce_request_info *preq_info;
  682. struct ce_sps_data *pce_sps_data;
  683. struct qce_cmdlistptr_ops *cmdlistptr;
  684. preq_info = &pce_dev->ce_request_info[req_info];
  685. pce_sps_data = &preq_info->ce_sps;
  686. cmdlistptr = &pce_sps_data->cmdlistptr;
  687. if (creq->alg != CIPHER_ALG_AES) {
  688. switch (creq->alg) {
  689. case CIPHER_ALG_DES:
  690. if (creq->mode == QCE_MODE_ECB)
  691. return &cmdlistptr->cipher_des_ecb;
  692. return &cmdlistptr->cipher_des_cbc;
  693. case CIPHER_ALG_3DES:
  694. if (creq->mode == QCE_MODE_ECB)
  695. return &cmdlistptr->cipher_3des_ecb;
  696. return &cmdlistptr->cipher_3des_cbc;
  697. default:
  698. return NULL;
  699. }
  700. } else {
  701. switch (creq->mode) {
  702. case QCE_MODE_ECB:
  703. if (creq->encklen == AES128_KEY_SIZE)
  704. return &cmdlistptr->cipher_aes_128_ecb;
  705. return &cmdlistptr->cipher_aes_256_ecb;
  706. case QCE_MODE_CBC:
  707. case QCE_MODE_CTR:
  708. if (creq->encklen == AES128_KEY_SIZE)
  709. return &cmdlistptr->cipher_aes_128_cbc_ctr;
  710. return &cmdlistptr->cipher_aes_256_cbc_ctr;
  711. case QCE_MODE_XTS:
  712. if (creq->encklen/2 == AES128_KEY_SIZE)
  713. return &cmdlistptr->cipher_aes_128_xts;
  714. return &cmdlistptr->cipher_aes_256_xts;
  715. case QCE_MODE_CCM:
  716. if (creq->encklen == AES128_KEY_SIZE)
  717. return &cmdlistptr->aead_aes_128_ccm;
  718. return &cmdlistptr->aead_aes_256_ccm;
  719. default:
  720. return NULL;
  721. }
  722. }
  723. return NULL;
  724. }
  725. static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq,
  726. uint32_t totallen_in, uint32_t coffset,
  727. struct qce_cmdlist_info *cmdlistinfo)
  728. {
  729. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
  730. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  731. uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
  732. 0, 0, 0, 0};
  733. uint32_t enck_size_in_word = 0;
  734. uint32_t key_size;
  735. bool use_hw_key = false;
  736. bool use_pipe_key = false;
  737. uint32_t encr_cfg = 0;
  738. uint32_t ivsize = creq->ivsize;
  739. int i;
  740. struct sps_command_element *pce = NULL;
  741. bool is_des_cipher = false;
  742. if (creq->mode == QCE_MODE_XTS)
  743. key_size = creq->encklen/2;
  744. else
  745. key_size = creq->encklen;
  746. qce_set_offload_config(pce_dev, creq);
  747. pce = cmdlistinfo->crypto_cfg;
  748. pce->data = pce_dev->reg.crypto_cfg_be;
  749. pce = cmdlistinfo->crypto_cfg_le;
  750. pce->data = pce_dev->reg.crypto_cfg_le;
  751. pce = cmdlistinfo->go_proc;
  752. if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
  753. use_hw_key = true;
  754. } else {
  755. if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  756. QCRYPTO_CTX_USE_PIPE_KEY)
  757. use_pipe_key = true;
  758. }
  759. if (use_hw_key)
  760. pce->addr = (uint32_t)(CRYPTO_GOPROC_QC_KEY_REG +
  761. pce_dev->phy_iobase);
  762. else
  763. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
  764. pce_dev->phy_iobase);
  765. if (!use_pipe_key && !use_hw_key) {
  766. _byte_stream_to_net_words(enckey32, creq->enckey, key_size);
  767. enck_size_in_word = key_size/sizeof(uint32_t);
  768. }
  769. if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
  770. uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
  771. uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
  772. uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
  773. uint32_t auth_cfg = 0;
  774. /* write nonce */
  775. _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
  776. pce = cmdlistinfo->auth_nonce_info;
  777. for (i = 0; i < noncelen32; i++, pce++)
  778. pce->data = nonce32[i];
  779. if (creq->authklen == AES128_KEY_SIZE)
  780. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
  781. else {
  782. if (creq->authklen == AES256_KEY_SIZE)
  783. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
  784. }
  785. if (creq->dir == QCE_ENCRYPT)
  786. auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  787. else
  788. auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  789. auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
  790. if (use_hw_key) {
  791. auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
  792. } else {
  793. auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  794. /* write auth key */
  795. pce = cmdlistinfo->auth_key;
  796. for (i = 0; i < authklen32; i++, pce++)
  797. pce->data = enckey32[i];
  798. }
  799. pce = cmdlistinfo->auth_seg_cfg;
  800. pce->data = auth_cfg;
  801. pce = cmdlistinfo->auth_seg_size;
  802. if (creq->dir == QCE_ENCRYPT)
  803. pce->data = totallen_in;
  804. else
  805. pce->data = totallen_in - creq->authsize;
  806. pce = cmdlistinfo->auth_seg_start;
  807. pce->data = 0;
  808. } else {
  809. if (creq->op != QCE_REQ_AEAD) {
  810. pce = cmdlistinfo->auth_seg_cfg;
  811. pce->data = 0;
  812. }
  813. }
  814. switch (creq->mode) {
  815. case QCE_MODE_ECB:
  816. if (key_size == AES128_KEY_SIZE)
  817. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
  818. else
  819. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
  820. break;
  821. case QCE_MODE_CBC:
  822. if (key_size == AES128_KEY_SIZE)
  823. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  824. else
  825. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  826. break;
  827. case QCE_MODE_XTS:
  828. if (key_size == AES128_KEY_SIZE)
  829. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
  830. else
  831. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
  832. break;
  833. case QCE_MODE_CCM:
  834. if (key_size == AES128_KEY_SIZE)
  835. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
  836. else
  837. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
  838. encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
  839. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  840. break;
  841. case QCE_MODE_CTR:
  842. default:
  843. if (key_size == AES128_KEY_SIZE)
  844. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
  845. else
  846. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
  847. break;
  848. }
  849. switch (creq->alg) {
  850. case CIPHER_ALG_DES:
  851. if (creq->mode != QCE_MODE_ECB) {
  852. if (ivsize > MAX_IV_LENGTH) {
  853. pr_err("%s: error: Invalid length parameter\n",
  854. __func__);
  855. return -EINVAL;
  856. }
  857. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  858. pce = cmdlistinfo->encr_cntr_iv;
  859. pce->data = enciv32[0];
  860. pce++;
  861. pce->data = enciv32[1];
  862. }
  863. if (!use_hw_key) {
  864. pce = cmdlistinfo->encr_key;
  865. pce->data = enckey32[0];
  866. pce++;
  867. pce->data = enckey32[1];
  868. }
  869. is_des_cipher = true;
  870. break;
  871. case CIPHER_ALG_3DES:
  872. if (creq->mode != QCE_MODE_ECB) {
  873. if (ivsize > MAX_IV_LENGTH) {
  874. pr_err("%s: error: Invalid length parameter\n",
  875. __func__);
  876. return -EINVAL;
  877. }
  878. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  879. pce = cmdlistinfo->encr_cntr_iv;
  880. pce->data = enciv32[0];
  881. pce++;
  882. pce->data = enciv32[1];
  883. }
  884. if (!use_hw_key) {
  885. /* write encr key */
  886. pce = cmdlistinfo->encr_key;
  887. for (i = 0; i < 6; i++, pce++)
  888. pce->data = enckey32[i];
  889. }
  890. is_des_cipher = true;
  891. break;
  892. case CIPHER_ALG_AES:
  893. default:
  894. if (creq->mode == QCE_MODE_XTS) {
  895. uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
  896. = {0, 0, 0, 0, 0, 0, 0, 0};
  897. uint32_t xtsklen =
  898. creq->encklen/(2 * sizeof(uint32_t));
  899. if (!use_hw_key && !use_pipe_key) {
  900. _byte_stream_to_net_words(xtskey32,
  901. (creq->enckey + creq->encklen/2),
  902. creq->encklen/2);
  903. /* write xts encr key */
  904. pce = cmdlistinfo->encr_xts_key;
  905. for (i = 0; i < xtsklen; i++, pce++)
  906. pce->data = xtskey32[i];
  907. }
  908. /* write xts du size */
  909. pce = cmdlistinfo->encr_xts_du_size;
  910. switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
  911. case QCRYPTO_CTX_XTS_DU_SIZE_512B:
  912. pce->data = min((unsigned int)QCE_SECTOR_SIZE,
  913. creq->cryptlen);
  914. break;
  915. case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
  916. pce->data =
  917. min((unsigned int)QCE_SECTOR_SIZE * 2,
  918. creq->cryptlen);
  919. break;
  920. default:
  921. pce->data = creq->cryptlen;
  922. break;
  923. }
  924. }
  925. if (creq->mode != QCE_MODE_ECB) {
  926. if (ivsize > MAX_IV_LENGTH) {
  927. pr_err("%s: error: Invalid length parameter\n",
  928. __func__);
  929. return -EINVAL;
  930. }
  931. if (creq->mode == QCE_MODE_XTS)
  932. _byte_stream_swap_to_net_words(enciv32,
  933. creq->iv, ivsize);
  934. else
  935. _byte_stream_to_net_words(enciv32, creq->iv,
  936. ivsize);
  937. /* write encr cntr iv */
  938. pce = cmdlistinfo->encr_cntr_iv;
  939. for (i = 0; i < 4; i++, pce++)
  940. pce->data = enciv32[i];
  941. if (creq->mode == QCE_MODE_CCM) {
  942. /* write cntr iv for ccm */
  943. pce = cmdlistinfo->encr_ccm_cntr_iv;
  944. for (i = 0; i < 4; i++, pce++)
  945. pce->data = enciv32[i];
  946. /* update cntr_iv[3] by one */
  947. pce = cmdlistinfo->encr_cntr_iv;
  948. pce += 3;
  949. pce->data += 1;
  950. }
  951. }
  952. if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
  953. encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
  954. CRYPTO_ENCR_KEY_SZ);
  955. } else {
  956. if (!use_hw_key) {
  957. /* write encr key */
  958. pce = cmdlistinfo->encr_key;
  959. for (i = 0; i < enck_size_in_word; i++, pce++)
  960. pce->data = enckey32[i];
  961. }
  962. } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
  963. break;
  964. } /* end of switch (creq->mode) */
  965. if (use_pipe_key)
  966. encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
  967. << CRYPTO_USE_PIPE_KEY_ENCR);
  968. /* write encr seg cfg */
  969. pce = cmdlistinfo->encr_seg_cfg;
  970. if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) {
  971. if (creq->dir == QCE_ENCRYPT)
  972. pce->data |= (1 << CRYPTO_ENCODE);
  973. else
  974. pce->data &= ~(1 << CRYPTO_ENCODE);
  975. encr_cfg = pce->data;
  976. } else {
  977. encr_cfg |=
  978. ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
  979. }
  980. if (use_hw_key)
  981. encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  982. else
  983. encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  984. pce->data = encr_cfg;
  985. /* write encr seg size */
  986. pce = cmdlistinfo->encr_seg_size;
  987. if (creq->is_copy_op) {
  988. pce->data = 0;
  989. } else {
  990. if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT))
  991. pce->data = (creq->cryptlen + creq->authsize);
  992. else
  993. pce->data = creq->cryptlen;
  994. }
  995. /* write encr seg start */
  996. pce = cmdlistinfo->encr_seg_start;
  997. pce->data = (coffset & 0xffff);
  998. /* write seg size */
  999. pce = cmdlistinfo->seg_size;
  1000. pce->data = totallen_in;
  1001. if (is_offload_op(creq->offload_op)) {
  1002. /* pattern info */
  1003. pce = cmdlistinfo->pattern_info;
  1004. if (creq->is_pattern_valid)
  1005. pce->data = creq->pattern_info;
  1006. /* block offset */
  1007. pce = cmdlistinfo->block_offset;
  1008. pce->data = (creq->block_offset << 4) |
  1009. (creq->block_offset ? 1: 0);
  1010. /* IV counter size */
  1011. qce_set_iv_ctr_mask(pce_dev, creq);
  1012. }
  1013. if (!is_des_cipher) {
  1014. pce = cmdlistinfo->encr_mask_3;
  1015. pce->data = pce_dev->reg.encr_cntr_mask_3;
  1016. pce = cmdlistinfo->encr_mask_2;
  1017. pce->data = pce_dev->reg.encr_cntr_mask_2;
  1018. pce = cmdlistinfo->encr_mask_1;
  1019. pce->data = pce_dev->reg.encr_cntr_mask_1;
  1020. pce = cmdlistinfo->encr_mask_0;
  1021. pce->data = pce_dev->reg.encr_cntr_mask_0;
  1022. }
  1023. pce = cmdlistinfo->go_proc;
  1024. pce->data = 0;
  1025. if (is_offload_op(creq->offload_op))
  1026. pce->data = ((1 << CRYPTO_GO) | (1 << CRYPTO_CLR_CNTXT));
  1027. else
  1028. pce->data = ((1 << CRYPTO_GO) | (1 << CRYPTO_CLR_CNTXT) |
  1029. (1 << CRYPTO_RESULTS_DUMP));
  1030. return 0;
  1031. }
  1032. static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req *req,
  1033. struct qce_cmdlist_info *cmdlistinfo)
  1034. {
  1035. uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1036. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1037. uint32_t cfg;
  1038. struct sps_command_element *pce;
  1039. int i;
  1040. switch (req->algorithm) {
  1041. case QCE_OTA_ALGO_KASUMI:
  1042. cfg = pce_dev->reg.auth_cfg_kasumi;
  1043. break;
  1044. case QCE_OTA_ALGO_SNOW3G:
  1045. default:
  1046. cfg = pce_dev->reg.auth_cfg_snow3g;
  1047. break;
  1048. }
  1049. /* write key in CRYPTO_AUTH_IV0-3_REG */
  1050. _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
  1051. pce = cmdlistinfo->auth_iv;
  1052. for (i = 0; i < key_size_in_word; i++, pce++)
  1053. pce->data = ikey32[i];
  1054. /* write last bits in CRYPTO_AUTH_IV4_REG */
  1055. pce->data = req->last_bits;
  1056. /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
  1057. pce = cmdlistinfo->auth_bytecount;
  1058. pce->data = req->fresh;
  1059. /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
  1060. pce++;
  1061. pce->data = req->count_i;
  1062. /* write auth seg cfg */
  1063. pce = cmdlistinfo->auth_seg_cfg;
  1064. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1065. cfg |= BIT(CRYPTO_F9_DIRECTION);
  1066. pce->data = cfg;
  1067. /* write auth seg size */
  1068. pce = cmdlistinfo->auth_seg_size;
  1069. pce->data = req->msize;
  1070. /* write auth seg start*/
  1071. pce = cmdlistinfo->auth_seg_start;
  1072. pce->data = 0;
  1073. /* write seg size */
  1074. pce = cmdlistinfo->seg_size;
  1075. pce->data = req->msize;
  1076. /* write go */
  1077. pce = cmdlistinfo->go_proc;
  1078. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
  1079. return 0;
  1080. }
  1081. static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req,
  1082. bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset,
  1083. uint16_t cipher_size,
  1084. struct qce_cmdlist_info *cmdlistinfo)
  1085. {
  1086. uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1087. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1088. uint32_t cfg;
  1089. struct sps_command_element *pce;
  1090. int i;
  1091. switch (req->algorithm) {
  1092. case QCE_OTA_ALGO_KASUMI:
  1093. cfg = pce_dev->reg.encr_cfg_kasumi;
  1094. break;
  1095. case QCE_OTA_ALGO_SNOW3G:
  1096. default:
  1097. cfg = pce_dev->reg.encr_cfg_snow3g;
  1098. break;
  1099. }
  1100. /* write key */
  1101. _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
  1102. pce = cmdlistinfo->encr_key;
  1103. for (i = 0; i < key_size_in_word; i++, pce++)
  1104. pce->data = ckey32[i];
  1105. /* write encr seg cfg */
  1106. pce = cmdlistinfo->encr_seg_cfg;
  1107. if (key_stream_mode)
  1108. cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
  1109. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1110. cfg |= BIT(CRYPTO_F8_DIRECTION);
  1111. pce->data = cfg;
  1112. /* write encr seg start */
  1113. pce = cmdlistinfo->encr_seg_start;
  1114. pce->data = (cipher_offset & 0xffff);
  1115. /* write encr seg size */
  1116. pce = cmdlistinfo->encr_seg_size;
  1117. pce->data = cipher_size;
  1118. /* write seg size */
  1119. pce = cmdlistinfo->seg_size;
  1120. pce->data = req->data_len;
  1121. /* write cntr0_iv0 for countC */
  1122. pce = cmdlistinfo->encr_cntr_iv;
  1123. pce->data = req->count_c;
  1124. /* write cntr1_iv1 for nPkts, and bearer */
  1125. pce++;
  1126. if (npkts == 1)
  1127. npkts = 0;
  1128. pce->data = req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
  1129. npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT;
  1130. /* write go */
  1131. pce = cmdlistinfo->go_proc;
  1132. pce->addr = (uint32_t)(CRYPTO_GOPROC_REG + pce_dev->phy_iobase);
  1133. return 0;
  1134. }
  1135. static void _qce_dump_descr_fifos(struct qce_device *pce_dev, int req_info)
  1136. {
  1137. int i, j, ents;
  1138. struct ce_sps_data *pce_sps_data;
  1139. struct sps_iovec *iovec;
  1140. uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD;
  1141. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  1142. iovec = pce_sps_data->in_transfer.iovec;
  1143. pr_err("==============================================\n");
  1144. pr_err("CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n");
  1145. pr_err("==============================================\n");
  1146. for (i = 0; i < pce_sps_data->in_transfer.iovec_count; i++) {
  1147. pr_err(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
  1148. iovec->addr, iovec->size, iovec->flags);
  1149. if (iovec->flags & cmd_flags) {
  1150. struct sps_command_element *pced;
  1151. pced = (struct sps_command_element *)
  1152. (GET_VIRT_ADDR(iovec->addr));
  1153. ents = iovec->size/(sizeof(struct sps_command_element));
  1154. for (j = 0; j < ents; j++) {
  1155. pr_err(" [%d] [0x%x] 0x%x\n", j,
  1156. pced->addr, pced->data);
  1157. pced++;
  1158. }
  1159. }
  1160. iovec++;
  1161. }
  1162. pr_err("==============================================\n");
  1163. pr_err("PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n");
  1164. pr_err("==============================================\n");
  1165. iovec = pce_sps_data->out_transfer.iovec;
  1166. for (i = 0; i < pce_sps_data->out_transfer.iovec_count; i++) {
  1167. pr_info(" [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
  1168. iovec->addr, iovec->size, iovec->flags);
  1169. iovec++;
  1170. }
  1171. }
  1172. #ifdef QCE_DEBUG
  1173. static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
  1174. {
  1175. _qce_dump_descr_fifos(pce_dev, req_info);
  1176. }
  1177. #define QCE_WRITE_REG(val, addr) \
  1178. { \
  1179. pr_info(" [0x%pK] 0x%x\n", addr, (uint32_t)val); \
  1180. writel_relaxed(val, addr); \
  1181. }
  1182. #else
  1183. static void _qce_dump_descr_fifos_dbg(struct qce_device *pce_dev, int req_info)
  1184. {
  1185. }
  1186. #define QCE_WRITE_REG(val, addr) \
  1187. writel_relaxed(val, addr)
  1188. #endif
  1189. static int _ce_setup_hash_direct(struct qce_device *pce_dev,
  1190. struct qce_sha_req *sreq)
  1191. {
  1192. uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
  1193. uint32_t diglen;
  1194. bool use_hw_key = false;
  1195. bool use_pipe_key = false;
  1196. int i;
  1197. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
  1198. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1199. uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
  1200. bool sha1 = false;
  1201. uint32_t auth_cfg = 0;
  1202. /* clear status */
  1203. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1204. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1205. CRYPTO_CONFIG_REG));
  1206. /*
  1207. * Ensure previous instructions (setting the CONFIG register)
  1208. * was completed before issuing starting to set other config register
  1209. * This is to ensure the configurations are done in correct endian-ness
  1210. * as set in the CONFIG registers
  1211. */
  1212. mb();
  1213. if (sreq->alg == QCE_HASH_AES_CMAC) {
  1214. /* write seg_cfg */
  1215. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1216. /* write seg_cfg */
  1217. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1218. /* write seg_cfg */
  1219. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1220. /* Clear auth_ivn, auth_keyn registers */
  1221. for (i = 0; i < 16; i++) {
  1222. QCE_WRITE_REG(0, (pce_dev->iobase +
  1223. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1224. QCE_WRITE_REG(0, (pce_dev->iobase +
  1225. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
  1226. }
  1227. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1228. for (i = 0; i < 4; i++)
  1229. QCE_WRITE_REG(0, pce_dev->iobase +
  1230. CRYPTO_AUTH_BYTECNT0_REG +
  1231. i * sizeof(uint32_t));
  1232. if (sreq->authklen == AES128_KEY_SIZE)
  1233. auth_cfg = pce_dev->reg.auth_cfg_cmac_128;
  1234. else
  1235. auth_cfg = pce_dev->reg.auth_cfg_cmac_256;
  1236. }
  1237. if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
  1238. (sreq->alg == QCE_HASH_SHA256_HMAC) ||
  1239. (sreq->alg == QCE_HASH_AES_CMAC)) {
  1240. _byte_stream_to_net_words(mackey32, sreq->authkey,
  1241. sreq->authklen);
  1242. /* no more check for null key. use flag to check*/
  1243. if ((sreq->flags & QCRYPTO_CTX_USE_HW_KEY) ==
  1244. QCRYPTO_CTX_USE_HW_KEY) {
  1245. use_hw_key = true;
  1246. } else if ((sreq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  1247. QCRYPTO_CTX_USE_PIPE_KEY) {
  1248. use_pipe_key = true;
  1249. } else {
  1250. /* setup key */
  1251. for (i = 0; i < authk_size_in_word; i++)
  1252. QCE_WRITE_REG(mackey32[i], (pce_dev->iobase +
  1253. (CRYPTO_AUTH_KEY0_REG +
  1254. i*sizeof(uint32_t))));
  1255. }
  1256. }
  1257. if (sreq->alg == QCE_HASH_AES_CMAC)
  1258. goto go_proc;
  1259. /* if not the last, the size has to be on the block boundary */
  1260. if (!sreq->last_blk && (sreq->size % SHA256_BLOCK_SIZE))
  1261. return -EIO;
  1262. switch (sreq->alg) {
  1263. case QCE_HASH_SHA1:
  1264. auth_cfg = pce_dev->reg.auth_cfg_sha1;
  1265. diglen = SHA1_DIGEST_SIZE;
  1266. sha1 = true;
  1267. break;
  1268. case QCE_HASH_SHA1_HMAC:
  1269. auth_cfg = pce_dev->reg.auth_cfg_hmac_sha1;
  1270. diglen = SHA1_DIGEST_SIZE;
  1271. sha1 = true;
  1272. break;
  1273. case QCE_HASH_SHA256:
  1274. auth_cfg = pce_dev->reg.auth_cfg_sha256;
  1275. diglen = SHA256_DIGEST_SIZE;
  1276. break;
  1277. case QCE_HASH_SHA256_HMAC:
  1278. auth_cfg = pce_dev->reg.auth_cfg_hmac_sha256;
  1279. diglen = SHA256_DIGEST_SIZE;
  1280. break;
  1281. default:
  1282. return -EINVAL;
  1283. }
  1284. /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
  1285. if (sreq->first_blk) {
  1286. if (sha1) {
  1287. for (i = 0; i < 5; i++)
  1288. auth32[i] = _std_init_vector_sha1[i];
  1289. } else {
  1290. for (i = 0; i < 8; i++)
  1291. auth32[i] = _std_init_vector_sha256[i];
  1292. }
  1293. } else {
  1294. _byte_stream_to_net_words(auth32, sreq->digest, diglen);
  1295. }
  1296. /* Set auth_ivn, auth_keyn registers */
  1297. for (i = 0; i < 5; i++)
  1298. QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
  1299. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1300. if ((sreq->alg == QCE_HASH_SHA256) ||
  1301. (sreq->alg == QCE_HASH_SHA256_HMAC)) {
  1302. for (i = 5; i < 8; i++)
  1303. QCE_WRITE_REG(auth32[i], (pce_dev->iobase +
  1304. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1305. }
  1306. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1307. for (i = 0; i < 2; i++)
  1308. QCE_WRITE_REG(sreq->auth_data[i], pce_dev->iobase +
  1309. CRYPTO_AUTH_BYTECNT0_REG +
  1310. i * sizeof(uint32_t));
  1311. /* Set/reset last bit in CFG register */
  1312. if (sreq->last_blk)
  1313. auth_cfg |= 1 << CRYPTO_LAST;
  1314. else
  1315. auth_cfg &= ~(1 << CRYPTO_LAST);
  1316. if (sreq->first_blk)
  1317. auth_cfg |= 1 << CRYPTO_FIRST;
  1318. else
  1319. auth_cfg &= ~(1 << CRYPTO_FIRST);
  1320. if (use_hw_key)
  1321. auth_cfg |= 1 << CRYPTO_USE_HW_KEY_AUTH;
  1322. if (use_pipe_key)
  1323. auth_cfg |= 1 << CRYPTO_USE_PIPE_KEY_AUTH;
  1324. go_proc:
  1325. /* write seg_cfg */
  1326. QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1327. /* write auth seg_size */
  1328. QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1329. /* write auth_seg_start */
  1330. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1331. /* reset encr seg_cfg */
  1332. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1333. /* write seg_size */
  1334. QCE_WRITE_REG(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1335. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1336. CRYPTO_CONFIG_REG));
  1337. /* issue go to crypto */
  1338. if (!use_hw_key) {
  1339. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1340. (1 << CRYPTO_CLR_CNTXT)),
  1341. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1342. } else {
  1343. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
  1344. pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
  1345. }
  1346. /*
  1347. * Ensure previous instructions (setting the GO register)
  1348. * was completed before issuing a DMA transfer request
  1349. */
  1350. mb();
  1351. return 0;
  1352. }
  1353. static int _ce_setup_aead_direct(struct qce_device *pce_dev,
  1354. struct qce_req *q_req, uint32_t totallen_in, uint32_t coffset)
  1355. {
  1356. int32_t authk_size_in_word = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  1357. int i;
  1358. uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {0};
  1359. uint32_t a_cfg;
  1360. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE*2)/sizeof(uint32_t)] = {0};
  1361. uint32_t enciv32[MAX_IV_LENGTH/sizeof(uint32_t)] = {0};
  1362. uint32_t enck_size_in_word = 0;
  1363. uint32_t enciv_in_word;
  1364. uint32_t key_size;
  1365. uint32_t ivsize = q_req->ivsize;
  1366. uint32_t encr_cfg;
  1367. /* clear status */
  1368. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1369. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1370. CRYPTO_CONFIG_REG));
  1371. /*
  1372. * Ensure previous instructions (setting the CONFIG register)
  1373. * was completed before issuing starting to set other config register
  1374. * This is to ensure the configurations are done in correct endian-ness
  1375. * as set in the CONFIG registers
  1376. */
  1377. mb();
  1378. key_size = q_req->encklen;
  1379. enck_size_in_word = key_size/sizeof(uint32_t);
  1380. switch (q_req->alg) {
  1381. case CIPHER_ALG_DES:
  1382. switch (q_req->mode) {
  1383. case QCE_MODE_CBC:
  1384. encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
  1385. break;
  1386. default:
  1387. return -EINVAL;
  1388. }
  1389. enciv_in_word = 2;
  1390. break;
  1391. case CIPHER_ALG_3DES:
  1392. switch (q_req->mode) {
  1393. case QCE_MODE_CBC:
  1394. encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
  1395. break;
  1396. default:
  1397. return -EINVAL;
  1398. }
  1399. enciv_in_word = 2;
  1400. break;
  1401. case CIPHER_ALG_AES:
  1402. switch (q_req->mode) {
  1403. case QCE_MODE_CBC:
  1404. if (key_size == AES128_KEY_SIZE)
  1405. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  1406. else if (key_size == AES256_KEY_SIZE)
  1407. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  1408. else
  1409. return -EINVAL;
  1410. break;
  1411. default:
  1412. return -EINVAL;
  1413. }
  1414. enciv_in_word = 4;
  1415. break;
  1416. default:
  1417. return -EINVAL;
  1418. }
  1419. /* write CNTR0_IV0_REG */
  1420. if (q_req->mode != QCE_MODE_ECB) {
  1421. _byte_stream_to_net_words(enciv32, q_req->iv, ivsize);
  1422. for (i = 0; i < enciv_in_word; i++)
  1423. QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
  1424. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)));
  1425. }
  1426. /*
  1427. * write encr key
  1428. * do not use hw key or pipe key
  1429. */
  1430. _byte_stream_to_net_words(enckey32, q_req->enckey, key_size);
  1431. for (i = 0; i < enck_size_in_word; i++)
  1432. QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
  1433. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)));
  1434. /* write encr seg cfg */
  1435. if (q_req->dir == QCE_ENCRYPT)
  1436. encr_cfg |= (1 << CRYPTO_ENCODE);
  1437. QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1438. /* we only support sha1-hmac and sha256-hmac at this point */
  1439. _byte_stream_to_net_words(mackey32, q_req->authkey,
  1440. q_req->authklen);
  1441. for (i = 0; i < authk_size_in_word; i++)
  1442. QCE_WRITE_REG(mackey32[i], pce_dev->iobase +
  1443. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)));
  1444. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC) {
  1445. for (i = 0; i < 5; i++)
  1446. QCE_WRITE_REG(_std_init_vector_sha1[i],
  1447. pce_dev->iobase +
  1448. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
  1449. } else {
  1450. for (i = 0; i < 8; i++)
  1451. QCE_WRITE_REG(_std_init_vector_sha256[i],
  1452. pce_dev->iobase +
  1453. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)));
  1454. }
  1455. /* write auth_bytecnt 0/1, start with 0 */
  1456. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG);
  1457. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG);
  1458. /* write encr seg size */
  1459. QCE_WRITE_REG(q_req->cryptlen, pce_dev->iobase +
  1460. CRYPTO_ENCR_SEG_SIZE_REG);
  1461. /* write encr start */
  1462. QCE_WRITE_REG(coffset & 0xffff, pce_dev->iobase +
  1463. CRYPTO_ENCR_SEG_START_REG);
  1464. if (q_req->auth_alg == QCE_HASH_SHA1_HMAC)
  1465. a_cfg = pce_dev->reg.auth_cfg_aead_sha1_hmac;
  1466. else
  1467. a_cfg = pce_dev->reg.auth_cfg_aead_sha256_hmac;
  1468. if (q_req->dir == QCE_ENCRYPT)
  1469. a_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  1470. else
  1471. a_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  1472. /* write auth seg_cfg */
  1473. QCE_WRITE_REG(a_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1474. /* write auth seg_size */
  1475. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1476. /* write auth_seg_start */
  1477. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1478. /* write seg_size */
  1479. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1480. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1481. CRYPTO_CONFIG_REG));
  1482. /* issue go to crypto */
  1483. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1484. (1 << CRYPTO_CLR_CNTXT)),
  1485. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1486. /*
  1487. * Ensure previous instructions (setting the GO register)
  1488. * was completed before issuing a DMA transfer request
  1489. */
  1490. mb();
  1491. return 0;
  1492. }
  1493. static int _ce_setup_cipher_direct(struct qce_device *pce_dev,
  1494. struct qce_req *creq, uint32_t totallen_in, uint32_t coffset)
  1495. {
  1496. uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
  1497. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1498. uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
  1499. 0, 0, 0, 0};
  1500. uint32_t enck_size_in_word = 0;
  1501. uint32_t key_size;
  1502. bool use_hw_key = false;
  1503. bool use_pipe_key = false;
  1504. uint32_t encr_cfg = 0;
  1505. uint32_t ivsize = creq->ivsize;
  1506. int i;
  1507. /* clear status */
  1508. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1509. qce_set_offload_config(pce_dev, creq);
  1510. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be,
  1511. (pce_dev->iobase + CRYPTO_CONFIG_REG));
  1512. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le,
  1513. (pce_dev->iobase + CRYPTO_CONFIG_REG));
  1514. /*
  1515. * Ensure previous instructions (setting the CONFIG register)
  1516. * was completed before issuing starting to set other config register
  1517. * This is to ensure the configurations are done in correct endian-ness
  1518. * as set in the CONFIG registers
  1519. */
  1520. mb();
  1521. if (creq->mode == QCE_MODE_XTS)
  1522. key_size = creq->encklen/2;
  1523. else
  1524. key_size = creq->encklen;
  1525. if ((creq->flags & QCRYPTO_CTX_USE_HW_KEY) == QCRYPTO_CTX_USE_HW_KEY) {
  1526. use_hw_key = true;
  1527. } else {
  1528. if ((creq->flags & QCRYPTO_CTX_USE_PIPE_KEY) ==
  1529. QCRYPTO_CTX_USE_PIPE_KEY)
  1530. use_pipe_key = true;
  1531. }
  1532. if (!use_pipe_key && !use_hw_key) {
  1533. _byte_stream_to_net_words(enckey32, creq->enckey, key_size);
  1534. enck_size_in_word = key_size/sizeof(uint32_t);
  1535. }
  1536. if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
  1537. uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
  1538. uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
  1539. uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
  1540. uint32_t auth_cfg = 0;
  1541. /* Clear auth_ivn, auth_keyn registers */
  1542. for (i = 0; i < 16; i++) {
  1543. QCE_WRITE_REG(0, (pce_dev->iobase +
  1544. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1545. QCE_WRITE_REG(0, (pce_dev->iobase +
  1546. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t))));
  1547. }
  1548. /* write auth_bytecnt 0/1/2/3, start with 0 */
  1549. for (i = 0; i < 4; i++)
  1550. QCE_WRITE_REG(0, pce_dev->iobase +
  1551. CRYPTO_AUTH_BYTECNT0_REG +
  1552. i * sizeof(uint32_t));
  1553. /* write nonce */
  1554. _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
  1555. for (i = 0; i < noncelen32; i++)
  1556. QCE_WRITE_REG(nonce32[i], pce_dev->iobase +
  1557. CRYPTO_AUTH_INFO_NONCE0_REG +
  1558. (i*sizeof(uint32_t)));
  1559. if (creq->authklen == AES128_KEY_SIZE)
  1560. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_128;
  1561. else {
  1562. if (creq->authklen == AES256_KEY_SIZE)
  1563. auth_cfg = pce_dev->reg.auth_cfg_aes_ccm_256;
  1564. }
  1565. if (creq->dir == QCE_ENCRYPT)
  1566. auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  1567. else
  1568. auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
  1569. auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
  1570. if (use_hw_key) {
  1571. auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
  1572. } else {
  1573. auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  1574. /* write auth key */
  1575. for (i = 0; i < authklen32; i++)
  1576. QCE_WRITE_REG(enckey32[i], pce_dev->iobase +
  1577. CRYPTO_AUTH_KEY0_REG + (i*sizeof(uint32_t)));
  1578. }
  1579. QCE_WRITE_REG(auth_cfg, pce_dev->iobase +
  1580. CRYPTO_AUTH_SEG_CFG_REG);
  1581. if (creq->dir == QCE_ENCRYPT) {
  1582. QCE_WRITE_REG(totallen_in, pce_dev->iobase +
  1583. CRYPTO_AUTH_SEG_SIZE_REG);
  1584. } else {
  1585. QCE_WRITE_REG((totallen_in - creq->authsize),
  1586. pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1587. }
  1588. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1589. } else {
  1590. if (creq->op != QCE_REQ_AEAD)
  1591. QCE_WRITE_REG(0, pce_dev->iobase +
  1592. CRYPTO_AUTH_SEG_CFG_REG);
  1593. }
  1594. /*
  1595. * Ensure previous instructions (write to all AUTH registers)
  1596. * was completed before accessing a register that is not in
  1597. * in the same 1K range.
  1598. */
  1599. mb();
  1600. switch (creq->mode) {
  1601. case QCE_MODE_ECB:
  1602. if (key_size == AES128_KEY_SIZE)
  1603. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_128;
  1604. else
  1605. encr_cfg = pce_dev->reg.encr_cfg_aes_ecb_256;
  1606. break;
  1607. case QCE_MODE_CBC:
  1608. if (key_size == AES128_KEY_SIZE)
  1609. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_128;
  1610. else
  1611. encr_cfg = pce_dev->reg.encr_cfg_aes_cbc_256;
  1612. break;
  1613. case QCE_MODE_XTS:
  1614. if (key_size == AES128_KEY_SIZE)
  1615. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_128;
  1616. else
  1617. encr_cfg = pce_dev->reg.encr_cfg_aes_xts_256;
  1618. break;
  1619. case QCE_MODE_CCM:
  1620. if (key_size == AES128_KEY_SIZE)
  1621. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_128;
  1622. else
  1623. encr_cfg = pce_dev->reg.encr_cfg_aes_ccm_256;
  1624. break;
  1625. case QCE_MODE_CTR:
  1626. default:
  1627. if (key_size == AES128_KEY_SIZE)
  1628. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_128;
  1629. else
  1630. encr_cfg = pce_dev->reg.encr_cfg_aes_ctr_256;
  1631. break;
  1632. }
  1633. switch (creq->alg) {
  1634. case CIPHER_ALG_DES:
  1635. if (creq->mode != QCE_MODE_ECB) {
  1636. encr_cfg = pce_dev->reg.encr_cfg_des_cbc;
  1637. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  1638. QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
  1639. CRYPTO_CNTR0_IV0_REG);
  1640. QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
  1641. CRYPTO_CNTR1_IV1_REG);
  1642. } else {
  1643. encr_cfg = pce_dev->reg.encr_cfg_des_ecb;
  1644. }
  1645. if (!use_hw_key) {
  1646. QCE_WRITE_REG(enckey32[0], pce_dev->iobase +
  1647. CRYPTO_ENCR_KEY0_REG);
  1648. QCE_WRITE_REG(enckey32[1], pce_dev->iobase +
  1649. CRYPTO_ENCR_KEY1_REG);
  1650. }
  1651. break;
  1652. case CIPHER_ALG_3DES:
  1653. if (creq->mode != QCE_MODE_ECB) {
  1654. _byte_stream_to_net_words(enciv32, creq->iv, ivsize);
  1655. QCE_WRITE_REG(enciv32[0], pce_dev->iobase +
  1656. CRYPTO_CNTR0_IV0_REG);
  1657. QCE_WRITE_REG(enciv32[1], pce_dev->iobase +
  1658. CRYPTO_CNTR1_IV1_REG);
  1659. encr_cfg = pce_dev->reg.encr_cfg_3des_cbc;
  1660. } else {
  1661. encr_cfg = pce_dev->reg.encr_cfg_3des_ecb;
  1662. }
  1663. if (!use_hw_key) {
  1664. /* write encr key */
  1665. for (i = 0; i < 6; i++)
  1666. QCE_WRITE_REG(enckey32[0], (pce_dev->iobase +
  1667. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t))));
  1668. }
  1669. break;
  1670. case CIPHER_ALG_AES:
  1671. default:
  1672. if (creq->mode == QCE_MODE_XTS) {
  1673. uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
  1674. = {0, 0, 0, 0, 0, 0, 0, 0};
  1675. uint32_t xtsklen =
  1676. creq->encklen/(2 * sizeof(uint32_t));
  1677. if (!use_hw_key && !use_pipe_key) {
  1678. _byte_stream_to_net_words(xtskey32,
  1679. (creq->enckey + creq->encklen/2),
  1680. creq->encklen/2);
  1681. /* write xts encr key */
  1682. for (i = 0; i < xtsklen; i++)
  1683. QCE_WRITE_REG(xtskey32[i],
  1684. pce_dev->iobase +
  1685. CRYPTO_ENCR_XTS_KEY0_REG +
  1686. (i * sizeof(uint32_t)));
  1687. }
  1688. /* write xts du size */
  1689. switch (creq->flags & QCRYPTO_CTX_XTS_MASK) {
  1690. case QCRYPTO_CTX_XTS_DU_SIZE_512B:
  1691. QCE_WRITE_REG(
  1692. min((uint32_t)QCE_SECTOR_SIZE,
  1693. creq->cryptlen), pce_dev->iobase +
  1694. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1695. break;
  1696. case QCRYPTO_CTX_XTS_DU_SIZE_1KB:
  1697. QCE_WRITE_REG(
  1698. min((uint32_t)(QCE_SECTOR_SIZE * 2),
  1699. creq->cryptlen), pce_dev->iobase +
  1700. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1701. break;
  1702. default:
  1703. QCE_WRITE_REG(creq->cryptlen,
  1704. pce_dev->iobase +
  1705. CRYPTO_ENCR_XTS_DU_SIZE_REG);
  1706. break;
  1707. }
  1708. }
  1709. if (creq->mode != QCE_MODE_ECB) {
  1710. if (creq->mode == QCE_MODE_XTS)
  1711. _byte_stream_swap_to_net_words(enciv32,
  1712. creq->iv, ivsize);
  1713. else
  1714. _byte_stream_to_net_words(enciv32, creq->iv,
  1715. ivsize);
  1716. /* write encr cntr iv */
  1717. for (i = 0; i <= 3; i++)
  1718. QCE_WRITE_REG(enciv32[i], pce_dev->iobase +
  1719. CRYPTO_CNTR0_IV0_REG +
  1720. (i * sizeof(uint32_t)));
  1721. if (creq->mode == QCE_MODE_CCM) {
  1722. /* write cntr iv for ccm */
  1723. for (i = 0; i <= 3; i++)
  1724. QCE_WRITE_REG(enciv32[i],
  1725. pce_dev->iobase +
  1726. CRYPTO_ENCR_CCM_INT_CNTR0_REG +
  1727. (i * sizeof(uint32_t)));
  1728. /* update cntr_iv[3] by one */
  1729. QCE_WRITE_REG((enciv32[3] + 1),
  1730. pce_dev->iobase +
  1731. CRYPTO_CNTR0_IV0_REG +
  1732. (3 * sizeof(uint32_t)));
  1733. }
  1734. }
  1735. if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
  1736. encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
  1737. CRYPTO_ENCR_KEY_SZ);
  1738. } else {
  1739. if (!use_hw_key && !use_pipe_key) {
  1740. for (i = 0; i < enck_size_in_word; i++)
  1741. QCE_WRITE_REG(enckey32[i],
  1742. pce_dev->iobase +
  1743. CRYPTO_ENCR_KEY0_REG +
  1744. (i * sizeof(uint32_t)));
  1745. }
  1746. } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
  1747. break;
  1748. } /* end of switch (creq->mode) */
  1749. if (use_pipe_key)
  1750. encr_cfg |= (CRYPTO_USE_PIPE_KEY_ENCR_ENABLED
  1751. << CRYPTO_USE_PIPE_KEY_ENCR);
  1752. /* write encr seg cfg */
  1753. encr_cfg |= ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
  1754. if (use_hw_key)
  1755. encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1756. else
  1757. encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
  1758. /* write encr seg cfg */
  1759. QCE_WRITE_REG(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1760. /* write encr seg size */
  1761. if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) {
  1762. QCE_WRITE_REG((creq->cryptlen + creq->authsize),
  1763. pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1764. } else {
  1765. QCE_WRITE_REG(creq->cryptlen,
  1766. pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1767. }
  1768. /* write pattern */
  1769. if (creq->is_pattern_valid)
  1770. QCE_WRITE_REG(creq->pattern_info, pce_dev->iobase +
  1771. CRYPTO_DATA_PATT_PROC_CFG_REG);
  1772. /* write block offset to CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG? */
  1773. QCE_WRITE_REG(((creq->block_offset << 4) |
  1774. (creq->block_offset ? 1 : 0)),
  1775. pce_dev->iobase + CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG_REG);
  1776. /* write encr seg start */
  1777. QCE_WRITE_REG((coffset & 0xffff),
  1778. pce_dev->iobase + CRYPTO_ENCR_SEG_START_REG);
  1779. /* write encr counter mask */
  1780. qce_set_iv_ctr_mask(pce_dev, creq);
  1781. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_3,
  1782. pce_dev->iobase + CRYPTO_CNTR_MASK_REG);
  1783. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_2,
  1784. pce_dev->iobase + CRYPTO_CNTR_MASK_REG2);
  1785. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_1,
  1786. pce_dev->iobase + CRYPTO_CNTR_MASK_REG1);
  1787. QCE_WRITE_REG(pce_dev->reg.encr_cntr_mask_0,
  1788. pce_dev->iobase + CRYPTO_CNTR_MASK_REG0);
  1789. /* write seg size */
  1790. QCE_WRITE_REG(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1791. /* issue go to crypto */
  1792. if (!use_hw_key) {
  1793. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1794. (1 << CRYPTO_CLR_CNTXT)),
  1795. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1796. } else {
  1797. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
  1798. pce_dev->iobase + CRYPTO_GOPROC_QC_KEY_REG);
  1799. }
  1800. /*
  1801. * Ensure previous instructions (setting the GO register)
  1802. * was completed before issuing a DMA transfer request
  1803. */
  1804. mb();
  1805. return 0;
  1806. }
  1807. static int _ce_f9_setup_direct(struct qce_device *pce_dev,
  1808. struct qce_f9_req *req)
  1809. {
  1810. uint32_t ikey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1811. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1812. uint32_t auth_cfg;
  1813. int i;
  1814. switch (req->algorithm) {
  1815. case QCE_OTA_ALGO_KASUMI:
  1816. auth_cfg = pce_dev->reg.auth_cfg_kasumi;
  1817. break;
  1818. case QCE_OTA_ALGO_SNOW3G:
  1819. default:
  1820. auth_cfg = pce_dev->reg.auth_cfg_snow3g;
  1821. break;
  1822. }
  1823. /* clear status */
  1824. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1825. /* set big endian configuration */
  1826. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1827. CRYPTO_CONFIG_REG));
  1828. /*
  1829. * Ensure previous instructions (setting the CONFIG register)
  1830. * was completed before issuing starting to set other config register
  1831. * This is to ensure the configurations are done in correct endian-ness
  1832. * as set in the CONFIG registers
  1833. */
  1834. mb();
  1835. /* write enc_seg_cfg */
  1836. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG);
  1837. /* write ecn_seg_size */
  1838. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG);
  1839. /* write key in CRYPTO_AUTH_IV0-3_REG */
  1840. _byte_stream_to_net_words(ikey32, &req->ikey[0], OTA_KEY_SIZE);
  1841. for (i = 0; i < key_size_in_word; i++)
  1842. QCE_WRITE_REG(ikey32[i], (pce_dev->iobase +
  1843. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t))));
  1844. /* write last bits in CRYPTO_AUTH_IV4_REG */
  1845. QCE_WRITE_REG(req->last_bits, (pce_dev->iobase +
  1846. CRYPTO_AUTH_IV4_REG));
  1847. /* write fresh to CRYPTO_AUTH_BYTECNT0_REG */
  1848. QCE_WRITE_REG(req->fresh, (pce_dev->iobase +
  1849. CRYPTO_AUTH_BYTECNT0_REG));
  1850. /* write count-i to CRYPTO_AUTH_BYTECNT1_REG */
  1851. QCE_WRITE_REG(req->count_i, (pce_dev->iobase +
  1852. CRYPTO_AUTH_BYTECNT1_REG));
  1853. /* write auth seg cfg */
  1854. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1855. auth_cfg |= BIT(CRYPTO_F9_DIRECTION);
  1856. QCE_WRITE_REG(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1857. /* write auth seg size */
  1858. QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1859. /* write auth seg start*/
  1860. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG);
  1861. /* write seg size */
  1862. QCE_WRITE_REG(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG);
  1863. /* set little endian configuration before go*/
  1864. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1865. CRYPTO_CONFIG_REG));
  1866. /* write go */
  1867. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1868. (1 << CRYPTO_CLR_CNTXT)),
  1869. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1870. /*
  1871. * Ensure previous instructions (setting the GO register)
  1872. * was completed before issuing a DMA transfer request
  1873. */
  1874. mb();
  1875. return 0;
  1876. }
  1877. static int _ce_f8_setup_direct(struct qce_device *pce_dev,
  1878. struct qce_f8_req *req, bool key_stream_mode,
  1879. uint16_t npkts, uint16_t cipher_offset, uint16_t cipher_size)
  1880. {
  1881. int i = 0;
  1882. uint32_t encr_cfg = 0;
  1883. uint32_t ckey32[OTA_KEY_SIZE/sizeof(uint32_t)];
  1884. uint32_t key_size_in_word = OTA_KEY_SIZE/sizeof(uint32_t);
  1885. switch (req->algorithm) {
  1886. case QCE_OTA_ALGO_KASUMI:
  1887. encr_cfg = pce_dev->reg.encr_cfg_kasumi;
  1888. break;
  1889. case QCE_OTA_ALGO_SNOW3G:
  1890. default:
  1891. encr_cfg = pce_dev->reg.encr_cfg_snow3g;
  1892. break;
  1893. }
  1894. /* clear status */
  1895. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_STATUS_REG);
  1896. /* set big endian configuration */
  1897. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_be, (pce_dev->iobase +
  1898. CRYPTO_CONFIG_REG));
  1899. /* write auth seg configuration */
  1900. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG);
  1901. /* write auth seg size */
  1902. QCE_WRITE_REG(0, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG);
  1903. /* write key */
  1904. _byte_stream_to_net_words(ckey32, &req->ckey[0], OTA_KEY_SIZE);
  1905. for (i = 0; i < key_size_in_word; i++)
  1906. QCE_WRITE_REG(ckey32[i], (pce_dev->iobase +
  1907. (CRYPTO_ENCR_KEY0_REG + i*sizeof(uint32_t))));
  1908. /* write encr seg cfg */
  1909. if (key_stream_mode)
  1910. encr_cfg |= BIT(CRYPTO_F8_KEYSTREAM_ENABLE);
  1911. if (req->direction == QCE_OTA_DIR_DOWNLINK)
  1912. encr_cfg |= BIT(CRYPTO_F8_DIRECTION);
  1913. QCE_WRITE_REG(encr_cfg, pce_dev->iobase +
  1914. CRYPTO_ENCR_SEG_CFG_REG);
  1915. /* write encr seg start */
  1916. QCE_WRITE_REG((cipher_offset & 0xffff), pce_dev->iobase +
  1917. CRYPTO_ENCR_SEG_START_REG);
  1918. /* write encr seg size */
  1919. QCE_WRITE_REG(cipher_size, pce_dev->iobase +
  1920. CRYPTO_ENCR_SEG_SIZE_REG);
  1921. /* write seg size */
  1922. QCE_WRITE_REG(req->data_len, pce_dev->iobase +
  1923. CRYPTO_SEG_SIZE_REG);
  1924. /* write cntr0_iv0 for countC */
  1925. QCE_WRITE_REG(req->count_c, pce_dev->iobase +
  1926. CRYPTO_CNTR0_IV0_REG);
  1927. /* write cntr1_iv1 for nPkts, and bearer */
  1928. if (npkts == 1)
  1929. npkts = 0;
  1930. QCE_WRITE_REG(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER |
  1931. npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT,
  1932. pce_dev->iobase + CRYPTO_CNTR1_IV1_REG);
  1933. /* set little endian configuration before go*/
  1934. QCE_WRITE_REG(pce_dev->reg.crypto_cfg_le, (pce_dev->iobase +
  1935. CRYPTO_CONFIG_REG));
  1936. /* write go */
  1937. QCE_WRITE_REG(((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  1938. (1 << CRYPTO_CLR_CNTXT)),
  1939. pce_dev->iobase + CRYPTO_GOPROC_REG);
  1940. /*
  1941. * Ensure previous instructions (setting the GO register)
  1942. * was completed before issuing a DMA transfer request
  1943. */
  1944. mb();
  1945. return 0;
  1946. }
  1947. static int _qce_unlock_other_pipes(struct qce_device *pce_dev, int req_info)
  1948. {
  1949. int rc = 0;
  1950. struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info
  1951. [req_info].ce_sps;
  1952. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  1953. if (pce_dev->no_get_around || !pce_dev->support_cmd_dscr)
  1954. return rc;
  1955. rc = sps_transfer_one(pce_dev->ce_bam_info.consumer[op].pipe,
  1956. GET_PHYS_ADDR(
  1957. pce_sps_data->cmdlistptr.unlock_all_pipes.cmdlist),
  1958. 0, NULL, (SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_UNLOCK));
  1959. if (rc) {
  1960. pr_err("sps_xfr_one() fail rc=%d\n", rc);
  1961. rc = -EINVAL;
  1962. }
  1963. return rc;
  1964. }
  1965. static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
  1966. bool is_complete);
  1967. int qce_manage_timeout(void *handle, int req_info)
  1968. {
  1969. int rc = 0;
  1970. struct qce_device *pce_dev = (struct qce_device *) handle;
  1971. struct skcipher_request *areq;
  1972. struct ce_request_info *preq_info;
  1973. qce_comp_func_ptr_t qce_callback;
  1974. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  1975. preq_info = &pce_dev->ce_request_info[req_info];
  1976. qce_callback = preq_info->qce_cb;
  1977. areq = (struct skcipher_request *) preq_info->areq;
  1978. pr_info("%s: req info = %d, offload op = %d\n", __func__, req_info, op);
  1979. rc = _qce_unlock_other_pipes(pce_dev, req_info);
  1980. if (rc)
  1981. pr_err("%s: fail unlock other pipes, rc = %d", __func__, rc);
  1982. qce_free_req_info(pce_dev, req_info, true);
  1983. qce_callback(areq, NULL, NULL, 0);
  1984. sps_pipe_reset(pce_dev->ce_bam_info.bam_handle,
  1985. pce_dev->ce_bam_info.dest_pipe_index[op]);
  1986. sps_pipe_reset(pce_dev->ce_bam_info.bam_handle,
  1987. pce_dev->ce_bam_info.src_pipe_index[op]);
  1988. return rc;
  1989. }
  1990. EXPORT_SYMBOL(qce_manage_timeout);
  1991. static int _aead_complete(struct qce_device *pce_dev, int req_info)
  1992. {
  1993. struct aead_request *areq;
  1994. unsigned char mac[SHA256_DIGEST_SIZE];
  1995. uint32_t ccm_fail_status = 0;
  1996. uint32_t result_dump_status = 0;
  1997. int32_t result_status = 0;
  1998. struct ce_request_info *preq_info;
  1999. struct ce_sps_data *pce_sps_data;
  2000. qce_comp_func_ptr_t qce_callback;
  2001. preq_info = &pce_dev->ce_request_info[req_info];
  2002. pce_sps_data = &preq_info->ce_sps;
  2003. qce_callback = preq_info->qce_cb;
  2004. areq = (struct aead_request *) preq_info->areq;
  2005. if (areq->src != areq->dst) {
  2006. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  2007. DMA_FROM_DEVICE);
  2008. }
  2009. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  2010. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  2011. DMA_TO_DEVICE);
  2012. if (preq_info->asg)
  2013. qce_dma_unmap_sg(pce_dev->pdev, preq_info->asg,
  2014. preq_info->assoc_nents, DMA_TO_DEVICE);
  2015. /* check MAC */
  2016. memcpy(mac, (char *)(&pce_sps_data->result->auth_iv[0]),
  2017. SHA256_DIGEST_SIZE);
  2018. /* read status before unlock */
  2019. if (preq_info->dir == QCE_DECRYPT) {
  2020. if (pce_dev->no_get_around)
  2021. if (pce_dev->no_ccm_mac_status_get_around)
  2022. ccm_fail_status =
  2023. be32_to_cpu(pce_sps_data->result->status);
  2024. else
  2025. ccm_fail_status =
  2026. be32_to_cpu(pce_sps_data->result_null->status);
  2027. else
  2028. ccm_fail_status = readl_relaxed(pce_dev->iobase +
  2029. CRYPTO_STATUS_REG);
  2030. }
  2031. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2032. qce_free_req_info(pce_dev, req_info, true);
  2033. qce_callback(areq, mac, NULL, -ENXIO);
  2034. return -ENXIO;
  2035. }
  2036. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2037. pce_sps_data->result->status = 0;
  2038. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2039. | (1 << CRYPTO_HSD_ERR))) {
  2040. pr_err("aead operation error. Status %x\n", result_dump_status);
  2041. result_status = -ENXIO;
  2042. } else if (pce_sps_data->consumer_status |
  2043. pce_sps_data->producer_status) {
  2044. pr_err("aead sps operation error. sps status %x %x\n",
  2045. pce_sps_data->consumer_status,
  2046. pce_sps_data->producer_status);
  2047. result_status = -ENXIO;
  2048. }
  2049. if (preq_info->mode == QCE_MODE_CCM) {
  2050. /*
  2051. * Not from result dump, instead, use the status we just
  2052. * read of device for MAC_FAILED.
  2053. */
  2054. if (result_status == 0 && (preq_info->dir == QCE_DECRYPT) &&
  2055. (ccm_fail_status & (1 << CRYPTO_MAC_FAILED)))
  2056. result_status = -EBADMSG;
  2057. qce_free_req_info(pce_dev, req_info, true);
  2058. qce_callback(areq, mac, NULL, result_status);
  2059. } else {
  2060. uint32_t ivsize = 0;
  2061. struct crypto_aead *aead;
  2062. unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
  2063. aead = crypto_aead_reqtfm(areq);
  2064. ivsize = crypto_aead_ivsize(aead);
  2065. memcpy(iv, (char *)(pce_sps_data->result->encr_cntr_iv),
  2066. sizeof(iv));
  2067. qce_free_req_info(pce_dev, req_info, true);
  2068. qce_callback(areq, mac, iv, result_status);
  2069. }
  2070. return 0;
  2071. }
  2072. static int _sha_complete(struct qce_device *pce_dev, int req_info)
  2073. {
  2074. struct ahash_request *areq;
  2075. unsigned char digest[SHA256_DIGEST_SIZE];
  2076. uint32_t bytecount32[2];
  2077. int32_t result_status = 0;
  2078. uint32_t result_dump_status;
  2079. struct ce_request_info *preq_info;
  2080. struct ce_sps_data *pce_sps_data;
  2081. qce_comp_func_ptr_t qce_callback;
  2082. preq_info = &pce_dev->ce_request_info[req_info];
  2083. pce_sps_data = &preq_info->ce_sps;
  2084. qce_callback = preq_info->qce_cb;
  2085. areq = (struct ahash_request *) preq_info->areq;
  2086. if (!areq) {
  2087. pr_err("sha operation error. areq is NULL\n");
  2088. return -ENXIO;
  2089. }
  2090. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  2091. DMA_TO_DEVICE);
  2092. memcpy(digest, (char *)(&pce_sps_data->result->auth_iv[0]),
  2093. SHA256_DIGEST_SIZE);
  2094. _byte_stream_to_net_words(bytecount32,
  2095. (unsigned char *)pce_sps_data->result->auth_byte_count,
  2096. 2 * CRYPTO_REG_SIZE);
  2097. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2098. qce_free_req_info(pce_dev, req_info, true);
  2099. qce_callback(areq, digest, (char *)bytecount32,
  2100. -ENXIO);
  2101. return -ENXIO;
  2102. }
  2103. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2104. pce_sps_data->result->status = 0;
  2105. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2106. | (1 << CRYPTO_HSD_ERR))) {
  2107. pr_err("sha operation error. Status %x\n", result_dump_status);
  2108. result_status = -ENXIO;
  2109. } else if (pce_sps_data->consumer_status) {
  2110. pr_err("sha sps operation error. sps status %x\n",
  2111. pce_sps_data->consumer_status);
  2112. result_status = -ENXIO;
  2113. }
  2114. qce_free_req_info(pce_dev, req_info, true);
  2115. qce_callback(areq, digest, (char *)bytecount32, result_status);
  2116. return 0;
  2117. }
  2118. static int _f9_complete(struct qce_device *pce_dev, int req_info)
  2119. {
  2120. uint32_t mac_i;
  2121. int32_t result_status = 0;
  2122. uint32_t result_dump_status;
  2123. struct ce_request_info *preq_info;
  2124. struct ce_sps_data *pce_sps_data;
  2125. qce_comp_func_ptr_t qce_callback;
  2126. void *areq;
  2127. preq_info = &pce_dev->ce_request_info[req_info];
  2128. pce_sps_data = &preq_info->ce_sps;
  2129. qce_callback = preq_info->qce_cb;
  2130. areq = preq_info->areq;
  2131. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  2132. preq_info->ota_size, DMA_TO_DEVICE);
  2133. _byte_stream_to_net_words(&mac_i,
  2134. (char *)(&pce_sps_data->result->auth_iv[0]),
  2135. CRYPTO_REG_SIZE);
  2136. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2137. qce_free_req_info(pce_dev, req_info, true);
  2138. qce_callback(areq, NULL, NULL, -ENXIO);
  2139. return -ENXIO;
  2140. }
  2141. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2142. pce_sps_data->result->status = 0;
  2143. if (result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2144. | (1 << CRYPTO_HSD_ERR))) {
  2145. pr_err("f9 operation error. Status %x\n", result_dump_status);
  2146. result_status = -ENXIO;
  2147. } else if (pce_sps_data->consumer_status |
  2148. pce_sps_data->producer_status) {
  2149. pr_err("f9 sps operation error. sps status %x %x\n",
  2150. pce_sps_data->consumer_status,
  2151. pce_sps_data->producer_status);
  2152. result_status = -ENXIO;
  2153. }
  2154. qce_free_req_info(pce_dev, req_info, true);
  2155. qce_callback(areq, (char *)&mac_i, NULL, result_status);
  2156. return 0;
  2157. }
  2158. static int _ablk_cipher_complete(struct qce_device *pce_dev, int req_info)
  2159. {
  2160. struct skcipher_request *areq;
  2161. unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
  2162. int32_t result_status = 0;
  2163. uint32_t result_dump_status;
  2164. struct ce_request_info *preq_info;
  2165. struct ce_sps_data *pce_sps_data;
  2166. qce_comp_func_ptr_t qce_callback;
  2167. preq_info = &pce_dev->ce_request_info[req_info];
  2168. pce_sps_data = &preq_info->ce_sps;
  2169. qce_callback = preq_info->qce_cb;
  2170. areq = (struct skcipher_request *) preq_info->areq;
  2171. if (!is_offload_op(preq_info->offload_op)) {
  2172. if (areq->src != areq->dst)
  2173. qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
  2174. preq_info->dst_nents, DMA_FROM_DEVICE);
  2175. qce_dma_unmap_sg(pce_dev->pdev, areq->src,
  2176. preq_info->src_nents,
  2177. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  2178. DMA_TO_DEVICE);
  2179. }
  2180. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2181. qce_free_req_info(pce_dev, req_info, true);
  2182. qce_callback(areq, NULL, NULL, -ENXIO);
  2183. return -ENXIO;
  2184. }
  2185. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2186. pce_sps_data->result->status = 0;
  2187. if (!is_offload_op(preq_info->offload_op)) {
  2188. if (result_dump_status & ((1 << CRYPTO_SW_ERR) |
  2189. (1 << CRYPTO_AXI_ERR) | (1 << CRYPTO_HSD_ERR))) {
  2190. pr_err("ablk_cipher operation error. Status %x\n",
  2191. result_dump_status);
  2192. result_status = -ENXIO;
  2193. }
  2194. }
  2195. if (pce_sps_data->consumer_status |
  2196. pce_sps_data->producer_status) {
  2197. pr_err("ablk_cipher sps operation error. sps status %x %x\n",
  2198. pce_sps_data->consumer_status,
  2199. pce_sps_data->producer_status);
  2200. result_status = -ENXIO;
  2201. }
  2202. if (preq_info->mode == QCE_MODE_ECB) {
  2203. qce_free_req_info(pce_dev, req_info, true);
  2204. qce_callback(areq, NULL, NULL, pce_sps_data->consumer_status |
  2205. result_status);
  2206. } else {
  2207. if (pce_dev->ce_bam_info.minor_version == 0) {
  2208. if (preq_info->mode == QCE_MODE_CBC) {
  2209. if (preq_info->dir == QCE_DECRYPT)
  2210. memcpy(iv, (char *)preq_info->dec_iv,
  2211. sizeof(iv));
  2212. else
  2213. memcpy(iv, (unsigned char *)
  2214. (sg_virt(areq->src) +
  2215. areq->src->length - 16),
  2216. sizeof(iv));
  2217. }
  2218. if ((preq_info->mode == QCE_MODE_CTR) ||
  2219. (preq_info->mode == QCE_MODE_XTS)) {
  2220. uint32_t num_blk = 0;
  2221. uint32_t cntr_iv3 = 0;
  2222. unsigned long long cntr_iv64 = 0;
  2223. unsigned char *b = (unsigned char *)(&cntr_iv3);
  2224. memcpy(iv, areq->iv, sizeof(iv));
  2225. if (preq_info->mode != QCE_MODE_XTS)
  2226. num_blk = areq->cryptlen/16;
  2227. else
  2228. num_blk = 1;
  2229. cntr_iv3 = ((*(iv + 12) << 24) & 0xff000000) |
  2230. (((*(iv + 13)) << 16) & 0xff0000) |
  2231. (((*(iv + 14)) << 8) & 0xff00) |
  2232. (*(iv + 15) & 0xff);
  2233. cntr_iv64 =
  2234. (((unsigned long long)cntr_iv3 &
  2235. 0xFFFFFFFFULL) +
  2236. (unsigned long long)num_blk) %
  2237. (unsigned long long)(0x100000000ULL);
  2238. cntr_iv3 = (u32)(cntr_iv64 & 0xFFFFFFFF);
  2239. *(iv + 15) = (char)(*b);
  2240. *(iv + 14) = (char)(*(b + 1));
  2241. *(iv + 13) = (char)(*(b + 2));
  2242. *(iv + 12) = (char)(*(b + 3));
  2243. }
  2244. } else {
  2245. memcpy(iv,
  2246. (char *)(pce_sps_data->result->encr_cntr_iv),
  2247. sizeof(iv));
  2248. }
  2249. qce_free_req_info(pce_dev, req_info, true);
  2250. qce_callback(areq, NULL, iv, result_status);
  2251. }
  2252. return 0;
  2253. }
  2254. static int _f8_complete(struct qce_device *pce_dev, int req_info)
  2255. {
  2256. int32_t result_status = 0;
  2257. uint32_t result_dump_status;
  2258. uint32_t result_dump_status2;
  2259. struct ce_request_info *preq_info;
  2260. struct ce_sps_data *pce_sps_data;
  2261. qce_comp_func_ptr_t qce_callback;
  2262. void *areq;
  2263. preq_info = &pce_dev->ce_request_info[req_info];
  2264. pce_sps_data = &preq_info->ce_sps;
  2265. qce_callback = preq_info->qce_cb;
  2266. areq = preq_info->areq;
  2267. if (preq_info->phy_ota_dst)
  2268. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
  2269. preq_info->ota_size, DMA_FROM_DEVICE);
  2270. if (preq_info->phy_ota_src)
  2271. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  2272. preq_info->ota_size, (preq_info->phy_ota_dst) ?
  2273. DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
  2274. if (_qce_unlock_other_pipes(pce_dev, req_info)) {
  2275. qce_free_req_info(pce_dev, req_info, true);
  2276. qce_callback(areq, NULL, NULL, -ENXIO);
  2277. return -ENXIO;
  2278. }
  2279. result_dump_status = be32_to_cpu(pce_sps_data->result->status);
  2280. result_dump_status2 = be32_to_cpu(pce_sps_data->result->status2);
  2281. if ((result_dump_status & ((1 << CRYPTO_SW_ERR) | (1 << CRYPTO_AXI_ERR)
  2282. | (1 << CRYPTO_HSD_ERR)))) {
  2283. pr_err(
  2284. "f8 oper error. Dump Sta %x Sta2 %x req %d\n",
  2285. result_dump_status, result_dump_status2, req_info);
  2286. result_status = -ENXIO;
  2287. } else if (pce_sps_data->consumer_status |
  2288. pce_sps_data->producer_status) {
  2289. pr_err("f8 sps operation error. sps status %x %x\n",
  2290. pce_sps_data->consumer_status,
  2291. pce_sps_data->producer_status);
  2292. result_status = -ENXIO;
  2293. }
  2294. pce_sps_data->result->status = 0;
  2295. pce_sps_data->result->status2 = 0;
  2296. qce_free_req_info(pce_dev, req_info, true);
  2297. qce_callback(areq, NULL, NULL, result_status);
  2298. return 0;
  2299. }
  2300. static void _qce_sps_iovec_count_init(struct qce_device *pce_dev, int req_info)
  2301. {
  2302. struct ce_sps_data *pce_sps_data = &pce_dev->ce_request_info[req_info]
  2303. .ce_sps;
  2304. pce_sps_data->in_transfer.iovec_count = 0;
  2305. pce_sps_data->out_transfer.iovec_count = 0;
  2306. }
  2307. static void _qce_set_flag(struct sps_transfer *sps_bam_pipe, uint32_t flag)
  2308. {
  2309. struct sps_iovec *iovec;
  2310. if (sps_bam_pipe->iovec_count == 0)
  2311. return;
  2312. iovec = sps_bam_pipe->iovec + (sps_bam_pipe->iovec_count - 1);
  2313. iovec->flags |= flag;
  2314. }
  2315. static int _qce_sps_add_data(dma_addr_t paddr, uint32_t len,
  2316. struct sps_transfer *sps_bam_pipe)
  2317. {
  2318. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2319. sps_bam_pipe->iovec_count;
  2320. uint32_t data_cnt;
  2321. while (len > 0) {
  2322. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2323. pr_err("Num of descrptor %d exceed max (%d)\n",
  2324. sps_bam_pipe->iovec_count,
  2325. (uint32_t)QCE_MAX_NUM_DSCR);
  2326. return -ENOMEM;
  2327. }
  2328. if (len > SPS_MAX_PKT_SIZE)
  2329. data_cnt = SPS_MAX_PKT_SIZE;
  2330. else
  2331. data_cnt = len;
  2332. iovec->size = data_cnt;
  2333. iovec->addr = SPS_GET_LOWER_ADDR(paddr);
  2334. iovec->flags = SPS_GET_UPPER_ADDR(paddr);
  2335. sps_bam_pipe->iovec_count++;
  2336. iovec++;
  2337. paddr += data_cnt;
  2338. len -= data_cnt;
  2339. }
  2340. return 0;
  2341. }
  2342. static int _qce_sps_add_sg_data(struct qce_device *pce_dev,
  2343. struct scatterlist *sg_src, uint32_t nbytes,
  2344. struct sps_transfer *sps_bam_pipe)
  2345. {
  2346. uint32_t data_cnt, len;
  2347. dma_addr_t addr;
  2348. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2349. sps_bam_pipe->iovec_count;
  2350. while (nbytes > 0 && sg_src) {
  2351. len = min(nbytes, sg_dma_len(sg_src));
  2352. nbytes -= len;
  2353. addr = sg_dma_address(sg_src);
  2354. if (pce_dev->ce_bam_info.minor_version == 0)
  2355. len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size);
  2356. while (len > 0) {
  2357. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2358. pr_err("Num of descrptor %d exceed max (%d)\n",
  2359. sps_bam_pipe->iovec_count,
  2360. (uint32_t)QCE_MAX_NUM_DSCR);
  2361. return -ENOMEM;
  2362. }
  2363. if (len > SPS_MAX_PKT_SIZE) {
  2364. data_cnt = SPS_MAX_PKT_SIZE;
  2365. iovec->size = data_cnt;
  2366. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2367. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2368. } else {
  2369. data_cnt = len;
  2370. iovec->size = data_cnt;
  2371. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2372. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2373. }
  2374. iovec++;
  2375. sps_bam_pipe->iovec_count++;
  2376. addr += data_cnt;
  2377. len -= data_cnt;
  2378. }
  2379. sg_src = sg_next(sg_src);
  2380. }
  2381. return 0;
  2382. }
  2383. static int _qce_sps_add_sg_data_off(struct qce_device *pce_dev,
  2384. struct scatterlist *sg_src, uint32_t nbytes, uint32_t off,
  2385. struct sps_transfer *sps_bam_pipe)
  2386. {
  2387. uint32_t data_cnt, len;
  2388. dma_addr_t addr;
  2389. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2390. sps_bam_pipe->iovec_count;
  2391. unsigned int res_within_sg;
  2392. if (!sg_src)
  2393. return -ENOENT;
  2394. res_within_sg = sg_dma_len(sg_src);
  2395. while (off > 0) {
  2396. if (!sg_src) {
  2397. pr_err("broken sg list off %d nbytes %d\n",
  2398. off, nbytes);
  2399. return -ENOENT;
  2400. }
  2401. len = sg_dma_len(sg_src);
  2402. if (off < len) {
  2403. res_within_sg = len - off;
  2404. break;
  2405. }
  2406. off -= len;
  2407. sg_src = sg_next(sg_src);
  2408. if (sg_src)
  2409. res_within_sg = sg_dma_len(sg_src);
  2410. }
  2411. while (nbytes > 0 && sg_src) {
  2412. len = min(nbytes, res_within_sg);
  2413. nbytes -= len;
  2414. addr = sg_dma_address(sg_src) + off;
  2415. if (pce_dev->ce_bam_info.minor_version == 0)
  2416. len = ALIGN(len, pce_dev->ce_bam_info.ce_burst_size);
  2417. while (len > 0) {
  2418. if (sps_bam_pipe->iovec_count == QCE_MAX_NUM_DSCR) {
  2419. pr_err("Num of descrptor %d exceed max (%d)\n",
  2420. sps_bam_pipe->iovec_count,
  2421. (uint32_t)QCE_MAX_NUM_DSCR);
  2422. return -ENOMEM;
  2423. }
  2424. if (len > SPS_MAX_PKT_SIZE) {
  2425. data_cnt = SPS_MAX_PKT_SIZE;
  2426. iovec->size = data_cnt;
  2427. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2428. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2429. } else {
  2430. data_cnt = len;
  2431. iovec->size = data_cnt;
  2432. iovec->addr = SPS_GET_LOWER_ADDR(addr);
  2433. iovec->flags = SPS_GET_UPPER_ADDR(addr);
  2434. }
  2435. iovec++;
  2436. sps_bam_pipe->iovec_count++;
  2437. addr += data_cnt;
  2438. len -= data_cnt;
  2439. }
  2440. if (nbytes) {
  2441. sg_src = sg_next(sg_src);
  2442. if (!sg_src) {
  2443. pr_err("more data bytes %d\n", nbytes);
  2444. return -ENOMEM;
  2445. }
  2446. res_within_sg = sg_dma_len(sg_src);
  2447. off = 0;
  2448. }
  2449. }
  2450. return 0;
  2451. }
  2452. static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag,
  2453. struct qce_cmdlist_info *cmdptr,
  2454. struct sps_transfer *sps_bam_pipe)
  2455. {
  2456. dma_addr_t paddr = GET_PHYS_ADDR(cmdptr->cmdlist);
  2457. struct sps_iovec *iovec = sps_bam_pipe->iovec +
  2458. sps_bam_pipe->iovec_count;
  2459. iovec->size = cmdptr->size;
  2460. iovec->addr = SPS_GET_LOWER_ADDR(paddr);
  2461. iovec->flags = SPS_GET_UPPER_ADDR(paddr) | SPS_IOVEC_FLAG_CMD | flag;
  2462. sps_bam_pipe->iovec_count++;
  2463. if (sps_bam_pipe->iovec_count >= QCE_MAX_NUM_DSCR) {
  2464. pr_err("Num of descrptor %d exceed max (%d)\n",
  2465. sps_bam_pipe->iovec_count, (uint32_t)QCE_MAX_NUM_DSCR);
  2466. return -ENOMEM;
  2467. }
  2468. return 0;
  2469. }
  2470. static int _qce_sps_transfer(struct qce_device *pce_dev, int req_info)
  2471. {
  2472. int rc = 0;
  2473. struct ce_sps_data *pce_sps_data;
  2474. uint16_t op = pce_dev->ce_request_info[req_info].offload_op;
  2475. pce_sps_data = &pce_dev->ce_request_info[req_info].ce_sps;
  2476. pce_sps_data->out_transfer.user =
  2477. (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
  2478. (unsigned int) req_info));
  2479. pce_sps_data->in_transfer.user =
  2480. (void *)((uintptr_t)(CRYPTO_REQ_USER_PAT |
  2481. (unsigned int) req_info));
  2482. _qce_dump_descr_fifos_dbg(pce_dev, req_info);
  2483. if (pce_sps_data->in_transfer.iovec_count) {
  2484. rc = sps_transfer(pce_dev->ce_bam_info.consumer[op].pipe,
  2485. &pce_sps_data->in_transfer);
  2486. if (rc) {
  2487. pr_err("sps_xfr() fail (cons pipe=0x%lx) rc = %d\n",
  2488. (uintptr_t)pce_dev->ce_bam_info.consumer[op].pipe,
  2489. rc);
  2490. goto ret;
  2491. }
  2492. }
  2493. rc = sps_transfer(pce_dev->ce_bam_info.producer[op].pipe,
  2494. &pce_sps_data->out_transfer);
  2495. if (rc)
  2496. pr_err("sps_xfr() fail (producer pipe=0x%lx) rc = %d\n",
  2497. (uintptr_t)pce_dev->ce_bam_info.producer[op].pipe, rc);
  2498. ret:
  2499. if (rc)
  2500. _qce_dump_descr_fifos(pce_dev, req_info);
  2501. return rc;
  2502. }
  2503. /**
  2504. * Allocate and Connect a CE peripheral's SPS endpoint
  2505. *
  2506. * This function allocates endpoint context and
  2507. * connect it with memory endpoint by calling
  2508. * appropriate SPS driver APIs.
  2509. *
  2510. * Also registers a SPS callback function with
  2511. * SPS driver
  2512. *
  2513. * This function should only be called once typically
  2514. * during driver probe.
  2515. *
  2516. * @pce_dev - Pointer to qce_device structure
  2517. * @ep - Pointer to sps endpoint data structure
  2518. * @index - Points to crypto use case
  2519. * @is_produce - 1 means Producer endpoint
  2520. * 0 means Consumer endpoint
  2521. *
  2522. * @return - 0 if successful else negative value.
  2523. *
  2524. */
  2525. static int qce_sps_init_ep_conn(struct qce_device *pce_dev,
  2526. struct qce_sps_ep_conn_data *ep,
  2527. int index,
  2528. bool is_producer)
  2529. {
  2530. int rc = 0;
  2531. struct sps_pipe *sps_pipe_info;
  2532. struct sps_connect *sps_connect_info = &ep->connect;
  2533. struct sps_register_event *sps_event = &ep->event;
  2534. /* Allocate endpoint context */
  2535. sps_pipe_info = sps_alloc_endpoint();
  2536. if (!sps_pipe_info) {
  2537. pr_err("sps_alloc_endpoint() failed!!! is_producer=%d\n",
  2538. is_producer);
  2539. rc = -ENOMEM;
  2540. goto out;
  2541. }
  2542. /* Now save the sps pipe handle */
  2543. ep->pipe = sps_pipe_info;
  2544. /* Get default connection configuration for an endpoint */
  2545. rc = sps_get_config(sps_pipe_info, sps_connect_info);
  2546. if (rc) {
  2547. pr_err("sps_get_config() fail pipe_handle=0x%lx, rc = %d\n",
  2548. (uintptr_t)sps_pipe_info, rc);
  2549. goto get_config_err;
  2550. }
  2551. /* Modify the default connection configuration */
  2552. if (is_producer) {
  2553. /*
  2554. * For CE producer transfer, source should be
  2555. * CE peripheral where as destination should
  2556. * be system memory.
  2557. */
  2558. sps_connect_info->source = pce_dev->ce_bam_info.bam_handle;
  2559. sps_connect_info->destination = SPS_DEV_HANDLE_MEM;
  2560. /* Producer pipe will handle this connection */
  2561. sps_connect_info->mode = SPS_MODE_SRC;
  2562. sps_connect_info->options =
  2563. SPS_O_AUTO_ENABLE | SPS_O_DESC_DONE;
  2564. } else {
  2565. /* For CE consumer transfer, source should be
  2566. * system memory where as destination should
  2567. * CE peripheral
  2568. */
  2569. sps_connect_info->source = SPS_DEV_HANDLE_MEM;
  2570. sps_connect_info->destination = pce_dev->ce_bam_info.bam_handle;
  2571. sps_connect_info->mode = SPS_MODE_DEST;
  2572. sps_connect_info->options =
  2573. SPS_O_AUTO_ENABLE;
  2574. }
  2575. /* Producer pipe index */
  2576. sps_connect_info->src_pipe_index =
  2577. pce_dev->ce_bam_info.src_pipe_index[index];
  2578. /* Consumer pipe index */
  2579. sps_connect_info->dest_pipe_index =
  2580. pce_dev->ce_bam_info.dest_pipe_index[index];
  2581. /* Set pipe group */
  2582. sps_connect_info->lock_group =
  2583. pce_dev->ce_bam_info.pipe_pair_index[index];
  2584. sps_connect_info->event_thresh = 0x10;
  2585. /*
  2586. * Max. no of scatter/gather buffers that can
  2587. * be passed by block layer = 32 (NR_SG).
  2588. * Each BAM descritor needs 64 bits (8 bytes).
  2589. * One BAM descriptor is required per buffer transfer.
  2590. * So we would require total 256 (32 * 8) bytes of descriptor FIFO.
  2591. * But due to HW limitation we need to allocate atleast one extra
  2592. * descriptor memory (256 bytes + 8 bytes). But in order to be
  2593. * in power of 2, we are allocating 512 bytes of memory.
  2594. */
  2595. sps_connect_info->desc.size = QCE_MAX_NUM_DSCR * MAX_QCE_ALLOC_BAM_REQ *
  2596. sizeof(struct sps_iovec);
  2597. if (sps_connect_info->desc.size > MAX_SPS_DESC_FIFO_SIZE)
  2598. sps_connect_info->desc.size = MAX_SPS_DESC_FIFO_SIZE;
  2599. sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev,
  2600. sps_connect_info->desc.size,
  2601. &sps_connect_info->desc.phys_base,
  2602. GFP_KERNEL | __GFP_ZERO);
  2603. if (sps_connect_info->desc.base == NULL) {
  2604. rc = -ENOMEM;
  2605. pr_err("Can not allocate coherent memory for sps data\n");
  2606. goto get_config_err;
  2607. }
  2608. /* Establish connection between peripheral and memory endpoint */
  2609. rc = sps_connect(sps_pipe_info, sps_connect_info);
  2610. if (rc) {
  2611. pr_err("sps_connect() fail pipe_handle=0x%lx, rc = %d\n",
  2612. (uintptr_t)sps_pipe_info, rc);
  2613. goto sps_connect_err;
  2614. }
  2615. sps_event->mode = SPS_TRIGGER_CALLBACK;
  2616. sps_event->xfer_done = NULL;
  2617. sps_event->user = (void *)pce_dev;
  2618. if (is_producer) {
  2619. sps_event->options = SPS_O_EOT | SPS_O_DESC_DONE;
  2620. sps_event->callback = _sps_producer_callback;
  2621. rc = sps_register_event(ep->pipe, sps_event);
  2622. if (rc) {
  2623. pr_err("Producer callback registration failed rc=%d\n",
  2624. rc);
  2625. goto sps_connect_err;
  2626. }
  2627. } else {
  2628. sps_event->options = SPS_O_EOT;
  2629. sps_event->callback = NULL;
  2630. }
  2631. pr_debug("success, %s : pipe_handle=0x%lx, desc fifo base (phy) = 0x%pK\n",
  2632. is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)",
  2633. (uintptr_t)sps_pipe_info, &sps_connect_info->desc.phys_base);
  2634. goto out;
  2635. sps_connect_err:
  2636. dma_free_coherent(pce_dev->pdev,
  2637. sps_connect_info->desc.size,
  2638. sps_connect_info->desc.base,
  2639. sps_connect_info->desc.phys_base);
  2640. get_config_err:
  2641. sps_free_endpoint(sps_pipe_info);
  2642. out:
  2643. return rc;
  2644. }
  2645. /**
  2646. * Disconnect and Deallocate a CE peripheral's SPS endpoint
  2647. *
  2648. * This function disconnect endpoint and deallocates
  2649. * endpoint context.
  2650. *
  2651. * This function should only be called once typically
  2652. * during driver remove.
  2653. *
  2654. * @pce_dev - Pointer to qce_device structure
  2655. * @ep - Pointer to sps endpoint data structure
  2656. *
  2657. */
  2658. static void qce_sps_exit_ep_conn(struct qce_device *pce_dev,
  2659. struct qce_sps_ep_conn_data *ep)
  2660. {
  2661. struct sps_pipe *sps_pipe_info = ep->pipe;
  2662. struct sps_connect *sps_connect_info = &ep->connect;
  2663. sps_disconnect(sps_pipe_info);
  2664. dma_free_coherent(pce_dev->pdev,
  2665. sps_connect_info->desc.size,
  2666. sps_connect_info->desc.base,
  2667. sps_connect_info->desc.phys_base);
  2668. sps_free_endpoint(sps_pipe_info);
  2669. }
  2670. static void qce_sps_release_bam(struct qce_device *pce_dev)
  2671. {
  2672. struct bam_registration_info *pbam;
  2673. mutex_lock(&bam_register_lock);
  2674. pbam = pce_dev->pbam;
  2675. if (pbam == NULL)
  2676. goto ret;
  2677. pbam->cnt--;
  2678. if (pbam->cnt > 0)
  2679. goto ret;
  2680. if (pce_dev->ce_bam_info.bam_handle) {
  2681. sps_deregister_bam_device(pce_dev->ce_bam_info.bam_handle);
  2682. pr_debug("deregister bam handle 0x%lx\n",
  2683. pce_dev->ce_bam_info.bam_handle);
  2684. pce_dev->ce_bam_info.bam_handle = 0;
  2685. }
  2686. iounmap(pbam->bam_iobase);
  2687. pr_debug("delete bam 0x%x\n", pbam->bam_mem);
  2688. list_del(&pbam->qlist);
  2689. kfree(pbam);
  2690. ret:
  2691. pce_dev->pbam = NULL;
  2692. mutex_unlock(&bam_register_lock);
  2693. }
  2694. static int qce_sps_get_bam(struct qce_device *pce_dev)
  2695. {
  2696. int rc = 0;
  2697. struct sps_bam_props bam = {0};
  2698. struct bam_registration_info *pbam = NULL;
  2699. struct bam_registration_info *p;
  2700. uint32_t bam_cfg = 0;
  2701. mutex_lock(&bam_register_lock);
  2702. list_for_each_entry(p, &qce50_bam_list, qlist) {
  2703. if (p->bam_mem == pce_dev->bam_mem) {
  2704. pbam = p; /* found */
  2705. break;
  2706. }
  2707. }
  2708. if (pbam) {
  2709. pr_debug("found bam 0x%x\n", pbam->bam_mem);
  2710. pbam->cnt++;
  2711. pce_dev->ce_bam_info.bam_handle = pbam->handle;
  2712. pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
  2713. pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
  2714. pce_dev->pbam = pbam;
  2715. pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
  2716. goto ret;
  2717. }
  2718. pbam = kzalloc(sizeof(struct bam_registration_info), GFP_KERNEL);
  2719. if (!pbam) {
  2720. rc = -ENOMEM;
  2721. goto ret;
  2722. }
  2723. pbam->cnt = 1;
  2724. pbam->bam_mem = pce_dev->bam_mem;
  2725. pbam->bam_iobase = ioremap(pce_dev->bam_mem,
  2726. pce_dev->bam_mem_size);
  2727. if (!pbam->bam_iobase) {
  2728. kfree(pbam);
  2729. rc = -ENOMEM;
  2730. pr_err("Can not map BAM io memory\n");
  2731. goto ret;
  2732. }
  2733. pce_dev->ce_bam_info.bam_mem = pbam->bam_mem;
  2734. pce_dev->ce_bam_info.bam_iobase = pbam->bam_iobase;
  2735. pbam->handle = 0;
  2736. pr_debug("allocate bam 0x%x\n", pbam->bam_mem);
  2737. bam_cfg = readl_relaxed(pce_dev->ce_bam_info.bam_iobase +
  2738. CRYPTO_BAM_CNFG_BITS_REG);
  2739. pbam->support_cmd_dscr = (bam_cfg & CRYPTO_BAM_CD_ENABLE_MASK) ?
  2740. true : false;
  2741. if (!pbam->support_cmd_dscr) {
  2742. pr_info("qce50 don't support command descriptor. bam_cfg%x\n",
  2743. bam_cfg);
  2744. pce_dev->no_get_around = false;
  2745. }
  2746. pce_dev->support_cmd_dscr = pbam->support_cmd_dscr;
  2747. bam.phys_addr = pce_dev->ce_bam_info.bam_mem;
  2748. bam.virt_addr = pce_dev->ce_bam_info.bam_iobase;
  2749. /*
  2750. * This event threshold value is only significant for BAM-to-BAM
  2751. * transfer. It's ignored for BAM-to-System mode transfer.
  2752. */
  2753. bam.event_threshold = 0x10; /* Pipe event threshold */
  2754. /*
  2755. * This threshold controls when the BAM publish
  2756. * the descriptor size on the sideband interface.
  2757. * SPS HW will only be used when
  2758. * data transfer size > 64 bytes.
  2759. */
  2760. bam.summing_threshold = 64;
  2761. /* SPS driver wll handle the crypto BAM IRQ */
  2762. bam.irq = (u32)pce_dev->ce_bam_info.bam_irq;
  2763. /*
  2764. * Set flag to indicate BAM global device control is managed
  2765. * remotely.
  2766. */
  2767. if (!pce_dev->support_cmd_dscr || pce_dev->is_shared)
  2768. bam.manage = SPS_BAM_MGR_DEVICE_REMOTE;
  2769. else
  2770. bam.manage = SPS_BAM_MGR_LOCAL;
  2771. bam.ee = pce_dev->ce_bam_info.bam_ee;
  2772. bam.ipc_loglevel = QCE_BAM_DEFAULT_IPC_LOGLVL;
  2773. bam.options |= SPS_BAM_CACHED_WP;
  2774. pr_debug("bam physical base=0x%lx\n", (uintptr_t)bam.phys_addr);
  2775. pr_debug("bam virtual base=0x%pK\n", bam.virt_addr);
  2776. /* Register CE Peripheral BAM device to SPS driver */
  2777. rc = sps_register_bam_device(&bam, &pbam->handle);
  2778. if (rc) {
  2779. pr_err("sps_register_bam_device() failed! err=%d\n", rc);
  2780. rc = -EIO;
  2781. iounmap(pbam->bam_iobase);
  2782. kfree(pbam);
  2783. goto ret;
  2784. }
  2785. pce_dev->pbam = pbam;
  2786. list_add_tail(&pbam->qlist, &qce50_bam_list);
  2787. pce_dev->ce_bam_info.bam_handle = pbam->handle;
  2788. ret:
  2789. mutex_unlock(&bam_register_lock);
  2790. return rc;
  2791. }
  2792. /**
  2793. * Initialize SPS HW connected with CE core
  2794. *
  2795. * This function register BAM HW resources with
  2796. * SPS driver and then initialize 2 SPS endpoints
  2797. *
  2798. * This function should only be called once typically
  2799. * during driver probe.
  2800. *
  2801. * @pce_dev - Pointer to qce_device structure
  2802. *
  2803. * @return - 0 if successful else negative value.
  2804. *
  2805. */
  2806. static int qce_sps_init(struct qce_device *pce_dev)
  2807. {
  2808. int rc = 0, i = 0;
  2809. rc = qce_sps_get_bam(pce_dev);
  2810. if (rc)
  2811. return rc;
  2812. pr_debug("BAM device registered. bam_handle=0x%lx\n",
  2813. pce_dev->ce_bam_info.bam_handle);
  2814. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  2815. if (i == 0 && !(pce_dev->kernel_pipes_support))
  2816. continue;
  2817. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  2818. break;
  2819. rc = qce_sps_init_ep_conn(pce_dev,
  2820. &pce_dev->ce_bam_info.producer[i], i, true);
  2821. if (rc)
  2822. goto sps_connect_producer_err;
  2823. rc = qce_sps_init_ep_conn(pce_dev,
  2824. &pce_dev->ce_bam_info.consumer[i], i, false);
  2825. if (rc)
  2826. goto sps_connect_consumer_err;
  2827. }
  2828. pr_info(" QTI MSM CE-BAM at 0x%016llx irq %d\n",
  2829. (unsigned long long)pce_dev->ce_bam_info.bam_mem,
  2830. (unsigned int)pce_dev->ce_bam_info.bam_irq);
  2831. return rc;
  2832. sps_connect_consumer_err:
  2833. qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_bam_info.producer[i]);
  2834. sps_connect_producer_err:
  2835. qce_sps_release_bam(pce_dev);
  2836. return rc;
  2837. }
  2838. static inline int qce_alloc_req_info(struct qce_device *pce_dev)
  2839. {
  2840. int i;
  2841. int request_index = pce_dev->ce_request_index;
  2842. for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
  2843. request_index++;
  2844. if (request_index >= MAX_QCE_BAM_REQ)
  2845. request_index = 0;
  2846. if (!atomic_xchg(
  2847. &pce_dev->ce_request_info[request_index].in_use,
  2848. true)) {
  2849. pce_dev->ce_request_index = request_index;
  2850. return request_index;
  2851. }
  2852. }
  2853. pr_warn("pcedev %d no reqs available no_of_queued_req %d\n",
  2854. pce_dev->dev_no, atomic_read(
  2855. &pce_dev->no_of_queued_req));
  2856. return -EBUSY;
  2857. }
  2858. static inline void qce_free_req_info(struct qce_device *pce_dev, int req_info,
  2859. bool is_complete)
  2860. {
  2861. pce_dev->ce_request_info[req_info].xfer_type = QCE_XFER_TYPE_LAST;
  2862. if (atomic_xchg(&pce_dev->ce_request_info[req_info].in_use,
  2863. false)) {
  2864. if (req_info < MAX_QCE_BAM_REQ && is_complete)
  2865. atomic_dec(&pce_dev->no_of_queued_req);
  2866. } else
  2867. pr_warn("request info %d free already\n", req_info);
  2868. }
  2869. static void print_notify_debug(struct sps_event_notify *notify)
  2870. {
  2871. phys_addr_t addr =
  2872. DESC_FULL_ADDR((phys_addr_t) notify->data.transfer.iovec.flags,
  2873. notify->data.transfer.iovec.addr);
  2874. pr_debug("sps ev_id=%d, addr=0x%pa, size=0x%x, flags=0x%x user=0x%pK\n",
  2875. notify->event_id, &addr,
  2876. notify->data.transfer.iovec.size,
  2877. notify->data.transfer.iovec.flags,
  2878. notify->data.transfer.user);
  2879. }
  2880. static void _qce_req_complete(struct qce_device *pce_dev, unsigned int req_info)
  2881. {
  2882. struct ce_request_info *preq_info;
  2883. preq_info = &pce_dev->ce_request_info[req_info];
  2884. switch (preq_info->xfer_type) {
  2885. case QCE_XFER_CIPHERING:
  2886. _ablk_cipher_complete(pce_dev, req_info);
  2887. break;
  2888. case QCE_XFER_HASHING:
  2889. _sha_complete(pce_dev, req_info);
  2890. break;
  2891. case QCE_XFER_AEAD:
  2892. _aead_complete(pce_dev, req_info);
  2893. break;
  2894. case QCE_XFER_F8:
  2895. _f8_complete(pce_dev, req_info);
  2896. break;
  2897. case QCE_XFER_F9:
  2898. _f9_complete(pce_dev, req_info);
  2899. break;
  2900. default:
  2901. qce_free_req_info(pce_dev, req_info, true);
  2902. break;
  2903. }
  2904. }
  2905. static void qce_multireq_timeout(struct timer_list *data)
  2906. {
  2907. struct qce_device *pce_dev = from_timer(pce_dev, data, timer);
  2908. int ret = 0;
  2909. int last_seq;
  2910. unsigned long flags;
  2911. last_seq = atomic_read(&pce_dev->bunch_cmd_seq);
  2912. if (last_seq == 0 ||
  2913. last_seq != atomic_read(&pce_dev->last_intr_seq)) {
  2914. atomic_set(&pce_dev->last_intr_seq, last_seq);
  2915. mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES));
  2916. return;
  2917. }
  2918. /* last bunch mode command time out */
  2919. /*
  2920. * From here to dummy request finish sps request and set owner back
  2921. * to none, we disable interrupt.
  2922. * So it won't get preempted or interrupted. If bam inerrupts happen
  2923. * between, and completion callback gets called from BAM, a new
  2924. * request may be issued by the client driver. Deadlock may happen.
  2925. */
  2926. local_irq_save(flags);
  2927. if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_TIMEOUT)
  2928. != QCE_OWNER_NONE) {
  2929. local_irq_restore(flags);
  2930. mod_timer(&(pce_dev->timer), (jiffies + DELAY_IN_JIFFIES));
  2931. return;
  2932. }
  2933. ret = qce_dummy_req(pce_dev);
  2934. if (ret)
  2935. pr_warn("pcedev %d: Failed to insert dummy req\n",
  2936. pce_dev->dev_no);
  2937. cmpxchg(&pce_dev->owner, QCE_OWNER_TIMEOUT, QCE_OWNER_NONE);
  2938. pce_dev->mode = IN_INTERRUPT_MODE;
  2939. local_irq_restore(flags);
  2940. del_timer(&(pce_dev->timer));
  2941. pce_dev->qce_stats.no_of_timeouts++;
  2942. pr_debug("pcedev %d mode switch to INTR\n", pce_dev->dev_no);
  2943. }
  2944. void qce_get_driver_stats(void *handle)
  2945. {
  2946. struct qce_device *pce_dev = (struct qce_device *) handle;
  2947. if (!_qce50_disp_stats)
  2948. return;
  2949. pr_info("Engine %d timeout occuured %d\n", pce_dev->dev_no,
  2950. pce_dev->qce_stats.no_of_timeouts);
  2951. pr_info("Engine %d dummy request inserted %d\n", pce_dev->dev_no,
  2952. pce_dev->qce_stats.no_of_dummy_reqs);
  2953. if (pce_dev->mode)
  2954. pr_info("Engine %d is in BUNCH MODE\n", pce_dev->dev_no);
  2955. else
  2956. pr_info("Engine %d is in INTERRUPT MODE\n", pce_dev->dev_no);
  2957. pr_info("Engine %d outstanding request %d\n", pce_dev->dev_no,
  2958. atomic_read(&pce_dev->no_of_queued_req));
  2959. }
  2960. EXPORT_SYMBOL(qce_get_driver_stats);
  2961. void qce_clear_driver_stats(void *handle)
  2962. {
  2963. struct qce_device *pce_dev = (struct qce_device *) handle;
  2964. pce_dev->qce_stats.no_of_timeouts = 0;
  2965. pce_dev->qce_stats.no_of_dummy_reqs = 0;
  2966. }
  2967. EXPORT_SYMBOL(qce_clear_driver_stats);
  2968. static void _sps_producer_callback(struct sps_event_notify *notify)
  2969. {
  2970. struct qce_device *pce_dev = (struct qce_device *)
  2971. ((struct sps_event_notify *)notify)->user;
  2972. int rc = 0;
  2973. unsigned int req_info;
  2974. struct ce_sps_data *pce_sps_data;
  2975. struct ce_request_info *preq_info;
  2976. uint16_t op;
  2977. print_notify_debug(notify);
  2978. req_info = (unsigned int)((uintptr_t)notify->data.transfer.user);
  2979. if ((req_info & 0xffff0000) != CRYPTO_REQ_USER_PAT) {
  2980. pr_warn("request information %d out of range\n", req_info);
  2981. return;
  2982. }
  2983. req_info = req_info & 0x00ff;
  2984. if (req_info < 0 || req_info >= MAX_QCE_ALLOC_BAM_REQ) {
  2985. pr_warn("request information %d out of range\n", req_info);
  2986. return;
  2987. }
  2988. preq_info = &pce_dev->ce_request_info[req_info];
  2989. op = pce_dev->ce_request_info[req_info].offload_op;
  2990. pce_sps_data = &preq_info->ce_sps;
  2991. if ((preq_info->xfer_type == QCE_XFER_CIPHERING ||
  2992. preq_info->xfer_type == QCE_XFER_AEAD) &&
  2993. pce_sps_data->producer_state == QCE_PIPE_STATE_IDLE) {
  2994. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  2995. if (!is_offload_op(op)) {
  2996. pce_sps_data->out_transfer.iovec_count = 0;
  2997. _qce_sps_add_data(GET_PHYS_ADDR(
  2998. pce_sps_data->result_dump),
  2999. CRYPTO_RESULT_DUMP_SIZE,
  3000. &pce_sps_data->out_transfer);
  3001. _qce_set_flag(&pce_sps_data->out_transfer,
  3002. SPS_IOVEC_FLAG_INT);
  3003. rc = sps_transfer(
  3004. pce_dev->ce_bam_info.producer[op].pipe,
  3005. &pce_sps_data->out_transfer);
  3006. if (rc) {
  3007. pr_err("sps_xfr fail (prod pipe=0x%lx) rc = %d\n",
  3008. (uintptr_t)pce_dev->ce_bam_info.producer[op].pipe,
  3009. rc);
  3010. }
  3011. }
  3012. return;
  3013. }
  3014. _qce_req_complete(pce_dev, req_info);
  3015. }
  3016. /**
  3017. * De-initialize SPS HW connected with CE core
  3018. *
  3019. * This function deinitialize SPS endpoints and then
  3020. * deregisters BAM resources from SPS driver.
  3021. *
  3022. * This function should only be called once typically
  3023. * during driver remove.
  3024. *
  3025. * @pce_dev - Pointer to qce_device structure
  3026. *
  3027. */
  3028. static void qce_sps_exit(struct qce_device *pce_dev)
  3029. {
  3030. int i = 0;
  3031. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  3032. if (i == 0 && !(pce_dev->kernel_pipes_support))
  3033. continue;
  3034. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  3035. break;
  3036. qce_sps_exit_ep_conn(pce_dev,
  3037. &pce_dev->ce_bam_info.consumer[i]);
  3038. qce_sps_exit_ep_conn(pce_dev,
  3039. &pce_dev->ce_bam_info.producer[i]);
  3040. }
  3041. qce_sps_release_bam(pce_dev);
  3042. }
  3043. static void qce_add_cmd_element(struct qce_device *pdev,
  3044. struct sps_command_element **cmd_ptr, u32 addr,
  3045. u32 data, struct sps_command_element **populate)
  3046. {
  3047. (*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase);
  3048. (*cmd_ptr)->command = 0;
  3049. (*cmd_ptr)->data = data;
  3050. (*cmd_ptr)->mask = 0xFFFFFFFF;
  3051. (*cmd_ptr)->reserved = 0;
  3052. if (populate != NULL)
  3053. *populate = *cmd_ptr;
  3054. (*cmd_ptr)++;
  3055. }
  3056. static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3057. unsigned char **pvaddr, enum qce_cipher_mode_enum mode,
  3058. bool key_128)
  3059. {
  3060. struct sps_command_element *ce_vaddr;
  3061. uintptr_t ce_vaddr_start;
  3062. struct qce_cmdlistptr_ops *cmdlistptr;
  3063. struct qce_cmdlist_info *pcl_info = NULL;
  3064. int i = 0;
  3065. uint32_t encr_cfg = 0;
  3066. uint32_t key_reg = 0;
  3067. uint32_t xts_key_reg = 0;
  3068. uint32_t iv_reg = 0;
  3069. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3070. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3071. pdev->ce_bam_info.ce_burst_size);
  3072. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3073. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3074. /*
  3075. * Designate chunks of the allocated memory to various
  3076. * command list pointers related to AES cipher operations defined
  3077. * in ce_cmdlistptrs_ops structure.
  3078. */
  3079. switch (mode) {
  3080. case QCE_MODE_CBC:
  3081. case QCE_MODE_CTR:
  3082. if (key_128) {
  3083. cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist =
  3084. (uintptr_t)ce_vaddr;
  3085. pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr);
  3086. if (mode == QCE_MODE_CBC)
  3087. encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
  3088. else
  3089. encr_cfg = pdev->reg.encr_cfg_aes_ctr_128;
  3090. iv_reg = 4;
  3091. key_reg = 4;
  3092. xts_key_reg = 0;
  3093. } else {
  3094. cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist =
  3095. (uintptr_t)ce_vaddr;
  3096. pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr);
  3097. if (mode == QCE_MODE_CBC)
  3098. encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
  3099. else
  3100. encr_cfg = pdev->reg.encr_cfg_aes_ctr_256;
  3101. iv_reg = 4;
  3102. key_reg = 8;
  3103. xts_key_reg = 0;
  3104. }
  3105. break;
  3106. case QCE_MODE_ECB:
  3107. if (key_128) {
  3108. cmdlistptr->cipher_aes_128_ecb.cmdlist =
  3109. (uintptr_t)ce_vaddr;
  3110. pcl_info = &(cmdlistptr->cipher_aes_128_ecb);
  3111. encr_cfg = pdev->reg.encr_cfg_aes_ecb_128;
  3112. iv_reg = 0;
  3113. key_reg = 4;
  3114. xts_key_reg = 0;
  3115. } else {
  3116. cmdlistptr->cipher_aes_256_ecb.cmdlist =
  3117. (uintptr_t)ce_vaddr;
  3118. pcl_info = &(cmdlistptr->cipher_aes_256_ecb);
  3119. encr_cfg = pdev->reg.encr_cfg_aes_ecb_256;
  3120. iv_reg = 0;
  3121. key_reg = 8;
  3122. xts_key_reg = 0;
  3123. }
  3124. break;
  3125. case QCE_MODE_XTS:
  3126. if (key_128) {
  3127. cmdlistptr->cipher_aes_128_xts.cmdlist =
  3128. (uintptr_t)ce_vaddr;
  3129. pcl_info = &(cmdlistptr->cipher_aes_128_xts);
  3130. encr_cfg = pdev->reg.encr_cfg_aes_xts_128;
  3131. iv_reg = 4;
  3132. key_reg = 4;
  3133. xts_key_reg = 4;
  3134. } else {
  3135. cmdlistptr->cipher_aes_256_xts.cmdlist =
  3136. (uintptr_t)ce_vaddr;
  3137. pcl_info = &(cmdlistptr->cipher_aes_256_xts);
  3138. encr_cfg = pdev->reg.encr_cfg_aes_xts_256;
  3139. iv_reg = 4;
  3140. key_reg = 8;
  3141. xts_key_reg = 8;
  3142. }
  3143. break;
  3144. default:
  3145. pr_err("Unknown mode of operation %d received, exiting now\n",
  3146. mode);
  3147. return -EINVAL;
  3148. break;
  3149. }
  3150. /* clear status register */
  3151. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3152. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS2_REG, 0, NULL);
  3153. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS3_REG, 0, NULL);
  3154. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS4_REG, 0, NULL);
  3155. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS5_REG, 0, NULL);
  3156. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS6_REG, 0, NULL);
  3157. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3158. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3159. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3160. &pcl_info->seg_size);
  3161. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3162. &pcl_info->encr_seg_cfg);
  3163. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3164. &pcl_info->encr_seg_size);
  3165. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3166. &pcl_info->encr_seg_start);
  3167. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
  3168. pdev->reg.encr_cntr_mask_3, &pcl_info->encr_mask_3);
  3169. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
  3170. pdev->reg.encr_cntr_mask_2, &pcl_info->encr_mask_2);
  3171. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
  3172. pdev->reg.encr_cntr_mask_1, &pcl_info->encr_mask_1);
  3173. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
  3174. pdev->reg.encr_cntr_mask_0, &pcl_info->encr_mask_0);
  3175. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3176. &pcl_info->auth_seg_cfg);
  3177. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_DATA_PATT_PROC_CFG_REG, 0,
  3178. &pcl_info->pattern_info);
  3179. qce_add_cmd_element(pdev, &ce_vaddr,
  3180. CRYPTO_DATA_PARTIAL_BLOCK_PROC_CFG_REG, 0,
  3181. &pcl_info->block_offset);
  3182. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3183. &pcl_info->encr_key);
  3184. for (i = 1; i < key_reg; i++)
  3185. qce_add_cmd_element(pdev, &ce_vaddr,
  3186. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3187. 0, NULL);
  3188. if (xts_key_reg) {
  3189. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG,
  3190. 0, &pcl_info->encr_xts_key);
  3191. for (i = 1; i < xts_key_reg; i++)
  3192. qce_add_cmd_element(pdev, &ce_vaddr,
  3193. (CRYPTO_ENCR_XTS_KEY0_REG +
  3194. i * sizeof(uint32_t)), 0, NULL);
  3195. qce_add_cmd_element(pdev, &ce_vaddr,
  3196. CRYPTO_ENCR_XTS_DU_SIZE_REG, 0,
  3197. &pcl_info->encr_xts_du_size);
  3198. }
  3199. if (iv_reg) {
  3200. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3201. &pcl_info->encr_cntr_iv);
  3202. for (i = 1; i < iv_reg; i++)
  3203. qce_add_cmd_element(pdev, &ce_vaddr,
  3204. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3205. 0, NULL);
  3206. }
  3207. /* Add dummy to align size to burst-size multiple */
  3208. if (mode == QCE_MODE_XTS) {
  3209. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3210. 0, &pcl_info->auth_seg_size);
  3211. } else {
  3212. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3213. 0, &pcl_info->auth_seg_size);
  3214. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
  3215. 0, &pcl_info->auth_seg_size);
  3216. }
  3217. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3218. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3219. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3220. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3221. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3222. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3223. *pvaddr = (unsigned char *) ce_vaddr;
  3224. return 0;
  3225. }
  3226. static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3227. unsigned char **pvaddr, enum qce_cipher_alg_enum alg,
  3228. bool mode_cbc)
  3229. {
  3230. struct sps_command_element *ce_vaddr;
  3231. uintptr_t ce_vaddr_start;
  3232. struct qce_cmdlistptr_ops *cmdlistptr;
  3233. struct qce_cmdlist_info *pcl_info = NULL;
  3234. int i = 0;
  3235. uint32_t encr_cfg = 0;
  3236. uint32_t key_reg = 0;
  3237. uint32_t iv_reg = 0;
  3238. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3239. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3240. pdev->ce_bam_info.ce_burst_size);
  3241. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3242. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3243. /*
  3244. * Designate chunks of the allocated memory to various
  3245. * command list pointers related to cipher operations defined
  3246. * in ce_cmdlistptrs_ops structure.
  3247. */
  3248. switch (alg) {
  3249. case CIPHER_ALG_DES:
  3250. if (mode_cbc) {
  3251. cmdlistptr->cipher_des_cbc.cmdlist =
  3252. (uintptr_t)ce_vaddr;
  3253. pcl_info = &(cmdlistptr->cipher_des_cbc);
  3254. encr_cfg = pdev->reg.encr_cfg_des_cbc;
  3255. iv_reg = 2;
  3256. key_reg = 2;
  3257. } else {
  3258. cmdlistptr->cipher_des_ecb.cmdlist =
  3259. (uintptr_t)ce_vaddr;
  3260. pcl_info = &(cmdlistptr->cipher_des_ecb);
  3261. encr_cfg = pdev->reg.encr_cfg_des_ecb;
  3262. iv_reg = 0;
  3263. key_reg = 2;
  3264. }
  3265. break;
  3266. case CIPHER_ALG_3DES:
  3267. if (mode_cbc) {
  3268. cmdlistptr->cipher_3des_cbc.cmdlist =
  3269. (uintptr_t)ce_vaddr;
  3270. pcl_info = &(cmdlistptr->cipher_3des_cbc);
  3271. encr_cfg = pdev->reg.encr_cfg_3des_cbc;
  3272. iv_reg = 2;
  3273. key_reg = 6;
  3274. } else {
  3275. cmdlistptr->cipher_3des_ecb.cmdlist =
  3276. (uintptr_t)ce_vaddr;
  3277. pcl_info = &(cmdlistptr->cipher_3des_ecb);
  3278. encr_cfg = pdev->reg.encr_cfg_3des_ecb;
  3279. iv_reg = 0;
  3280. key_reg = 6;
  3281. }
  3282. break;
  3283. default:
  3284. pr_err("Unknown algorithms %d received, exiting now\n", alg);
  3285. return -EINVAL;
  3286. break;
  3287. }
  3288. /* clear status register */
  3289. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3290. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3291. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3292. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3293. &pcl_info->seg_size);
  3294. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3295. &pcl_info->encr_seg_cfg);
  3296. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3297. &pcl_info->encr_seg_size);
  3298. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3299. &pcl_info->encr_seg_start);
  3300. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3301. &pcl_info->auth_seg_cfg);
  3302. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3303. &pcl_info->encr_key);
  3304. for (i = 1; i < key_reg; i++)
  3305. qce_add_cmd_element(pdev, &ce_vaddr,
  3306. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3307. 0, NULL);
  3308. if (iv_reg) {
  3309. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3310. &pcl_info->encr_cntr_iv);
  3311. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
  3312. NULL);
  3313. }
  3314. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3315. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3316. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3317. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3318. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3319. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3320. *pvaddr = (unsigned char *) ce_vaddr;
  3321. return 0;
  3322. }
  3323. static int _setup_cipher_null_cmdlistptrs(struct qce_device *pdev,
  3324. int cri_index, unsigned char **pvaddr)
  3325. {
  3326. struct sps_command_element *ce_vaddr;
  3327. uintptr_t ce_vaddr_start;
  3328. struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
  3329. [cri_index].ce_sps.cmdlistptr;
  3330. struct qce_cmdlist_info *pcl_info = NULL;
  3331. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3332. pdev->ce_bam_info.ce_burst_size);
  3333. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3334. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3335. cmdlistptr->cipher_null.cmdlist = (uintptr_t)ce_vaddr;
  3336. pcl_info = &(cmdlistptr->cipher_null);
  3337. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG,
  3338. pdev->ce_bam_info.ce_burst_size, NULL);
  3339. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
  3340. pdev->reg.encr_cfg_aes_ecb_128, NULL);
  3341. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3342. NULL);
  3343. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3344. NULL);
  3345. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3346. 0, NULL);
  3347. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3348. 0, NULL);
  3349. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3350. NULL);
  3351. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3352. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3353. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3354. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3355. *pvaddr = (unsigned char *) ce_vaddr;
  3356. return 0;
  3357. }
  3358. static int _setup_auth_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3359. unsigned char **pvaddr, enum qce_hash_alg_enum alg,
  3360. bool key_128)
  3361. {
  3362. struct sps_command_element *ce_vaddr;
  3363. uintptr_t ce_vaddr_start;
  3364. struct qce_cmdlistptr_ops *cmdlistptr;
  3365. struct qce_cmdlist_info *pcl_info = NULL;
  3366. int i = 0;
  3367. uint32_t key_reg = 0;
  3368. uint32_t auth_cfg = 0;
  3369. uint32_t iv_reg = 0;
  3370. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3371. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3372. pdev->ce_bam_info.ce_burst_size);
  3373. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3374. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3375. /*
  3376. * Designate chunks of the allocated memory to various
  3377. * command list pointers related to authentication operations
  3378. * defined in ce_cmdlistptrs_ops structure.
  3379. */
  3380. switch (alg) {
  3381. case QCE_HASH_SHA1:
  3382. cmdlistptr->auth_sha1.cmdlist = (uintptr_t)ce_vaddr;
  3383. pcl_info = &(cmdlistptr->auth_sha1);
  3384. auth_cfg = pdev->reg.auth_cfg_sha1;
  3385. iv_reg = 5;
  3386. /* clear status register */
  3387. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3388. 0, NULL);
  3389. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3390. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3391. break;
  3392. case QCE_HASH_SHA256:
  3393. cmdlistptr->auth_sha256.cmdlist = (uintptr_t)ce_vaddr;
  3394. pcl_info = &(cmdlistptr->auth_sha256);
  3395. auth_cfg = pdev->reg.auth_cfg_sha256;
  3396. iv_reg = 8;
  3397. /* clear status register */
  3398. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3399. 0, NULL);
  3400. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3401. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3402. /* 1 dummy write */
  3403. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3404. 0, NULL);
  3405. break;
  3406. case QCE_HASH_SHA1_HMAC:
  3407. cmdlistptr->auth_sha1_hmac.cmdlist = (uintptr_t)ce_vaddr;
  3408. pcl_info = &(cmdlistptr->auth_sha1_hmac);
  3409. auth_cfg = pdev->reg.auth_cfg_hmac_sha1;
  3410. key_reg = 16;
  3411. iv_reg = 5;
  3412. /* clear status register */
  3413. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3414. 0, NULL);
  3415. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3416. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3417. break;
  3418. case QCE_HASH_SHA256_HMAC:
  3419. cmdlistptr->auth_sha256_hmac.cmdlist = (uintptr_t)ce_vaddr;
  3420. pcl_info = &(cmdlistptr->auth_sha256_hmac);
  3421. auth_cfg = pdev->reg.auth_cfg_hmac_sha256;
  3422. key_reg = 16;
  3423. iv_reg = 8;
  3424. /* clear status register */
  3425. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
  3426. NULL);
  3427. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3428. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3429. /* 1 dummy write */
  3430. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3431. 0, NULL);
  3432. break;
  3433. case QCE_HASH_AES_CMAC:
  3434. if (key_128) {
  3435. cmdlistptr->auth_aes_128_cmac.cmdlist =
  3436. (uintptr_t)ce_vaddr;
  3437. pcl_info = &(cmdlistptr->auth_aes_128_cmac);
  3438. auth_cfg = pdev->reg.auth_cfg_cmac_128;
  3439. key_reg = 4;
  3440. } else {
  3441. cmdlistptr->auth_aes_256_cmac.cmdlist =
  3442. (uintptr_t)ce_vaddr;
  3443. pcl_info = &(cmdlistptr->auth_aes_256_cmac);
  3444. auth_cfg = pdev->reg.auth_cfg_cmac_256;
  3445. key_reg = 8;
  3446. }
  3447. /* clear status register */
  3448. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0,
  3449. NULL);
  3450. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3451. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3452. /* 1 dummy write */
  3453. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
  3454. 0, NULL);
  3455. break;
  3456. default:
  3457. pr_err("Unknown algorithms %d received, exiting now\n", alg);
  3458. return -EINVAL;
  3459. break;
  3460. }
  3461. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3462. &pcl_info->seg_size);
  3463. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
  3464. &pcl_info->encr_seg_cfg);
  3465. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3466. auth_cfg, &pcl_info->auth_seg_cfg);
  3467. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3468. &pcl_info->auth_seg_size);
  3469. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3470. &pcl_info->auth_seg_start);
  3471. if (alg == QCE_HASH_AES_CMAC) {
  3472. /* reset auth iv, bytecount and key registers */
  3473. for (i = 0; i < 16; i++)
  3474. qce_add_cmd_element(pdev, &ce_vaddr,
  3475. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
  3476. 0, NULL);
  3477. for (i = 0; i < 16; i++)
  3478. qce_add_cmd_element(pdev, &ce_vaddr,
  3479. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
  3480. 0, NULL);
  3481. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3482. 0, NULL);
  3483. } else {
  3484. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3485. &pcl_info->auth_iv);
  3486. for (i = 1; i < iv_reg; i++)
  3487. qce_add_cmd_element(pdev, &ce_vaddr,
  3488. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3489. 0, NULL);
  3490. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3491. 0, &pcl_info->auth_bytecount);
  3492. }
  3493. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3494. if (key_reg) {
  3495. qce_add_cmd_element(pdev, &ce_vaddr,
  3496. CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key);
  3497. for (i = 1; i < key_reg; i++)
  3498. qce_add_cmd_element(pdev, &ce_vaddr,
  3499. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
  3500. 0, NULL);
  3501. }
  3502. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3503. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3504. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3505. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3506. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3507. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3508. *pvaddr = (unsigned char *) ce_vaddr;
  3509. return 0;
  3510. }
  3511. static int _setup_aead_cmdlistptrs(struct qce_device *pdev,
  3512. int cri_index,
  3513. unsigned char **pvaddr,
  3514. uint32_t alg,
  3515. uint32_t mode,
  3516. uint32_t key_size,
  3517. bool sha1)
  3518. {
  3519. struct sps_command_element *ce_vaddr;
  3520. uintptr_t ce_vaddr_start;
  3521. struct qce_cmdlistptr_ops *cmd;
  3522. struct qce_cmdlist_info *pcl_info = NULL;
  3523. uint32_t key_reg;
  3524. uint32_t iv_reg;
  3525. uint32_t i;
  3526. uint32_t enciv_in_word;
  3527. uint32_t encr_cfg;
  3528. cmd = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3529. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3530. pdev->ce_bam_info.ce_burst_size);
  3531. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3532. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3533. switch (alg) {
  3534. case CIPHER_ALG_DES:
  3535. switch (mode) {
  3536. case QCE_MODE_CBC:
  3537. if (sha1) {
  3538. cmd->aead_hmac_sha1_cbc_des.cmdlist =
  3539. (uintptr_t)ce_vaddr;
  3540. pcl_info =
  3541. &(cmd->aead_hmac_sha1_cbc_des);
  3542. } else {
  3543. cmd->aead_hmac_sha256_cbc_des.cmdlist =
  3544. (uintptr_t)ce_vaddr;
  3545. pcl_info =
  3546. &(cmd->aead_hmac_sha256_cbc_des);
  3547. }
  3548. encr_cfg = pdev->reg.encr_cfg_des_cbc;
  3549. break;
  3550. default:
  3551. return -EINVAL;
  3552. }
  3553. enciv_in_word = 2;
  3554. break;
  3555. case CIPHER_ALG_3DES:
  3556. switch (mode) {
  3557. case QCE_MODE_CBC:
  3558. if (sha1) {
  3559. cmd->aead_hmac_sha1_cbc_3des.cmdlist =
  3560. (uintptr_t)ce_vaddr;
  3561. pcl_info =
  3562. &(cmd->aead_hmac_sha1_cbc_3des);
  3563. } else {
  3564. cmd->aead_hmac_sha256_cbc_3des.cmdlist =
  3565. (uintptr_t)ce_vaddr;
  3566. pcl_info =
  3567. &(cmd->aead_hmac_sha256_cbc_3des);
  3568. }
  3569. encr_cfg = pdev->reg.encr_cfg_3des_cbc;
  3570. break;
  3571. default:
  3572. return -EINVAL;
  3573. }
  3574. enciv_in_word = 2;
  3575. break;
  3576. case CIPHER_ALG_AES:
  3577. switch (mode) {
  3578. case QCE_MODE_CBC:
  3579. if (key_size == AES128_KEY_SIZE) {
  3580. if (sha1) {
  3581. cmd->aead_hmac_sha1_cbc_aes_128.cmdlist =
  3582. (uintptr_t)ce_vaddr;
  3583. pcl_info =
  3584. &(cmd->aead_hmac_sha1_cbc_aes_128);
  3585. } else {
  3586. cmd->aead_hmac_sha256_cbc_aes_128.cmdlist
  3587. = (uintptr_t)ce_vaddr;
  3588. pcl_info =
  3589. &(cmd->aead_hmac_sha256_cbc_aes_128);
  3590. }
  3591. encr_cfg = pdev->reg.encr_cfg_aes_cbc_128;
  3592. } else if (key_size == AES256_KEY_SIZE) {
  3593. if (sha1) {
  3594. cmd->aead_hmac_sha1_cbc_aes_256.cmdlist =
  3595. (uintptr_t)ce_vaddr;
  3596. pcl_info =
  3597. &(cmd->aead_hmac_sha1_cbc_aes_256);
  3598. } else {
  3599. cmd->aead_hmac_sha256_cbc_aes_256.cmdlist =
  3600. (uintptr_t)ce_vaddr;
  3601. pcl_info =
  3602. &(cmd->aead_hmac_sha256_cbc_aes_256);
  3603. }
  3604. encr_cfg = pdev->reg.encr_cfg_aes_cbc_256;
  3605. } else {
  3606. return -EINVAL;
  3607. }
  3608. break;
  3609. default:
  3610. return -EINVAL;
  3611. }
  3612. enciv_in_word = 4;
  3613. break;
  3614. default:
  3615. return -EINVAL;
  3616. }
  3617. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3618. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3619. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3620. key_reg = key_size/sizeof(uint32_t);
  3621. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3622. &pcl_info->encr_key);
  3623. for (i = 1; i < key_reg; i++)
  3624. qce_add_cmd_element(pdev, &ce_vaddr,
  3625. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3626. 0, NULL);
  3627. if (mode != QCE_MODE_ECB) {
  3628. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3629. &pcl_info->encr_cntr_iv);
  3630. for (i = 1; i < enciv_in_word; i++)
  3631. qce_add_cmd_element(pdev, &ce_vaddr,
  3632. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3633. 0, NULL);
  3634. }
  3635. if (sha1)
  3636. iv_reg = 5;
  3637. else
  3638. iv_reg = 8;
  3639. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3640. &pcl_info->auth_iv);
  3641. for (i = 1; i < iv_reg; i++)
  3642. qce_add_cmd_element(pdev, &ce_vaddr,
  3643. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3644. 0, NULL);
  3645. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3646. 0, &pcl_info->auth_bytecount);
  3647. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3648. key_reg = SHA_HMAC_KEY_SIZE/sizeof(uint32_t);
  3649. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
  3650. &pcl_info->auth_key);
  3651. for (i = 1; i < key_reg; i++)
  3652. qce_add_cmd_element(pdev, &ce_vaddr,
  3653. (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)), 0, NULL);
  3654. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3655. &pcl_info->seg_size);
  3656. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3657. &pcl_info->encr_seg_cfg);
  3658. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3659. &pcl_info->encr_seg_size);
  3660. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3661. &pcl_info->encr_seg_start);
  3662. if (sha1)
  3663. qce_add_cmd_element(
  3664. pdev,
  3665. &ce_vaddr,
  3666. CRYPTO_AUTH_SEG_CFG_REG,
  3667. pdev->reg.auth_cfg_aead_sha1_hmac,
  3668. &pcl_info->auth_seg_cfg);
  3669. else
  3670. qce_add_cmd_element(
  3671. pdev,
  3672. &ce_vaddr,
  3673. CRYPTO_AUTH_SEG_CFG_REG,
  3674. pdev->reg.auth_cfg_aead_sha256_hmac,
  3675. &pcl_info->auth_seg_cfg);
  3676. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3677. &pcl_info->auth_seg_size);
  3678. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3679. &pcl_info->auth_seg_start);
  3680. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3681. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3682. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3683. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3684. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3685. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3686. *pvaddr = (unsigned char *) ce_vaddr;
  3687. return 0;
  3688. }
  3689. static int _setup_aead_ccm_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3690. unsigned char **pvaddr, bool key_128)
  3691. {
  3692. struct sps_command_element *ce_vaddr;
  3693. uintptr_t ce_vaddr_start;
  3694. struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_request_info
  3695. [cri_index].ce_sps.cmdlistptr;
  3696. struct qce_cmdlist_info *pcl_info = NULL;
  3697. int i = 0;
  3698. uint32_t encr_cfg = 0;
  3699. uint32_t auth_cfg = 0;
  3700. uint32_t key_reg = 0;
  3701. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3702. pdev->ce_bam_info.ce_burst_size);
  3703. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3704. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3705. /*
  3706. * Designate chunks of the allocated memory to various
  3707. * command list pointers related to aead operations
  3708. * defined in ce_cmdlistptrs_ops structure.
  3709. */
  3710. if (key_128) {
  3711. cmdlistptr->aead_aes_128_ccm.cmdlist =
  3712. (uintptr_t)ce_vaddr;
  3713. pcl_info = &(cmdlistptr->aead_aes_128_ccm);
  3714. auth_cfg = pdev->reg.auth_cfg_aes_ccm_128;
  3715. encr_cfg = pdev->reg.encr_cfg_aes_ccm_128;
  3716. key_reg = 4;
  3717. } else {
  3718. cmdlistptr->aead_aes_256_ccm.cmdlist =
  3719. (uintptr_t)ce_vaddr;
  3720. pcl_info = &(cmdlistptr->aead_aes_256_ccm);
  3721. auth_cfg = pdev->reg.auth_cfg_aes_ccm_256;
  3722. encr_cfg = pdev->reg.encr_cfg_aes_ccm_256;
  3723. key_reg = 8;
  3724. }
  3725. /* clear status register */
  3726. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG, 0, NULL);
  3727. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3728. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3729. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL);
  3730. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3731. NULL);
  3732. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3733. &pcl_info->seg_size);
  3734. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
  3735. encr_cfg, &pcl_info->encr_seg_cfg);
  3736. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3737. &pcl_info->encr_seg_size);
  3738. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3739. &pcl_info->encr_seg_start);
  3740. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
  3741. pdev->reg.encr_cntr_mask_3, &pcl_info->encr_mask_3);
  3742. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG0,
  3743. pdev->reg.encr_cntr_mask_2, &pcl_info->encr_mask_2);
  3744. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG1,
  3745. pdev->reg.encr_cntr_mask_1, &pcl_info->encr_mask_1);
  3746. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG2,
  3747. pdev->reg.encr_cntr_mask_0, &pcl_info->encr_mask_0);
  3748. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3749. auth_cfg, &pcl_info->auth_seg_cfg);
  3750. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3751. &pcl_info->auth_seg_size);
  3752. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3753. &pcl_info->auth_seg_start);
  3754. /* reset auth iv, bytecount and key registers */
  3755. for (i = 0; i < 8; i++)
  3756. qce_add_cmd_element(pdev, &ce_vaddr,
  3757. (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
  3758. 0, NULL);
  3759. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3760. 0, NULL);
  3761. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG,
  3762. 0, NULL);
  3763. for (i = 0; i < 16; i++)
  3764. qce_add_cmd_element(pdev, &ce_vaddr,
  3765. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
  3766. 0, NULL);
  3767. /* set auth key */
  3768. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
  3769. &pcl_info->auth_key);
  3770. for (i = 1; i < key_reg; i++)
  3771. qce_add_cmd_element(pdev, &ce_vaddr,
  3772. (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
  3773. 0, NULL);
  3774. /* set NONCE info */
  3775. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0,
  3776. &pcl_info->auth_nonce_info);
  3777. for (i = 1; i < 4; i++)
  3778. qce_add_cmd_element(pdev, &ce_vaddr,
  3779. (CRYPTO_AUTH_INFO_NONCE0_REG +
  3780. i * sizeof(uint32_t)), 0, NULL);
  3781. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3782. &pcl_info->encr_key);
  3783. for (i = 1; i < key_reg; i++)
  3784. qce_add_cmd_element(pdev, &ce_vaddr,
  3785. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3786. 0, NULL);
  3787. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3788. &pcl_info->encr_cntr_iv);
  3789. for (i = 1; i < 4; i++)
  3790. qce_add_cmd_element(pdev, &ce_vaddr,
  3791. (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
  3792. 0, NULL);
  3793. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0,
  3794. &pcl_info->encr_ccm_cntr_iv);
  3795. for (i = 1; i < 4; i++)
  3796. qce_add_cmd_element(pdev, &ce_vaddr,
  3797. (CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)),
  3798. 0, NULL);
  3799. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3800. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3801. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3802. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3803. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3804. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3805. *pvaddr = (unsigned char *) ce_vaddr;
  3806. return 0;
  3807. }
  3808. static int _setup_f8_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3809. unsigned char **pvaddr, enum qce_ota_algo_enum alg)
  3810. {
  3811. struct sps_command_element *ce_vaddr;
  3812. uintptr_t ce_vaddr_start;
  3813. struct qce_cmdlistptr_ops *cmdlistptr;
  3814. struct qce_cmdlist_info *pcl_info = NULL;
  3815. int i = 0;
  3816. uint32_t encr_cfg = 0;
  3817. uint32_t key_reg = 4;
  3818. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3819. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3820. pdev->ce_bam_info.ce_burst_size);
  3821. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3822. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3823. /*
  3824. * Designate chunks of the allocated memory to various
  3825. * command list pointers related to f8 cipher algorithm defined
  3826. * in ce_cmdlistptrs_ops structure.
  3827. */
  3828. switch (alg) {
  3829. case QCE_OTA_ALGO_KASUMI:
  3830. cmdlistptr->f8_kasumi.cmdlist = (uintptr_t)ce_vaddr;
  3831. pcl_info = &(cmdlistptr->f8_kasumi);
  3832. encr_cfg = pdev->reg.encr_cfg_kasumi;
  3833. break;
  3834. case QCE_OTA_ALGO_SNOW3G:
  3835. default:
  3836. cmdlistptr->f8_snow3g.cmdlist = (uintptr_t)ce_vaddr;
  3837. pcl_info = &(cmdlistptr->f8_snow3g);
  3838. encr_cfg = pdev->reg.encr_cfg_snow3g;
  3839. break;
  3840. }
  3841. /* clear status register */
  3842. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3843. 0, NULL);
  3844. /* set config to big endian */
  3845. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3846. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3847. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3848. &pcl_info->seg_size);
  3849. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
  3850. &pcl_info->encr_seg_cfg);
  3851. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
  3852. &pcl_info->encr_seg_size);
  3853. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
  3854. &pcl_info->encr_seg_start);
  3855. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
  3856. &pcl_info->auth_seg_cfg);
  3857. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
  3858. 0, &pcl_info->auth_seg_size);
  3859. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
  3860. 0, &pcl_info->auth_seg_start);
  3861. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
  3862. &pcl_info->encr_key);
  3863. for (i = 1; i < key_reg; i++)
  3864. qce_add_cmd_element(pdev, &ce_vaddr,
  3865. (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
  3866. 0, NULL);
  3867. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
  3868. &pcl_info->encr_cntr_iv);
  3869. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
  3870. NULL);
  3871. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3872. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3873. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3874. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3875. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3876. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3877. *pvaddr = (unsigned char *) ce_vaddr;
  3878. return 0;
  3879. }
  3880. static int _setup_f9_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3881. unsigned char **pvaddr, enum qce_ota_algo_enum alg)
  3882. {
  3883. struct sps_command_element *ce_vaddr;
  3884. uintptr_t ce_vaddr_start;
  3885. struct qce_cmdlistptr_ops *cmdlistptr;
  3886. struct qce_cmdlist_info *pcl_info = NULL;
  3887. int i = 0;
  3888. uint32_t auth_cfg = 0;
  3889. uint32_t iv_reg = 0;
  3890. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3891. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3892. pdev->ce_bam_info.ce_burst_size);
  3893. ce_vaddr_start = (uintptr_t)(*pvaddr);
  3894. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3895. /*
  3896. * Designate chunks of the allocated memory to various
  3897. * command list pointers related to authentication operations
  3898. * defined in ce_cmdlistptrs_ops structure.
  3899. */
  3900. switch (alg) {
  3901. case QCE_OTA_ALGO_KASUMI:
  3902. cmdlistptr->f9_kasumi.cmdlist = (uintptr_t)ce_vaddr;
  3903. pcl_info = &(cmdlistptr->f9_kasumi);
  3904. auth_cfg = pdev->reg.auth_cfg_kasumi;
  3905. break;
  3906. case QCE_OTA_ALGO_SNOW3G:
  3907. default:
  3908. cmdlistptr->f9_snow3g.cmdlist = (uintptr_t)ce_vaddr;
  3909. pcl_info = &(cmdlistptr->f9_snow3g);
  3910. auth_cfg = pdev->reg.auth_cfg_snow3g;
  3911. }
  3912. /* clear status register */
  3913. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_STATUS_REG,
  3914. 0, NULL);
  3915. /* set config to big endian */
  3916. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3917. pdev->reg.crypto_cfg_be, &pcl_info->crypto_cfg);
  3918. iv_reg = 5;
  3919. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
  3920. &pcl_info->seg_size);
  3921. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
  3922. &pcl_info->encr_seg_cfg);
  3923. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
  3924. auth_cfg, &pcl_info->auth_seg_cfg);
  3925. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
  3926. &pcl_info->auth_seg_size);
  3927. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
  3928. &pcl_info->auth_seg_start);
  3929. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
  3930. &pcl_info->auth_iv);
  3931. for (i = 1; i < iv_reg; i++) {
  3932. qce_add_cmd_element(pdev, &ce_vaddr,
  3933. (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
  3934. 0, NULL);
  3935. }
  3936. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
  3937. 0, &pcl_info->auth_bytecount);
  3938. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
  3939. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3940. pdev->reg.crypto_cfg_le, &pcl_info->crypto_cfg_le);
  3941. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
  3942. ((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP) |
  3943. (1 << CRYPTO_CLR_CNTXT)), &pcl_info->go_proc);
  3944. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3945. *pvaddr = (unsigned char *) ce_vaddr;
  3946. return 0;
  3947. }
  3948. static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev,
  3949. int cri_index, unsigned char **pvaddr)
  3950. {
  3951. struct sps_command_element *ce_vaddr;
  3952. uintptr_t ce_vaddr_start = (uintptr_t)(*pvaddr);
  3953. struct qce_cmdlistptr_ops *cmdlistptr;
  3954. struct qce_cmdlist_info *pcl_info = NULL;
  3955. cmdlistptr = &pdev->ce_request_info[cri_index].ce_sps.cmdlistptr;
  3956. *pvaddr = (unsigned char *)ALIGN(((uintptr_t)(*pvaddr)),
  3957. pdev->ce_bam_info.ce_burst_size);
  3958. ce_vaddr = (struct sps_command_element *)(*pvaddr);
  3959. cmdlistptr->unlock_all_pipes.cmdlist = (uintptr_t)ce_vaddr;
  3960. pcl_info = &(cmdlistptr->unlock_all_pipes);
  3961. /*
  3962. * Designate chunks of the allocated memory to command list
  3963. * to unlock pipes.
  3964. */
  3965. qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
  3966. CRYPTO_CONFIG_RESET, NULL);
  3967. pcl_info->size = (uintptr_t)ce_vaddr - (uintptr_t)ce_vaddr_start;
  3968. *pvaddr = (unsigned char *) ce_vaddr;
  3969. return 0;
  3970. }
  3971. static int qce_setup_cmdlistptrs(struct qce_device *pdev, int cri_index,
  3972. unsigned char **pvaddr)
  3973. {
  3974. struct sps_command_element *ce_vaddr =
  3975. (struct sps_command_element *)(*pvaddr);
  3976. /*
  3977. * Designate chunks of the allocated memory to various
  3978. * command list pointers related to operations defined
  3979. * in ce_cmdlistptrs_ops structure.
  3980. */
  3981. ce_vaddr =
  3982. (struct sps_command_element *)ALIGN(((uintptr_t) ce_vaddr),
  3983. pdev->ce_bam_info.ce_burst_size);
  3984. *pvaddr = (unsigned char *) ce_vaddr;
  3985. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
  3986. true);
  3987. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
  3988. true);
  3989. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
  3990. true);
  3991. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
  3992. true);
  3993. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CBC,
  3994. false);
  3995. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_CTR,
  3996. false);
  3997. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_ECB,
  3998. false);
  3999. _setup_cipher_aes_cmdlistptrs(pdev, cri_index, pvaddr, QCE_MODE_XTS,
  4000. false);
  4001. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4002. true);
  4003. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4004. false);
  4005. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4006. true);
  4007. _setup_cipher_des_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4008. false);
  4009. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1,
  4010. false);
  4011. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256,
  4012. false);
  4013. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA1_HMAC,
  4014. false);
  4015. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_SHA256_HMAC,
  4016. false);
  4017. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
  4018. true);
  4019. _setup_auth_cmdlistptrs(pdev, cri_index, pvaddr, QCE_HASH_AES_CMAC,
  4020. false);
  4021. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4022. QCE_MODE_CBC, DES_KEY_SIZE, true);
  4023. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4024. QCE_MODE_CBC, DES3_EDE_KEY_SIZE, true);
  4025. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4026. QCE_MODE_CBC, AES128_KEY_SIZE, true);
  4027. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4028. QCE_MODE_CBC, AES256_KEY_SIZE, true);
  4029. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_DES,
  4030. QCE_MODE_CBC, DES_KEY_SIZE, false);
  4031. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_3DES,
  4032. QCE_MODE_CBC, DES3_EDE_KEY_SIZE, false);
  4033. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4034. QCE_MODE_CBC, AES128_KEY_SIZE, false);
  4035. _setup_aead_cmdlistptrs(pdev, cri_index, pvaddr, CIPHER_ALG_AES,
  4036. QCE_MODE_CBC, AES256_KEY_SIZE, false);
  4037. _setup_cipher_null_cmdlistptrs(pdev, cri_index, pvaddr);
  4038. _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, true);
  4039. _setup_aead_ccm_cmdlistptrs(pdev, cri_index, pvaddr, false);
  4040. _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
  4041. _setup_f8_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
  4042. _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_KASUMI);
  4043. _setup_f9_cmdlistptrs(pdev, cri_index, pvaddr, QCE_OTA_ALGO_SNOW3G);
  4044. _setup_unlock_pipe_cmdlistptrs(pdev, cri_index, pvaddr);
  4045. return 0;
  4046. }
  4047. static int qce_setup_ce_sps_data(struct qce_device *pce_dev)
  4048. {
  4049. unsigned char *vaddr;
  4050. int i;
  4051. unsigned char *iovec_vaddr;
  4052. int iovec_memsize;
  4053. vaddr = pce_dev->coh_vmem;
  4054. vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
  4055. pce_dev->ce_bam_info.ce_burst_size);
  4056. iovec_vaddr = pce_dev->iovec_vmem;
  4057. iovec_memsize = pce_dev->iovec_memsize;
  4058. for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++) {
  4059. /* Allow for 256 descriptor (cmd and data) entries per pipe */
  4060. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec =
  4061. (struct sps_iovec *)iovec_vaddr;
  4062. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec_phys =
  4063. virt_to_phys(
  4064. pce_dev->ce_request_info[i].ce_sps.in_transfer.iovec);
  4065. iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE;
  4066. iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE;
  4067. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec =
  4068. (struct sps_iovec *)iovec_vaddr;
  4069. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec_phys =
  4070. virt_to_phys(
  4071. pce_dev->ce_request_info[i].ce_sps.out_transfer.iovec);
  4072. iovec_vaddr += TOTAL_IOVEC_SPACE_PER_PIPE;
  4073. iovec_memsize -= TOTAL_IOVEC_SPACE_PER_PIPE;
  4074. if (pce_dev->support_cmd_dscr)
  4075. qce_setup_cmdlistptrs(pce_dev, i, &vaddr);
  4076. vaddr = (unsigned char *)ALIGN(((uintptr_t)vaddr),
  4077. pce_dev->ce_bam_info.ce_burst_size);
  4078. pce_dev->ce_request_info[i].ce_sps.result_dump =
  4079. (uintptr_t)vaddr;
  4080. pce_dev->ce_request_info[i].ce_sps.result_dump_phy =
  4081. GET_PHYS_ADDR((uintptr_t)vaddr);
  4082. pce_dev->ce_request_info[i].ce_sps.result =
  4083. (struct ce_result_dump_format *)vaddr;
  4084. vaddr += CRYPTO_RESULT_DUMP_SIZE;
  4085. pce_dev->ce_request_info[i].ce_sps.result_dump_null =
  4086. (uintptr_t)vaddr;
  4087. pce_dev->ce_request_info[i].ce_sps.result_dump_null_phy =
  4088. GET_PHYS_ADDR((uintptr_t)vaddr);
  4089. pce_dev->ce_request_info[i].ce_sps.result_null =
  4090. (struct ce_result_dump_format *)vaddr;
  4091. vaddr += CRYPTO_RESULT_DUMP_SIZE;
  4092. pce_dev->ce_request_info[i].ce_sps.ignore_buffer =
  4093. (uintptr_t)vaddr;
  4094. vaddr += pce_dev->ce_bam_info.ce_burst_size * 2;
  4095. }
  4096. if ((vaddr - pce_dev->coh_vmem) > pce_dev->memsize ||
  4097. iovec_memsize < 0)
  4098. panic("qce50: Not enough coherent memory. Allocate %x , need %lx\n",
  4099. pce_dev->memsize, (uintptr_t)vaddr -
  4100. (uintptr_t)pce_dev->coh_vmem);
  4101. return 0;
  4102. }
  4103. static int qce_init_ce_cfg_val(struct qce_device *pce_dev)
  4104. {
  4105. uint32_t pipe_pair = pce_dev->ce_bam_info.pipe_pair_index[0];
  4106. pce_dev->reg.crypto_cfg_be = qce_get_config_be(pce_dev, pipe_pair);
  4107. pce_dev->reg.crypto_cfg_le =
  4108. (pce_dev->reg.crypto_cfg_be | CRYPTO_LITTLE_ENDIAN_MASK);
  4109. /* Initialize encr_cfg register for AES alg */
  4110. pce_dev->reg.encr_cfg_aes_cbc_128 =
  4111. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4112. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4113. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4114. pce_dev->reg.encr_cfg_aes_cbc_256 =
  4115. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4116. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4117. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4118. pce_dev->reg.encr_cfg_aes_ctr_128 =
  4119. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4120. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4121. (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
  4122. pce_dev->reg.encr_cfg_aes_ctr_256 =
  4123. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4124. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4125. (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
  4126. pce_dev->reg.encr_cfg_aes_xts_128 =
  4127. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4128. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4129. (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
  4130. pce_dev->reg.encr_cfg_aes_xts_256 =
  4131. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4132. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4133. (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
  4134. pce_dev->reg.encr_cfg_aes_ecb_128 =
  4135. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4136. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4137. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4138. pce_dev->reg.encr_cfg_aes_ecb_256 =
  4139. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4140. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4141. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4142. pce_dev->reg.encr_cfg_aes_ccm_128 =
  4143. (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
  4144. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4145. (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE)|
  4146. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  4147. pce_dev->reg.encr_cfg_aes_ccm_256 =
  4148. (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
  4149. (CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
  4150. (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE) |
  4151. (CRYPTO_LAST_CCM_XFR << CRYPTO_LAST_CCM);
  4152. /* Initialize encr_cfg register for DES alg */
  4153. pce_dev->reg.encr_cfg_des_ecb =
  4154. (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
  4155. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4156. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4157. pce_dev->reg.encr_cfg_des_cbc =
  4158. (CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) |
  4159. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4160. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4161. pce_dev->reg.encr_cfg_3des_ecb =
  4162. (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
  4163. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4164. (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
  4165. pce_dev->reg.encr_cfg_3des_cbc =
  4166. (CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) |
  4167. (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG) |
  4168. (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
  4169. /* Initialize encr_cfg register for kasumi/snow3g alg */
  4170. pce_dev->reg.encr_cfg_kasumi =
  4171. (CRYPTO_ENCR_ALG_KASUMI << CRYPTO_ENCR_ALG);
  4172. pce_dev->reg.encr_cfg_snow3g =
  4173. (CRYPTO_ENCR_ALG_SNOW_3G << CRYPTO_ENCR_ALG);
  4174. /* Initialize auth_cfg register for CMAC alg */
  4175. pce_dev->reg.auth_cfg_cmac_128 =
  4176. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4177. (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
  4178. (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
  4179. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4180. (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE);
  4181. pce_dev->reg.auth_cfg_cmac_256 =
  4182. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4183. (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
  4184. (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << CRYPTO_AUTH_SIZE) |
  4185. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4186. (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE);
  4187. /* Initialize auth_cfg register for HMAC alg */
  4188. pce_dev->reg.auth_cfg_hmac_sha1 =
  4189. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4190. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4191. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4192. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4193. pce_dev->reg.auth_cfg_hmac_sha256 =
  4194. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4195. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4196. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4197. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4198. /* Initialize auth_cfg register for SHA1/256 alg */
  4199. pce_dev->reg.auth_cfg_sha1 =
  4200. (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
  4201. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4202. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4203. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4204. pce_dev->reg.auth_cfg_sha256 =
  4205. (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
  4206. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4207. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4208. (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
  4209. /* Initialize auth_cfg register for AEAD alg */
  4210. pce_dev->reg.auth_cfg_aead_sha1_hmac =
  4211. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4212. (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
  4213. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4214. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
  4215. pce_dev->reg.auth_cfg_aead_sha256_hmac =
  4216. (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
  4217. (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
  4218. (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
  4219. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
  4220. pce_dev->reg.auth_cfg_aes_ccm_128 =
  4221. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4222. (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
  4223. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4224. (CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE) |
  4225. ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
  4226. pce_dev->reg.auth_cfg_aes_ccm_128 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  4227. pce_dev->reg.auth_cfg_aes_ccm_256 =
  4228. (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
  4229. (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
  4230. (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
  4231. (CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) |
  4232. ((MAX_NONCE/sizeof(uint32_t)) << CRYPTO_AUTH_NONCE_NUM_WORDS);
  4233. pce_dev->reg.auth_cfg_aes_ccm_256 &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
  4234. /* Initialize auth_cfg register for kasumi/snow3g */
  4235. pce_dev->reg.auth_cfg_kasumi =
  4236. (CRYPTO_AUTH_ALG_KASUMI << CRYPTO_AUTH_ALG) |
  4237. BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
  4238. pce_dev->reg.auth_cfg_snow3g =
  4239. (CRYPTO_AUTH_ALG_SNOW3G << CRYPTO_AUTH_ALG) |
  4240. BIT(CRYPTO_FIRST) | BIT(CRYPTO_LAST);
  4241. /* Initialize IV counter mask values */
  4242. pce_dev->reg.encr_cntr_mask_3 = 0xFFFFFFFF;
  4243. pce_dev->reg.encr_cntr_mask_2 = 0xFFFFFFFF;
  4244. pce_dev->reg.encr_cntr_mask_1 = 0xFFFFFFFF;
  4245. pce_dev->reg.encr_cntr_mask_0 = 0xFFFFFFFF;
  4246. return 0;
  4247. }
  4248. static void _qce_ccm_get_around_input(struct qce_device *pce_dev,
  4249. struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
  4250. {
  4251. struct qce_cmdlist_info *cmdlistinfo;
  4252. struct ce_sps_data *pce_sps_data;
  4253. pce_sps_data = &preq_info->ce_sps;
  4254. if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
  4255. !(pce_dev->no_ccm_mac_status_get_around)) {
  4256. cmdlistinfo = &pce_sps_data->cmdlistptr.cipher_null;
  4257. _qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
  4258. &pce_sps_data->in_transfer);
  4259. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4260. pce_dev->ce_bam_info.ce_burst_size,
  4261. &pce_sps_data->in_transfer);
  4262. _qce_set_flag(&pce_sps_data->in_transfer,
  4263. SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD);
  4264. }
  4265. }
  4266. static void _qce_ccm_get_around_output(struct qce_device *pce_dev,
  4267. struct ce_request_info *preq_info, enum qce_cipher_dir_enum dir)
  4268. {
  4269. struct ce_sps_data *pce_sps_data;
  4270. pce_sps_data = &preq_info->ce_sps;
  4271. if ((dir == QCE_DECRYPT) && pce_dev->no_get_around &&
  4272. !(pce_dev->no_ccm_mac_status_get_around)) {
  4273. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4274. pce_dev->ce_bam_info.ce_burst_size,
  4275. &pce_sps_data->out_transfer);
  4276. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump_null),
  4277. CRYPTO_RESULT_DUMP_SIZE, &pce_sps_data->out_transfer);
  4278. }
  4279. }
  4280. /* QCE_DUMMY_REQ */
  4281. static void qce_dummy_complete(void *cookie, unsigned char *digest,
  4282. unsigned char *authdata, int ret)
  4283. {
  4284. if (!cookie)
  4285. pr_err("invalid cookie\n");
  4286. }
  4287. static int qce_dummy_req(struct qce_device *pce_dev)
  4288. {
  4289. int ret = 0;
  4290. if (atomic_xchg(
  4291. &pce_dev->ce_request_info[DUMMY_REQ_INDEX].in_use, true))
  4292. return -EBUSY;
  4293. ret = qce_process_sha_req(pce_dev, NULL);
  4294. pce_dev->qce_stats.no_of_dummy_reqs++;
  4295. return ret;
  4296. }
  4297. static int select_mode(struct qce_device *pce_dev,
  4298. struct ce_request_info *preq_info)
  4299. {
  4300. struct ce_sps_data *pce_sps_data = &preq_info->ce_sps;
  4301. unsigned int no_of_queued_req;
  4302. unsigned int cadence;
  4303. if (!pce_dev->no_get_around) {
  4304. _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
  4305. return 0;
  4306. }
  4307. /*
  4308. * claim ownership of device
  4309. */
  4310. again:
  4311. if (cmpxchg(&pce_dev->owner, QCE_OWNER_NONE, QCE_OWNER_CLIENT)
  4312. != QCE_OWNER_NONE) {
  4313. ndelay(40);
  4314. goto again;
  4315. }
  4316. no_of_queued_req = atomic_inc_return(&pce_dev->no_of_queued_req);
  4317. if (pce_dev->mode == IN_INTERRUPT_MODE) {
  4318. if (no_of_queued_req >= MAX_BUNCH_MODE_REQ) {
  4319. pce_dev->mode = IN_BUNCH_MODE;
  4320. pr_debug("pcedev %d mode switch to BUNCH\n",
  4321. pce_dev->dev_no);
  4322. _qce_set_flag(&pce_sps_data->out_transfer,
  4323. SPS_IOVEC_FLAG_INT);
  4324. pce_dev->intr_cadence = 0;
  4325. atomic_set(&pce_dev->bunch_cmd_seq, 1);
  4326. atomic_set(&pce_dev->last_intr_seq, 1);
  4327. mod_timer(&(pce_dev->timer),
  4328. (jiffies + DELAY_IN_JIFFIES));
  4329. } else {
  4330. _qce_set_flag(&pce_sps_data->out_transfer,
  4331. SPS_IOVEC_FLAG_INT);
  4332. }
  4333. } else {
  4334. pce_dev->intr_cadence++;
  4335. cadence = (preq_info->req_len >> 7) + 1;
  4336. if (cadence > SET_INTR_AT_REQ)
  4337. cadence = SET_INTR_AT_REQ;
  4338. if (pce_dev->intr_cadence < cadence || ((pce_dev->intr_cadence
  4339. == cadence) && pce_dev->cadence_flag))
  4340. atomic_inc(&pce_dev->bunch_cmd_seq);
  4341. else {
  4342. _qce_set_flag(&pce_sps_data->out_transfer,
  4343. SPS_IOVEC_FLAG_INT);
  4344. pce_dev->intr_cadence = 0;
  4345. atomic_set(&pce_dev->bunch_cmd_seq, 0);
  4346. atomic_set(&pce_dev->last_intr_seq, 0);
  4347. pce_dev->cadence_flag = !pce_dev->cadence_flag;
  4348. }
  4349. }
  4350. return 0;
  4351. }
  4352. static int _qce_aead_ccm_req(void *handle, struct qce_req *q_req)
  4353. {
  4354. int rc = 0;
  4355. struct qce_device *pce_dev = (struct qce_device *) handle;
  4356. struct aead_request *areq = (struct aead_request *) q_req->areq;
  4357. uint32_t authsize = q_req->authsize;
  4358. uint32_t totallen_in, out_len;
  4359. uint32_t hw_pad_out = 0;
  4360. int ce_burst_size;
  4361. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4362. int req_info = -1;
  4363. struct ce_request_info *preq_info;
  4364. struct ce_sps_data *pce_sps_data;
  4365. req_info = qce_alloc_req_info(pce_dev);
  4366. if (req_info < 0)
  4367. return -EBUSY;
  4368. q_req->current_req_info = req_info;
  4369. preq_info = &pce_dev->ce_request_info[req_info];
  4370. pce_sps_data = &preq_info->ce_sps;
  4371. ce_burst_size = pce_dev->ce_bam_info.ce_burst_size;
  4372. totallen_in = areq->cryptlen + q_req->assoclen;
  4373. if (q_req->dir == QCE_ENCRYPT) {
  4374. q_req->cryptlen = areq->cryptlen;
  4375. out_len = areq->cryptlen + authsize;
  4376. hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize;
  4377. } else {
  4378. q_req->cryptlen = areq->cryptlen - authsize;
  4379. out_len = q_req->cryptlen;
  4380. hw_pad_out = authsize;
  4381. }
  4382. /*
  4383. * For crypto 5.0 that has burst size alignment requirement
  4384. * for data descritpor,
  4385. * the agent above(qcrypto) prepares the src scatter list with
  4386. * memory starting with associated data, followed by
  4387. * data stream to be ciphered.
  4388. * The destination scatter list is pointing to the same
  4389. * data area as source.
  4390. */
  4391. if (pce_dev->ce_bam_info.minor_version == 0)
  4392. preq_info->src_nents = count_sg(areq->src, totallen_in);
  4393. else
  4394. preq_info->src_nents = count_sg(areq->src, areq->cryptlen +
  4395. areq->assoclen);
  4396. if (q_req->assoclen) {
  4397. preq_info->assoc_nents = count_sg(q_req->asg, q_req->assoclen);
  4398. /* formatted associated data input */
  4399. qce_dma_map_sg(pce_dev->pdev, q_req->asg,
  4400. preq_info->assoc_nents, DMA_TO_DEVICE);
  4401. preq_info->asg = q_req->asg;
  4402. } else {
  4403. preq_info->assoc_nents = 0;
  4404. preq_info->asg = NULL;
  4405. }
  4406. /* cipher input */
  4407. qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4408. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4409. DMA_TO_DEVICE);
  4410. /* cipher + mac output for encryption */
  4411. if (areq->src != areq->dst) {
  4412. /*
  4413. * The destination scatter list is pointing to the same
  4414. * data area as src.
  4415. * Note, the associated data will be pass-through
  4416. * at the beginning of destination area.
  4417. */
  4418. preq_info->dst_nents = count_sg(areq->dst,
  4419. out_len + areq->assoclen);
  4420. qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4421. DMA_FROM_DEVICE);
  4422. } else {
  4423. preq_info->dst_nents = preq_info->src_nents;
  4424. }
  4425. if (pce_dev->support_cmd_dscr) {
  4426. cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev, req_info,
  4427. q_req);
  4428. if (cmdlistinfo == NULL) {
  4429. pr_err("Unsupported cipher algorithm %d, mode %d\n",
  4430. q_req->alg, q_req->mode);
  4431. qce_free_req_info(pce_dev, req_info, false);
  4432. return -EINVAL;
  4433. }
  4434. /* set up crypto device */
  4435. rc = _ce_setup_cipher(pce_dev, q_req, totallen_in,
  4436. q_req->assoclen, cmdlistinfo);
  4437. } else {
  4438. /* set up crypto device */
  4439. rc = _ce_setup_cipher_direct(pce_dev, q_req, totallen_in,
  4440. q_req->assoclen);
  4441. }
  4442. if (rc < 0)
  4443. goto bad;
  4444. preq_info->mode = q_req->mode;
  4445. /* setup for callback, and issue command to bam */
  4446. preq_info->areq = q_req->areq;
  4447. preq_info->qce_cb = q_req->qce_cb;
  4448. preq_info->dir = q_req->dir;
  4449. /* setup xfer type for producer callback handling */
  4450. preq_info->xfer_type = QCE_XFER_AEAD;
  4451. preq_info->req_len = totallen_in;
  4452. _qce_sps_iovec_count_init(pce_dev, req_info);
  4453. if (pce_dev->support_cmd_dscr && cmdlistinfo)
  4454. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
  4455. &pce_sps_data->in_transfer);
  4456. if (pce_dev->ce_bam_info.minor_version == 0) {
  4457. goto bad;
  4458. } else {
  4459. if (q_req->assoclen && (_qce_sps_add_sg_data(
  4460. pce_dev, q_req->asg, q_req->assoclen,
  4461. &pce_sps_data->in_transfer)))
  4462. goto bad;
  4463. if (_qce_sps_add_sg_data_off(pce_dev, areq->src, areq->cryptlen,
  4464. areq->assoclen,
  4465. &pce_sps_data->in_transfer))
  4466. goto bad;
  4467. _qce_set_flag(&pce_sps_data->in_transfer,
  4468. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4469. _qce_ccm_get_around_input(pce_dev, preq_info, q_req->dir);
  4470. if (pce_dev->no_get_around)
  4471. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4472. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4473. &pce_sps_data->in_transfer);
  4474. /* Pass through to ignore associated data*/
  4475. if (_qce_sps_add_data(
  4476. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4477. q_req->assoclen,
  4478. &pce_sps_data->out_transfer))
  4479. goto bad;
  4480. if (_qce_sps_add_sg_data_off(pce_dev, areq->dst, out_len,
  4481. areq->assoclen,
  4482. &pce_sps_data->out_transfer))
  4483. goto bad;
  4484. /* Pass through to ignore hw_pad (padding of the MAC data) */
  4485. if (_qce_sps_add_data(
  4486. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4487. hw_pad_out, &pce_sps_data->out_transfer))
  4488. goto bad;
  4489. if (pce_dev->no_get_around ||
  4490. totallen_in <= SPS_MAX_PKT_SIZE) {
  4491. if (_qce_sps_add_data(
  4492. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4493. CRYPTO_RESULT_DUMP_SIZE,
  4494. &pce_sps_data->out_transfer))
  4495. goto bad;
  4496. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4497. } else {
  4498. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4499. }
  4500. _qce_ccm_get_around_output(pce_dev, preq_info, q_req->dir);
  4501. select_mode(pce_dev, preq_info);
  4502. rc = _qce_sps_transfer(pce_dev, req_info);
  4503. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4504. }
  4505. if (rc)
  4506. goto bad;
  4507. return 0;
  4508. bad:
  4509. if (preq_info->assoc_nents) {
  4510. qce_dma_unmap_sg(pce_dev->pdev, q_req->asg,
  4511. preq_info->assoc_nents, DMA_TO_DEVICE);
  4512. }
  4513. if (preq_info->src_nents) {
  4514. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4515. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4516. DMA_TO_DEVICE);
  4517. }
  4518. if (areq->src != areq->dst) {
  4519. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4520. DMA_FROM_DEVICE);
  4521. }
  4522. qce_free_req_info(pce_dev, req_info, false);
  4523. return rc;
  4524. }
  4525. static int _qce_suspend(void *handle)
  4526. {
  4527. struct qce_device *pce_dev = (struct qce_device *)handle;
  4528. struct sps_pipe *sps_pipe_info;
  4529. int i = 0;
  4530. if (handle == NULL)
  4531. return -ENODEV;
  4532. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  4533. if (i == 0 && !(pce_dev->kernel_pipes_support))
  4534. continue;
  4535. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  4536. break;
  4537. sps_pipe_info = pce_dev->ce_bam_info.consumer[i].pipe;
  4538. sps_disconnect(sps_pipe_info);
  4539. sps_pipe_info = pce_dev->ce_bam_info.producer[i].pipe;
  4540. sps_disconnect(sps_pipe_info);
  4541. }
  4542. return 0;
  4543. }
  4544. static int _qce_resume(void *handle)
  4545. {
  4546. struct qce_device *pce_dev = (struct qce_device *)handle;
  4547. struct sps_pipe *sps_pipe_info;
  4548. struct sps_connect *sps_connect_info;
  4549. int rc, i;
  4550. if (handle == NULL)
  4551. return -ENODEV;
  4552. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  4553. if (i == 0 && !(pce_dev->kernel_pipes_support))
  4554. continue;
  4555. else if ((i > 0) && !(pce_dev->offload_pipes_support))
  4556. break;
  4557. sps_pipe_info = pce_dev->ce_bam_info.consumer[i].pipe;
  4558. sps_connect_info = &pce_dev->ce_bam_info.consumer[i].connect;
  4559. memset(sps_connect_info->desc.base, 0x00,
  4560. sps_connect_info->desc.size);
  4561. rc = sps_connect(sps_pipe_info, sps_connect_info);
  4562. if (rc) {
  4563. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  4564. (uintptr_t)sps_pipe_info, rc);
  4565. return rc;
  4566. }
  4567. sps_pipe_info = pce_dev->ce_bam_info.producer[i].pipe;
  4568. sps_connect_info = &pce_dev->ce_bam_info.producer[i].connect;
  4569. memset(sps_connect_info->desc.base, 0x00,
  4570. sps_connect_info->desc.size);
  4571. rc = sps_connect(sps_pipe_info, sps_connect_info);
  4572. if (rc)
  4573. pr_err("sps_connect() fail pipe=0x%lx, rc = %d\n",
  4574. (uintptr_t)sps_pipe_info, rc);
  4575. rc = sps_register_event(sps_pipe_info,
  4576. &pce_dev->ce_bam_info.producer[i].event);
  4577. if (rc)
  4578. pr_err("Producer cb registration failed rc = %d\n",
  4579. rc);
  4580. }
  4581. return rc;
  4582. }
  4583. struct qce_pm_table qce_pm_table = {_qce_suspend, _qce_resume};
  4584. EXPORT_SYMBOL(qce_pm_table);
  4585. int qce_aead_req(void *handle, struct qce_req *q_req)
  4586. {
  4587. struct qce_device *pce_dev = (struct qce_device *)handle;
  4588. struct aead_request *areq;
  4589. uint32_t authsize;
  4590. struct crypto_aead *aead;
  4591. uint32_t ivsize;
  4592. uint32_t totallen;
  4593. int rc = 0;
  4594. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4595. int req_info = -1;
  4596. struct ce_sps_data *pce_sps_data;
  4597. struct ce_request_info *preq_info;
  4598. if (q_req->mode == QCE_MODE_CCM)
  4599. return _qce_aead_ccm_req(handle, q_req);
  4600. req_info = qce_alloc_req_info(pce_dev);
  4601. if (req_info < 0)
  4602. return -EBUSY;
  4603. q_req->current_req_info = req_info;
  4604. preq_info = &pce_dev->ce_request_info[req_info];
  4605. pce_sps_data = &preq_info->ce_sps;
  4606. areq = (struct aead_request *) q_req->areq;
  4607. aead = crypto_aead_reqtfm(areq);
  4608. ivsize = crypto_aead_ivsize(aead);
  4609. q_req->ivsize = ivsize;
  4610. authsize = q_req->authsize;
  4611. if (q_req->dir == QCE_ENCRYPT)
  4612. q_req->cryptlen = areq->cryptlen;
  4613. else
  4614. q_req->cryptlen = areq->cryptlen - authsize;
  4615. if (q_req->cryptlen > UINT_MAX - areq->assoclen) {
  4616. pr_err("Integer overflow on total aead req length.\n");
  4617. return -EINVAL;
  4618. }
  4619. totallen = q_req->cryptlen + areq->assoclen;
  4620. if (pce_dev->support_cmd_dscr) {
  4621. cmdlistinfo = _ce_get_aead_cmdlistinfo(pce_dev,
  4622. req_info, q_req);
  4623. if (cmdlistinfo == NULL) {
  4624. pr_err("Unsupported aead ciphering algorithm %d, mode %d, ciphering key length %d, auth digest size %d\n",
  4625. q_req->alg, q_req->mode, q_req->encklen,
  4626. q_req->authsize);
  4627. qce_free_req_info(pce_dev, req_info, false);
  4628. return -EINVAL;
  4629. }
  4630. /* set up crypto device */
  4631. rc = _ce_setup_aead(pce_dev, q_req, totallen,
  4632. areq->assoclen, cmdlistinfo);
  4633. if (rc < 0) {
  4634. qce_free_req_info(pce_dev, req_info, false);
  4635. return -EINVAL;
  4636. }
  4637. }
  4638. /*
  4639. * For crypto 5.0 that has burst size alignment requirement
  4640. * for data descritpor,
  4641. * the agent above(qcrypto) prepares the src scatter list with
  4642. * memory starting with associated data, followed by
  4643. * iv, and data stream to be ciphered.
  4644. */
  4645. preq_info->src_nents = count_sg(areq->src, totallen);
  4646. /* cipher input */
  4647. qce_dma_map_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4648. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4649. DMA_TO_DEVICE);
  4650. /* cipher output for encryption */
  4651. if (areq->src != areq->dst) {
  4652. preq_info->dst_nents = count_sg(areq->dst, totallen);
  4653. qce_dma_map_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4654. DMA_FROM_DEVICE);
  4655. }
  4656. /* setup for callback, and issue command to bam */
  4657. preq_info->areq = q_req->areq;
  4658. preq_info->qce_cb = q_req->qce_cb;
  4659. preq_info->dir = q_req->dir;
  4660. preq_info->asg = NULL;
  4661. /* setup xfer type for producer callback handling */
  4662. preq_info->xfer_type = QCE_XFER_AEAD;
  4663. preq_info->req_len = totallen;
  4664. _qce_sps_iovec_count_init(pce_dev, req_info);
  4665. if (pce_dev->support_cmd_dscr) {
  4666. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
  4667. &pce_sps_data->in_transfer);
  4668. } else {
  4669. rc = _ce_setup_aead_direct(pce_dev, q_req, totallen,
  4670. areq->assoclen);
  4671. if (rc)
  4672. goto bad;
  4673. }
  4674. preq_info->mode = q_req->mode;
  4675. if (pce_dev->ce_bam_info.minor_version == 0) {
  4676. if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen,
  4677. &pce_sps_data->in_transfer))
  4678. goto bad;
  4679. _qce_set_flag(&pce_sps_data->in_transfer,
  4680. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4681. if (_qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
  4682. &pce_sps_data->out_transfer))
  4683. goto bad;
  4684. if (totallen > SPS_MAX_PKT_SIZE) {
  4685. _qce_set_flag(&pce_sps_data->out_transfer,
  4686. SPS_IOVEC_FLAG_INT);
  4687. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4688. } else {
  4689. if (_qce_sps_add_data(GET_PHYS_ADDR(
  4690. pce_sps_data->result_dump),
  4691. CRYPTO_RESULT_DUMP_SIZE,
  4692. &pce_sps_data->out_transfer))
  4693. goto bad;
  4694. _qce_set_flag(&pce_sps_data->out_transfer,
  4695. SPS_IOVEC_FLAG_INT);
  4696. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4697. }
  4698. rc = _qce_sps_transfer(pce_dev, req_info);
  4699. } else {
  4700. if (_qce_sps_add_sg_data(pce_dev, areq->src, totallen,
  4701. &pce_sps_data->in_transfer))
  4702. goto bad;
  4703. _qce_set_flag(&pce_sps_data->in_transfer,
  4704. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4705. if (pce_dev->no_get_around)
  4706. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4707. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4708. &pce_sps_data->in_transfer);
  4709. if (_qce_sps_add_sg_data(pce_dev, areq->dst, totallen,
  4710. &pce_sps_data->out_transfer))
  4711. goto bad;
  4712. if (pce_dev->no_get_around || totallen <= SPS_MAX_PKT_SIZE) {
  4713. if (_qce_sps_add_data(
  4714. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4715. CRYPTO_RESULT_DUMP_SIZE,
  4716. &pce_sps_data->out_transfer))
  4717. goto bad;
  4718. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4719. } else {
  4720. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4721. }
  4722. select_mode(pce_dev, preq_info);
  4723. rc = _qce_sps_transfer(pce_dev, req_info);
  4724. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4725. }
  4726. if (rc)
  4727. goto bad;
  4728. return 0;
  4729. bad:
  4730. if (preq_info->src_nents)
  4731. qce_dma_unmap_sg(pce_dev->pdev, areq->src, preq_info->src_nents,
  4732. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4733. DMA_TO_DEVICE);
  4734. if (areq->src != areq->dst)
  4735. qce_dma_unmap_sg(pce_dev->pdev, areq->dst, preq_info->dst_nents,
  4736. DMA_FROM_DEVICE);
  4737. qce_free_req_info(pce_dev, req_info, false);
  4738. return rc;
  4739. }
  4740. EXPORT_SYMBOL(qce_aead_req);
  4741. int qce_ablk_cipher_req(void *handle, struct qce_req *c_req)
  4742. {
  4743. int rc = 0;
  4744. struct qce_device *pce_dev = (struct qce_device *) handle;
  4745. struct skcipher_request *areq = (struct skcipher_request *)
  4746. c_req->areq;
  4747. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4748. int req_info = -1;
  4749. struct ce_sps_data *pce_sps_data;
  4750. struct ce_request_info *preq_info;
  4751. req_info = qce_alloc_req_info(pce_dev);
  4752. if (req_info < 0)
  4753. return -EBUSY;
  4754. c_req->current_req_info = req_info;
  4755. preq_info = &pce_dev->ce_request_info[req_info];
  4756. pce_sps_data = &preq_info->ce_sps;
  4757. preq_info->src_nents = 0;
  4758. preq_info->dst_nents = 0;
  4759. /* cipher input */
  4760. preq_info->src_nents = count_sg(areq->src, areq->cryptlen);
  4761. if (!is_offload_op(c_req->offload_op))
  4762. qce_dma_map_sg(pce_dev->pdev, areq->src,
  4763. preq_info->src_nents,
  4764. (areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
  4765. DMA_TO_DEVICE);
  4766. /* cipher output */
  4767. if (areq->src != areq->dst) {
  4768. preq_info->dst_nents = count_sg(areq->dst, areq->cryptlen);
  4769. if (!is_offload_op(c_req->offload_op))
  4770. qce_dma_map_sg(pce_dev->pdev, areq->dst,
  4771. preq_info->dst_nents, DMA_FROM_DEVICE);
  4772. } else {
  4773. preq_info->dst_nents = preq_info->src_nents;
  4774. }
  4775. preq_info->dir = c_req->dir;
  4776. if ((pce_dev->ce_bam_info.minor_version == 0) &&
  4777. (preq_info->dir == QCE_DECRYPT) &&
  4778. (c_req->mode == QCE_MODE_CBC)) {
  4779. memcpy(preq_info->dec_iv, (unsigned char *)
  4780. sg_virt(areq->src) + areq->src->length - 16,
  4781. NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE);
  4782. }
  4783. /* set up crypto device */
  4784. if (pce_dev->support_cmd_dscr) {
  4785. cmdlistinfo = _ce_get_cipher_cmdlistinfo(pce_dev,
  4786. req_info, c_req);
  4787. if (cmdlistinfo == NULL) {
  4788. pr_err("Unsupported cipher algorithm %d, mode %d\n",
  4789. c_req->alg, c_req->mode);
  4790. qce_free_req_info(pce_dev, req_info, false);
  4791. return -EINVAL;
  4792. }
  4793. rc = _ce_setup_cipher(pce_dev, c_req, areq->cryptlen, 0,
  4794. cmdlistinfo);
  4795. } else {
  4796. rc = _ce_setup_cipher_direct(pce_dev, c_req, areq->cryptlen, 0);
  4797. }
  4798. if (rc < 0)
  4799. goto bad;
  4800. preq_info->mode = c_req->mode;
  4801. preq_info->offload_op = c_req->offload_op;
  4802. /* setup for client callback, and issue command to BAM */
  4803. preq_info->areq = areq;
  4804. preq_info->qce_cb = c_req->qce_cb;
  4805. /* setup xfer type for producer callback handling */
  4806. preq_info->xfer_type = QCE_XFER_CIPHERING;
  4807. preq_info->req_len = areq->cryptlen;
  4808. _qce_sps_iovec_count_init(pce_dev, req_info);
  4809. if (pce_dev->support_cmd_dscr && cmdlistinfo)
  4810. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
  4811. &pce_sps_data->in_transfer);
  4812. if (_qce_sps_add_data(areq->src->dma_address, areq->cryptlen,
  4813. &pce_sps_data->in_transfer))
  4814. goto bad;
  4815. _qce_set_flag(&pce_sps_data->in_transfer,
  4816. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4817. if (pce_dev->no_get_around)
  4818. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4819. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4820. &pce_sps_data->in_transfer);
  4821. if (_qce_sps_add_data(areq->dst->dma_address, areq->cryptlen,
  4822. &pce_sps_data->out_transfer))
  4823. goto bad;
  4824. if (pce_dev->no_get_around || areq->cryptlen <= SPS_MAX_PKT_SIZE) {
  4825. pce_sps_data->producer_state = QCE_PIPE_STATE_COMP;
  4826. if (!is_offload_op(c_req->offload_op))
  4827. if (_qce_sps_add_data(
  4828. GET_PHYS_ADDR(pce_sps_data->result_dump),
  4829. CRYPTO_RESULT_DUMP_SIZE,
  4830. &pce_sps_data->out_transfer))
  4831. goto bad;
  4832. } else {
  4833. pce_sps_data->producer_state = QCE_PIPE_STATE_IDLE;
  4834. }
  4835. select_mode(pce_dev, preq_info);
  4836. rc = _qce_sps_transfer(pce_dev, req_info);
  4837. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4838. if (rc)
  4839. goto bad;
  4840. return 0;
  4841. bad:
  4842. if (!is_offload_op(c_req->offload_op)) {
  4843. if (areq->src != areq->dst)
  4844. if (preq_info->dst_nents)
  4845. qce_dma_unmap_sg(pce_dev->pdev, areq->dst,
  4846. preq_info->dst_nents, DMA_FROM_DEVICE);
  4847. if (preq_info->src_nents)
  4848. qce_dma_unmap_sg(pce_dev->pdev, areq->src,
  4849. preq_info->src_nents,
  4850. (areq->src == areq->dst) ?
  4851. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  4852. }
  4853. qce_free_req_info(pce_dev, req_info, false);
  4854. return rc;
  4855. }
  4856. EXPORT_SYMBOL(qce_ablk_cipher_req);
  4857. int qce_process_sha_req(void *handle, struct qce_sha_req *sreq)
  4858. {
  4859. struct qce_device *pce_dev = (struct qce_device *) handle;
  4860. int rc;
  4861. struct ahash_request *areq;
  4862. struct qce_cmdlist_info *cmdlistinfo = NULL;
  4863. int req_info = -1;
  4864. struct ce_sps_data *pce_sps_data;
  4865. struct ce_request_info *preq_info;
  4866. bool is_dummy = false;
  4867. if (!sreq) {
  4868. sreq = &(pce_dev->dummyreq.sreq);
  4869. req_info = DUMMY_REQ_INDEX;
  4870. is_dummy = true;
  4871. } else {
  4872. req_info = qce_alloc_req_info(pce_dev);
  4873. if (req_info < 0)
  4874. return -EBUSY;
  4875. }
  4876. sreq->current_req_info = req_info;
  4877. areq = (struct ahash_request *)sreq->areq;
  4878. preq_info = &pce_dev->ce_request_info[req_info];
  4879. pce_sps_data = &preq_info->ce_sps;
  4880. preq_info->src_nents = count_sg(sreq->src, sreq->size);
  4881. qce_dma_map_sg(pce_dev->pdev, sreq->src, preq_info->src_nents,
  4882. DMA_TO_DEVICE);
  4883. if (pce_dev->support_cmd_dscr) {
  4884. cmdlistinfo = _ce_get_hash_cmdlistinfo(pce_dev, req_info, sreq);
  4885. if (cmdlistinfo == NULL) {
  4886. pr_err("Unsupported hash algorithm %d\n", sreq->alg);
  4887. qce_free_req_info(pce_dev, req_info, false);
  4888. return -EINVAL;
  4889. }
  4890. rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo);
  4891. } else {
  4892. rc = _ce_setup_hash_direct(pce_dev, sreq);
  4893. }
  4894. if (rc < 0)
  4895. goto bad;
  4896. preq_info->areq = areq;
  4897. preq_info->qce_cb = sreq->qce_cb;
  4898. /* setup xfer type for producer callback handling */
  4899. preq_info->xfer_type = QCE_XFER_HASHING;
  4900. preq_info->req_len = sreq->size;
  4901. _qce_sps_iovec_count_init(pce_dev, req_info);
  4902. if (pce_dev->support_cmd_dscr && cmdlistinfo)
  4903. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
  4904. &pce_sps_data->in_transfer);
  4905. if (_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
  4906. &pce_sps_data->in_transfer))
  4907. goto bad;
  4908. /* always ensure there is input data. ZLT does not work for bam-ndp */
  4909. if (!areq->nbytes)
  4910. _qce_sps_add_data(
  4911. GET_PHYS_ADDR(pce_sps_data->ignore_buffer),
  4912. pce_dev->ce_bam_info.ce_burst_size,
  4913. &pce_sps_data->in_transfer);
  4914. _qce_set_flag(&pce_sps_data->in_transfer,
  4915. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  4916. if (pce_dev->no_get_around)
  4917. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  4918. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  4919. &pce_sps_data->in_transfer);
  4920. if (_qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  4921. CRYPTO_RESULT_DUMP_SIZE,
  4922. &pce_sps_data->out_transfer))
  4923. goto bad;
  4924. if (is_dummy) {
  4925. _qce_set_flag(&pce_sps_data->out_transfer, SPS_IOVEC_FLAG_INT);
  4926. rc = _qce_sps_transfer(pce_dev, req_info);
  4927. } else {
  4928. select_mode(pce_dev, preq_info);
  4929. rc = _qce_sps_transfer(pce_dev, req_info);
  4930. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  4931. }
  4932. if (rc)
  4933. goto bad;
  4934. return 0;
  4935. bad:
  4936. if (preq_info->src_nents) {
  4937. qce_dma_unmap_sg(pce_dev->pdev, sreq->src,
  4938. preq_info->src_nents, DMA_TO_DEVICE);
  4939. }
  4940. qce_free_req_info(pce_dev, req_info, false);
  4941. return rc;
  4942. }
  4943. EXPORT_SYMBOL(qce_process_sha_req);
  4944. int qce_f8_req(void *handle, struct qce_f8_req *req,
  4945. void *cookie, qce_comp_func_ptr_t qce_cb)
  4946. {
  4947. struct qce_device *pce_dev = (struct qce_device *) handle;
  4948. bool key_stream_mode;
  4949. dma_addr_t dst;
  4950. int rc;
  4951. struct qce_cmdlist_info *cmdlistinfo;
  4952. int req_info = -1;
  4953. struct ce_request_info *preq_info;
  4954. struct ce_sps_data *pce_sps_data;
  4955. req_info = qce_alloc_req_info(pce_dev);
  4956. if (req_info < 0)
  4957. return -EBUSY;
  4958. req->current_req_info = req_info;
  4959. preq_info = &pce_dev->ce_request_info[req_info];
  4960. pce_sps_data = &preq_info->ce_sps;
  4961. switch (req->algorithm) {
  4962. case QCE_OTA_ALGO_KASUMI:
  4963. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
  4964. break;
  4965. case QCE_OTA_ALGO_SNOW3G:
  4966. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
  4967. break;
  4968. default:
  4969. qce_free_req_info(pce_dev, req_info, false);
  4970. return -EINVAL;
  4971. }
  4972. key_stream_mode = (req->data_in == NULL);
  4973. /* don't support key stream mode */
  4974. if (key_stream_mode || (req->bearer >= QCE_OTA_MAX_BEARER)) {
  4975. qce_free_req_info(pce_dev, req_info, false);
  4976. return -EINVAL;
  4977. }
  4978. /* F8 cipher input */
  4979. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
  4980. req->data_in, req->data_len,
  4981. (req->data_in == req->data_out) ?
  4982. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  4983. /* F8 cipher output */
  4984. if (req->data_in != req->data_out) {
  4985. dst = dma_map_single(pce_dev->pdev, req->data_out,
  4986. req->data_len, DMA_FROM_DEVICE);
  4987. preq_info->phy_ota_dst = dst;
  4988. } else {
  4989. /* in place ciphering */
  4990. dst = preq_info->phy_ota_src;
  4991. preq_info->phy_ota_dst = 0;
  4992. }
  4993. preq_info->ota_size = req->data_len;
  4994. /* set up crypto device */
  4995. if (pce_dev->support_cmd_dscr)
  4996. rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0,
  4997. req->data_len, cmdlistinfo);
  4998. else
  4999. rc = _ce_f8_setup_direct(pce_dev, req, key_stream_mode, 1, 0,
  5000. req->data_len);
  5001. if (rc < 0)
  5002. goto bad;
  5003. /* setup for callback, and issue command to sps */
  5004. preq_info->areq = cookie;
  5005. preq_info->qce_cb = qce_cb;
  5006. /* setup xfer type for producer callback handling */
  5007. preq_info->xfer_type = QCE_XFER_F8;
  5008. preq_info->req_len = req->data_len;
  5009. _qce_sps_iovec_count_init(pce_dev, req_info);
  5010. if (pce_dev->support_cmd_dscr)
  5011. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
  5012. &pce_sps_data->in_transfer);
  5013. _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->data_len,
  5014. &pce_sps_data->in_transfer);
  5015. _qce_set_flag(&pce_sps_data->in_transfer,
  5016. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5017. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5018. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5019. &pce_sps_data->in_transfer);
  5020. _qce_sps_add_data((uint32_t)dst, req->data_len,
  5021. &pce_sps_data->out_transfer);
  5022. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5023. CRYPTO_RESULT_DUMP_SIZE,
  5024. &pce_sps_data->out_transfer);
  5025. select_mode(pce_dev, preq_info);
  5026. rc = _qce_sps_transfer(pce_dev, req_info);
  5027. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5028. if (rc)
  5029. goto bad;
  5030. return 0;
  5031. bad:
  5032. if (preq_info->phy_ota_dst != 0)
  5033. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst,
  5034. req->data_len, DMA_FROM_DEVICE);
  5035. if (preq_info->phy_ota_src != 0)
  5036. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  5037. req->data_len,
  5038. (req->data_in == req->data_out) ?
  5039. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5040. qce_free_req_info(pce_dev, req_info, false);
  5041. return rc;
  5042. }
  5043. EXPORT_SYMBOL(qce_f8_req);
  5044. int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq,
  5045. void *cookie, qce_comp_func_ptr_t qce_cb)
  5046. {
  5047. struct qce_device *pce_dev = (struct qce_device *) handle;
  5048. uint16_t num_pkt = mreq->num_pkt;
  5049. uint16_t cipher_start = mreq->cipher_start;
  5050. uint16_t cipher_size = mreq->cipher_size;
  5051. struct qce_f8_req *req = &mreq->qce_f8_req;
  5052. uint32_t total;
  5053. dma_addr_t dst = 0;
  5054. int rc = 0;
  5055. struct qce_cmdlist_info *cmdlistinfo;
  5056. int req_info = -1;
  5057. struct ce_request_info *preq_info;
  5058. struct ce_sps_data *pce_sps_data;
  5059. req_info = qce_alloc_req_info(pce_dev);
  5060. if (req_info < 0)
  5061. return -EBUSY;
  5062. req->current_req_info = req_info;
  5063. preq_info = &pce_dev->ce_request_info[req_info];
  5064. pce_sps_data = &preq_info->ce_sps;
  5065. switch (req->algorithm) {
  5066. case QCE_OTA_ALGO_KASUMI:
  5067. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_kasumi;
  5068. break;
  5069. case QCE_OTA_ALGO_SNOW3G:
  5070. cmdlistinfo = &pce_sps_data->cmdlistptr.f8_snow3g;
  5071. break;
  5072. default:
  5073. qce_free_req_info(pce_dev, req_info, false);
  5074. return -EINVAL;
  5075. }
  5076. total = num_pkt * req->data_len;
  5077. /* F8 cipher input */
  5078. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev,
  5079. req->data_in, total,
  5080. (req->data_in == req->data_out) ?
  5081. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5082. /* F8 cipher output */
  5083. if (req->data_in != req->data_out) {
  5084. dst = dma_map_single(pce_dev->pdev, req->data_out, total,
  5085. DMA_FROM_DEVICE);
  5086. preq_info->phy_ota_dst = dst;
  5087. } else {
  5088. /* in place ciphering */
  5089. dst = preq_info->phy_ota_src;
  5090. preq_info->phy_ota_dst = 0;
  5091. }
  5092. preq_info->ota_size = total;
  5093. /* set up crypto device */
  5094. if (pce_dev->support_cmd_dscr)
  5095. rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start,
  5096. cipher_size, cmdlistinfo);
  5097. else
  5098. rc = _ce_f8_setup_direct(pce_dev, req, false, num_pkt,
  5099. cipher_start, cipher_size);
  5100. if (rc)
  5101. goto bad;
  5102. /* setup for callback, and issue command to sps */
  5103. preq_info->areq = cookie;
  5104. preq_info->qce_cb = qce_cb;
  5105. /* setup xfer type for producer callback handling */
  5106. preq_info->xfer_type = QCE_XFER_F8;
  5107. preq_info->req_len = total;
  5108. _qce_sps_iovec_count_init(pce_dev, req_info);
  5109. if (pce_dev->support_cmd_dscr)
  5110. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
  5111. &pce_sps_data->in_transfer);
  5112. _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, total,
  5113. &pce_sps_data->in_transfer);
  5114. _qce_set_flag(&pce_sps_data->in_transfer,
  5115. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5116. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5117. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5118. &pce_sps_data->in_transfer);
  5119. _qce_sps_add_data((uint32_t)dst, total,
  5120. &pce_sps_data->out_transfer);
  5121. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5122. CRYPTO_RESULT_DUMP_SIZE,
  5123. &pce_sps_data->out_transfer);
  5124. select_mode(pce_dev, preq_info);
  5125. rc = _qce_sps_transfer(pce_dev, req_info);
  5126. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5127. if (rc == 0)
  5128. return 0;
  5129. bad:
  5130. if (preq_info->phy_ota_dst)
  5131. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_dst, total,
  5132. DMA_FROM_DEVICE);
  5133. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src, total,
  5134. (req->data_in == req->data_out) ?
  5135. DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
  5136. qce_free_req_info(pce_dev, req_info, false);
  5137. return rc;
  5138. }
  5139. EXPORT_SYMBOL(qce_f8_multi_pkt_req);
  5140. int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie,
  5141. qce_comp_func_ptr_t qce_cb)
  5142. {
  5143. struct qce_device *pce_dev = (struct qce_device *) handle;
  5144. int rc;
  5145. struct qce_cmdlist_info *cmdlistinfo;
  5146. int req_info = -1;
  5147. struct ce_sps_data *pce_sps_data;
  5148. struct ce_request_info *preq_info;
  5149. req_info = qce_alloc_req_info(pce_dev);
  5150. if (req_info < 0)
  5151. return -EBUSY;
  5152. req->current_req_info = req_info;
  5153. preq_info = &pce_dev->ce_request_info[req_info];
  5154. pce_sps_data = &preq_info->ce_sps;
  5155. switch (req->algorithm) {
  5156. case QCE_OTA_ALGO_KASUMI:
  5157. cmdlistinfo = &pce_sps_data->cmdlistptr.f9_kasumi;
  5158. break;
  5159. case QCE_OTA_ALGO_SNOW3G:
  5160. cmdlistinfo = &pce_sps_data->cmdlistptr.f9_snow3g;
  5161. break;
  5162. default:
  5163. qce_free_req_info(pce_dev, req_info, false);
  5164. return -EINVAL;
  5165. }
  5166. preq_info->phy_ota_src = dma_map_single(pce_dev->pdev, req->message,
  5167. req->msize, DMA_TO_DEVICE);
  5168. preq_info->ota_size = req->msize;
  5169. if (pce_dev->support_cmd_dscr)
  5170. rc = _ce_f9_setup(pce_dev, req, cmdlistinfo);
  5171. else
  5172. rc = _ce_f9_setup_direct(pce_dev, req);
  5173. if (rc < 0)
  5174. goto bad;
  5175. /* setup for callback, and issue command to sps */
  5176. preq_info->areq = cookie;
  5177. preq_info->qce_cb = qce_cb;
  5178. /* setup xfer type for producer callback handling */
  5179. preq_info->xfer_type = QCE_XFER_F9;
  5180. preq_info->req_len = req->msize;
  5181. _qce_sps_iovec_count_init(pce_dev, req_info);
  5182. if (pce_dev->support_cmd_dscr)
  5183. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_LOCK, cmdlistinfo,
  5184. &pce_sps_data->in_transfer);
  5185. _qce_sps_add_data((uint32_t)preq_info->phy_ota_src, req->msize,
  5186. &pce_sps_data->in_transfer);
  5187. _qce_set_flag(&pce_sps_data->in_transfer,
  5188. SPS_IOVEC_FLAG_EOT|SPS_IOVEC_FLAG_NWD);
  5189. _qce_sps_add_cmd(pce_dev, SPS_IOVEC_FLAG_UNLOCK,
  5190. &pce_sps_data->cmdlistptr.unlock_all_pipes,
  5191. &pce_sps_data->in_transfer);
  5192. _qce_sps_add_data(GET_PHYS_ADDR(pce_sps_data->result_dump),
  5193. CRYPTO_RESULT_DUMP_SIZE,
  5194. &pce_sps_data->out_transfer);
  5195. select_mode(pce_dev, preq_info);
  5196. rc = _qce_sps_transfer(pce_dev, req_info);
  5197. cmpxchg(&pce_dev->owner, QCE_OWNER_CLIENT, QCE_OWNER_NONE);
  5198. if (rc)
  5199. goto bad;
  5200. return 0;
  5201. bad:
  5202. dma_unmap_single(pce_dev->pdev, preq_info->phy_ota_src,
  5203. req->msize, DMA_TO_DEVICE);
  5204. qce_free_req_info(pce_dev, req_info, false);
  5205. return rc;
  5206. }
  5207. EXPORT_SYMBOL(qce_f9_req);
  5208. static int __qce_get_device_tree_data(struct platform_device *pdev,
  5209. struct qce_device *pce_dev)
  5210. {
  5211. struct resource *resource;
  5212. int rc = 0, i = 0;
  5213. pce_dev->is_shared = of_property_read_bool((&pdev->dev)->of_node,
  5214. "qcom,ce-hw-shared");
  5215. pce_dev->support_hw_key = of_property_read_bool((&pdev->dev)->of_node,
  5216. "qcom,ce-hw-key");
  5217. pce_dev->use_sw_aes_cbc_ecb_ctr_algo =
  5218. of_property_read_bool((&pdev->dev)->of_node,
  5219. "qcom,use-sw-aes-cbc-ecb-ctr-algo");
  5220. pce_dev->use_sw_aead_algo =
  5221. of_property_read_bool((&pdev->dev)->of_node,
  5222. "qcom,use-sw-aead-algo");
  5223. pce_dev->use_sw_aes_xts_algo =
  5224. of_property_read_bool((&pdev->dev)->of_node,
  5225. "qcom,use-sw-aes-xts-algo");
  5226. pce_dev->use_sw_ahash_algo =
  5227. of_property_read_bool((&pdev->dev)->of_node,
  5228. "qcom,use-sw-ahash-algo");
  5229. pce_dev->use_sw_hmac_algo =
  5230. of_property_read_bool((&pdev->dev)->of_node,
  5231. "qcom,use-sw-hmac-algo");
  5232. pce_dev->use_sw_aes_ccm_algo =
  5233. of_property_read_bool((&pdev->dev)->of_node,
  5234. "qcom,use-sw-aes-ccm-algo");
  5235. pce_dev->support_clk_mgmt_sus_res = of_property_read_bool(
  5236. (&pdev->dev)->of_node, "qcom,clk-mgmt-sus-res");
  5237. pce_dev->support_only_core_src_clk = of_property_read_bool(
  5238. (&pdev->dev)->of_node, "qcom,support-core-clk-only");
  5239. pce_dev->request_bw_before_clk = of_property_read_bool(
  5240. (&pdev->dev)->of_node, "qcom,request-bw-before-clk");
  5241. pce_dev->kernel_pipes_support = true;
  5242. if (of_property_read_u32((&pdev->dev)->of_node,
  5243. "qcom,bam-pipe-pair",
  5244. &pce_dev->ce_bam_info.pipe_pair_index[0])) {
  5245. pr_warn("Kernel pipes not supported.\n");
  5246. //Unused pipe, just as failsafe.
  5247. pce_dev->ce_bam_info.pipe_pair_index[0] = 2;
  5248. pce_dev->kernel_pipes_support = false;
  5249. }
  5250. if (of_property_read_bool((&pdev->dev)->of_node,
  5251. "qcom,offload-ops-support")) {
  5252. pce_dev->offload_pipes_support = true;
  5253. if (of_property_read_u32((&pdev->dev)->of_node,
  5254. "qcom,bam-pipe-offload-cpb-hlos",
  5255. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_CPB_HLOS])) {
  5256. pr_err("Fail to get bam offload cpb-hlos pipe pair info.\n");
  5257. return -EINVAL;
  5258. }
  5259. if (of_property_read_u32((&pdev->dev)->of_node,
  5260. "qcom,bam-pipe-offload-hlos-hlos",
  5261. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_HLOS])) {
  5262. pr_err("Fail to get bam offload hlos-hlos info.\n");
  5263. return -EINVAL;
  5264. }
  5265. if (of_property_read_u32((&pdev->dev)->of_node,
  5266. "qcom,bam-pipe-offload-hlos-cpb",
  5267. &pce_dev->ce_bam_info.pipe_pair_index[QCE_OFFLOAD_HLOS_CPB])) {
  5268. pr_err("Fail to get bam offload hlos-cpb info\n");
  5269. return -EINVAL;
  5270. }
  5271. }
  5272. if (of_property_read_u32((&pdev->dev)->of_node,
  5273. "qcom,ce-device",
  5274. &pce_dev->ce_bam_info.ce_device)) {
  5275. pr_err("Fail to get CE device information.\n");
  5276. return -EINVAL;
  5277. }
  5278. if (of_property_read_u32((&pdev->dev)->of_node,
  5279. "qcom,ce-hw-instance",
  5280. &pce_dev->ce_bam_info.ce_hw_instance)) {
  5281. pr_err("Fail to get CE hw instance information.\n");
  5282. return -EINVAL;
  5283. }
  5284. if (of_property_read_u32((&pdev->dev)->of_node,
  5285. "qcom,bam-ee",
  5286. &pce_dev->ce_bam_info.bam_ee)) {
  5287. pr_info("BAM Apps EE is not defined, setting to default 1\n");
  5288. pce_dev->ce_bam_info.bam_ee = 1;
  5289. }
  5290. if (of_property_read_u32((&pdev->dev)->of_node,
  5291. "qcom,ce-opp-freq",
  5292. &pce_dev->ce_opp_freq_hz)) {
  5293. pr_info("CE operating frequency is not defined, setting to default 100MHZ\n");
  5294. pce_dev->ce_opp_freq_hz = CE_CLK_100MHZ;
  5295. }
  5296. if (of_property_read_bool((&pdev->dev)->of_node, "qcom,smmu-s1-enable"))
  5297. pce_dev->enable_s1_smmu = true;
  5298. pce_dev->no_clock_support = of_property_read_bool((&pdev->dev)->of_node,
  5299. "qcom,no-clock-support");
  5300. for (i = 0; i < QCE_OFFLOAD_OPER_LAST; i++) {
  5301. /* Source/destination pipes for all usecases */
  5302. pce_dev->ce_bam_info.dest_pipe_index[i] =
  5303. 2 * pce_dev->ce_bam_info.pipe_pair_index[i];
  5304. pce_dev->ce_bam_info.src_pipe_index[i] =
  5305. pce_dev->ce_bam_info.dest_pipe_index[i] + 1;
  5306. }
  5307. resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  5308. "crypto-base");
  5309. if (resource) {
  5310. pce_dev->phy_iobase = resource->start;
  5311. pce_dev->iobase = ioremap(resource->start,
  5312. resource_size(resource));
  5313. if (!pce_dev->iobase) {
  5314. pr_err("Can not map CRYPTO io memory\n");
  5315. return -ENOMEM;
  5316. }
  5317. } else {
  5318. pr_err("CRYPTO HW mem unavailable.\n");
  5319. return -ENODEV;
  5320. }
  5321. resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  5322. "crypto-bam-base");
  5323. if (resource) {
  5324. pce_dev->bam_mem = resource->start;
  5325. pce_dev->bam_mem_size = resource_size(resource);
  5326. } else {
  5327. pr_err("CRYPTO BAM mem unavailable.\n");
  5328. rc = -ENODEV;
  5329. goto err_getting_bam_info;
  5330. }
  5331. resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  5332. if (resource) {
  5333. pce_dev->ce_bam_info.bam_irq = resource->start;
  5334. } else {
  5335. pr_err("CRYPTO BAM IRQ unavailable.\n");
  5336. goto err_dev;
  5337. }
  5338. return rc;
  5339. err_dev:
  5340. if (pce_dev->ce_bam_info.bam_iobase)
  5341. iounmap(pce_dev->ce_bam_info.bam_iobase);
  5342. err_getting_bam_info:
  5343. if (pce_dev->iobase)
  5344. iounmap(pce_dev->iobase);
  5345. return rc;
  5346. }
  5347. static int __qce_init_clk(struct qce_device *pce_dev)
  5348. {
  5349. int rc = 0;
  5350. if (pce_dev->no_clock_support) {
  5351. pr_debug("No clock support defined in dts\n");
  5352. return rc;
  5353. }
  5354. pce_dev->ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src");
  5355. if (!IS_ERR(pce_dev->ce_core_src_clk)) {
  5356. if (pce_dev->request_bw_before_clk)
  5357. goto skip_set_rate;
  5358. rc = clk_set_rate(pce_dev->ce_core_src_clk,
  5359. pce_dev->ce_opp_freq_hz);
  5360. if (rc) {
  5361. pr_err("Unable to set the core src clk @%uMhz.\n",
  5362. pce_dev->ce_opp_freq_hz/CE_CLK_DIV);
  5363. goto exit_put_core_src_clk;
  5364. }
  5365. } else {
  5366. if (pce_dev->support_only_core_src_clk) {
  5367. rc = PTR_ERR(pce_dev->ce_core_src_clk);
  5368. pce_dev->ce_core_src_clk = NULL;
  5369. pr_err("Unable to get CE core src clk\n");
  5370. return rc;
  5371. }
  5372. pr_warn("Unable to get CE core src clk, set to NULL\n");
  5373. pce_dev->ce_core_src_clk = NULL;
  5374. }
  5375. skip_set_rate:
  5376. if (pce_dev->support_only_core_src_clk) {
  5377. pce_dev->ce_core_clk = NULL;
  5378. pce_dev->ce_clk = NULL;
  5379. pce_dev->ce_bus_clk = NULL;
  5380. } else {
  5381. pce_dev->ce_core_clk = clk_get(pce_dev->pdev, "core_clk");
  5382. if (IS_ERR(pce_dev->ce_core_clk)) {
  5383. rc = PTR_ERR(pce_dev->ce_core_clk);
  5384. pr_err("Unable to get CE core clk\n");
  5385. goto exit_put_core_src_clk;
  5386. }
  5387. pce_dev->ce_clk = clk_get(pce_dev->pdev, "iface_clk");
  5388. if (IS_ERR(pce_dev->ce_clk)) {
  5389. rc = PTR_ERR(pce_dev->ce_clk);
  5390. pr_err("Unable to get CE interface clk\n");
  5391. goto exit_put_core_clk;
  5392. }
  5393. pce_dev->ce_bus_clk = clk_get(pce_dev->pdev, "bus_clk");
  5394. if (IS_ERR(pce_dev->ce_bus_clk)) {
  5395. rc = PTR_ERR(pce_dev->ce_bus_clk);
  5396. pr_err("Unable to get CE BUS interface clk\n");
  5397. goto exit_put_iface_clk;
  5398. }
  5399. }
  5400. return rc;
  5401. exit_put_iface_clk:
  5402. if (pce_dev->ce_clk)
  5403. clk_put(pce_dev->ce_clk);
  5404. exit_put_core_clk:
  5405. if (pce_dev->ce_core_clk)
  5406. clk_put(pce_dev->ce_core_clk);
  5407. exit_put_core_src_clk:
  5408. if (pce_dev->ce_core_src_clk)
  5409. clk_put(pce_dev->ce_core_src_clk);
  5410. pr_err("Unable to init CE clks, rc = %d\n", rc);
  5411. return rc;
  5412. }
  5413. static void __qce_deinit_clk(struct qce_device *pce_dev)
  5414. {
  5415. if (pce_dev->no_clock_support) {
  5416. pr_debug("No clock support defined in dts\n");
  5417. return;
  5418. }
  5419. if (pce_dev->ce_bus_clk)
  5420. clk_put(pce_dev->ce_bus_clk);
  5421. if (pce_dev->ce_clk)
  5422. clk_put(pce_dev->ce_clk);
  5423. if (pce_dev->ce_core_clk)
  5424. clk_put(pce_dev->ce_core_clk);
  5425. if (pce_dev->ce_core_src_clk)
  5426. clk_put(pce_dev->ce_core_src_clk);
  5427. }
  5428. int qce_enable_clk(void *handle)
  5429. {
  5430. struct qce_device *pce_dev = (struct qce_device *)handle;
  5431. int rc = 0;
  5432. if (pce_dev->no_clock_support) {
  5433. pr_debug("No clock support defined in dts\n");
  5434. return rc;
  5435. }
  5436. if (pce_dev->ce_core_src_clk) {
  5437. rc = clk_prepare_enable(pce_dev->ce_core_src_clk);
  5438. if (rc) {
  5439. pr_err("Unable to enable/prepare CE core src clk\n");
  5440. return rc;
  5441. }
  5442. }
  5443. if (pce_dev->support_only_core_src_clk)
  5444. return rc;
  5445. if (pce_dev->ce_core_clk) {
  5446. rc = clk_prepare_enable(pce_dev->ce_core_clk);
  5447. if (rc) {
  5448. pr_err("Unable to enable/prepare CE core clk\n");
  5449. goto exit_disable_core_src_clk;
  5450. }
  5451. }
  5452. if (pce_dev->ce_clk) {
  5453. rc = clk_prepare_enable(pce_dev->ce_clk);
  5454. if (rc) {
  5455. pr_err("Unable to enable/prepare CE iface clk\n");
  5456. goto exit_disable_core_clk;
  5457. }
  5458. }
  5459. if (pce_dev->ce_bus_clk) {
  5460. rc = clk_prepare_enable(pce_dev->ce_bus_clk);
  5461. if (rc) {
  5462. pr_err("Unable to enable/prepare CE BUS clk\n");
  5463. goto exit_disable_ce_clk;
  5464. }
  5465. }
  5466. return rc;
  5467. exit_disable_ce_clk:
  5468. if (pce_dev->ce_clk)
  5469. clk_disable_unprepare(pce_dev->ce_clk);
  5470. exit_disable_core_clk:
  5471. if (pce_dev->ce_core_clk)
  5472. clk_disable_unprepare(pce_dev->ce_core_clk);
  5473. exit_disable_core_src_clk:
  5474. if (pce_dev->ce_core_src_clk)
  5475. clk_disable_unprepare(pce_dev->ce_core_src_clk);
  5476. return rc;
  5477. }
  5478. EXPORT_SYMBOL(qce_enable_clk);
  5479. int qce_disable_clk(void *handle)
  5480. {
  5481. struct qce_device *pce_dev = (struct qce_device *) handle;
  5482. if (pce_dev->no_clock_support) {
  5483. pr_debug("No clock support defined in dts\n");
  5484. return 0;
  5485. }
  5486. if (pce_dev->ce_bus_clk)
  5487. clk_disable_unprepare(pce_dev->ce_bus_clk);
  5488. if (pce_dev->ce_clk)
  5489. clk_disable_unprepare(pce_dev->ce_clk);
  5490. if (pce_dev->ce_core_clk)
  5491. clk_disable_unprepare(pce_dev->ce_core_clk);
  5492. if (pce_dev->ce_core_src_clk)
  5493. clk_disable_unprepare(pce_dev->ce_core_src_clk);
  5494. return 0;
  5495. }
  5496. EXPORT_SYMBOL(qce_disable_clk);
  5497. /* dummy req setup */
  5498. static int setup_dummy_req(struct qce_device *pce_dev)
  5499. {
  5500. char *input =
  5501. "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopqopqrpqrs";
  5502. int len = DUMMY_REQ_DATA_LEN;
  5503. memcpy(pce_dev->dummyreq_in_buf, input, len);
  5504. sg_init_one(&pce_dev->dummyreq.sg, pce_dev->dummyreq_in_buf, len);
  5505. pce_dev->dummyreq.sreq.alg = QCE_HASH_SHA1;
  5506. pce_dev->dummyreq.sreq.qce_cb = qce_dummy_complete;
  5507. pce_dev->dummyreq.sreq.src = &pce_dev->dummyreq.sg;
  5508. pce_dev->dummyreq.sreq.auth_data[0] = 0;
  5509. pce_dev->dummyreq.sreq.auth_data[1] = 0;
  5510. pce_dev->dummyreq.sreq.auth_data[2] = 0;
  5511. pce_dev->dummyreq.sreq.auth_data[3] = 0;
  5512. pce_dev->dummyreq.sreq.first_blk = true;
  5513. pce_dev->dummyreq.sreq.last_blk = true;
  5514. pce_dev->dummyreq.sreq.size = len;
  5515. pce_dev->dummyreq.sreq.areq = &pce_dev->dummyreq.areq;
  5516. pce_dev->dummyreq.sreq.flags = 0;
  5517. pce_dev->dummyreq.sreq.authkey = NULL;
  5518. pce_dev->dummyreq.areq.src = pce_dev->dummyreq.sreq.src;
  5519. pce_dev->dummyreq.areq.nbytes = pce_dev->dummyreq.sreq.size;
  5520. return 0;
  5521. }
  5522. static int qce_smmu_init(struct qce_device *pce_dev)
  5523. {
  5524. struct device *dev = pce_dev->pdev;
  5525. if (!dev->dma_parms) {
  5526. dev->dma_parms = devm_kzalloc(dev,
  5527. sizeof(*dev->dma_parms), GFP_KERNEL);
  5528. if (!dev->dma_parms)
  5529. return -ENOMEM;
  5530. }
  5531. dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
  5532. dma_set_seg_boundary(dev, (unsigned long)DMA_BIT_MASK(64));
  5533. return 0;
  5534. }
  5535. /* crypto engine open function. */
  5536. void *qce_open(struct platform_device *pdev, int *rc)
  5537. {
  5538. struct qce_device *pce_dev;
  5539. int i;
  5540. static int pcedev_no = 1;
  5541. pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL);
  5542. if (!pce_dev) {
  5543. *rc = -ENOMEM;
  5544. pr_err("Can not allocate memory: %d\n", *rc);
  5545. return NULL;
  5546. }
  5547. pce_dev->pdev = &pdev->dev;
  5548. mutex_lock(&qce_iomap_mutex);
  5549. if (pdev->dev.of_node) {
  5550. *rc = __qce_get_device_tree_data(pdev, pce_dev);
  5551. if (*rc)
  5552. goto err_pce_dev;
  5553. } else {
  5554. *rc = -EINVAL;
  5555. pr_err("Device Node not found.\n");
  5556. goto err_pce_dev;
  5557. }
  5558. if (pce_dev->enable_s1_smmu) {
  5559. if (qce_smmu_init(pce_dev)) {
  5560. *rc = -EIO;
  5561. goto err_pce_dev;
  5562. }
  5563. }
  5564. for (i = 0; i < MAX_QCE_ALLOC_BAM_REQ; i++)
  5565. atomic_set(&pce_dev->ce_request_info[i].in_use, false);
  5566. pce_dev->ce_request_index = 0;
  5567. pce_dev->memsize = 10 * PAGE_SIZE * MAX_QCE_ALLOC_BAM_REQ;
  5568. pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev,
  5569. pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL);
  5570. if (pce_dev->coh_vmem == NULL) {
  5571. *rc = -ENOMEM;
  5572. pr_err("Can not allocate coherent memory for sps data\n");
  5573. goto err_iobase;
  5574. }
  5575. pce_dev->iovec_memsize = TOTAL_IOVEC_SPACE_PER_PIPE *
  5576. MAX_QCE_ALLOC_BAM_REQ * 2;
  5577. pce_dev->iovec_vmem = kzalloc(pce_dev->iovec_memsize, GFP_KERNEL);
  5578. if (pce_dev->iovec_vmem == NULL)
  5579. goto err_mem;
  5580. pce_dev->dummyreq_in_buf = kzalloc(DUMMY_REQ_DATA_LEN, GFP_KERNEL);
  5581. if (pce_dev->dummyreq_in_buf == NULL)
  5582. goto err_mem;
  5583. *rc = __qce_init_clk(pce_dev);
  5584. if (*rc)
  5585. goto err_mem;
  5586. *rc = qce_enable_clk(pce_dev);
  5587. if (*rc)
  5588. goto err_enable_clk;
  5589. if (_probe_ce_engine(pce_dev)) {
  5590. *rc = -ENXIO;
  5591. goto err;
  5592. }
  5593. *rc = 0;
  5594. qce_init_ce_cfg_val(pce_dev);
  5595. *rc = qce_sps_init(pce_dev);
  5596. if (*rc)
  5597. goto err;
  5598. qce_setup_ce_sps_data(pce_dev);
  5599. qce_disable_clk(pce_dev);
  5600. setup_dummy_req(pce_dev);
  5601. atomic_set(&pce_dev->no_of_queued_req, 0);
  5602. pce_dev->mode = IN_INTERRUPT_MODE;
  5603. timer_setup(&(pce_dev->timer), qce_multireq_timeout, 0);
  5604. //pce_dev->timer.function = qce_multireq_timeout;
  5605. //pce_dev->timer.data = (unsigned long)pce_dev;
  5606. pce_dev->timer.expires = jiffies + DELAY_IN_JIFFIES;
  5607. pce_dev->intr_cadence = 0;
  5608. pce_dev->dev_no = pcedev_no;
  5609. pcedev_no++;
  5610. pce_dev->owner = QCE_OWNER_NONE;
  5611. mutex_unlock(&qce_iomap_mutex);
  5612. return pce_dev;
  5613. err:
  5614. qce_disable_clk(pce_dev);
  5615. err_enable_clk:
  5616. __qce_deinit_clk(pce_dev);
  5617. err_mem:
  5618. kfree(pce_dev->dummyreq_in_buf);
  5619. kfree(pce_dev->iovec_vmem);
  5620. if (pce_dev->coh_vmem)
  5621. dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
  5622. pce_dev->coh_vmem, pce_dev->coh_pmem);
  5623. err_iobase:
  5624. if (pce_dev->iobase)
  5625. iounmap(pce_dev->iobase);
  5626. err_pce_dev:
  5627. mutex_unlock(&qce_iomap_mutex);
  5628. kfree(pce_dev);
  5629. return NULL;
  5630. }
  5631. EXPORT_SYMBOL(qce_open);
  5632. /* crypto engine close function. */
  5633. int qce_close(void *handle)
  5634. {
  5635. struct qce_device *pce_dev = (struct qce_device *) handle;
  5636. if (handle == NULL)
  5637. return -ENODEV;
  5638. mutex_lock(&qce_iomap_mutex);
  5639. qce_enable_clk(pce_dev);
  5640. qce_sps_exit(pce_dev);
  5641. if (pce_dev->iobase)
  5642. iounmap(pce_dev->iobase);
  5643. if (pce_dev->coh_vmem)
  5644. dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
  5645. pce_dev->coh_vmem, pce_dev->coh_pmem);
  5646. kfree(pce_dev->dummyreq_in_buf);
  5647. kfree(pce_dev->iovec_vmem);
  5648. qce_disable_clk(pce_dev);
  5649. __qce_deinit_clk(pce_dev);
  5650. mutex_unlock(&qce_iomap_mutex);
  5651. kfree(handle);
  5652. return 0;
  5653. }
  5654. EXPORT_SYMBOL(qce_close);
  5655. #define OTA_SUPPORT_MASK (1 << CRYPTO_ENCR_SNOW3G_SEL |\
  5656. 1 << CRYPTO_ENCR_KASUMI_SEL |\
  5657. 1 << CRYPTO_AUTH_SNOW3G_SEL |\
  5658. 1 << CRYPTO_AUTH_KASUMI_SEL)
  5659. int qce_hw_support(void *handle, struct ce_hw_support *ce_support)
  5660. {
  5661. struct qce_device *pce_dev = (struct qce_device *)handle;
  5662. if (ce_support == NULL)
  5663. return -EINVAL;
  5664. ce_support->sha1_hmac_20 = false;
  5665. ce_support->sha1_hmac = false;
  5666. ce_support->sha256_hmac = false;
  5667. ce_support->sha_hmac = true;
  5668. ce_support->cmac = true;
  5669. ce_support->aes_key_192 = false;
  5670. ce_support->aes_xts = true;
  5671. if ((pce_dev->engines_avail & OTA_SUPPORT_MASK) == OTA_SUPPORT_MASK)
  5672. ce_support->ota = true;
  5673. else
  5674. ce_support->ota = false;
  5675. ce_support->bam = true;
  5676. ce_support->is_shared = (pce_dev->is_shared == 1) ? true : false;
  5677. ce_support->hw_key = pce_dev->support_hw_key;
  5678. ce_support->aes_ccm = true;
  5679. ce_support->clk_mgmt_sus_res = pce_dev->support_clk_mgmt_sus_res;
  5680. ce_support->req_bw_before_clk = pce_dev->request_bw_before_clk;
  5681. if (pce_dev->ce_bam_info.minor_version)
  5682. ce_support->aligned_only = false;
  5683. else
  5684. ce_support->aligned_only = true;
  5685. ce_support->use_sw_aes_cbc_ecb_ctr_algo =
  5686. pce_dev->use_sw_aes_cbc_ecb_ctr_algo;
  5687. ce_support->use_sw_aead_algo =
  5688. pce_dev->use_sw_aead_algo;
  5689. ce_support->use_sw_aes_xts_algo =
  5690. pce_dev->use_sw_aes_xts_algo;
  5691. ce_support->use_sw_ahash_algo =
  5692. pce_dev->use_sw_ahash_algo;
  5693. ce_support->use_sw_hmac_algo =
  5694. pce_dev->use_sw_hmac_algo;
  5695. ce_support->use_sw_aes_ccm_algo =
  5696. pce_dev->use_sw_aes_ccm_algo;
  5697. ce_support->ce_device = pce_dev->ce_bam_info.ce_device;
  5698. ce_support->ce_hw_instance = pce_dev->ce_bam_info.ce_hw_instance;
  5699. if (pce_dev->no_get_around)
  5700. ce_support->max_request = MAX_QCE_BAM_REQ;
  5701. else
  5702. ce_support->max_request = 1;
  5703. return 0;
  5704. }
  5705. EXPORT_SYMBOL(qce_hw_support);
  5706. void qce_dump_req(void *handle)
  5707. {
  5708. int i;
  5709. bool req_in_use;
  5710. struct qce_device *pce_dev = (struct qce_device *)handle;
  5711. for (i = 0; i < MAX_QCE_BAM_REQ; i++) {
  5712. req_in_use = atomic_read(&pce_dev->ce_request_info[i].in_use);
  5713. pr_info("%s: %d %d\n", __func__, i, req_in_use);
  5714. if (req_in_use)
  5715. _qce_dump_descr_fifos(pce_dev, i);
  5716. }
  5717. }
  5718. EXPORT_SYMBOL(qce_dump_req);
  5719. MODULE_LICENSE("GPL v2");
  5720. MODULE_DESCRIPTION("Crypto Engine driver");