sde_io_util.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2012-2015, 2017-2020 The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/clk.h>
  6. #include <linux/err.h>
  7. #include <linux/io.h>
  8. #include <linux/regulator/consumer.h>
  9. #include <linux/delay.h>
  10. #include <linux/sde_io_util.h>
  11. #include <linux/sde_vm_event.h>
  12. #define MAX_I2C_CMDS 16
  13. void dss_reg_w(struct dss_io_data *io, u32 offset, u32 value, u32 debug)
  14. {
  15. u32 in_val;
  16. if (!io || !io->base) {
  17. DEV_ERR("%pS->%s: invalid input\n",
  18. __builtin_return_address(0), __func__);
  19. return;
  20. }
  21. if (offset > io->len) {
  22. DEV_ERR("%pS->%s: offset out of range\n",
  23. __builtin_return_address(0), __func__);
  24. return;
  25. }
  26. writel_relaxed(value, io->base + offset);
  27. if (debug) {
  28. in_val = readl_relaxed(io->base + offset);
  29. DEV_DBG("[%08x] => %08x [%08x]\n",
  30. (u32)(unsigned long)(io->base + offset),
  31. value, in_val);
  32. }
  33. } /* dss_reg_w */
  34. EXPORT_SYMBOL(dss_reg_w);
  35. u32 dss_reg_r(struct dss_io_data *io, u32 offset, u32 debug)
  36. {
  37. u32 value;
  38. if (!io || !io->base) {
  39. DEV_ERR("%pS->%s: invalid input\n",
  40. __builtin_return_address(0), __func__);
  41. return -EINVAL;
  42. }
  43. if (offset > io->len) {
  44. DEV_ERR("%pS->%s: offset out of range\n",
  45. __builtin_return_address(0), __func__);
  46. return -EINVAL;
  47. }
  48. value = readl_relaxed(io->base + offset);
  49. if (debug)
  50. DEV_DBG("[%08x] <= %08x\n",
  51. (u32)(unsigned long)(io->base + offset), value);
  52. return value;
  53. } /* dss_reg_r */
  54. EXPORT_SYMBOL(dss_reg_r);
  55. void dss_reg_dump(void __iomem *base, u32 length, const char *prefix,
  56. u32 debug)
  57. {
  58. if (debug)
  59. print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 32, 4,
  60. (void *)base, length, false);
  61. } /* dss_reg_dump */
  62. EXPORT_SYMBOL(dss_reg_dump);
  63. static struct resource *msm_dss_get_res_byname(struct platform_device *pdev,
  64. unsigned int type, const char *name)
  65. {
  66. struct resource *res = NULL;
  67. res = platform_get_resource_byname(pdev, type, name);
  68. if (!res)
  69. DEV_ERR("%s: '%s' resource not found\n", __func__, name);
  70. return res;
  71. } /* msm_dss_get_res_byname */
  72. int msm_dss_ioremap_byname(struct platform_device *pdev,
  73. struct dss_io_data *io_data, const char *name)
  74. {
  75. struct resource *res = NULL;
  76. if (!pdev || !io_data) {
  77. DEV_ERR("%pS->%s: invalid input\n",
  78. __builtin_return_address(0), __func__);
  79. return -EINVAL;
  80. }
  81. res = msm_dss_get_res_byname(pdev, IORESOURCE_MEM, name);
  82. if (!res) {
  83. DEV_ERR("%pS->%s: '%s' msm_dss_get_res_byname failed\n",
  84. __builtin_return_address(0), __func__, name);
  85. return -ENODEV;
  86. }
  87. io_data->len = (u32)resource_size(res);
  88. io_data->base = ioremap(res->start, io_data->len);
  89. if (!io_data->base) {
  90. DEV_ERR("%pS->%s: '%s' ioremap failed\n",
  91. __builtin_return_address(0), __func__, name);
  92. return -EIO;
  93. }
  94. return 0;
  95. } /* msm_dss_ioremap_byname */
  96. EXPORT_SYMBOL(msm_dss_ioremap_byname);
  97. void msm_dss_iounmap(struct dss_io_data *io_data)
  98. {
  99. if (!io_data) {
  100. DEV_ERR("%pS->%s: invalid input\n",
  101. __builtin_return_address(0), __func__);
  102. return;
  103. }
  104. if (io_data->base) {
  105. iounmap(io_data->base);
  106. io_data->base = NULL;
  107. }
  108. io_data->len = 0;
  109. } /* msm_dss_iounmap */
  110. EXPORT_SYMBOL(msm_dss_iounmap);
  111. int msm_dss_get_io_mem(struct platform_device *pdev, struct list_head *mem_list)
  112. {
  113. struct list_head temp_head;
  114. struct msm_io_mem_entry *io_mem;
  115. struct resource *res = NULL;
  116. const char *reg_name, *exclude_reg_name;
  117. int i, j, rc = 0;
  118. int num_entry, num_exclude_entry;
  119. INIT_LIST_HEAD(&temp_head);
  120. num_entry = of_property_count_strings(pdev->dev.of_node,
  121. "reg-names");
  122. if (num_entry < 0)
  123. num_entry = 0;
  124. /*
  125. * check the dt property to know whether the platform device wants
  126. * to exclude any reg ranges from the IO list
  127. */
  128. num_exclude_entry = of_property_count_strings(pdev->dev.of_node,
  129. "qcom,sde-vm-exclude-reg-names");
  130. if (num_exclude_entry < 0)
  131. num_exclude_entry = 0;
  132. for (i = 0; i < num_entry; i++) {
  133. bool exclude = false;
  134. of_property_read_string_index(pdev->dev.of_node,
  135. "reg-names", i, &reg_name);
  136. for (j = 0; j < num_exclude_entry; j++) {
  137. of_property_read_string_index(pdev->dev.of_node,
  138. "qcom,sde-vm-exclude-reg-names", j,
  139. &exclude_reg_name);
  140. if (!strcmp(reg_name, exclude_reg_name)) {
  141. exclude = true;
  142. break;
  143. }
  144. }
  145. if (exclude)
  146. continue;
  147. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  148. reg_name);
  149. if (!res)
  150. break;
  151. io_mem = kzalloc(sizeof(*io_mem), GFP_KERNEL);
  152. if (!io_mem) {
  153. msm_dss_clean_io_mem(&temp_head);
  154. rc = -ENOMEM;
  155. goto parse_fail;
  156. }
  157. io_mem->base = res->start;
  158. io_mem->size = resource_size(res);
  159. list_add(&io_mem->list, &temp_head);
  160. }
  161. list_splice(&temp_head, mem_list);
  162. return 0;
  163. parse_fail:
  164. msm_dss_clean_io_mem(&temp_head);
  165. return rc;
  166. }
  167. EXPORT_SYMBOL(msm_dss_get_io_mem);
  168. void msm_dss_clean_io_mem(struct list_head *mem_list)
  169. {
  170. struct msm_io_mem_entry *pos, *tmp;
  171. list_for_each_entry_safe(pos, tmp, mem_list, list) {
  172. list_del(&pos->list);
  173. kzfree(pos);
  174. }
  175. }
  176. EXPORT_SYMBOL(msm_dss_clean_io_mem);
  177. int msm_dss_get_io_irq(struct platform_device *pdev, struct list_head *irq_list,
  178. u32 label)
  179. {
  180. struct msm_io_irq_entry *io_irq;
  181. int irq;
  182. irq = platform_get_irq(pdev, 0);
  183. if (irq < 0) {
  184. pr_err("invalid IRQ\n");
  185. return irq;
  186. }
  187. io_irq = kzalloc(sizeof(*io_irq), GFP_KERNEL);
  188. if (!io_irq)
  189. return -ENOMEM;
  190. io_irq->label = label;
  191. io_irq->irq_num = irq;
  192. list_add(&io_irq->list, irq_list);
  193. return 0;
  194. }
  195. EXPORT_SYMBOL(msm_dss_get_io_irq);
  196. void msm_dss_clean_io_irq(struct list_head *irq_list)
  197. {
  198. struct msm_io_irq_entry *pos, *tmp;
  199. list_for_each_entry_safe(pos, tmp, irq_list, list) {
  200. list_del(&pos->list);
  201. kzfree(pos);
  202. }
  203. }
  204. EXPORT_SYMBOL(msm_dss_clean_io_irq);
  205. int msm_dss_get_vreg(struct device *dev, struct dss_vreg *in_vreg,
  206. int num_vreg, int enable)
  207. {
  208. int i = 0, rc = 0;
  209. struct dss_vreg *curr_vreg = NULL;
  210. if (!in_vreg || !num_vreg)
  211. return rc;
  212. if (enable) {
  213. for (i = 0; i < num_vreg; i++) {
  214. curr_vreg = &in_vreg[i];
  215. curr_vreg->vreg = regulator_get(dev,
  216. curr_vreg->vreg_name);
  217. rc = PTR_RET(curr_vreg->vreg);
  218. if (rc) {
  219. DEV_ERR("%pS->%s: %s get failed. rc=%d\n",
  220. __builtin_return_address(0), __func__,
  221. curr_vreg->vreg_name, rc);
  222. curr_vreg->vreg = NULL;
  223. goto vreg_get_fail;
  224. }
  225. }
  226. } else {
  227. for (i = num_vreg-1; i >= 0; i--) {
  228. curr_vreg = &in_vreg[i];
  229. if (curr_vreg->vreg) {
  230. regulator_put(curr_vreg->vreg);
  231. curr_vreg->vreg = NULL;
  232. }
  233. }
  234. }
  235. return 0;
  236. vreg_get_fail:
  237. for (i--; i >= 0; i--) {
  238. curr_vreg = &in_vreg[i];
  239. regulator_set_load(curr_vreg->vreg, 0);
  240. regulator_put(curr_vreg->vreg);
  241. curr_vreg->vreg = NULL;
  242. }
  243. return rc;
  244. } /* msm_dss_get_vreg */
  245. EXPORT_SYMBOL(msm_dss_get_vreg);
  246. static bool msm_dss_is_hw_controlled(struct dss_vreg in_vreg)
  247. {
  248. u32 mode = 0;
  249. char const *regulator_gdsc = "gdsc";
  250. /*
  251. * For gdsc-regulator devices only, REGULATOR_MODE_FAST specifies that
  252. * the GDSC is in HW controlled mode.
  253. */
  254. mode = regulator_get_mode(in_vreg.vreg);
  255. if (!strcmp(regulator_gdsc, in_vreg.vreg_name) &&
  256. mode == REGULATOR_MODE_FAST) {
  257. DEV_DBG("%pS->%s: %s is HW controlled\n",
  258. __builtin_return_address(0), __func__,
  259. in_vreg.vreg_name);
  260. return true;
  261. }
  262. return false;
  263. }
  264. int msm_dss_enable_vreg(struct dss_vreg *in_vreg, int num_vreg, int enable)
  265. {
  266. int i = 0, rc = 0;
  267. bool need_sleep;
  268. if (enable) {
  269. for (i = 0; i < num_vreg; i++) {
  270. rc = PTR_RET(in_vreg[i].vreg);
  271. if (rc) {
  272. DEV_ERR("%pS->%s: %s regulator error. rc=%d\n",
  273. __builtin_return_address(0), __func__,
  274. in_vreg[i].vreg_name, rc);
  275. goto vreg_set_opt_mode_fail;
  276. }
  277. if (msm_dss_is_hw_controlled(in_vreg[i]))
  278. continue;
  279. need_sleep = !regulator_is_enabled(in_vreg[i].vreg);
  280. if (in_vreg[i].pre_on_sleep && need_sleep)
  281. usleep_range(in_vreg[i].pre_on_sleep * 1000,
  282. (in_vreg[i].pre_on_sleep * 1000) + 10);
  283. rc = regulator_set_load(in_vreg[i].vreg,
  284. in_vreg[i].enable_load);
  285. if (rc < 0) {
  286. DEV_ERR("%pS->%s: %s set opt m fail\n",
  287. __builtin_return_address(0), __func__,
  288. in_vreg[i].vreg_name);
  289. goto vreg_set_opt_mode_fail;
  290. }
  291. if (regulator_count_voltages(in_vreg[i].vreg) > 0)
  292. regulator_set_voltage(in_vreg[i].vreg,
  293. in_vreg[i].min_voltage,
  294. in_vreg[i].max_voltage);
  295. rc = regulator_enable(in_vreg[i].vreg);
  296. if (in_vreg[i].post_on_sleep && need_sleep)
  297. usleep_range(in_vreg[i].post_on_sleep * 1000,
  298. (in_vreg[i].post_on_sleep * 1000) + 10);
  299. if (rc < 0) {
  300. DEV_ERR("%pS->%s: %s enable failed\n",
  301. __builtin_return_address(0), __func__,
  302. in_vreg[i].vreg_name);
  303. goto disable_vreg;
  304. }
  305. }
  306. } else {
  307. for (i = num_vreg-1; i >= 0; i--) {
  308. if (msm_dss_is_hw_controlled(in_vreg[i]))
  309. continue;
  310. if (in_vreg[i].pre_off_sleep)
  311. usleep_range(in_vreg[i].pre_off_sleep * 1000,
  312. (in_vreg[i].pre_off_sleep * 1000) + 10);
  313. regulator_set_load(in_vreg[i].vreg,
  314. in_vreg[i].disable_load);
  315. regulator_disable(in_vreg[i].vreg);
  316. if (regulator_count_voltages(in_vreg[i].vreg) > 0)
  317. regulator_set_voltage(in_vreg[i].vreg, 0,
  318. in_vreg[i].max_voltage);
  319. if (in_vreg[i].post_off_sleep)
  320. usleep_range(in_vreg[i].post_off_sleep * 1000,
  321. (in_vreg[i].post_off_sleep * 1000) + 10);
  322. }
  323. }
  324. return rc;
  325. disable_vreg:
  326. regulator_set_load(in_vreg[i].vreg, in_vreg[i].disable_load);
  327. vreg_set_opt_mode_fail:
  328. for (i--; i >= 0; i--) {
  329. if (in_vreg[i].pre_off_sleep)
  330. usleep_range(in_vreg[i].pre_off_sleep * 1000,
  331. (in_vreg[i].pre_off_sleep * 1000) + 10);
  332. regulator_set_load(in_vreg[i].vreg,
  333. in_vreg[i].disable_load);
  334. regulator_disable(in_vreg[i].vreg);
  335. if (in_vreg[i].post_off_sleep)
  336. usleep_range(in_vreg[i].post_off_sleep * 1000,
  337. (in_vreg[i].post_off_sleep * 1000) + 10);
  338. }
  339. return rc;
  340. } /* msm_dss_enable_vreg */
  341. EXPORT_SYMBOL(msm_dss_enable_vreg);
  342. int msm_dss_enable_gpio(struct dss_gpio *in_gpio, int num_gpio, int enable)
  343. {
  344. int i = 0, rc = 0;
  345. if (enable) {
  346. for (i = 0; i < num_gpio; i++) {
  347. DEV_DBG("%pS->%s: %s enable\n",
  348. __builtin_return_address(0), __func__,
  349. in_gpio[i].gpio_name);
  350. rc = gpio_request(in_gpio[i].gpio,
  351. in_gpio[i].gpio_name);
  352. if (rc < 0) {
  353. DEV_ERR("%pS->%s: %s enable failed\n",
  354. __builtin_return_address(0), __func__,
  355. in_gpio[i].gpio_name);
  356. goto disable_gpio;
  357. }
  358. gpio_set_value(in_gpio[i].gpio, in_gpio[i].value);
  359. }
  360. } else {
  361. for (i = num_gpio-1; i >= 0; i--) {
  362. DEV_DBG("%pS->%s: %s disable\n",
  363. __builtin_return_address(0), __func__,
  364. in_gpio[i].gpio_name);
  365. if (in_gpio[i].gpio)
  366. gpio_free(in_gpio[i].gpio);
  367. }
  368. }
  369. return rc;
  370. disable_gpio:
  371. for (i--; i >= 0; i--)
  372. if (in_gpio[i].gpio)
  373. gpio_free(in_gpio[i].gpio);
  374. return rc;
  375. } /* msm_dss_enable_gpio */
  376. EXPORT_SYMBOL(msm_dss_enable_gpio);
  377. void msm_dss_put_clk(struct dss_clk *clk_arry, int num_clk)
  378. {
  379. int i;
  380. for (i = num_clk - 1; i >= 0; i--) {
  381. if (clk_arry[i].clk)
  382. clk_put(clk_arry[i].clk);
  383. clk_arry[i].clk = NULL;
  384. }
  385. } /* msm_dss_put_clk */
  386. EXPORT_SYMBOL(msm_dss_put_clk);
  387. int msm_dss_get_clk(struct device *dev, struct dss_clk *clk_arry, int num_clk)
  388. {
  389. int i, rc = 0;
  390. for (i = 0; i < num_clk; i++) {
  391. clk_arry[i].clk = clk_get(dev, clk_arry[i].clk_name);
  392. rc = PTR_RET(clk_arry[i].clk);
  393. if (rc) {
  394. DEV_ERR("%pS->%s: '%s' get failed. rc=%d\n",
  395. __builtin_return_address(0), __func__,
  396. clk_arry[i].clk_name, rc);
  397. goto error;
  398. }
  399. }
  400. return rc;
  401. error:
  402. for (i--; i >= 0; i--) {
  403. if (clk_arry[i].clk)
  404. clk_put(clk_arry[i].clk);
  405. clk_arry[i].clk = NULL;
  406. }
  407. return rc;
  408. } /* msm_dss_get_clk */
  409. EXPORT_SYMBOL(msm_dss_get_clk);
  410. int msm_dss_single_clk_set_rate(struct dss_clk *clk)
  411. {
  412. int rc = 0;
  413. if (!clk) {
  414. DEV_ERR("invalid clk struct\n");
  415. return -EINVAL;
  416. }
  417. DEV_DBG("%pS->%s: set_rate '%s'\n",
  418. __builtin_return_address(0), __func__,
  419. clk->clk_name);
  420. if (clk->type != DSS_CLK_AHB) {
  421. rc = clk_set_rate(clk->clk, clk->rate);
  422. if (rc)
  423. DEV_ERR("%pS->%s: %s failed. rc=%d\n",
  424. __builtin_return_address(0),
  425. __func__,
  426. clk->clk_name, rc);
  427. }
  428. return rc;
  429. } /* msm_dss_single_clk_set_rate */
  430. EXPORT_SYMBOL(msm_dss_single_clk_set_rate);
  431. int msm_dss_clk_set_rate(struct dss_clk *clk_arry, int num_clk)
  432. {
  433. int i, rc = 0;
  434. for (i = 0; i < num_clk; i++) {
  435. if (clk_arry[i].clk) {
  436. rc = msm_dss_single_clk_set_rate(&clk_arry[i]);
  437. if (rc)
  438. break;
  439. } else {
  440. DEV_ERR("%pS->%s: '%s' is not available\n",
  441. __builtin_return_address(0), __func__,
  442. clk_arry[i].clk_name);
  443. rc = -EPERM;
  444. break;
  445. }
  446. }
  447. return rc;
  448. } /* msm_dss_clk_set_rate */
  449. EXPORT_SYMBOL(msm_dss_clk_set_rate);
  450. int msm_dss_enable_clk(struct dss_clk *clk_arry, int num_clk, int enable)
  451. {
  452. int i, rc = 0;
  453. if (enable) {
  454. for (i = 0; i < num_clk; i++) {
  455. DEV_DBG("%pS->%s: enable '%s'\n",
  456. __builtin_return_address(0), __func__,
  457. clk_arry[i].clk_name);
  458. if (clk_arry[i].clk) {
  459. rc = clk_prepare_enable(clk_arry[i].clk);
  460. if (rc)
  461. DEV_ERR("%pS->%s: %s en fail. rc=%d\n",
  462. __builtin_return_address(0),
  463. __func__,
  464. clk_arry[i].clk_name, rc);
  465. } else {
  466. DEV_ERR("%pS->%s: '%s' is not available\n",
  467. __builtin_return_address(0), __func__,
  468. clk_arry[i].clk_name);
  469. rc = -EPERM;
  470. }
  471. if (rc) {
  472. msm_dss_enable_clk(clk_arry, i, false);
  473. break;
  474. }
  475. }
  476. } else {
  477. for (i = num_clk - 1; i >= 0; i--) {
  478. DEV_DBG("%pS->%s: disable '%s'\n",
  479. __builtin_return_address(0), __func__,
  480. clk_arry[i].clk_name);
  481. if (clk_arry[i].clk)
  482. clk_disable_unprepare(clk_arry[i].clk);
  483. else
  484. DEV_ERR("%pS->%s: '%s' is not available\n",
  485. __builtin_return_address(0), __func__,
  486. clk_arry[i].clk_name);
  487. }
  488. }
  489. return rc;
  490. } /* msm_dss_enable_clk */
  491. EXPORT_SYMBOL(msm_dss_enable_clk);
  492. int sde_i2c_byte_read(struct i2c_client *client, uint8_t slave_addr,
  493. uint8_t reg_offset, uint8_t *read_buf)
  494. {
  495. struct i2c_msg msgs[2];
  496. int ret = -1;
  497. pr_debug("%s: reading from slave_addr=[%x] and offset=[%x]\n",
  498. __func__, slave_addr, reg_offset);
  499. msgs[0].addr = slave_addr >> 1;
  500. msgs[0].flags = 0;
  501. msgs[0].buf = &reg_offset;
  502. msgs[0].len = 1;
  503. msgs[1].addr = slave_addr >> 1;
  504. msgs[1].flags = I2C_M_RD;
  505. msgs[1].buf = read_buf;
  506. msgs[1].len = 1;
  507. ret = i2c_transfer(client->adapter, msgs, 2);
  508. if (ret < 1) {
  509. pr_err("%s: I2C READ FAILED=[%d]\n", __func__, ret);
  510. return -EACCES;
  511. }
  512. pr_debug("%s: i2c buf is [%x]\n", __func__, *read_buf);
  513. return 0;
  514. }
  515. EXPORT_SYMBOL(sde_i2c_byte_read);
  516. int sde_i2c_byte_write(struct i2c_client *client, uint8_t slave_addr,
  517. uint8_t reg_offset, uint8_t *value)
  518. {
  519. struct i2c_msg msgs[1];
  520. uint8_t data[2];
  521. int status = -EACCES;
  522. pr_debug("%s: writing from slave_addr=[%x] and offset=[%x]\n",
  523. __func__, slave_addr, reg_offset);
  524. data[0] = reg_offset;
  525. data[1] = *value;
  526. msgs[0].addr = slave_addr >> 1;
  527. msgs[0].flags = 0;
  528. msgs[0].len = 2;
  529. msgs[0].buf = data;
  530. status = i2c_transfer(client->adapter, msgs, 1);
  531. if (status < 1) {
  532. pr_err("I2C WRITE FAILED=[%d]\n", status);
  533. return -EACCES;
  534. }
  535. pr_debug("%s: I2C write status=%x\n", __func__, status);
  536. return status;
  537. }
  538. EXPORT_SYMBOL(sde_i2c_byte_write);