ese_cold_reset.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. *
  5. ***************************************************************************/
  6. /*
  7. * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  8. *
  9. ***************************************************************************/
  10. #include <linux/slab.h>
  11. #include <linux/gpio.h>
  12. #include <linux/uaccess.h>
  13. #include "common.h"
  14. /*
  15. * Power management of the eSE
  16. * eSE and NFCC both are powered using VEN gpio,
  17. * VEN HIGH - eSE and NFCC both are powered on
  18. * VEN LOW - eSE and NFCC both are power down
  19. */
  20. int nfc_ese_pwr(struct nfc_dev *nfc_dev, unsigned long arg)
  21. {
  22. int ret = 0;
  23. if (arg == ESE_POWER_ON) {
  24. /*
  25. * Let's store the NFC VEN pin state
  26. * will check stored value in case of eSE power off request,
  27. * to find out if NFC MW also sent request to set VEN HIGH
  28. * VEN state will remain HIGH if NFC is enabled otherwise
  29. * it will be set as LOW
  30. */
  31. nfc_dev->nfc_ven_enabled = gpio_get_value(nfc_dev->configs.gpio.ven);
  32. if (!nfc_dev->nfc_ven_enabled) {
  33. pr_debug("eSE HAL service setting ven HIGH\n");
  34. gpio_set_ven(nfc_dev, 1);
  35. } else {
  36. pr_debug("ven already HIGH\n");
  37. }
  38. nfc_dev->is_ese_session_active = true;
  39. } else if (arg == ESE_POWER_OFF) {
  40. if (!nfc_dev->nfc_ven_enabled) {
  41. pr_debug("NFC not enabled, disabling ven\n");
  42. gpio_set_ven(nfc_dev, 0);
  43. } else {
  44. pr_debug("keep ven high as NFC is enabled\n");
  45. }
  46. nfc_dev->is_ese_session_active = false;
  47. #ifdef NFC_SECURE_PERIPHERAL_ENABLED
  48. if (nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) {
  49. if(chk_eSE_pwr_off)
  50. up(&sem_eSE_pwr_off);
  51. }
  52. #endif
  53. } else if (arg == ESE_POWER_STATE) {
  54. /* get VEN gpio state for eSE, as eSE also enabled through same GPIO */
  55. ret = gpio_get_value(nfc_dev->configs.gpio.ven);
  56. } else {
  57. pr_err("%s bad arg %lu\n", __func__, arg);
  58. ret = -ENOIOCTLCMD;
  59. }
  60. return ret;
  61. }
  62. /**
  63. * send_ese_cmd() - Send eSE command to NFC controller.
  64. * @nfc_dev: NFC device handle.
  65. *
  66. * Return: 0 on pass and negative value on failure.
  67. */
  68. static int send_ese_cmd(struct nfc_dev *nfc_dev)
  69. {
  70. int ret;
  71. if (nfc_dev->nfc_state == NFC_STATE_FW_DWL) {
  72. dev_err(nfc_dev->nfc_device,
  73. "cannot send ese cmd as FW download is in-progress\n");
  74. return -EBUSY;
  75. }
  76. if (!gpio_get_value(nfc_dev->configs.gpio.ven)) {
  77. dev_err(nfc_dev->nfc_device,
  78. "cannot send ese cmd as NFCC powered off\n");
  79. return -ENODEV;
  80. }
  81. if (nfc_dev->cold_reset.cmd_buf == NULL)
  82. return -EFAULT;
  83. ret = nfc_dev->nfc_write(nfc_dev, nfc_dev->cold_reset.cmd_buf,
  84. nfc_dev->cold_reset.cmd_len,
  85. MAX_RETRY_COUNT);
  86. if (ret <= 0)
  87. dev_err(nfc_dev->nfc_device,
  88. "%s: write failed after max retry, ret %d\n",
  89. __func__, ret);
  90. return ret;
  91. }
  92. /**
  93. * read_cold_reset_rsp() - Read response of the cold reset command.
  94. * @nfc_dev: NFC device handle.
  95. * @header: Pointer to NCI header if it is already read.
  96. *
  97. * Return: 0 on pass and negative value on failure.
  98. */
  99. int read_cold_reset_rsp(struct nfc_dev *nfc_dev, char *header)
  100. {
  101. int ret = -EPERM;
  102. struct cold_reset *cold_rst = &nfc_dev->cold_reset;
  103. char *rsp_buf = NULL;
  104. if (cold_rst->rsp_len < COLD_RESET_RSP_LEN) {
  105. dev_err(nfc_dev->nfc_device,
  106. "%s: received cold reset rsp buffer length is invalid \n",
  107. __func__);
  108. return -EINVAL;
  109. }
  110. rsp_buf = kzalloc(cold_rst->rsp_len, GFP_DMA | GFP_KERNEL);
  111. if (!rsp_buf)
  112. return -ENOMEM;
  113. /*
  114. * read header if NFC is disabled
  115. * for enable case, header is read by nfc read thread(for i2c)
  116. */
  117. if ((!cold_rst->is_nfc_enabled) &&
  118. (nfc_dev->interface == PLATFORM_IF_I2C)) {
  119. ret = i2c_master_recv(nfc_dev->i2c_dev.client, rsp_buf, NCI_HDR_LEN);
  120. if (ret <= 0) {
  121. dev_err(nfc_dev->nfc_device,
  122. "%s: failure to read cold reset rsp header\n",
  123. __func__);
  124. ret = -EIO;
  125. goto error;
  126. }
  127. /*
  128. * return failure, if packet is not a response packet or
  129. * if response's OID doesn't match with the CMD's OID
  130. */
  131. if (!(rsp_buf[0] & NCI_RSP_PKT_TYPE) ||
  132. (!cold_rst->cmd_buf) ||
  133. (rsp_buf[1] != cold_rst->cmd_buf[1])) {
  134. dev_err(nfc_dev->nfc_device,
  135. "%s: - invalid cold reset response 0x%x 0x%x\n",
  136. __func__, rsp_buf[0], rsp_buf[1]);
  137. ret = -EINVAL;
  138. goto error;
  139. }
  140. } else if (header) {
  141. memcpy(rsp_buf, header, NCI_HDR_LEN);
  142. } else {
  143. dev_err(nfc_dev->nfc_device,
  144. "%s: - invalid or NULL header\n", __func__);
  145. ret = -EINVAL;
  146. goto error;
  147. }
  148. if ((NCI_HDR_LEN + rsp_buf[NCI_PAYLOAD_LEN_IDX]) >
  149. cold_rst->rsp_len) {
  150. dev_err(nfc_dev->nfc_device,
  151. "%s: - no space for cold_reset resp\n", __func__);
  152. ret = -ENOMEM;
  153. goto error;
  154. }
  155. if (nfc_dev->interface == PLATFORM_IF_I2C) {
  156. ret = nfc_dev->nfc_read(nfc_dev,
  157. &rsp_buf[NCI_PAYLOAD_IDX],
  158. rsp_buf[NCI_PAYLOAD_LEN_IDX],
  159. NCI_CMD_RSP_TIMEOUT_MS);
  160. if (ret <= 0) {
  161. dev_err(nfc_dev->nfc_device,
  162. "%s: failure to read cold reset rsp payload\n",
  163. __func__);
  164. ret = -EIO;
  165. goto error;
  166. }
  167. ret = cold_rst->status = rsp_buf[NCI_PAYLOAD_IDX];
  168. pr_debug("nfc ese rsp hdr 0x%x 0x%x 0x%x, payload byte0 0x%x\n",
  169. rsp_buf[0], rsp_buf[1], rsp_buf[2], rsp_buf[3]);
  170. }
  171. error:
  172. kfree(rsp_buf);
  173. return ret;
  174. }
  175. /**
  176. * ese_cold_reset_ioctl() - This function handles the eSE cold reset ioctls.
  177. * @nfc_dev: NFC device handle.
  178. * @arg: ioctl argument.
  179. *
  180. * Return: 0 on pass and negative value on failure.
  181. */
  182. int ese_cold_reset_ioctl(struct nfc_dev *nfc_dev, unsigned long arg)
  183. {
  184. int ret;
  185. struct ese_ioctl_arg ioctl_arg;
  186. struct ese_cold_reset_arg *cold_reset_arg = NULL;
  187. if (!arg) {
  188. dev_err(nfc_dev->nfc_device, "arg is invalid\n");
  189. return -EINVAL;
  190. }
  191. ret = copy_from_user((void *)&ioctl_arg, (const void *)arg,
  192. sizeof(ioctl_arg));
  193. if (ret) {
  194. dev_err(nfc_dev->nfc_device,
  195. "ese ioctl arg copy from user failed\n");
  196. return -EFAULT;
  197. }
  198. cold_reset_arg = kzalloc(sizeof(struct ese_cold_reset_arg), GFP_KERNEL);
  199. if (!cold_reset_arg)
  200. return -ENOMEM;
  201. mutex_lock(&nfc_dev->write_mutex);
  202. ret = copy_struct_from_user(cold_reset_arg,
  203. sizeof(struct ese_cold_reset_arg),
  204. u64_to_user_ptr(ioctl_arg.buf),
  205. sizeof(struct ese_cold_reset_arg));
  206. if (ret) {
  207. dev_err(nfc_dev->nfc_device,
  208. "ese ioctl arg buffer copy from user failed\n");
  209. ret = -EFAULT;
  210. goto err;
  211. }
  212. switch (cold_reset_arg->sub_cmd) {
  213. case ESE_COLD_RESET_DO:
  214. /*
  215. * cold reset allowed during protection enable, only if the
  216. * source is same as the one which enabled protection.
  217. */
  218. if (nfc_dev->cold_reset.is_crp_en &&
  219. (cold_reset_arg->src !=
  220. nfc_dev->cold_reset.last_src_ese_prot)) {
  221. dev_err(nfc_dev->nfc_device,
  222. "cold reset from %d denied, protection is on\n",
  223. cold_reset_arg->src);
  224. ret = -EACCES;
  225. goto err;
  226. }
  227. nfc_dev->cold_reset.cmd_buf = kzalloc(COLD_RESET_CMD_LEN,
  228. GFP_DMA | GFP_KERNEL);
  229. if (!nfc_dev->cold_reset.cmd_buf) {
  230. ret = -ENOMEM;
  231. goto err;
  232. }
  233. nfc_dev->cold_reset.cmd_buf[0] = PROP_NCI_CMD_GID;
  234. nfc_dev->cold_reset.cmd_buf[1] = COLD_RESET_OID;
  235. nfc_dev->cold_reset.cmd_buf[2] = COLD_RESET_CMD_PL_LEN;
  236. nfc_dev->cold_reset.cmd_len = NCI_HDR_LEN +
  237. COLD_RESET_CMD_PL_LEN;
  238. nfc_dev->cold_reset.rsp_len = COLD_RESET_RSP_LEN;
  239. break;
  240. case ESE_COLD_RESET_PROTECT_EN:
  241. if (nfc_dev->cold_reset.is_crp_en) {
  242. if (cold_reset_arg->src !=
  243. nfc_dev->cold_reset.last_src_ese_prot) {
  244. dev_err(nfc_dev->nfc_device,
  245. "ese protection enable denied\n");
  246. ret = -EACCES;
  247. goto err;
  248. }
  249. pr_warn("ese protection already enabled\n");
  250. ret = 0;
  251. /* free buffers and exit with pass */
  252. goto err;
  253. }
  254. fallthrough;
  255. case ESE_COLD_RESET_PROTECT_DIS:
  256. if (nfc_dev->cold_reset.is_crp_en &&
  257. cold_reset_arg->src !=
  258. nfc_dev->cold_reset.last_src_ese_prot) {
  259. pr_err("ese cold reset protection disable denied\n");
  260. ret = -EACCES;
  261. goto err;
  262. }
  263. nfc_dev->cold_reset.cmd_buf = kzalloc(COLD_RESET_PROT_CMD_LEN,
  264. GFP_DMA | GFP_KERNEL);
  265. if (!nfc_dev->cold_reset.cmd_buf) {
  266. ret = -ENOMEM;
  267. goto err;
  268. }
  269. nfc_dev->cold_reset.cmd_buf[0] = PROP_NCI_CMD_GID;
  270. nfc_dev->cold_reset.cmd_buf[1] = COLD_RESET_PROT_OID;
  271. nfc_dev->cold_reset.cmd_buf[2] = COLD_RESET_PROT_CMD_PL_LEN;
  272. nfc_dev->cold_reset.cmd_len = NCI_HDR_LEN +
  273. COLD_RESET_PROT_CMD_PL_LEN;
  274. nfc_dev->cold_reset.rsp_len = COLD_RESET_PROT_RSP_LEN;
  275. if (cold_reset_arg->sub_cmd == ESE_COLD_RESET_PROTECT_EN)
  276. nfc_dev->cold_reset.cmd_buf[3] = 0x1;
  277. else
  278. nfc_dev->cold_reset.cmd_buf[3] = 0x0;
  279. break;
  280. default:
  281. pr_err("%s invalid ese ioctl sub cmd %d\n", __func__,
  282. cold_reset_arg->sub_cmd);
  283. ret = -ENOIOCTLCMD;
  284. goto err;
  285. }
  286. pr_debug("nfc ese cmd hdr 0x%x 0x%x 0x%x\n",
  287. nfc_dev->cold_reset.cmd_buf[0],
  288. nfc_dev->cold_reset.cmd_buf[1],
  289. nfc_dev->cold_reset.cmd_buf[2]);
  290. ret = send_ese_cmd(nfc_dev);
  291. if (ret <= 0) {
  292. pr_err("failed to send ese command\n");
  293. goto err;
  294. }
  295. nfc_dev->cold_reset.rsp_pending = true;
  296. /* check if NFC is enabled */
  297. if (nfc_dev->cold_reset.is_nfc_enabled) {
  298. /*
  299. * nfc_read thread will initiate cold reset response
  300. * and it will signal for data available
  301. */
  302. wait_event_interruptible(nfc_dev->cold_reset.read_wq,
  303. !nfc_dev->cold_reset.rsp_pending);
  304. } else {
  305. /*
  306. * Read data as NFC read thread is not active
  307. */
  308. if (nfc_dev->interface == PLATFORM_IF_I2C) {
  309. ret = is_nfc_data_available_for_read(nfc_dev);
  310. if (ret <= 0) {
  311. nfc_dev->nfc_disable_intr(nfc_dev);
  312. nfc_dev->cold_reset.rsp_pending = false;
  313. goto err;
  314. }
  315. ret = read_cold_reset_rsp(nfc_dev, NULL);
  316. nfc_dev->cold_reset.rsp_pending = false;
  317. if (ret < 0) {
  318. pr_err("%s rsp read err\n", __func__);
  319. goto err;
  320. }
  321. } else {
  322. /*
  323. * Enable intr as it is disabled when NFC is in disable
  324. * state
  325. */
  326. nfc_dev->nfc_enable_intr(nfc_dev);
  327. wait_event_interruptible(
  328. nfc_dev->cold_reset.read_wq,
  329. !nfc_dev->cold_reset.rsp_pending);
  330. }
  331. nfc_dev->nfc_disable_intr(nfc_dev);
  332. }
  333. if (cold_reset_arg->sub_cmd == ESE_COLD_RESET_PROTECT_EN) {
  334. nfc_dev->cold_reset.is_crp_en = true;
  335. nfc_dev->cold_reset.last_src_ese_prot = cold_reset_arg->src;
  336. } else if (cold_reset_arg->sub_cmd == ESE_COLD_RESET_PROTECT_DIS) {
  337. nfc_dev->cold_reset.is_crp_en = false;
  338. nfc_dev->cold_reset.last_src_ese_prot =
  339. ESE_COLD_RESET_ORIGIN_NONE;
  340. } else
  341. pr_debug("ese cmd is %d\n", cold_reset_arg->sub_cmd);
  342. ret = nfc_dev->cold_reset.status;
  343. err:
  344. if (nfc_dev->cold_reset.cmd_buf != NULL) {
  345. kfree(nfc_dev->cold_reset.cmd_buf);
  346. nfc_dev->cold_reset.cmd_buf = NULL;
  347. }
  348. if (cold_reset_arg != NULL) {
  349. kfree(cold_reset_arg);
  350. cold_reset_arg = NULL;
  351. }
  352. mutex_unlock(&nfc_dev->write_mutex);
  353. return ret;
  354. }